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Introduction

The class of various expansions of fields is one of the key objects of study in model theory. Examples are differentially closed fields, Henselian valued fields, algebraically closed fields with a generic automorphism, etc. There are lots of natural examples of such structures that are intensively investigated in other areas of mathematics, while the model theories of them often extends well-known results to a wider context and sometimes, model theoretic techniques can help to discover new phenomenons.

We will consider expansions of pseudofinite fields with a distinguished automorphism. The model theory of pseudofinite fields has been initiated by J. Ax in [START_REF] Ax | The elementary theory of finite fields[END_REF] and subsequently developed in [START_REF] Duret | Les corps faiblement algébriquement clos non séparablement clos ont la propriété dindépendance[END_REF], [START_REF] Chatzidakis | Definable sets over finite fields[END_REF], [START_REF] Hrushovski | Groups definable in local fields and pseudofinite fields[END_REF]. On the other hand, the model theory of fields with a distinguished automorphism has also been investigated. The best understood one is possibly ACFA: the theory of algebraically closed fields with a generic automorphism, developed notably in [START_REF] Chatzidakis | Model theory of difference fields[END_REF], [START_REF] Chatzidakis | acov Peterzil. Model theory of difference fields, ii: Periodic ideals and the trichotomy in all characteristics[END_REF]. It is the model companion of the theory of difference fields and, interestingly, the fixed field of any model of ACFA is a pseudofinite field. Based on these, one might expect a theory of pseudofinite difference fields which is a mixture of PSF (the theory of pseudofinite fields) and ACFA.

M. Ryten has studied a specific class of pseudofinite difference fields with the motivation of understanding the asymptotic behaviour of Suzuki groups and Ree groups. In [START_REF] Jonathan | Model theory of finite difference fields and simple groups[END_REF], he showed that given any prime p and a pair of coprime numbers m, n > 1, the class {(F p kp•m+n , Frob p kp ) : k p ∈ N} is a one-dimensional asymptotic class. He also gave a recursive axiomatization of asymptotic theories of such structures: P SF (m,n,p) . In a sense, P SF (m,n,p) is a mixture of PSF and ACFA. In fact, any model of P SF (m,n,p) can be obtained as a definable substructure of some model of ACFA 1 , and the onedimensional asymptotic class result is based on the uniform estimate of the number of solutions of definable sets of finite σ-degree in some model of ACFA in [START_REF] Ryten | Acfa and measurability[END_REF].

However P SF (m,n,p) is a bit restricted in the sense that in no model of P SF (m,n,p) there are transformally transcendental elements, elements that satisfy no non-trivial 1 difference polynomial. Our aim in this paper is to study a class of pseudofinite difference fields with transformally transcendental elements.

Another class of closely related structures is the class of pairs of pseudofinite fields, as the fixed field of a pseudofinite difference field is finite or pseudofinite. As noticed by Macintyre and Cherlin, there are pairs of pseudofinite fields whose theory is not decidable. This wild phenomenon also occurs in the structures that we study, but we also gain some tameness properties of definable sets, see Theorem 9. We think it is possible to have pseudofinite difference fields with transformally transcendental elements whose theory is still decidable. But it is not clear what kind of theories they are.
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Pseudofinite coarse dimension

We begin with some preliminaries of difference fields. Definition 1. A difference field is a field (F, +, •, 0, 1) together with a field automorphism σ which is surjective.

The language of difference rings L σ is the language of rings augmented by a unary function symbol σ. Definition 2. We fix an ambient difference field L.

• Let A be a subset. We denote by A σ to be the smallest difference subfield containing A and closed under σ and σ -1 .

• Let E be a difference subfield and a be a tuple. The σ-degree, deg σ (a/E), is the transcendence degree of (E, a) σ over E.

• Let E be a difference subfield. If there is no non-zero difference polynomial over E vanishing on a, then we say a is transformally transcendental over E if a is an element in L and a is transformally independent over E if a is a tuple in L.

• Let E be a difference subfield and a be a tuple. The transformal transcendence degree of a over E is defined as the maximal length of a transformally independent subtuple of a over E.

We now give the definition of pseudofinite coarse dimension.

Definition 3. Let M be a pseudofinite structure over some non-principal ultrafilter U and R * be the ultrapower of R along U. Then any pseudofinite set D ⊆ M n has a non-standard cardinality |D| ∈ R * . Let α ∈ R * .

• The coarse dimension on M normalised by α, denoted δ δ δ α , is a function from definable sets of M to R ≥0 ∪ {∞}, defined as

δ δ δ α (A) := st( log |A| α ),
for A ⊆ M n definable. When α := log |X| for some pseudofinite set X, we also write δ δ δ α as δ δ δ X .

• We say δ δ δ α is continuous if for any ∅-definable formula φ(x, y), for any r 1 < r 2 ∈ R, there is some ∅-definable set D with

{a ∈ M |y| : δ δ δ α (φ(M |x| , a)) ≤ r 1 } ⊆ D ⊆ {a ∈ M |y| : δ δ δ α (φ(M |x| , a)) < r 2 }.
• We say δ δ δ α is definable if δ δ δ α is continuous and the set {δ δ δ α (φ(M |x| , a)) : a ∈ M |ȳ| } is finite for any ∅-definable formula φ(x, y). By compactness, it is equivalent to the following: for any ∅-definable formula φ(x, y) and a ∈ M |y| , there is ξ(y) ∈ tp(a) such that

M |= ξ(b) if and only if δ δ δ α (φ(M |x| , b)) = δ δ δ α (φ(M |x| , a)).
Definition 4. Let M be a pseudofinite structure and α ∈ R * . Let a be a tuple in M and A ⊆ M . Define

δ δ δ α (a/A) := inf δ δ δ α (ϕ(M |x| )), ϕ(x) ∈ tp(a/A) . Fact 5. [8, Lemma 2.10] If δ δ δ α is continuous, then δ δ δ α is additive, i.e., for any a, b, A ⊆ M we have δ δ δ α (a, b/A) = δ δ δ α (a/A, b) + δ δ δ α (b/A).
Remark: There is always a way to make δ δ δ α continuous by expanding the language of the structure M . However, this might add new definable sets to M , which could be an inconvenience.

The following fact is a well-known result in the class of finite fields, which gives a uniform estimate of number of solutions of definable sets in all finite fields. Our main result will be based on it. Fact 6. [START_REF] Chatzidakis | Definable sets over finite fields[END_REF] Let L be the language of rings. For every formula ϕ(x, y) ∈ L with |x| = n, |y| = m there are a constant C ϕ > 0 and a finite set D ϕ ⊂ {0, . . . , n} × R >0 such that the following holds:

For any finite field F q and a ∈ (F q ) m , if ϕ((F q ) n , a) = ∅, then there is some

(d, µ) ∈ D such that ||ϕ((F q ) n , a)| -µ • q d | ≤ C ϕ • q d-1 2 .
Now we start to define a special class of pseudofinite difference fields and study the model theoretic properties of them. Definition 7. Let L σ be the language of difference rings. Let ϕ(x, y) be a formula defined in L σ without parameters. For any prime p, define ϕ p (x, y) as the result of replacing all occurrence of σ(t) by t p . Clearly, ϕ p (x, y) is a formula in the language of rings L.

