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An introduction to multivariate
and dynamic risk measures

Arthur Charpentier

May 2014

This document is lectures notes for xfa doctoral course in Louvain-la-
Neuve, given in 2014 1

1 Introduction and Notations
All (univariate) risk measures - or to be more specific all downside (or upside)
risk - are, somehow, related to quantiles. So, in order to derive some general
multivariate risk measures, or dynamic ones, we need to understand more
deeply what quantile functions are, and why we need them (in this risk
measure context).

1.1 Probablistic and Measurable Spaces

Consider some topological space S, metrizable, in the sense that there is a
metric d on that space. Assume that S is separable, so that the σ-algebra S
of S is generated by open d-balls, centered on a contable dense subset of S.

LetM(S) denote the set of all non-negative finite measures on S. Observe
that every µ ∈M(S) can be writen µ = αP for some α ∈ [0,∞). The set of
all probability measures on S isM1(S).

1This document is freely inspired by Ekeland, Galichon & Henry (2010), Föllmer &
Schied (2004), Galichon (2010), Galichon & Henry (2012), Gilboa (2009) and Henry (2010).
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Finite-dimensional Probability Spaces

Consider a simple coin tossing model, or a single lottery. Then Ω is isomor-
phic to the set {0, 1}, that we will call canonical. This setting will be related
to lotteries in decision theory, with two possible outcomes.

Jacob Bernoulli and Pierre Simon Laplace stated an indifference princi-
ple: if there are n states of world, and if we have no reason to view one as
more likely than another, then the canonical measure should be a uniform
distribution, and each event will be assigned a 1/n probability. Thus, on the
set Ω = {0, 1}, the canonical measure will be P = (1/2, 1/2) ∝ 1. Actually,
the measure is on Borelian sets of Ω, namely

P(∅) = 0
P({0}) = 1/2
P({1}) = 1/2
P({0} ∪ {1}) = P(Ω) = 1

On (Ω,P), on can define measures Q or sets of measures Q.
This was what we have have one lottery, but one can consider compound

lotteries, where the canonical space can now be {0, 1}n, if we consider se-
quential simple lotteries.

Infinite-dimensional Probability Spaces

For a continuous state space Ω, the canonical space will be [0, 1]. A first step
before working on that continuous space can be to consider {0, 1}N. This
space is obtained using a binary representation of points on the unit interval,
in the sense that

x =
∞∑
i=1

xi
2i
∈ [0, 1] with xi ∈ {0, 1}, for all i ∈ N?.

The canonical measure is the uniform distribution on the unit interval
[0, 1), denoted λ. λ([0, 1/2)) corresponds to the probability that X1 = 0, and
thus, it should be 1/2; λ([0, 1/4)) corresponds to the probability that X1 = 0
and X2 = 0, and thus, it should be 1/4; etc. Thus λ([x, x + h)) = h, which
is the caracterization of the uniform distribution on the unit interval.

In the context of real-valued sequences,

Lp = {u = (un)| ||u||p <∞}, where ||u||p =

(∑
n∈N

|un|p
) 1

p
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where p ∈ [1,∞].

Proposition 1. Let (p, q) ∈ (1,+∞)2 such that 1/p + 1/q = 1, then Lq is
the dual of Lp.

If b ∈ Lq and a ∈ Lp, the mapping

T : Lq → Lp? : b 7→ `b where `b(a) =
∑
i∈N

aibi

is an isometric isomorphism. So Lp? = Lq.
Consider a linear mapping ` from Lp to R, linear in the sense that

`(af + bg) = a`(f) + b`(g) for all a, b ∈ R and f, g ∈ Lp.

Assume that this functional is bounded, in the sense that there is M such
that |`(f)| ≤M ||f ||p. One can define a norm || · || on the space of such linear
mapping. Define

||`|| = sup
||f ||=1

{|`(f)|} sup
||f ||≤1

{|`(f)|}

The space of all of linear mappings (with that norm) is the dual of Lp.
One can prove that the dual of Lp is Lq, in the sense that for all linear

mapping `, there is g ∈ Lq such that

`(f) =

∫
f(ω)g(ω)dP(ω) for all f ∈ Lp.

This should not be suprising to see that Lq is the dual of Lp since for g ∈ Lq

||g||q = sup
||f ||=1

{|
∫
fg|} sup

||f ||≤1

{|
∫
fg|}

The optimum is obtain

f(x) = |g(x)|q−1sign(g(x))
1

||g||q−1
q

,

which satisfies

||f ||pp =

∫
|g(x)|p(q−1)sign(g(x))

dµ

||g||p(q−1)
q

= 1.
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Remark 1. L∞ is the dual of L1, but the converse is generally not true.

The space L∞ is the class of functions that are essentially bounded.
X ∈ L∞ if there exits M ≥ 0 such that |X| ≤M a.s. Then define

||X||L∞ = inf{M ∈ R+|P(|X| ≤M) = 1}.

Given X, define

essupX = inf{M ∈ R|P(X ≤M) = 1}

and
essinfX = inf{m ∈ R|P(X ≥ m) = 1}

Observe that X ∈ L∞ if and only if essup <∞, esinfX <∞, and ||X||L∞ =
essup|X|

It is also possible to define the essential supremum on a set of random
variables (on (Ω,F ,P)). Let Φ denote such a set. Then there exists ϕ? such
that

ϕ? ≥ ϕ, P− a.s. for all ϕ ∈ Φ.

Such as function is a.s. unique, and ϕ? is denoted esssupΦ.

Remark 2. Given a random variable X, and

Φ = {c ∈ R|P(X > c) > 0}

then esssupΦ = esssupX, which is the smallest constant such that X ≤ c?,
P−a.s.

1.2 Univariate Functional Analysis and Convexity

f : R → R ∪ {+∞} is a convex function if for all x, y ∈ R, with x ∈ domf ,
and α ∈ [0, 1],

f(αx+ (1− α)y) ≤ af(x) + (1− α)f(y).

where domf = {x ∈ R|f(x) < +∞}.
Recall that if f is convex, then it is (upper) semi-continuous (and locally

Lipschitz) on the interior of domf . Further, f admits left- and right-hand
derivatives, and one can write, for all x ∈ domf ,

f(x+ h) = f(x) +

∫ x+h

x

f ′+(y)dy and f(x− h) = f(x) +

∫ x−h

x

f ′−(y)dy
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An other possible definition is the following: f is a convex function is
there exists a : R→ R such that, for all x ∈ R,

f(x) = sup
y∈R
{x · y − a(y)} = a?(x)

The interpretation is that f should be above the tangent at each point. Thus,
they should be above the supremum of all tangeants. This function a? will
be related to the Legendre-Fenchel transformation of a.

Legendre-Fenchel transformation

The conjugate of function f : Rd → R is function f ? defined as

f ?(s) = sup
x∈Rd
{sx− f(x)}

Note that it is possible to extend this notion to more general spaces E, then
s ∈ E? (dual of space E) and sx becomes < s,x >.

Observe that f ? is a convex function lower semi-continuous.

Example 1. Let E denote sur nonempty subset of Rd, and define the indi-
cator function of E,

1E(x) =

{
0 if x /∈ E
+∞ if x ∈ E

Then
1?E(s) = sup

x∈E
{sx}

which is the support function of E.

Example 2. Let f(x) = α exp[x], with α ∈ (0, 1), then

f ?(s) =


+∞ if s < 0
0 if s = 0
s[log s− logα]− s if s > 0

Those functions can be visualized Figure 1.

If f is 1-coercive, in the sense that
f(x)

||x||
→ ∞ as ||x|| → ∞, then f ? is

finite on Rd.
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Figure 1: A convex function f and the Fenchel conjugate f ?