Let P be the set of all primes. For any formula ϕ(x, y) in L σ and p ∈ P, consider ϕ p (x, y) ∈ L. There are C ϕp and the finite set D ϕp as stated in Fact 6. Let 

E ϕp := 0≤d≤|x| {µ : (d, µ) ∈ D ϕp }.
C ϕp • p kp(d-1 2 ) ≤ 1 2 µ kp • p kp•d . Therefore, 1 2 µ kp • p kp•d ≤ |ϕ p ((F p kp ) |x| , a p )| ≤ 3 2 µ kp • p kp•d .
Furthermore, by the definition of k p , we have Remark: This proof works also for pseudofinite difference fields of characteristic p > 0, that is, for i∈I (F p k i , Frob p t i )/U provided k i >> t i for almost all i.

In the following, we will show that the coarse dimension δ δ δ F is definable using the field structure. To prove this, we first need a lemma. Lemma 10. Let M be a pseudofinite structure in the language L M and X be a pseudofinite subset of M . Let ϕ(x, y) be an L M -formula with |x| = m and |y| = n. Suppose there is some r ∈ R ≥0 such that for all b ∈ M m we have δ δ δ

X (ϕ(M n , b)) = r whenever ϕ(M n , b) = ∅. Then δ δ δ X (ϕ(M n+m )) = r + δ δ δ X (∃xϕ(x, M m )).
Proof. Suppose (M, X) = i∈I (M i , X i )/U for some ultrafilter U on an index set I and

X i ⊆ M i finite sets. For each i ∈ I pick b max i and b min i in (M i ) m such that |ϕ((M i ) n , b max i )| is maximal and |ϕ((M i ) n , b min i )| is minimal non-zero respectively. Clearly, we have |ϕ((M i ) n , b min i )| • |∃xϕ(x, (M i ) m )| ≤ |ϕ((M i ) n+m )| ≤ ϕ((M i ) n , b max i )| • |∃xϕ(x, (M i ) m )|. Let b max := (b max i ) i∈I /U ∈ M and b min := (b min i ) i∈I /U ∈ M respectively. By assump- tion, δ δ δ X (ϕ(M n , b max )) = δ δ δ X (ϕ(M n , b min )) = r.
Therefore, for any > 0, there is some J ∈ U such that for all i ∈ J, we have

|X i | r-≤ |ϕ((M i ) n , b min i )| ≤ |ϕ((M i ) n , b max i )| ≤ |X i | r+ .
Multiplying each term by |∃xϕ(x, (M i ) m )| and combining the inequality before, we get

|X i | r-• |∃xϕ(x, (M i ) m )| ≤ ϕ((M i ) n+m ) ≤ |X i | r+ • |∃xϕ(x, (M i ) m )|. Therefore, r -+ log |∃xϕ(x, (M i ) m )| log |X i | ≤ log |ϕ((M i ) n+m )| log |X i | ≤ r + + log |∃xϕ(x, (M i ) m )| log |X i | .
By the definition of δ δ δ X we conclude that

r + + δ δ δ X (∃xϕ(x, M m )) ≤ δ δ δ X (ϕ(M n+m )) ≤ r -+ δ δ δ X (∃xϕ(x, M m )).
Since is arbitrary, we get the desired result.

Corollary 11. Let M be a pseudofinite structure in the language L and let X ⊆ M n be a pseudofinite subset. Suppose there is some r ∈ N such that for any L-formula ϕ(x, y) with |x| = 1 over ∅ and any b ∈ M |y| , we have δ δ δ X (ϕ(M, b)) ∈ {0, 1, . . . , r} and for each i ≤ r, the set

{b ∈ M |y| : δ δ δ X (ϕ(M, b)) = i} is ∅-definable.
Then for any formula ψ(x, y) and any tuple c ∈ M |y| , we have

δ δ δ X (ψ(M |x| , c)) ∈ {0, . . . , |x| • r}.
Moreover, δ δ δ X is definable.

Proof. We use induction on the length of |x|. The case |x| = 1 is given by assumption. Suppose the conclusion holds for |x| = n, we prove it for |x| = n + 1. Let ψ(x 0 , . . . , x n , y) be a formula with |x i | = 1 for 0 ≤ i ≤ n. We know that there are ∅-definable θ (x 1 , . . . , x n , y) with ∈ {0, 1, . . . , r} which define respectively the sets

{(x 1 , . . . , x n , y) ∈ M n+|y| : δ δ δ M (ψ(M, x 1 , . . . , x n , y)) = and ψ(M, x 1 , . . . , x n , y) = ∅}. For any c ∈ M |y| , note that ψ(M n+1 , c) is the disjoint union of {ψ(M n+1 , c) ∧ θ i (M n , c) : i ∈ {0, 1, . . . , r}},
and Lemma 10 applies to each of the formulas. Hence,

δ δ δ X (ψ(M n+1 , c) ∧ θ i (M n , c)) = i +δ δ δ X (∃x 0 (ψ(x 0 , M n , c) ∧ θ i (M n , c)) = i +δ δ δ X (θ i (M n , c)). By induction hypothesis, δ δ δ X (θ i (M n , c)) ∈ {0, . . . , r • n}. Therefore, δ δ δ X (ψ(M n+1 , c)) = max{i + δ δ δ X (θ i (M n , c)) : 0 ≤ i ≤ r} ∈ {0, . . . , r • (n + 1)}.
Again by induction hypotheses, for any k ∈ {0, . . . , r • n} there are ∅-definable ξ k i (y) with i ∈ {0, . . . , r}, which define the corresponding sets For any ψ(x, y), let

{y ∈ F |y| : δ δ δ X (θ i (M n , y)) = k and θ i (M n , y) = ∅}.
θ ψ (y) := ∀z∃x 1 ∃x 2 ∃x 3 ∃x 4 ( 1≤i≤4 ψ(x i , y) ∧ x 3 = x 4 ∧ z = (x 1 -x 2 ) • (x 3 -x 4 ) -1 ).
We claim that θ ψ (c) if and only if δ δ δ F (ψ(F, c)) = 1 for all c ∈ F |y| . Suppose θ ψ (c) holds, then clearly there is a surjection from (ψ(F, c))

4 to F . Therefore, δ δ δ F (ψ(F, c)) ≥ 1 4 . By assumption, δ δ δ F (ψ(F, c)) ∈ {0, 1}. Hence, δ δ δ F (ψ(F, c)) = 1. On the other hand, if ¬θ ψ (c) holds, there is a ∈ F such that for any x 1 , x 2 , x 3 , x 4 ∈ ψ(F, c) we have a = (x 1 -x 2 )(x 3 - x 4 ) -1 whenever x 3 = x 4 . Let f : (ψ(F, c)) 2 → F be defined as f (x 1 , x 2 ) := x 1 + ax 2 . Then f is an injection. Therefore, δ δ δ F (ψ(F, c)) ≤ 1 2 . We conclude that δ δ δ F (ψ(F, c)) = 0.
Hence, the set

{c ∈ F |y| : δ δ δ F (ψ(F, c)) = 0 and ψ(F, c) = ∅}
is defined by ¬θ ψ (y) ∧ ∃xψ(x, y). And θ ψ (y) defines the set

{c ∈ F |y| : δ δ δ F (ψ(F, y)) = 1}.
Corollary 13. For any pseudofinite difference field (F, Frob) ∈ S, the coarse dimension δ δ δ F is definable and integer-valued for all L σ -definable sets. Moreover, δ δ δ F is additive in the language L σ .