Proposition 2. If f : Rd → R is strictly convex, differentiable, and 1-
coercive, then

• f ? is also finite, strictly convex, differentiable and 1-coercive

• ∇f : Rd → Rd is also differentiable and

f ?s = s[(∇f)−1(s)]− f((∇f)−1(s)).

Proposition 3. If f : Rd → R is convex, lower semi-continuous then so is
f ?, and f ?? = f .

More generally, we have that f ?? is the largest convex function satisfying
f ??(x) ≤ f(x), which is actually the convex hull of function f .

Definition 1. An element s of Rd such that for any y

f(y) ≥ f(x) + s[y − x]

is called sub-gradient of f at point x. The set of sub-gradients is denoted
∂f(x).

Proposition 4. As a consequence,

s ∈ ∂f(x) ⇐⇒ f ?(s) + f(x) = sx.

6



Proposition 5. If f : Rd → R is convex, lower semi-continuous then

s ∈ ∂f(x) ⇐⇒ x ∈ ∂f ?(s)

that might be denoted - symbolically - ∂f ? = [∂f ]−1.

If f : Rd → R is convex, twice differentiable, and 1-coercice, then
∇f ?(s) = [∇f ]−1(s).

Example 3. If f is a power function, f(x) =
1

p
|x|p where 1 < p <∞ then

f ? (x?) =
1

q
|x?|q

where
1

p
+

1

q
= 1.

Example 4. If f is the exponential function, f(x) = exp(x) then

f ? (x?) = x? log(x?)− x? if x? > 0.

Example 5. Let X be a random variable with c.d.f. FX and quantile function
QX . The Fenchel-Legendre tranform of

Ψ(x) = E[(x−X)+] =

∫
−∞

xFX(z)dz

is
Ψ?(y) = sup

x∈R
{xy −Ψ(x)} =

∫ y

0

QX(t)dt

on [0, 1].
Indeed, from Fubini,

Ψ(x) =

∫
−∞

xP(X ≤ z)dz =

∫
−∞

xE(1X≤z)dz = E
(∫
−∞

x1X≤zdz

)
i.e.

Ψ(x) = E ([x−X]+) =

∫ 1

0

[x−QX(t)]+dt

Observe that

Ψ?(1) = sup
x∈R
{x−Ψ(x)} = lim

x↑∞

∫ 1

0

[x− (x−QX(t))+]dt =

∫ 1

0

QX(t)dt
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and Ψ?(0) = 0. Now, the proof of the result when y ∈ (0, 1) can be obtained
since

∂xy −Ψ(x)

∂x
= y − FX(x)

The optimum is then obtained when y = FX(x), or x = QY (y).

One can also prove that(
inf
α
fα

)∗
(x) = sup

α
f ∗α(x) and

(
sup
α
fα

)∗
(x) ≤ inf

α
f ∗α(x).

Further, f = f ?? if and only if f is convex and lower semi-continuous.
And from Fenchel-Young inequality, for any f ,

< x?, x >≤ f(x) + f ?(x?).

and the equality holds if and only if x? ∈ ∂f(x).

Example 6. The standard expression of Young’s inequality is that if h :
R+ → R+ is a continuous strictly increasing function on [0,m] with h(0) = 0,
then for all a ∈ [0,m] and b ∈ [0, h(m)], then

ab ≤
∫ a

0

h(x)dx+

∫ b

0

h−1(y)dy

with the equality if and only if b = h(a) (see Figure 2). A well know corollary
is that

ab ≤ ap

p
+
bq

q
when p and q are conjugates.

The extension is quite natural. Let f(a) =
∫ a

0
h(x)dx, then f is a convex

function, and its convex conjugate is f ?(b) =
∫ b

0
h−1(y)dy, then

ab ≤ f(a) + f ?(b).

1.3 Changes of Measures

Consider two probability measures P and Q on the same measurable space
(Ω,F). Q is said to be absolutely continuous with repect to P, denoted
Q� P if for all A ∈ F ,

P(A) = 0 =⇒ Q(A) = 0
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Figure 2: Fenchel-Young inequality
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If Q� P and Q� P, then Q ≈ P.
Q� P if and only if there exists a (positive) measurable function ϕ such

that ∫
hdQ =

∫ ∫
hϕdP

for all positive measurable functions h. That function varphi is call Nikodym
derivative of Q with respect to P, and we write

ϕ =
dQ
dP

Observe that, generally, Q ≈ P if and only if ϕ is stricly positive, and in
that case,

dP
dQ

=

(
dQ
dP

)−1

Let EP(·|F0) denote the conditional expectation with respect to a proba-
bility measure P and a σ-algebra F0 ⊂ F .

If Q� P,

EQ(·|F0) =
1

EP(ϕ|F0)
EP(·ϕ|F0), where ϕ =

dQ
dP

.

If there is no absolute continuity property between two measures P and
Q (neither Q� P nor P� Q), one can still find a function ϕ, and a P-null
set N (in the sense P(N) = 0) such that

Q(A) = Q(A ∩N) +

∫
A

ϕdP

Thus,
dQ
dP

= ϕ on NC.

1.4 Multivariate Functional Analysis

Given a vector x ∈ Rd and I = {i1, · · · , ik} ⊂ {1, 2, · · · , d}, then denote

xI = (xi1 , xi2 , · · · , xik).

Consider two random vectors x,y ∈ Rd. We denote x ≤ y if xi ≤ yi for all
i = 1, 2, . . . , d. Then function h : Rd → R, is said to be increasing if

h(x) ≤ h(y) whenever x � y.
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If f : Rd → R is such that ∇f : Rd → Rd is bijective, then

f ?(y) =< y, (∇f)−1(y) > −f((∇f)−1(y)) for all y ∈ Rd.

We will say that y ∈ ∂f(x) if and only if

< y,x >= f(x) + f ?(y)

1.5 Valuation and Neyman-Pearson

Valuation of contingent claims can be formalized as follows. Let X denote
the claim, which is a random variable on (Ω,F ,P), and its price is given
be E(ϕX), where we assume that the price density ϕ is a strictly positive
random variable, absolutely continuous, with E(ϕ) = 1. The risk of liability
−X is measures by R, and we would like to solve

min{R(−X)|0 ∈ [0, k] and E(ϕX) ≥ a}

In the case where R(−X) = E(X), we have a problem that can be related
to Neyman-Pearson lemma (see [24], section 8.3 and [33])

2 Decision Theory and Risk Measures
In this section, we will follow [14], trying to get a better understanding of
connections between decision theory, and orderings of risks and risk measures.
From Cantor, we know that any ordering can be represented by a functional.
More specifically,

Proposition 6. Let � denote a preference order that is

complete for every X and y, either x � y or y � x

transitive for every x, y, z such that x � y and y � z, then x � z

separable for every x, y such that x ≺ y, then there is z such that
x � z � y.

Then � can be represented by a real valued function, in the sense that

x � y ⇐⇒ u(x) ≤ u(y).

11



Keep in mind that u is unique up to an increasing transformation. And
since there is no topology mentioned here, it is meaningless to claim that u
should be continuous. This will require additional assumption, see [6].

Proof. In the case of a finite set X , define

u(x) = card{y ∈ X |y � x}.

In the case of an infinite set, but countable,

u(x) =
∑

{yi∈X|yi�x

1

2i
−

∑
{yi∈X|x�yi

1

2i

2.1 von Neuman & Morgenstern: comparing lotteries

In the previous setting, space X was some set of alternatives. Assume now
that we have lotteries on those alternative. Formally, a lottery is function
P : X → [0, 1]. Consider the case where X is finite or more precisely, the
cardinal of x’s such that P (x) > 0 is finite. Let L denote the set of all those
lotteries on X . Note that mixtures can be considered on that space, in the
sense that for all α ∈ [0, 1], and for all P, {Q ∈ L, αP ⊕ (1−α)Q ∈ L, where
for any x ∈ X ,

[αP ⊕ (1− α)Q](x) = αP (x) + (1− α)Q(x)

It is a standard mixture, in the sense that we have lottery P with probability
α and Q with probability 1− α.

Proposition 7. Let � denote a preference order on L that is

a weak order (complete and transitive)

continuous for every P,Q,R such that P ≺ Q ≺ R, then there are α, β
such that

αP ⊕ (1− α)R � Q � βP ⊕ (1− β)R.

independent for every P,Q,R and every α ∈ (0, 1)

P � Q ⇐⇒ αP ⊕ (1− α)R � αQ⊕ (1− α)R,
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Then � can be represented by a real valued function, in the sense that

P � Q ⇐⇒
∑
x∈X

P (x)u(x) ≤
∑
x∈X

Q(x)u(x).

Proof. See [18].

2.2 de Finetti: comparing outomes

[7] considered the case of bets on canonical space {1, 2, · · · , n}. The set of
bet outcomes is X = {x = (x1, · · · , xn)} ∈ Rn.

Proposition 8. Let � denote a preference order on X that is

a weak nontrivial order (complete, transitive and there are x,y such
that x ≺ y,

continuous for every x, sets {y|x ≺ y} and {y|y ≺ x} are open

additive for every x,y, z,

x � y ⇐⇒ x + z � y + z

monotonic consider x,y such that xi ≤ yi for all i, then x � y

Then � can be represented by a probability vector, in the sense that

x � y ⇐⇒ px ≤ py ⇐⇒
n∑
i=1

pixi ≤
n∑
i=1

piyi

Proof. Since x � y means that x − y � 0, the argument here is nothing
more than a separating hyperplane argument, between two spaces,

A = {x ∈ X |x ≺ 0} and B = {x ∈ X |0 ≺ x}

13



2.3 Savage Subjective Utility

With von Neuman & Morgenstern, we did focus on probabilities of states of
the world. With de Finetti, we did focus on outcomes in each states of the
world. Savage decided to focus on acts, which are functions from states to
outcomes

A = XΩ = {X : Ω→ X}
In Savage model, we do not need a probability measure on (Ω,F), what

we need is a finite additive measure. Function µ, defined on F - taking values
in R+ - is said to be finitely additive if

µ(A ∪B) = µ(A) + µ(B) whenever A ∩B = ∅.

Somehow, σ-additivity of probability measure can be seen as an additional
constraint, related to continuity, since in that case, if Ai’s are disjoint sets
and if

Bn =
n⋃
i=1

Ai

then with σ-additivity,

µ

(
lim
n↑∞

Bn

)
= µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ (Ai) = lim
n↑∞

n∑
i=1

µ (Ai) = lim
n↑∞

µ(Bn)

Actually, a technical assumption is usually added: measure µ should be
non-atomic. An atom is a set that cannot be split (with respect to µ). More
precisely, if A is an atom, then µ(A) > 0, and if B ⊂ A, then either µ(B) = 0,
or µ(B) = µ(A).

Now, given X, Y ∈ A, and S ⊂ Ω, define

SYX(ω) =

{
Y (ω) if ω ∈ S
X(ω) if ω /∈ S

Proposition 9. Let � denote a preference order on A == XΩ that is

a weak nontrivial order (complete, transitive and there are X, Y such
that X ≺ Y ,

P2 For every X, Y, Z, Z ′ ∈ A and S ⊂ Ω,

SZX � SZY ⇐⇒ SZ
′

X � SZ
′

Y .
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P3 For every Z ∈ A, x, y ∈ X and S ⊂ Ω,

S
{x}
Z � S

{y}
Z ⇐⇒ x � y.

P4 For every S, T ⊂ Ω, and every x, y, z, w ∈ Ω with x ≺ y and z ≺ w,

Sxy � T xy ⇐⇒ Swz � Twz

P6 For every X, Y, Z ∈ A, with X � Y , there exists a partition of Ω,
{S1, S2, · · · , Sn} such that, for all i ∈ {1, 2, · · · , n},

(Si)
Z
X � Y and X � (Si)

Z
Y

P7 For every X, Y ∈ A and S ⊂ Ω, if for every ω ∈ S, X �S Y (ω),
then X �S Y , and if for every ω ∈ S, Y (ω) �S X, then Y �S X.

Then � can be represented by a non-atomic finitely additive measure µ on ω
and a non-constant function X → R, in the sense that

X � Y ⇐⇒
∑
ω∈Ω

u(X(ω))µ({ω}) ≤
∑
ω∈Ω

u(Y (ω))µ({ω})

Notations P2,. . . , P7 are based on [14]’s notation.
With a more contemporary style,

X � Y ⇐⇒ Eµ[u(X)] ≤ Eµ[u(Y )].

2.4 Schmeidler and Choquet

Instead of considering finitely additional measures, one might consider a
weaker notion, called non-additive probability (or capacity, in [5]), which
is a function ν on F such that

ν(∅) = 0
ν(A) ≤ ν(B) whenever A ⊂ B
ν(Ω) = 1

It is possible to define the integral with respect to ν. In the case where X is
finite with a positive support, i.e. X takes (positive) value xi in state ωi, let

15



σ denote the permutation so that xσ(i)’s are decreasingly. Let x̃i = xσ(i) and
ω̃i = ωσ(i)

Eν(X) =

∫
Xdν =

n∑
i=1

[x̃i − x̃i+1]ν

(⋃
j≤i

{ω̃j}

)
In the case where X is continuous, and positive,

Eν(X) =

∫
Xdν =

∫
X
ν(X ≥ t)dt

(where the integral is the standard Riemann integral).
This integral is nonadditive in the sense that (in general)

Eν(X + Y ) 6= Eν(X) + Eν(Y ).

Now, Observe that we can also write (in the finite case)

Eν(X) =

∫
Xd =

n∑
i=1

x̃i

[
ν

(⋃
j≤i

{ω̃j}

)
− ν

(⋃
j<i

{ω̃j}

)]
There is a probability P such that

P

(⋃
j≤i

{ω̃j}

)
= ν

(⋃
j≤i

{ω̃j}

)
and thus,

EP(X) =

∫
XdP

Probability P is related to permutation σ, and if we assume that both vari-
ables X and Y are related to the same permutation σ, then

Eν(X) =

∫
XdP and Eν(Y ) =

∫
Y dP

so in that very specific case,

Eν(X + Y ) =

∫
(X + Y )dP =

∫
XdP+

∫
Y dP = Eν(X) + Eν(Y ).

The idea that variables X and Y are related to the same permutation means
that variables X and Y are comonotonic, since

[X(ωi)−X(ωj)] · [Y (ωi)− Y (ωj)] ≥ 0 for all i 6= j.
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Proposition 10. Let � denote a preference order on XΩ that is

a weak nontrivial order (complete, transitive and there are X, Y such
that X ≺ Y ,

comonotonic independence for every X, Y, Z comonotonic, and every
α ∈ (0, 1),

X � Y ⇐⇒ αX ⊕ (1− α)Z � αY ⊕ (1− α)Z

Then � can be represented by a nonatomic non-additive measure ν on Ω and
a non-constant function u : X → R, in the sense that

X � Y ⇐⇒
∑
ω

[EX(ω)u]dν ≤
∑
ω

[EY (ω)u]dν

where EX(ω)u =
∑
x∈X

X(ω)(x)u(x).