Proof. By Theorem 9, for any L σ -formula ψ(x, y) with |x| = 1, any b ∈ F |y| we have

δ δ δ F (ψ(F, b)) ∈ {0, 1}.
Applying Lemma 12 we get the desired result.

Remark: In general, the coarse dimension does not have the property that a definable set has dimension 0 if only if it is finite. Similarly, in a group, we don't necessarily have that a subgroup of infinite index will have smaller dimension.

Example 14. Let (F, Frob) = p∈P (F p kp , Frob p )/U ∈ S. Define a function f : F × → F × as f (x) := x -1 • Frob(x).
It is easy to see that f is a group homomorphism. Therefore, the image T := f (F × ) is a definable subgroup of F × . There is a corresponding f p : (F p kp ) × → (F p kp ) × and T p := f p ((F p kp ) × ) for any p ∈ P. Since the kernel of f p is (F p ) × , we get [(F p kp ) × :

T p ] = p -1.
Hence, T has infinite index in F × , though δ δ δ F (T ) = δ δ δ F (F × ).

Coarse dimension and transformal transcendence degree

In the following, we will try to understand whether there are some algebraic properties of difference fields that are intrinsic to the coarse dimension δ δ δ F . Let us start with an observation. Given (

F, Frob) = (F p kp , Frob p )/U ∈ S. Let ( F , Frob) := p∈P ( Fp , Frob p )/U, then ( F , Frob
) is a model of ACFA, which contains (F, Frob) as a substructure.

In ACFA, there is a notion of dimension which is also integer-valued, and it is induced by SU-rank.

Let k be a saturated model of ACFA.

Definition 15. Let a be a finite tuple in k and A ⊆ k. Then SU (a/A) = ω • k + n for some 0 ≤ k ≤ |a|. Define the rank-dimension dim rk of tp(a/A) as dim rk (a/A) := k.

Remark: dim rk (a/A) coincides with the transformal transcendence degree of a over A σ (the difference field generated by A).

Now we have two integer-valued additive dimensions on definable sets: dim rk and the coarse dimension δ δ δ F . Note further that dim rk (F ) = δ δ δ F (F ) = 1 and dim rk (Fix(F )) = δ δ δ F (Fix(F )) = 0. It is natural to ask whether they coincide on all definable sets.

One of the inequalities is obvious.

Lemma 16. Let (F, Frob) ∈ S. For any tuple a ∈ F and subset A ⊆ F we have δ δ δ F (a/A) ≤ dim rk (a/A).

Proof. Note that by the additivity of both dim rk and δ δ δ F , we only need to prove the inequality when a is a single element. We may assume that A = A σ . By [START_REF] Chatzidakis | Model theory of difference fields[END_REF], we know that SU (a/A) = ω if and only if a is transformally transcendental over A if and only if

deg σ (a/A) = ∞. Therefore, we need to show that if deg σ (a/A) < ∞ then δ δ δ F (a/A) = 0. Suppose deg σ (a/A) < ∞.
Then there is some m and a non-trivial polynomial f (x; y 1 , . . . , y m ) with parameters in A, such that f (σ m (a); σ m-1 (a), . . . , a) = 0. Take any prime p ∈ P and let

g p (x) := f (x p m ; x p m-1 , . . . , x). Then |g p (F p kp ) = 0| ≤ p C•m for some constant C depending on f . Let ϕ(x) := f (σ m (x); σ m-1 (x), . . . , x) = 0. Then ϕ(x) defines exactly the set g p (F p kp ) = 0 in (F p kp , Frob p ). Therefore, δ δ δ F (ϕ(F )) = 0. As a ∈ ϕ(F ), we get δ δ δ F (a/A) = 0.
We conjecture that in general the two dimensions coinside. But at the moment, we can only prove the case for existential formulas. To prove this, we will use the estimation of the number of solutions of formulas in ACFA, which is given in [START_REF] Ryten | Acfa and measurability[END_REF] based on Hrushovski's twisted Lang-Weil estimate.

Definition 17. Let ϕ(x) be a difference formula with parameters A. We define deg σ (ϕ(x)) := max{deg σ (a/A σ ) : ϕ(a) holds}.

Remark: Given a formula ϕ(x, y), seen as a family of definable sets parametrised by the variable y, by [4, Section 7], the set {y : deg σ (ϕ(x, y)) = d} is definable.

Fact 18. [11, Theorem 1.1] and [12, Theorem 2.1.1] Let K q := ( Fp , Φ q : x → x q ) where q is a power of the prime number p. Let ϕ(x, y) be a formula in the language of difference rings, with x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y m ). Then there is a positive constant C and a finite set D of pairs (d, µ) with D ⊆ Z and µ ∈ Q + , such that in each field K q and each y 0 ∈ K m q , one of the following happens:

1. There are some (d, µ) ∈ D such that deg σ (ϕ(x, y 0 )) = d, and we have the estimate

||ϕ(K n q , y 0 )| -µq d | ≤ Cq d-1 2 . 2. deg σ (ϕ(x, y 0 )) = ∞ and |ϕ(K n q , y 0 )| = ∞.
Lemma 19. Let a be a tuple in F and A ⊆ F . Suppose the coarse dimension δ δ δ F (a/A) is witnessed by an existential formula, that is, there is some formula ∃yψ(x, y) with ψ(x, y) quantifier-free (possibly with parameters), such that δ δ δ F (∃yψ(F |x| , y)) = δ δ δ F (a/A) and ∃yψ(x, y) ∈ tp(a/A). Then δ δ δ F (a/A) = dim rk (a/A).