Here ν is unique, and u is unique up to a (positive) linear transformation.
Actually, an alternative expression is the following∫ 1

0

u(F−1
X (t))d(t) ≤

∫ 1

0

u(F−1
Y (t))d(t)

2.5 Gilboa and Schmeidler: Maxmin Expected Utility

Consider some non-additive (probability) measure on Ω. And define

core(ν) = {P probability measure on Ω|P(A) ≥ ν(A) for all A ⊂ Ω}

The non-additive measure ν is said to me convex if (see [31] and [34])
core(ν) 6= ∅ and for every h : Ω→ R,∫

Ω

hdν = min
P∈core(ν)

{∫
Ω

hdP
}

Conversely, we can consider some (convex) set of probabilities C, and see if
using some axiomatic on the ordering, we might obtain a measure that will
be the minimum of some integral, with respect to probability measures. [15]
obtained the following result
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Proposition 11. Let � denote a preference order on XΩ that is

a weak nontrivial order (complete, transitive and there are X, Y such
that X ≺ Y ,

uncertainty aversion: for every X, Y , if X ∼ Y , then for every α ∈
(0, 1), X � αX ⊕ (1− α)Y

c-independence : for every X, Y , every constant c, and for every α ∈
(0, 1),

X � Y ⇐⇒ αX ⊕ (1− α)c � αY ⊕ (1− α)c

Then � can be represented a closed and convex of probability measure C on
Ω and a non-constant function X → R, in the sense that

X � Y ⇐⇒ min
P∈C

{∫
Ω

[EX(ω)u]dP
}
≤ min

P∈C

{∫
Ω

[EY (ω)u]dP
}

2.6 Choquet for Real Valued Random Variables

In the section where we introduced Choquet’s integral, we did assume that
X was a positive random variable. In the case where X = R, two definitions
might be considered,

The symmetric integral, in the sense introduced by Šipoš of X with re-
spect to ν is

Eν,s(X) = Eν(X+)E − ν(X−)

where X− = max{−X, 0} and X+ = max{0, X}. This coincides with
Lebesgue integral in the case where ν is a probability measure.

Another extention is the one introduced by Choquet,

Eν(X) = Eν(X+)− Eν(X−)

where ν(A) = 1 − ν(AC). Here again, this integral coincides with Lebesgue
integral in the case where ν is a probability measure. One can write, for the
later expression

Eν(X) =

∫ 0

−∞
[ν(X > x)− 1]dx+

∫ ∞
0

ν(X > x)dx

18



2.7 Distortion and Maximum

Definition 2. Let P denote a probability measure on (Ω,F). Let ψ : [0, 1]→
[0, 1] increasing, such that ψ(0) = 0 and ψ(1) = 1. Then (·) = ψ ◦ P(·) is a
capacity. If ψ is concave, then ν = ψ ◦ P is a subadditive capacity.

Definition 3. Let P denote a family of probability measures on (Ω,F).Then
ν(·) = sup

P∈P
{P(·)} is a capacity. Further, ν is a subadditive capacity and

Eν(X) ≥ sup
P∈P
{EP(X)} for all random variable X.

3 Quantile(s)
Definition 4. The quantile function of a real-valued random variable X is
a [0, 1]→ R function, defined as

QX(u) = inf{x ∈ R|FX(x) > u}

where FX(x) = P(X ≤ x).

This is also called the upper quantile function, which is right-continuous.
Consider n states of the world, Ω = {ω1, · · · , ωn}, and assume that

X(ωi) = xi, i = 1, 2, · · · , n. Then

QX (u) = x(i:n) where
i− 1

n
≤ u <

i

n

Thus, QX is an increasing rearrangement of values taken by X.

Proposition 12. For all real-valued random variable X, there exists U ∼
U([0, 1]) such that X = QX(U) a.s.

Proof. If FX is strictly increasing

EX = {x|P(X = x) > 0} = ∅

and FX as well as QX are bijective, with QX = F−1
X and FX = Q−1

X . Define
U as U(ω) = FX(X(ω)), then QX(U(ω)) = X(ω). And U is uniformely
distributed since

P(U ≤ u) = P(FX(X) ≤ u) = P(X ≤ QX(u)) = FX(QX(u)) = u.
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More generally, if FX is not strictly increasing, for all x ∈ EX , define some
uniform random variable Ux, on {u|QX(u) = x}. Then define

U(ω) = FX(X(ω))1{X(ω)/∈EX} + UX(ω)1{X(ω)∈EX}

Proposition 13. If X = h(Y ) where h is some increasing function, and if
QY is the quantile function for Y , then h ◦ QX is the quantile function for
X,

QX(u) = Qh◦Y (u) = h ◦QY (u)

The quantile function is obtained by means of regression, in the sense
that

Proposition 14. QX(α) can be written as a solution of the following regres-
sion problem

QX(α) ∈⊂ argminq {E(sα(X − q))} where sα(u) = [α− 1(u ≤ 0)] · u.

Proposition 15. A quantile function, as a function of X, is

PO positive, X ≥ 0 implies QX(u) ≥ 0, ∀u ∈ [0, 1].

MO monotone, X ≥ Y implies QX(u) ≥ QY (u), ∀u ∈ [0, 1].

PH (positively) homogenous, λ ≥ 0 implies QλX(u) = λQX(u), ∀u ∈ [0, 1].

TI invariant by translation, k ∈ R implies QX−k(u) = QX(X) − k, ∀u ∈
[0, 1], i.e. QX−QX(u)(u) = 0.

IL invariant in law, X ∼ Y implies QX(u) = QY (u), ∀u ∈ [0, 1].

Observe that the quantile function is not convex

Proposition 16. A quantile function is neither

CO convex, ∀λ ∈ [0, 1], QλX+(1−λ)Y (u) � λQX(u)+(1−λ)QY (u) ∀u ∈ [0, 1].

SA subadditive, QX+Y (u) � QX(u) +QY (u) ∀u ∈ [0, 1].
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Example 7. Thus, the quantile function as a risk measure might penalize
diversification. Consider a corporate bond, with default probabilty p, and with
return r̃ > r. Assume that the loss is

− r̃ − r
1 + r

w if there is no default,

w if there is a default.

Assume that p ≤ u, then

p = P
(
X > − r̃ − r

1 + r
w

)
≤ u

thus
QX(u) ≤ − r̃ − r

1 + r
w < 0

and X can be seen as acceptable for risk level u.
Consider now two independent, identical bonds, X1 and X2. Let Y =

1

2
(X1 +X2). If we assume that the return for Y satifies r̃ ∈ [r, 1 + 2r], then

r̃ − r
1 + r

< 1 i.e.
r̃ − r
1 + r

w < w.

Q 1
2

[X1+X2](u) ≥ w

2

(
1− r̃ − r

1 + r

)
> QX(u).

Thus, if the quantile is used as a risk measure, it might penalize diversifica-
tion.

Example 8. From [12]. Since the quantile function as a risk measure is not
subadditive, it is possible to subdivide the risk into n desks to minimize the
overall capital, i.e.

inf

{
n∑
i=1

QXi(u)
∣∣ n∑
i=1

Xi = X

}
.

If we subdivide the support of X on X =
m⋃
j=1

[xj−1, xj) such that P(X ∈

[xj−1, xj)) < α. Let Xi = X · 1X∈[xj−1,xj). Then P (Xi > 0) < α and
QXi(α) = 0.

21



4 Univariate and Static Risk Measures
The quantile was a natural risk measure when X was a loss. In this section,
we will define risk measures that will be large when −X is large. And we
will try to understand the unlying axiomatic, for some random variable X.

The dual of Lp, with the || · ||p-norm is Lq, if p ∈ [1,∞), and then,
< s,x >= E(sx). As we will see here, the standard framework is to construct
convex risk measures on L∞. But to derive (properly) a dual representation,
we need to work with a weak topology on the dual of L∞, and some lower
semi-continuity assumption is necessary.

Definition 5. The Value-at-Risk of level α is

VaRα(X) = −QX(α) = Q1−α(−X).

Risk X is said to be VaRα-acceptable if VaRα(X) ≤ 0.

More generally, let R denote a monetary risk measure.

Definition 6. A monetary risk measure is a mapping Lp(Ω,F ,P)→ R

Definition 7. A monetary risk measure R can be

PO positive, X ≥ 0 implies R(X) ≤ 0

MO monotone, X ≥ Y implies R(X) ≤ R(Y ).

PH (positively) homogenous, λ ≥ 0 implies R(λX) = λR(X).

TI invariant by translation, k ∈ R implies R(X + k) = R(X)− k,

IL invariant in law, X ∼ Y implies R(X) = R(Y ).

CO convex, ∀λ ∈ [0, 1], RλX + (1− λY )) ≤ λR(X) + (1− λ)R(Y ).

SA subadditive, R(X + Y ) ≤ R(X) +R(Y ) .

The interpretation of [TI] is now that R(X +R(X)) = 0.
And property [PH] implies R(0) = 0 (which is also called the grounded

property).
Observe that if R satisfies [TI] and [CO],

R (µ+ σZ) = σR (Z)− µ.
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Definition 8. A risk measure is convex if it satisfies [MO], [TI] and [CO].

Proposition 17. If R is a convex risk measure, normalized (in the sense
that R(0) = 0), then, for all λ ≥ 0{

0 ≤ λ ≤ 1, R(λX) ≤ λR(X)
1 ≤ λ, R(λX) ≥ λR(X).

Definition 9. A risk measure is coherent if it satisfies [MO], [TI], [CO] and
[PH].

If R is coherent, then it is normalized, and then, convexity and sub-
additivity are equivalent properties,

Proposition 18. If R is a coherent risk measure, [CO] is equivalent to [SA]

Proof. If R satistfies [SA] then

R(λX + (1− λ)Y ) ≤ R(λX) +R((1− λ)Y )

and [CO] is obtained by [PH].
If R satistfies [CO] then

R(X + Y ) = 2R
(

1

2
X +

1

2
Y

)
≤ 2

2
(R(X) +R(Y ))

and [SA] is obtained by [PH].

Proposition 19. If R is a coherent risk measure, then if X ∈ [a, b] a.s.,
then R(X) ∈ [−b,−a].

Proof. Since X − a ≥ 0, then R(X − a) ≤ 0 (since R satisfies [MO]), and
R(X − a) = R(X) + a by [TI]. So R(X) ≤ −a. Similarly, b − X ≥ 0, so
R(b − X) ≤ 0 (since R satisfies [MO]), and R(b − X) = R(−X) − b by
[TI]. Since R is coherent, R(0) = 0 and R(−X) = −R(X). So R(b−X) =
−R(X)− b ≤ 0 i.e. R(X) ≥ −b.

Other properties can be mentioned ([E] from [32] and [16])

Definition 10. A risk measure is

E elicitable if there is a (positive) score function s such that

E[s(X −R(X))] ≤ E[s(X − x)] for any x ∈ R

23



QC quasi-convexity, R(λX + (1− λ)Y ) ≤ max{R(X),R(Y )} for any λ ∈
[0, 1].

FP Lp-Fatou property if given (Xn) ∈ Lp bounded with, p ∈ [1,∞), and
X ∈ Lp such that Xn

Lp→ X, then

R(X) ≤ liminf{R(Xn)}

Recall that the limit inferior of a sequence (un) is defined by lim inf
n→∞

xn := lim
n→∞

(
inf
m≥n

xm

)
.

One should keep in mind that the limit inferior satisfies a superadditivity
property, since

lim inf
n→∞

(un + vn) ≥ lim inf
n→∞

(un) + lim inf
n→∞

(vn).

4.1 From risk measures to acceptance sets

Definition 11. Let R denote some risk measure. The associated acceptance
set is

AR = {X|R(X) ≤ 0}.

Proposition 20. If R is a risk measure satisfying [MO] and [TI]

1. AR is a closed set

2. R can be recovered from AR,

R(X) = inf{m|X −m ∈ AR}

3. R is convex if and only if AR is a convex set

4. R is coherent if and only if AR is a convex cone

Proof. (1) Since X − Y ≤ ||X − Y ||∞, we get that X ≤ Y + ||X − Y ||∞, so
if we use [MO] and [TI],

R(X) ≤ R(Y ) + ||X − Y ||∞

and similarly, we can write

R(Y ) ≤ R(X) + ||X − Y ||∞,
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so we get
|R(Y )−R(X)| ≤ ||X − Y ||∞

So risk measure R is Lipschitz (with respect to the || · ||∞-norm, so R is
continous, and thus, AR is necessarily a closed set.

(2) Since R satisfies [TI],

inf{m|X −m ∈ AR} = inf{m|R(X −m) ≤ 0} = inf{m|R(X) ≤ m} = R.

(3) If R is convex then clearly AR is a convex set. Now, consider that
AR is a convex set. Let X1, X2 and m1,m2 such that Xi −mi ∈ AR. Since
AR is convex, for all λ ∈ [0, 1],

λ(X1 −m1) + (1− λ)(X2 −m2) ∈ AR

so
R(λ(X1 −m1) + (1− λ)(X2 −m2)) ≤ 0.

Now, since R satisfies [TI],

R(λX1 + (1− λ)X2) ≤ λm1 + (1− λ)m2

≤ λ inf{m|X1 −m ∈ AR}+ (1− λ) inf{m|X2 −m ∈ AR}
= λR(X1) + (1− λ)R(X2).

(4) If R satisfies [PH] then clearly AR is a cone. Conversely, consider
that AR is a cone. Let X and m. If X −m ∈ AR, then R(λ(X −m)) ≤ 0,
and λ(X −m) ∈ AR so

R(λX) ≤ λm ≤ λ inf{m|R(X) ≤ m} = λR(X)

And if X −m /∈ AR, then R(λ(X −m)) > 0, and

R(λX) > λm ≥ λ sup{m|R(X) ≥ m} = λR(X)

Example 9. Let u(·) denote a concave utility function, strictly increasing,
and

R(X) = u−1 (E[u(X)]) is the certain equivalent.

The acceptance set is

A = {X ∈ L∞|E[u(X)] ≤ u(0)}

which is a convex set.
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4.2 Representation of L∞ risk measures

Let X ∈ L∞(Ω,F ,P).
LetM1(P) denote the set of probability measures,M1(P) = {Q|Q� P},

andM1,f (P) denote the set of additive measures,M1,f (P) = {ν|ν � P}.

Definition 12. Let ν ∈M1,f (P), then Choquet’s integral is defined as

Eν(X) =

∫ 0

−∞
(ν[X > x]− 1)dx+

∫ ∞
0

ν[X > x]dx

In this section, Q will denote another measure, which could be a proba-
bility measure, or simply a finitely-additive one.

Consider a functional α : M1,f (P) → R such that inf
Q∈M1,f (P)

{α(Q)} ∈ R,

then for all Q ∈M1,f (P)

R : X 7→ EQ(X)− α(Q)

is a (linear) convex risk measure, and this property still hold by taking the
supremum on all measures Q ∈M1,f (P),

R : X 7→ sup
Q∈M1,f (P)

{EQ(X)− α(Q)} .

Such a measure is convex, and R(0) = − inf
Q∈M1,f (P)

{α(Q)}.

Proposition 21. A risk measure R is convex if and only if

R(X) = max
Q∈M1,f (P)

{EQ(X)− αmin(Q)} ,

where αmin(Q) = sup
X∈AR

{EQ(X)}.

What we have here is that any convex risk measure can be written as
a worst expected loss, corrected with some random penalty function, with
respect to some given set of probability measures.