Proof. We can write a = a 1 a 2 where δ δ δ F (a/A) = δ δ δ F (a 1 /A) = |a 1 |. Suppose that (F, Frob) |= ϕ(a 1 , a 2 , a ) with a ⊆ A witnesses the coarse dimension of a over A and that ϕ(x 1 , x 2 , y) := ∃zψ(x 1 , x 2 , y, z), where ψ(x 1 , x 2 , y, z) is quantifier-free. We claim that δ δ δ

F (ϕ(a 1 , F |x 2 | , a )) = 0. If not, then let b ∈ F |x 2 | such that (F, Frob) |= ϕ(a 1 , b, a ) and δ δ δ F (b/a , a 1 ) = δ δ δ F (ϕ(a 1 , F |x 2 | , a )) > 0. Then δ δ δ F (a 1 , b/a ) = δ δ δ F (a 1 /a ) + δ δ δ F (b/a , a 1 ) > δ δ δ F (a 1 /a ) = δ δ δ F (a/a ). Since (F, Frob) |= ϕ(a 1 , b, a ), we get δ δ δ F (ϕ(F |x 1 x 2 | , a )) ≥ δ δ δ F (a 1 , b/a ) > δ δ δ F (a/a
). This contradicts our assumption that ϕ(x 1 , x 2 , a ) witnesses δ δ δ F (a/a ). By Lemma 16, we have Suppose a = (a p ) p∈P /U and b = (b p ) p∈P /U. Let ϕ p (x, y) be defined as in Definition 7. As δ δ δ F (a/A) = 0, by our construction, there is some V in the ultrafilter U which has the following property: for all p ∈ V , there is a constant C p such that for all k with b p ∈ F p k , we have

|a 1 | = δ δ δ F (a 1 /a ) ≤ dim rk (a 1 /a ) ≤ |a 1 |. Therefore, dim rk (a 1 /a ) = δ δ δ F (a 1 /a ) = δ δ δ F (a/
|ϕ p (F p k , b p )| ≤ C p .
We claim that |ϕ p ( Fp , b p )| ≤ C p . Suppose not, then take {a 0 , a 1 , . . . , a Cp } ⊆ ϕ p (( Fp ) |x| , b p ). As ϕ(x, y) is existential, so is ϕ p (x, y). We may suppose ϕ p (x, y) = ∃zψ p (x, y, z). For each a i , pick some e i ∈ ( Fp ) |z| such that Fp |= ψ p (a i , b p , e i ). Let F p k be a large finite field contains all the points {a 0 , . . . , a Cp , e 0 , . . The previous Lemma says essentially that if a set is definable by a pure existential formula, then all the elements of maximal coarse dimension, the "generic elements", can be controlled by their quantifier-free type. It would be nice to also have some control over those "non-generic" elements. It turned out that this can be done.

Lemma 20. Let ϕ(x) := ∃yψ(x, y) be an L σ -formula such that ψ(x, y) is quantifier-free with parameters in the finite set A ⊆ F . Then for any a ∈ F |x| with (F, Frob) |= ϕ(a), we have dim rk (a/A) ≤ δ δ δ F (ϕ(F |x| )).

Proof. Let n be the length of the tuple x in ϕ(x). Suppose a ∈ F n and (F, Frob) |= ϕ(a). Denote the set of complete quantifier-free n-types over A as S qf n (A). Hence, there is some p ∈ S qf n (A) such that (F, Frob) |= ϕ(a) ∧ p(a). Clearly,

t := δ δ δ F ({ϕ} ∪ p) := min{δ δ δ F (ψ(F n ) ∧ ϕ(F n )) : ψ ∈ p} ≤ δ δ δ F (ϕ(F n )).
By the extension property (every partial type extents to a complete type of the same coarse dimension) and ω-saturation of (F, Frob), there is some a ∈ F n such that

δ δ δ F (a /A) = δ δ δ F ({ϕ} ∪ p) = t. Hence, δ δ δ F (a /A) = δ δ δ F (ϕ(F n ) ∧ ψ(F n )) for some ψ(x) ∈ p.
As p is quantifier-free, by Lemma 19, we have dim rk (a /A) = t. Since a and a have the same quantifier-free type p over A, we must have

dim rk (a/A) = dim rk (a /A) = t ≤ δ δ δ F (ϕ(F n )).
This partial connection between dim rk and δ δ δ F already can help us to establish more properties of (F, Frob). The strategy is the following: we start with a definable object in (F, Frob). If we have the control over dim rk of elements in it, then we work in ( F , Frob). As it is a model of ACFA, we can use all the model theoretic tools there. In the end, we transfer the results in ( F , Frob) back to those in (F, Frob).

Fact 21. Let (k, σ) be a model of ACFA. Let G be a definable subgroup of some algebraic group H(k). Let acl σ denote the algebraic closure in ACFA. Suppose G is definable over E = acl σ (E). Then G is contained in a group G which is quantifier-free definable over E and has the same SU-rank as G.

Remark: This statement can be found in [3, Section 6.5]. Notation: For a difference formula ϕ(x) with parameters in A ⊆ ( F , Frob). Let

d = max{n ≤ |x| : SU (a/A) = ω • n + m, for some a ∈ ϕ(( F ) |x| )}.
We define dim rk (ϕ(x)) := d. Lemma 22. Let (F, Frob) ∈ S. Given a ∈ F n and A ⊆ F . Suppose dim rk (a/A) = k. Then there is a finite set {P 1 (x), . . . , P m (x)} of difference polynomials with parameters in A such that (F, Frob) |= i≤m P i (a) = 0 and dim rk ( i≤m P i (x) = 0) = k.

Proof. We may write a into two parts a 1 and a 2 where dim rk (a 1 /A) = |a 1 | = k, and dim rk (a 2 /Aa 1 ) = 0. Let (Aa 1 ) σ be the difference field generated by A ∪ {a 1 }. Suppose

a 2 := a 1 2 • • • a m 2 with each |a i 2 | = 1. Since dim rk (a i 2 /Aa 1 ) = 0 for each i ≤ m, we get deg σ (a i 2 /(Aa 1 ) σ ) < ∞. Therefore, there is a difference polynomial P i (y i , b i ) with b i ⊆ (Aa 1 ) σ such that a i 2 vanishes on it. Write b i = f i (a 1 )
where f i is a difference polynomial with parameters in A. We should rearrange the order of variables such that x 0 , . . . , x |a|-1 corresponds to the order of a. Suppose

a 1 = a l 1 • • • a l |a 1 | and a 2 = a t 1 • • • a t |a 2 |
where a j is the j th digit of a. Now it is easy to see that a satisfies the formula

i≤m P i (x t i , f i (x l 1 , . . . , x l |a 1 | )) = 0, and dim rk ( i≤m P i (x t i , f i (x l 1 , . . . , x l |a 1 | )) = 0) = k.
Corollary 23. Let (F, Frob) ∈ S. Suppose G is a definable (possibly with parameters in F ) subgroup of some algebraic group H(F ) ⊆ F t . If G is defined by some existential formula, then there is a quantifier-free definable group Ḡ ≥ G (defined with parameters in F ), such that δ δ δ F ( Ḡ) = δ δ δ F (G).

Proof. Suppose G is defined over the finite set A ⊆ F with the formula ϕ G . Let k := δ δ δ F (G).

Let Π A be the set of difference polynomials in t-variables with coefficients in A.