In this representation, the risk measure is characterized in terms of finitely
additive measures. As mentioned in [? ], is we want a representation in
terms of probability measures (setM1 instead ofM1,f ) additional continuity
properties are necessary.
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Proof. From the definitions of αmin and AR, X−R(X) ∈ AR for all X ∈ L∞.
Thus,

αmin(Q) ≥ sup
X∈L∞

{EQ[X −R(X)]} = sup
X∈L∞

{EQ[X]−R(X)}

which is Fenchel’s transform of R in L∞ Since R is Lipschitz, it iscontinuous
with respect to the L∞ norm, and therefore R?? = R. Thus

R(X) = sup
Q∈L∞?

{EQ(X)−R?(X)}

= sup
Q∈L∞?

{EQ(X)− αmin(Q)}

Hence, we get that

αmin(Q) = sup
X∈L∞

{EQ(X)−R(X)} = sup
X∈AR

{Q(X)}

To conclude, we have to prove that the supremum is attained in the subspace
of L∞?, denotedM1,f (P). Let µ denote some positive measure,

R?(µ) = sup
X∈L∞

{Eµ(X)−R(X)}

but since R satisfies [TI],

R?(µ) = sup
X∈L∞

{Eµ(X − 1)−R(X) + 1}

Hence, R?(µ) = R?(µ) + 1− µ(1), so µ(1) = 1. Further

R?(µ) ≥ Eµ(λX)−R(λX) for λ ≤ 0

≥ λEµ(X)−R(0) for X ≤ 0

so, for all λ ≤ 0, λEµ(X) ≤ R(0) +R?(µ), and

Eµ(X) ≥ λ−1(R(0) +R?(µ)), for any λ ≤ 0,

≥ 0.

So, finally,
R(X) = sup

Q∈M1,f (P)

{EQ(X)− αmin(Q)} ,
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where αmin(Q) = sup
X∈AR

{EQ(X)}. To conclude, (i) we have to prove that the

supremum can be attained. And this is the case, sinceM1,f is a closed unit
ball in the dual of L∞ (with the total variation topoplogy). And (ii) that
αmin is, indeed the minimal penalty.

Let α denote a penalty associated with R, then, for any Q ∈ M1,f (P)
and X ∈ L∞,

R(X) ≥ EQ(X)− α(Q),

and

α(Q) ≥ sup
X∈L∞

{EQ(X)−R(X)}

≥ sup
X∈AR

{EQ(X)−R(X)} ≥ sup
X∈AR

{EQ(X)} = αmin(Q)

The minimal penalty function of a coherent risk measure will take only
two values, 0 and +∞. Observe that if R is coherent, then, from [PH], for
all λ ≥ 0,

αmin(Q) = sup
X∈L∞

{EQ(λX)−R(λX)} = λαmin(Q).

Hence, αmin(Q) ∈ {0,∞}, and

R(X) = max
Q∈Q
{EQ(λX)}

where
Q = {Q ∈M1,f (P)|αmin(Q) = 0}.

Proposition 22. Consider a convex risk measure R, then R can be repre-
sented by a penalty function onM1(P) if and only if R satisfies [FP].

Proof. =⇒ Suppose that R can be represented using the restriction of αmin

on M1(P). Consider a sequence (Xn) of L∞, bounded, such that Xn → X
a.s. From the dominated convergence theorem, for any Q ∈M1(P),

EQ(Xn)→ EQ(X) as n→∞,
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so

R(X) = sup
Q∈M1(P)

{EQ(X)− αmin(Q)}

= sup
Q∈M1(P)

{
lim
n→∞

EQ(Xn)− αmin(Q)
}

≤ liminf
n→∞

sup
Q∈M1(P)

{EQ(Xn)− αmin(Q)}

= liminf
n→∞

R(Xn)

so [FP] is satisfied.
⇐= Conversely, let us prove that [FP] implies lower semi-continuity with

respect to some topology on L∞ (seen as the dual of L1). The strategy is to
prove that

Cr = C ∩ {X ∈ L∞| ||X||∞ ≤ r}

is a closed set, for all r > 0, where C = {X|R(X) < c for some c}. Once we
have that R is l.s.c., then Fenchel-Moreau theorem can be invoked, R?? = R,
and αmin = R?.

Several operations can be considered on risk measures,

Proposition 23. IfR1 andR2 are coherent risk measures, thenR = max{R1,R2}
is coherent. If Ri’s are convex risk measures, then R = sup{Ri} is convex,
and further, α = inf{αi}.

Proof. Hence

R(X) = sup
i

{
sup

Q∈M1,f (P)

{EQ(X)− αi(Q)}

}
= sup

Q∈M1(P)

{
EQ(X)− inf

i
{αi(Q)}

}
.

4.3 Expected Shortfall

Definition 13. The expected shortfall of level α ∈ (0, 1) is

ESX(α) =
1

1− α

∫ 1

α

QX(u)du
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If P(X = QX(α)) = 0 (e.g. X is absolutely continuous),

ESX(α) = E(X|X ≥ QX(α))

and if not,

ESX(α) = E(X|X ≥ QX(α))+[E(X|X ≥ QX(α))−QX(α)]

(
P(X ≥ QX(α))

1− α
− 1

)
Proposition 24. The expected shortfall of level α ∈ (0, 1) can be written

ESX(α) = max
Q∈Qα

{EQ(X)}

where
Qα =

{
Q ∈M1(P)

∣∣∣∣dQdP ≤ 1

α
, a.s.

}
Hence, we can write

ESX(α) = sup{E(X|A)|P(A) > α} ≥ QX(α).

Proof. Set R(X) = supQ∈Qα{EQ(X)}. Let us prove that this supremum can
be attained, and then, that R(X) = ESX(α). Let us restrict ourself here to
the case where E(X) = 1 and X ≥ 0 (the general case can then be derived,
since

Let P̃ denote the distribution of X, so that

sup
Q∈Qα

{EQ(X)} = sup
Q∈Qα

{
EP
(
X
dQ
dP

)}
= sup

Y ∈[0,1/α]

{
EP
(
Y
dQ
dP̃

)}
=

1

α
sup

Y ∈[0,1],E(Y )=α

{EP̃(Y )}

The supremum is then attained for

Y? = 1X>QX(1−α) + κ1X=QX(1−α)

where κ is chosen to have E(Y ) = α, since

R(X) = EP̃

(
Y

α

)
= EP

(
XY

α

)
= EQ? (X) .
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(see previous discussion on Neyman-Pearson’s lemma). Thus,

dQ?

dP
=

1

α

[
1X>QX(1−α) + κ1X=QX(1−α)

]
If P(X = QX(1− α)), then κ = 0; if not,

κ =
α− P(X > QX(1− α))

P(X = QX(1− α)
.

So, if we substitute,

EQ?(X) =
1

α

(
E[X1{X>QX(1−α)} + [α− P(X > QX(1− α))]QX(1− α)]

)
=

1

α
(E(X −QX(1− α))+ + αQX(1− α))

=
1

α

(∫ 1

1−α
(QX(t)−QX(1− α))+dt+ αQX(1− α)

)
=

1

α

∫ 1

1−α
QX(t)dt = ESX(α).

Remark 3. Observe that if P(X = QX(1−α)) = 0, i.e. P(X > QX(1−α)) =
α, then

ESX(α) = E(X|X > QX(1− α)).

Proposition 25. If R is a convex risk measure satisfying [IL], exceeding the
quantile of level 1− α, then R(X) ≥ ESX(1− α).

Proof. Let R denote a risk measure satisfying [CO] and [IL], such that
R(X) ≥ QX(1− α). Given ε > 0, set A = {X ≥ QX(1− α)− ε} and

Y = X1AC + E(X|A)1A.

Then Y ≤ QX(1− α)− ε ≤ E(X|A) on AC, so P(Y > E(X|A)) = 0. On the
other hand,

P(Y ≥ E(X|A)) ≥ P(A) > α,

so with those two results, we get that QY (1−α) = E(X|A). And because R
dominates the quantile, R(Y ) ≥ QY (1−α) = E(X|A). By Jensen inequality
(since R is convex),

R(X) ≥ R(Y ) ≥ E(X|A)︸ ︷︷ ︸
E(X|QX(1−α)+ε)
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for any ε > 0. If ε ↓ 0, we get that

R(X) ≥ ESX(1− α).