By Lemma 22, for any element a ∈ G, there are some {P a,i (x) :

1 ≤ i ≤ m a } ⊂ Π A such that (F, Frob) |= i≤ma P a,i (a) = 0 and dim rk ( i≤ma P a,i (x) = 0) = dim rk (a/A). By Lemma 20, dim rk (a/A) ≤ δ δ δ F (G) = k.
Therefore, ϕ G (x) |= a∈G ( i≤ma P a,i (x) = 0). (The right hand-side is a countable disjunction, since P a,i (x) = 0 are in L σ ∪ {A} and A is a finite set.) By compactness, there is some finite set a 0 , . . . , a l such that

ϕ G (x) |= j≤ ( i≤ma j P a j ,i (x) = 0). As dim rk ( i≤ma j P a j ,i (x) = 0) ≤ k for each j ≤ , we get dim rk ( j≤ ( i≤ma j P a j ,i (x) = 0)) ≤ k.
Write the formula j≤ ( i≤ma j P a j ,i (x) = 0) into the conjunctive normal form u≤N v≤Mu

(P u,v (x) = 0),
for some natural numbers N, M u , and each P u,v (x) ∈ {P a j ,i (x) : j ≤ , i ≤ m a j }. Hence, for each u ≤ N , we have ϕ G (x) |= ( v≤Mu P u,v (x)) = 0. Let G F be closure of G under the σ-Zariski topology in ( F , Frob), that is, if we define I F (G) = {p ∈ F [x] σ : p(g) = 0 for all g ∈ G}, then

G F := {h ∈ H( F ) : p(h) = 0 for all p ∈ I F (G)}.
As prime σ-ideals are finitely generated, G F is quantifier-free definable. Note that

v≤Mu P u,v (x) ∈ I F (G) for each u ≤ N . Since dim rk ( u≤N ( v≤Mu P u,v (x) ) = 0 ) = dim rk ( j≤ ( i≤ma j P a j ,i (x) = 0) ) ≤ k, we get dim rk (G F ) ≤ k.
Take an automorphism δ of ( F , Frob) fixing

F . Then G = δ(G) ⊆ δ(G F ). As δ(G F ) is also closed under the σ-Zariski topology in ( F , Frob), we get G F ⊆ δ(G F ) which implies G F = δ(G F ).
Therefore, G F is invariant under automorphisms fixing F , hence it is definable over F . Let E = acl σ (F ) = F alg , then by Fact 21, there is G E which contains G F , has the same SU -rank as G E and is quantifier-free definable over E. In fact, G E is the smallest closed set containing G F in the σ-Zariski topology in (F alg , Frob F alg ).

Suppose G E is defined by 0≤j≤ P j (x, σ(x), . . . , σ m (x), a j ) = 0, where P j are polynomials in the language of rings and a j ⊆ F alg . For any 0 ≤ j ≤ , let {a 0 j , . . . , a N j j } ⊆ (F alg ) |a j | be the set of all field conjugates of a j over F . Note that for any g ∈ G we have g, σ(g), . . . , σ m (g) ⊆ F . Hence, P j (g, σ(g), . . . , σ m (g), a j ) = 0 if and only if P j (g, σ(g), . . . , σ m (g), a i j ) = 0 for any g ∈ G and 0 ≤ i ≤ N j . Let B j be the set in H( F ) vanishing on {P j (x, σ(x), . . . , σ m (x), a i j ) : 0 ≤ i ≤ N j }. Then from the above argument, we know B j ⊇ G. As B j is closed under the σ-Zariski topology in ( F , Frob), we get B j ⊇ G F . Similarly, by B j being closed under the σ-Zariski topology in (F alg , Frob F alg ), we get B j ⊇ G E . Now consider the following formula 0≤j≤ 0≤i≤N j P j (x, . . . , σ m (x), a i j ) = 0.

It defines j≤ B j . By the argument above, we know that j≤ B j ⊇ G E . Clearly, we also have j≤ B j ⊆ G E . Hence, the formula above also defines G E in H( F ). Now we show that G E can be made quantifier-free definable over F . Fix 0 ≤ j ≤ , consider the formula 0≤i≤N j P j (x, x 1 , . . . , x m , a i j ) = 0, where x 1 , . . . , x m are distinct tuples of variables all have the same length as x. For 1 ≤ k ≤ N l + 1, let e k (t 0 , . . . , t N j ) be the k-elementary symmetric polynomials in N j + 1-variables, i.e., e k (t 0 , . . . , t N j ) :=

0≤i 1 <•••<i k ≤N j t i 1 • • • t i k .
Then we have 0≤i≤N j P j (x, x 1 , . . . , x m , a i j ) = 0 if and only if

1≤k≤N j +1
e k (P j (x, x 1 , . . . , x m , a 0 j ), . . . , P j (x, x 1 , . . . , x m , a

N j j ) = 0.
For each 1 ≤ k ≤ N j + 1, as {a i j : 0 ≤ j ≤ N j } is the set of all field conjugates of a j in F alg over F and that e k is symmetric, we get Q k j (x, . . . , x m , b k j ) := e k (P j (x, x 1 , . . . , x m , a 0 j ), . . . , P j (x, x 1 , . . . , x m , a

N j j )
is invariant under field automorphisms Gal(F alg /F ). Therefore, b k j ⊆ F (since F is perfect).

Let ϕ H (x) be the quantifier-free formula with parameters in A that defines the algebraic group H. Now consider

ψ(x) := ϕ H (x) ∧ ( 0≤j≤ 1≤k≤N j +1 Q k j (x, σ(x), . . . , σ m (x), b k j )).
It is easy to see that ψ(x) defines G E in ( F , Frob). As ψ(x) is quantifier-free and defined over F , we can consider Ḡ := {g ∈ F t : (F, Frob) |= ψ(g)}. As H(F ) is an algebraic group and F is definably closed in F in the language of rings, Ḡ is a quantifier-free definable group in (F, Frob) and contains G.

Note that dim rk (G E ) = dim rk (G F ) ≤ k. Hence, δ δ δ F ( Ḡ) ≤ dim rk (ψ(x)) = dim rk (G E ) ≤ k. On the other hand, since Ḡ ⊇ G and δ δ δ F (G) = k, we get δ δ δ F ( Ḡ) ≥ k. Therefore, δ δ δ F ( Ḡ) = δ δ δ F (G) = k.

Non-tameness

This section investigates whether this family of difference fields is tame in terms of Shelah's classification. It turns out that the answer is negative.

In the following, we will prove that if a structure expands a pseudofinite field with a "logarithmically small" definable subset, then the theory has TP2 and the strict order property and is not decidable. This result is known among experts. As we could not find a proof in the literature, we include it here for completeness.

The proof is based on the result that the theory of pseudofinite fields has the independence property in [START_REF] Duret | Les corps faiblement algébriquement clos non séparablement clos ont la propriété dindépendance[END_REF]. The strategy is to modify Duret's proof to show that when a pseudofinite set is very small compared to the size of the field, then every pseudofinite subset of it can also be coded uniformly.