4.4 Expectiles

For quantiles, an asymmetric linear loss function is considered,

hα(t) = |α− 1t≤0| · |t| =
{
α|t| if t > 0
(1-α)|t| if t ≤ 0

For expectiles - see [27] - an asymmetric quadratic loss function is con-
sidered,

hα(t) = |α− 1t≤0| · t2 =

{
αt2 if t > 0
(1-α)t2 if t ≤ 0

Definition 14. The expectile of X with probability level α ∈ (0, 1) is

eX(α) = argmin
e∈R

{
E
[
α(X − e)2

+ + (1− α)(e−X)2
++
]}

The associated expectile-based risk measure is Rα(X) = eX(α)− E(X).

Observe that eX(α) is the unique solution of

αE[(X − e)+] = (1− α)E[(e− x)+]

Further, eX(α) is subadditive for α ∈ [1/2, 1].
As proved in [20], expectiles are quantiles, but not associated with FX ,

G(x) =
P(X = x)− xFX(x)

2[P(X = x)− xFX(x)] + (x− E(x))

Let
A = {Z|EP[(α− 1)Z− + αZ+] ≥ 0}

then
eα(X) = max{Z|Z −X ∈ A}

Further
eα(X) = min

Q∈S
{EQ[X]}

where
S =

{
Q
∣∣there is β > 0 such that β ≤ dQ

dP
≤ 1− α

α
β

}
32



Remark 4. When α→ 0, Eα(X)→ essinfX.

Let γ = (1− α)/α, then eα(X) is the minimum of

e 7→
∫ 1

0

QZ(u)du with Z =
1[e,1] + β1[0,x]

1 + (γ − 1)e

Let f(x) =
x

γ − (γ − 1)x
. f is a convex distortion function, and f ◦ P is

a subadditive capacity. And the expectile can be represented as

Eα(X) = inf
Q∈S

{∫ 1

0

ESu(X)ν(du)

}
where

S =

{
Q
∣∣ ∫ 1

0

Q(du)

u
≤ γQ({1})

}
.

Observe that X 7→ Eα(X) is continuous. Actually, it is Lipschitz, in the
sense that

|Eα(X)− Eα(Y )| ≤ sup
Q∈S
{EQ(|X − Y |)} ≤ γ||X − Y |vert1.

Example 10. The case where X ∼ E(1) can be visualized on the left of
Figure 3, while the case X ∼ N (0, 1) can be visualized on the right of Figure
3.

4.5 Entropic Risk Measure

The entropic risk measure with parameter α (the risk aversion parameter) is
defined as

Rα(X) =
1

α
log
(
EP[e−αX ]

)
= sup

Q∈M1

{
EQ[−X]− 1

α
H(Q|P)

}

where H(Q|P) = EP
[
dQ
dP

log
dQ
dP

]
is the relative entropy of Q� P.

One can easily prove that for any Q� P,

H(Q|P) = sup
X∈L∞

{
EQ(−X)− 1

α
logE(e−αX)

}
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Figure 3: Quantiles, Expected Shortfall and Expectiles, E(1) and N (0, 1)
risks.

and the supremum is attained when X = −1

γ
log

dQ
dP

.

Observe that
dQX

dP
=

e−γX

E(e−γX)

which is the popular Esscher transform
Observe that the acceptance set for the entropic risk measure is the set

of payoffs with positive expected utility, where the utility is the standard
exponential one, u(x) = 1− e−αx, which has constant absolute risk aversion,
in the sense that

−u′′(x)

u′(x)
= α for any x.

The acceptance set is here

A = {X ∈ Lp|E[u(X)] ≥ 0} = {X ∈ Lp|EP
[
e−αX

]
≤ 1}

5 Comonotonicity, Maximal Correlation and Op-
timal Transport

Heuristically, risks X and Y are comonotonic if both suffer negative shocks in
the same states ω ∈ Ω, so it is not possible to use one to hedge the other. So
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in that case, there might be no reason to expect that the risk of the sum will
ne smaller than the sum of the risks (as obtained with convex or subadditive
risk measures).

5.1 Comonotonicity

Definition 15. Let X and Y denote two random variables on Ω. Then X
and Y are comonotonic random variables if

[X(ω)−X(ω′)] · [Y (ω)− Y (ω′)] ≥ 0

for all ω, ω′ ∈ Ω.

Proposition 26. X and Y are comonotonic if and only if there exists Z,
and f , g two increasing functions such that X = f(Z) and Y = g(Z).

Proof. Assume that X and Y are comonotonic. Let ω ∈ Ω and set x =
X(ω), y = Y (ω) and z = Z(ω). Let us prove that if there is ω′ such that
z = X(ω′) + Y (ω′), then necessarily x = X(ω′) and y = Y (ω′).

Since variables are comonotonic, X(ω′)−X(ω) and Y (ω′)−Y (ω) have the
same signe. But X(ω′)+Y (ω′) = X(ω)+Y (ω) implies that X(ω′)−X(ω) =
−[Y (ω′)− Y (ω)]. So X(ω′)−X(ω) = 0, i.e. x = X(ω′) and y = Y (ω′).

So z has a unique decomposition x+ y, so let us write z = xz + yz. What
we need to prove is that z 7→ xz and z 7→ yz are increasing functions.

Consider ω1 and ω2 such that

X(ω1) + Y (ω1) = z1 ≤ z2 = X(ω2) + Y (ω2)

Then
X(ω1)−X(ω2) ≤ −[Y (ω1)− Y (ω2)].

If Y (ω1) > Y (ω2), then

[X(ω1)−X(ω2)] · [Y (ω1)− Y (ω2)] ≤ −[Y (ω1)− Y (ω2)]2 < 0,

which contracdicts the comonotonic assumption. So Y (ω1) ≤ Y (ω2). So
z1 ≤ z2 necessarily implies that yz1 ≤ yz2 , i.e. z 7→ yz is an increasing
function (denoted g here).

Definition 16. A risk measure R is
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CA comonotonic addive if R(X + Y ) = R(X) +R(Y ) when X and Y are
comonotonic.

Proposition 27. V aR and ES are comontonic risk measures.

Proof. Let X and Y denote two comonotone random variables. Let us prove
that QX+Y (α) = QX(α) + QY (α). From the proposition before, there is Z
such that X = f(Z) and Y = g(Z), where f and g are increasing functions.
We need to prove that h◦QZ is a quantile of X+Y , with h = f+g. Observe
that X + Y = h(Z), and that h is increasing, so

FX+Y (h ◦QZ(t)) = P(h(Z) ≤ h ◦QZ(t)) ≥ P(Z ≤ QZ(t))

= FZ(QZ(t)) ≥ t ≥ P(Z < QZ(t)) ≥ FX+Y (h ◦QZ(t)−).

From those two inequalities,

FX+Y (h ◦QZ(t)) ≥ t ≥ FX+Y (h ◦QZ(t)−)

we get that, indeed, h ◦QZ is a quantile of X + Y .
Further, we know that X = QX(U) a.s. for some U uniformly distributed

on the unit interval. So, if X and Y are comonotonic,{
X = f(Z) = QX(U)
Y = g(Z) = QY (U)

with U ∼ U([0, 1]),

So if we substitute U to Z and QX + QY to h, we just proved that (QX +
QY ) ◦ Id = QX +QY was a quantile function of X + Y .