Fact 24. ([7, Proposition 4.3]) Let k is a field and p a prime different from char(k) such that k contains a p th -root of unity. Let k be the algebraic closure of k. Suppose

f i ∈ k[Y 1 , • • • , Y m ] and F i = X p -f i ∈ k[Y 1 , • • • , Y m , X] for 1 ≤ i ≤ n. If there exist g i , h i ∈ k[Y 1 , • • • , Y m ] and q i ∈ N such that: • for all i, f i = g q i i h i ; • for all i, g i is prime in k[Y 1 , • • • , Y m ]
• for all i = j, g i = g j

• for all i and j, g i does not divide h j

• for all i, p does not divide q i .

Then the ideal J in k[Y 1 , • • • , Y m , X 1 , • • • , X n ] generated by {F i (X i ) : 1 ≤ i ≤ n} is absolutely prime, and does not contain any non-zero element in k[Y 1 , • • • , Y m ].
Fact 25. ([2, Theorem 7.1]) Let V ⊆ ( Fq ) n be an absolutely irreducible F q -variety of dimension r > 0 and degree δ. If q > 2(r + 1)δ 2 , then the following estimate holds:

||(V ∩ (F q ) n )| -q r | ≤ (δ -1)(δ -2)q r-1 2 + 5δ 13 3 q r-1 .
Theorem 26. Let F = i∈I F p i n i /U be a pseudofinite field and A = i∈I A i /U a infinite pseudofinite subset of F . Suppose there is a constant C such that |A i | ≤ Cn i for any i ∈ I. Then all pseudofinite subsets of A are uniformly definable.

Proof. Consider the finite algebraic extension F of F of degree 14C. As F is pseudofinite, there is only one such extension and is definable. To see the definability, suppose F = F (α). Let f be the minimal polynomial of α over F . Then we can define F as the 14C-dimensional vector space over F with multiplication defined according to the minimal polynomial f . We distinguish two cases according to p i . Suppose p i = 2. Since x p 14Cn i i -1 = 1 for all x ∈ F p 14Cn i i , the square root of unity exists in F p 14Cn i i . As the multiplicative group of F p 14Cn i i is cyclic, take δ i ∈ F p 14Cn i i a generator, then δ i is not a square in F p 14Cn i i .

Claim 27. Let ϕ(y, u) be the formula:

∃x(x 2 = y + u).
Then for all i ∈ I with p i = 2 and for all C i ⊆ A i , there is y i ∈ F p 14Cn i i such that

C i = ϕ(y i , F p 14Cn i i ) ∩ A i . Proof. Given i ∈ I with p i = 2 and C i ⊆ A i . Let J be the ideal in F p 14Cn i i [X 1 , • • • , X t i , Y ] generated by {X 2 j -(Y + c j ) : c j ∈ C i } ∪ {X 2 j -δ i (Y + d j ) : d j ∈ A i \ C i },
where δ i is a generator of F * p 14Cn i i as defined before. Let V (J) be the corresponding

F p 14Cn i i
-variety. Then V (J) is absolutely irreducible by Fact 24, Suppose V (J) ∩ (F p 14Cn i i

) t i +1 = ∅. Let (x 1 , • • • , x t i , y i ) be a solution. Then clearly C i ⊆ ϕ(y i , F p 14Cn i i
). On the other hand, if there is d ∈ A i \ C i , such that ϕ(y i , d). Then there are x j , x ∈ F p 14Cn i i such that:

x 2 j = δ i (y i + d); x 2 = y i + d; y i -d = 0,
where the last inequality follows from Fact 24 since Y -d ∈ J) Hence, δ i = (x j /x) 2 , contradicting that δ i is not a square root. Therefore,

C i = ϕ(y i , F p 14Cn i i ) ∩ A i .
So we only need to show V (J) ∩ F p 14Cn i i = ∅.

Let |A i | = t i ≤ Cn i .
We calculate the dimension and the degree of V (J). It is clear that the dimension of V (J) is 1, as all X j are algebraic over Y . Let c 1 , • • • , c t i be a list of elements in A i . And for 1 ≤ j ≤ t i , let V j be the variety defined as the set of solutions of X 2 j -(Y + c j ) if c j ∈ C i , and of X 2 j -δ i (Y + c j ) if c j ∈ C i . Then V (J) = 1≤j≤t i V j and each V j has degree 2. Therefore, by the Bézout inequality, the degree of V (J) is less than or equal to 2 t i .

Proof. For each

i ∈ I, pick Y i ⊆ B i such that |B i | 1 4 ≤ |Y i | ≤ |B i | 1 3 . Let Y = i∈I Y i /U.
By Theorem 26, Y is definable and all subsets of Y i are uniformly definable by some ψ 1 (y, u). For each i ∈ I, consider the set

Y i -Y i Y i -Y i := { y 1 -y 2 y 3 -y 4 : y 1 , y 2 , y 3 , y 4 ∈ Y i , y 3 = y 4 }.
It has size at most

|Y i | 4 << |F p n i i |. Take any a ∈ Y i -Y i Y i -Y i ∪ {0}.
Then the set T i := {y 1 + ay 2 : y 1 , y 2 ∈ Y i } is in definable bijection with Y i × Y i and of size less than n i . By Theorem 26, all subsets of T i , hence of Y i × Y i , are uniformly definable by some ψ 2 (y, u). Similarly, we can show that all subsets of Y i × Y i × Y i are uniformly definable by some ψ 3 (y, u).

We may assume that all subsets of Y i (and

Y i × Y i , Y i × Y i × Y i ) can be defined uniformly by parameters in F p n i i . For a ∈ F p n i i , we write S 1 a ⊆ Y i for the set ψ 1 (a, F p n i i ) and S 2 a ⊆ Y i × Y i , S 3 a ⊆ Y i × Y i × Y i for ψ 2 (a, F p n i i ), ψ 3 (a, F p n i i ) respectively. Now define a relation R + ⊆ (F p n i i ) 3 by: R + (a, b, c) if there exist g ∈ F p n i i and y = y ∈ Y i such that • either S 3 g is the graph of a bijective function from (S 1 a × {y}) ∪ (S 1 b × {y }) to S 1 c ; • or S 1 c = Y i and S 3 g is the graph of a surjective function from (S 1 a ×{y})∪(S 1 b ×{y }) to Y i ; Similarly, we define R × ⊆ (F p n i i ) 3 by: R × (a, b, c) if there exists g ∈ F p n i i such that • either S 3
g is the graph of a bijective function from S 1 a × S 1 b to S 1 c ;

• or S 1 c = Y i and S 3 g is the graph of a surjective function from S 1 a × S 1 b to Y i ;

We also define an equivalence relation E ⊆ (F p n i i ) 2 by: E(a, b) if and only if there exists g ∈ F p n i i such that S 2 g is the graph of a bijective function from S 1 a to S 1 b . It is easy to see then that R + , R × respect the equivalence relation E and

(|Y i |, +, ×) ((F p n i i ) 2 /E, R + /E, R × /E).
Corollary 30. Let (F, Frob) ∈ S and T := T h(F, Frob). Then T has the strict order property and TP2. Moreover, T is not decidable.

Proof. As the fixed field Fix(F ) := {x ∈ F : σ(x) = x} is definable and satisfies the condition in Theorem 26, every pseudofinite subset of Fix(F ) can be coded uniformly by some formula ϕ(x, t). In particular, it will code some infinite strictly increasing chain A 1 A 2 A 3 • • • of subsets of Fix(F ). Therefore, T has the strict order property.

Let ϕ(x, t) be the same formula. To see that T has TP2, by compactness, we only need to show that given any n ∈ N, there is some (a ij ) 1≤i,j≤n such that for any 1 ≤ i ≤ n, we have {ϕ(x, a ij ) : 1 ≤ j ≤ n} is 2-inconsistent and {ϕ(x, a if (i) ) : 1 ≤ i ≤ n} is consistent for any f : {1, . . . , n} → {1, . . . , n}.

Given n ∈ N, let A n ⊆ Fix(F ) be a set with n n -many elements. Fix a bijection η : A n → {1, . . . , n} {1,...,n} where {1, . . . , n} {1,...,n} is the set of all functions from {1, . . . , n} to itself. Let (a ij ) 1≤i,j≤n be such that ϕ(x, a ij ) codes the set

B ij := {a ∈ A n : η(a)(i) = j} ⊆ A n .
For any 1 ≤ i ≤ n, as B i1 , . . . , B in form a complete partition of A n , we get {ϕ(x, a ij ) : 1 ≤ j ≤ n} is 2-inconsistent. On the other hand, for any f : {1, . . . , n} → {1, . . . , n} the element η -1 (f ) ∈ A n witnesses that {ϕ(x, a if (i) ) : 1 ≤ i ≤ n} is consistent.

As (F, Frob) interprets ultraproducts of initial segments of natural numbers with truncated addition and multiplication by Corollary 30, the undecidability follows from [10, Section 4].

The following part concerns the algebraic closure in (F, Frob) ∈ S. Let F be a pseudofinite field and F alg be the smallest algebraically closed field containing F . Take a tuple a ∈ F . Then the algebraic closure in the pseudofinite field acl F (a) is simply the algebraic closure in F alg intersected with F , i.e., acl (a) = acl F alg (a) ∩ F .

As ACFA is the model companion of the theory of difference fields, we can embed (F, Frob) into some (K, σ) |= ACF A. We might wonder if similarly, the algebraic closure in the theory of (F, Frob) is the same as the algebraic closure in (K, σ) intersected with F . But the answer is negative. In fact, we have the following.

Lemma 31. For any n > 0, there is some (F, Frob) ∈ S and element a n ∈ F such that a n is in the definable closure of tuple b n in (F, Frob), but deg σ (a n /b n ) = n.

We need a small lemma first. There is C n ∈ R such that for any F q with char(F q ) = 2 and b 1 , • • • , b n distinct nelements in F q , we have

||ϕ(F q , b 1 , • • • , b n )| - q 2 n | ≤ C n • q 1 2 .
Proof. Given distinct elements b 1 , • • • , b n ∈ F q . Take an element a ∈ F q such that b is not a square. Let J be the ideal in F q [X, X 1 , • • • , X n ] generated by

{X 2 1 -(X + b 1 )} ∪ {X 2 i -a(X + b i ) : 2 ≤ i ≤ n}.
By Fact 24, J is absolutely prime, whence V (J) is an absolutely irreducible variety. By the Lang-weil estimate

||V (J) ∩ (F q ) n+1 -q| ≤ N n • q 1 2 ,
where N n is a constant only depends on the degree and dimension of the variety, which in our case is independent with b 1 , • • • , b n , a and F q and only depends on n. Let π : V (J) ∩ (F q ) n+1 → F q be the projection on the the first coordinate. Clearly, π is a 2 n -to-one function. Therefore,

|ϕ(F q , b 1 , • • • , b n )| = |π(V (J) ∩ (F q ) n+1 )| = 1 2 n • |V (J) ∩ (F q ) n+1 |.
Let C n := Nn 2 n . We conclude that

||ϕ(F q , b 1 , • • • , b n )| - q 2 n | ≤ C n • q 1 2 .
Now we prove Lemma 31.

Proof. Given n ∈ N, for each p ∈ P, let k p ∈ N be such that

• k p > max{f (p, p), 14p n } where f (p, p) is given by Equation 1;

• n! divides k p ;

• p kp 2 p n > 2C p n • p Take an element b n ∈ Y n such that δ δ δ F (b n ) > 0. Note that a n ∈ dcl(b n ) and δ δ δ F (a n ) = 0. Thus,

δ δ δ F (b n /a n ) = δ δ δ F (a n , b n ) -δ δ δ F (a n ) = δ δ δ F (b n ) + δ δ δ F (a n /b n ) -δ δ δ F (a n ) = δ δ δ F (b n ) > 0.
Therefore, SU ACF A (b n /a n ) = ω. By our choice, we also have SU ACF A (b n ) = ω. Hence, a n is independent with b n in ( F , Frob). Again, by our choice, deg σ (a n ) = n. But if deg σ (a n /b n ) < n, then a n and b n will not be independent in ( F , Frob) in the theory of ACFA. We conclude that deg σ (a n /b n ) = n and a n is in the definable closure of b n .

  {y ∈ M n+1 : δ δ δ M (ψ(M n+1 , y)) = t and ψ(M n+1 , y) = ∅} for any t ∈ {0, . . . , r • (n + 1)}. Lemma 12. Let M = (F, +, •, 0, 1, . . .) be a pseudofinite field with some extra structures. Let δ δ δ F be the pseudofinite coarse dimension normalised by |F |. Suppose for any formula ϕ(x, y) with |x| = 1 we have δ δ δ F (ϕ(F, b)) ∈ {0, 1} for any tuple b ∈ F |y| . Then δ δ δ F is definable and for any formula ψ(x, y) and any tuple c ∈ F |y| , we have δ δ δ F (ψ(F |x| , c)) ∈ {0, . . . , |x|}. Proof. By Corollary 11, we only need to show definability when |x| = 1.

  a ). To show that dim rk (a/a ) = δ δ δ F (a/a ), we only need to show that dim rk (a 2 /a , a 1 ) = 0. Therefore, we need to prove the following claim:Let ϕ(x, b) (with b ∈ F a tuple) be an existential formula in the language of diffence rings such that δ δ δ F (ϕ(x, b)) = 0. Then for any tuple a ∈ F with (F, Frob) |= ϕ(a, b), we have deg σ (a/b) < ∞.

  . , e Cp , b p }, then we have card(ϕ p (F p k , b p )) ≥ C p + 1 > C p , contradiction. Let K p := ( Fp , Φ p : x → x p ). Note that ϕ p ( Fp , b p ) is exactly the set ϕ(K p , b p ). Then by Fact 18 and that |ϕ(K p , b p )| = |ϕ p ( Fp , b p )| < ∞ for each b p , we get a finite set D of pairs (d, µ) ∈ N × Q + such that for any b p , there is some (d, µ) ∈ D and the following holds: ||ϕ(K p , b p )| -µp d | ≤ Cp d-1 2 . Therefore, there is some J ∈ U and one particular pair (d, µ) ∈ D such that for any p ∈ J, we have |card(ϕ(K p , b p ))-µp d | ≤ Cp d-1 2 . By Fact 18 we know that deg σ (ϕ(x, b p )) = d for any b p ∈ J. By the subsequent remark, we know there is some formula ϕ d (y), such that ϕ d (y) holds if and only if deg σ (ϕ(x, y)) = d in a difference field. Therefore, ϕ d (b p ) holds in each K p with p ∈ J, hence ϕ d (b) holds in ( F , Frob). As ϕ(x, y) is an existential formula, (F, Frob) |= ϕ(a, b) implies ( F , Frob) |= ϕ(a, b). We conclude that deg σ (a/b) ≤ deg σ (ϕ(x, b)) = d.

Lemma 32 .

 32 Let ϕ(x; y 1 , • • • , y n ) := ∃z(z 2 = x + y 1 ) ∧ 2≤i≤n ∀z¬(z 2 = x + y i ).

kp 2 .p p kp 2 ,

 22 Let (F, Frob) := p∈P (F p kp , Frob p )/U where U is a non-principal ultrafilter on P. Clearly, (F, Frob) ∈ S and Fix(σn ) := {x ∈ F : σ n (x) = x} = Fix(σ k ) for any k < n. Take an element a n ∈ Fix(σ n ) such that deg σ (a n ) = n. Let ξ(x, a n ) := ∃z(z 2 = a n + x) ∧ ∀y(σ n (y) = y ∧ (y = a n → ¬∃z(z 2 = y + x))).As p > 14p n for each p ∈ N, by Theorem 26 and the subsequent remark, we know thatY n := ξ((F, Frob), a n ) = ∅. We claim that δ δ δ F (Y n ) = 1. Suppose a n = (a p ) p∈P /U. For each p ∈ P, let a p , b 1 , • • • , b p n -1 be a list of all elements in F p n ⊆ F p kp . Let ϕ(x, y 1 , • • • , y p n ) := ∃z(z 2 = x + y 1 ) ∧ 2≤i≤p n ∀z¬(z 2 = x + y i ).Note that for any b ∈ F p kp we haveξ((F p kp , Frob p ), a p ) = ϕ(F p k+p , a p , b 1 , • • • , b p n -1 ). By Lemma 32, ||ϕ(F p k+p , a p , b 1 , • • • , b p n -1 )| -p kp 2 p n | ≤ C p n • for all p > 2. Therefore, |Y n | ≥ p kp 2 p n -C p n • p kp /2 • 2 p n ) log p kp = 1,we get δ δ δ F (Y n ) = 1.

  Frob) := p∈P (F p kp , Frob p )/U ∈ S. Then δ δ δ F , the pseudofinite coarse dimension normalised by |F |, is integer-valued on all L σ -definable set .Proof. Let ϕ(x, y) be an L σ -formula. Consider a parameter a = (a p ) p∈P /U ∈ F |y| . For any p ∈ P, we know that there are (d kp , µ kp ) ∈ {0, . . . , |x|} × R >0 and C ϕp ≥ 0 such that for a p ∈ (F p kp ) |y| , we have||ϕ p ((F p kp ) |x| , a p )| -µ kp • p kp•d kp | ≤ C ϕp • p kp(d kp -1 2 ). say that ϕ p (x, a p ) has dimension d kp in F p kp . As d kp ≤ |x|, there is exactly one d ∈ {0, . . . , |x|} with {p ∈ P :ϕ p (x, a p ) has dimension d in F p kp } ∈ U. We claim that δ δ δ F (ϕ(F |x| , a)) = d.Proof of the claim: Note that for any p ∈ P and c ∈ (F p kp ) |x| , we have F p kp |= ϕ p (c, a p ) if and only if (F p kp , Frob p ) |= ϕ(c, a p ). Let I = {p ∈ P : p > |ϕ(x, y)| and ϕ p (x, a p ) has dimension d in F p kp }. Clearly, I ∈ U. Then for any p ∈ I, ||ϕ p ((F p kp ) |x| , a p )| -µ kp • p kp•d | ≤ C ϕp • p kp(d-1 2 ) ,
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  ≤ |ϕ p ((F p kp ) |x| , a p )| ≤ 2k p • p kp•d .

	Obviously, we have						
		lim p→∞, p∈I	log |ϕ p ((F p kp ) |x| , a p )| log(p kp )	= d.
	Therefore, δ δ δ F (ϕ(F |x| , a)) = d.			
					1 kp < µ kp < k p . Hence,
	1 2k p • p kp•d This implies				
	d -	log(2k p ) k p • log p	≤	log |ϕ p ((F p kp ) |x| , a p )| log(p kp )	≤ d +	log(2k p ) k p • log p	.
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1 See [12, Lemma 3.3.6].

Suppose, towards a contradiction, that V (J) ∩ (F p 14Cn i i ) t i +1 = ∅. Then by Fact 25,

The case p i = 2 is similar. Since 3 divides 2 14Cn i -1 for each i, there exists x ∈ F 2 14Cn i such that x 3 = 1. Take δ i be the generator of the multiplicative group of F 2 14Cn i . Then there is no y ∈ F 2 14Cn i such that y 3 = δ i .

Claim 28. Let ψ(y, u) be the formula:

Then for all i ∈ I and

As the argument before, the variety V (J) is absolutely irreducible of dimension 1 and of degree less than or equal to 3 t i . To prove the claim, we only need to show that V (J) ∩ (F 2 14Cn i ) t i +1 = ∅. Suppose not, then by Fact 25,

Let A = i∈I A i /U. Assume A is defined by χ(x). Define φ(x, y) := ψ(y, x) ∧ χ(x) if the characteristic of F is 2, and φ(x, y) := ϕ(y, x) ∧ χ(x) otherwise. Let C = i∈I C i /U ⊆ A be any pseudofinite subset. By the previous two claims, there is y C ∈ F such that C = φ(F , y C ) in F . As F is definable in F , let φ (x, ȳ) be the corresponding translation of φ(x, y) in F . Remember that we regard x, ȳ ∈ F as 14C-dimensional vector space over F and A ⊆ F . Let θ(x, ȳ) := φ (x, 0, . . . , 0, ȳ). We see that θ(x, ȳ) codes uniformly all pseudofinite subsets of A.

Remark: From the proof we know that if char(F ) = 2 and n i ≥ 14|A i | for all large enough i, then we can take θ(x, ȳ) := ∃z 2 (z 2 = x + y) ∧ χ(x) where x, y are single variables and χ(x) is the formula defining A.

Corollary 29. Let F = i∈I F p i n i /U be a pseudofinite field and B = i∈I B i /U an infinite pseudofinite subset of F . Suppose there is a constant C such that |B i | ≤ Cn i for all i ∈ I. Then (F, B) interprets the structural N = i∈I (N i , +, ×)/U, where N i = {j ∈ N : 0 ≤ j ≤ m i } for some m i ∈ N, and +, × the addition and multiplication truncated on N i respectively.