5.2 Hardy-Littlewood-Polyá and maximal correlation

In the proof about, we mentioned that if X and Y are comonotonic,{
X = f(Z) = QX(U)
Y = g(Z) = QY (U)

with U ∼ U([0, 1]),

i.e. X and Y can be rearranged simultaneously.
Consider the case of discrete random variables,{

X ∈ {x1, x2, · · · , xn} with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn
Y ∈ {y1, y2, · · · , yn} with 0 ≤ y1 ≤ y2 ≤ · · · ≤ yn
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Then, from Hardy-Littlewood-Polyá inequality

n∑
i=1

xiyi = max
σ∈S(1,··· ,n)

{
n∑
i=1

xiyσ(i)

}
,

which can be interpreted as : correlation is maximal when vectors are simul-
taneously rearranged (i.e. comonotonic). And similarly,

n∑
i=1

xiyn+1−i = min
σ∈S(1,··· ,n)

{
n∑
i=1

xiyσ(i)

}
,

The continuous version of that result is

Proposition 28. Consider two positive random variables X and Y , then∫ 1

0

QX(1− u)QY (u)du ≤ E[XY ] ≤
∫ 1

0

QX(u)QY (u)du

Let Y ∈ L∞ and X ∈ L1 on the same probability space (Ω,F ,P), then

max
Ỹ∼Y
{E[XỸ ]} = E[QX(U)QY (U)] =

∫ 1

0

QX(u)QY (u)du

Proof. Observe that

max
Ỹ∼Y
{E[XỸ ]} = max

Ỹ∼Y

{
1

2

(
−E[X − Ỹ ]2 + E[X2] + E[Ỹ 2]

)}
thus,

max
Ỹ∼Y
{E[XỸ ]} =

E[X2] + E[Ỹ 2]

2︸ ︷︷ ︸
=constant

−1

2
inf
Ỹ∼Y

{
E[X − Ỹ ]2

}
︸ ︷︷ ︸

infỸ∼Y {||X−Ỹ ||L2}

More generally ([26]), for all convex risk measure, invariant in law,

R(X + Y ) ≤ R(QX(U) +QY (U)) = sup
X̃∼X,Ỹ∼Y

{R(X̃ + Ỹ )}
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Definition 17. A risk measure R is

SC strongly coherent if R(X + Y ) = sup
X̃∼X,Ỹ∼Y

{R(X̃ + Ỹ )}

Proposition 29. If a risk measure R satisfies [CO] and [SC] thenR satisfies
[PH].

Proposition 30. Consider a risk measure R on Lp, with p ∈ [1,∞]. Then
the following statements are equivalent

• R is lower semi-continous and satisfies [CO] and [SC]

• R is lower semi-continous and satisfies [CO], [CI] and [LI]

• R is a measure of maximal correlation: let

Q ∈Mq
1(P) =

{
Q ∈M1(P) :

dQ
dP
∈ Lq

}
then, for all X,

R(X) = RQ(X) = sup
Y∼ dQ

dP

{E[XY ]}} =

∫ 1

0

QX(t)q dQ
dP

(t)dt.

Example 11. ESα is a RQ-risk measure, with
dQ
dP
∼ U(1− α, 1).

5.3 Distortion of probability measures

There is another interpretation of those maximal correlation risk measures,
as expectation (in the Choquet sense) relative to distortion of probability
measures.

Definition 18. A function ψ : [0, 1] → [0, 1], nondecreasing and convex,
such that ψ(0) = 0 and ψ(1) = 1 is called a distortion function.

Remark 5. Previously, distortion were not necessarily convex, but in this
section, we will only consider convex distortions.
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Proposition 31. If P is a probability measure, and ψ a distortion function,
then C : F → [0, 1] defined as

ν(A) = ψ ◦ P(A)

is a capacity, and the integral with respect to ν is

Eν(X) =

∫
Xdν =

∫ 0

−∞
[ψ ◦ P(X > x)− 1]dx+

∫ +∞

0

ψ ◦ P(X > x)dx

The fundamental theorem is the following : maximal correlation risk
measures can be written as Choquet integral with respect to some distortion
of a probability measures.

Assume that X is non-negative, and let

RQ(X) = max

{
E(XY ) | Y ∼ dQ

dP

}
=

∫ 1

0

QX(t)Q dQ
dP

(t)dt

but since
ψ′(1− t) = Q dQ

dP
(t)

we can write

RQ(X) =

∫ 1

0

QX(t)ψ′(1− t)dt =

∫ 1

0

ψ(1− t) Q dQ
dP

(t)dt

by integration by parts, and then, with t = FX(u) = Q−1
X (u),

RQ(X) =

∫ ∞
0

ψ [1− FX(u)] du =

∫ ∞
0

ψ [P(X > u)] du

which is Choquet’s expectation with respect to capacity ψ ◦ P.
Thus,

RQ(X) = max

{
E(XY ) | Y ∼ dQ

dP

}
is a coherent risk measure, as a mixture of quantiles, it can be written using
a set of scenarios Q,

RQ(X) = max
{
EQ̃(X) | Q̃ ∈ Q = {Q̃ ∈Mq

1(P : R?
Q(Q̃) = 0)}

}
where R?

Q(Q̃) = sup
X∈Lp

{
EQ̃(X)−RQ(X)

}
.
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Observe that R?
Q(Q̃) = 0 means that, for all X ∈ Lp, EQ̃(X) ≤ RQ(X),

i.e., for all A, ψ ◦ P(A) ≥ Q̃(A). Thus,

RQ(X) = max
{
EQ̃(X) | Q̃ ≤ ψ ◦ P

}
where ψ is the distortion associated with Q, in the sense that

ψ′(1− t) = Q dQ
dP

(t)

Example 12. Let X ∈ Lp, then we defined

RQ(X) = sup

{
E(X · Y ) | Y ∼ dQ

dP

}
In the case where

X ∼ N (0, σ2
x) and

dQ
dP
∼ N (0, σ2

u)

then
RQ(X) = σx · σu.

From Optimal Transport results, one can prove that the optimal coupling

sup
Ỹ∼Y
{E(XỸ )}

is given by E(∇f(Y )Y ), where f is some convex function. In dimension 1,
the quantile function QX (which yields the optimal coupling) is increasing,
but in higher dimension, what should appear is the gradient of some comvex
function.

5.4 Optimal Transport and Risk Measures

Definition 19. A map T : G → H is said to be a transport map between
measures µ and ν if

ν(B) = µ(T−1(B)) = T#µ(B) for every B ⊂ H.

Thus ∫
E
ϕ[T (x)]dµ(x) =

∫
E
ϕ[y]dν(y) for all φ ∈ C(H).
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Definition 20. A map T : G → H is said to be an optimal transport map
between measures µ and ν, for some cost function c(·, ·) if

T ∈ argmin
T,T#µ=ν

{∫
G
c(x, T (x))dµ(x)

}
The reformulation of is the following. Consider the Fréchet space F(µ, ν).

Definition 21. A transport plan between measures µ and ν if a probability
measure in F(µ, ν).

Definition 22. A transport plan between measures µ and ν if said to be
optimal if

γ ∈ argmin
γ∈F(µ,ν)

{∫
G×H

c(x, y)dγ(x, y)

}
Consider two measures on R, and define for all x ∈ R

T (x) = inf
t∈R
{ν((−∞, t]) > µ((−∞, x])}

T is the only monotone map such that T#µ = ν.

6 Multivariate Risk Measures

6.1 Which Dimension?

In this section, we consider some Rd random vector X. What could be the
risk of that random vector? Should it be a single amount, i.e. R(X) ∈ R or
a d-dimensional one R(X) ∈ Rd?

6.2 Multivariate Comonotonicity

In dimension 1, two risks X1 and X2 are comonotonic if there is Z and two
increasing functions g1 and g2 such that

X1 = g1(Z) and X2 = g2(Z)

Observe that

E(X1Z) = max
X̃1∼X1

{E(X̃1Z)} and E(X2Z) = max
X̃2∼X2

{E(X̃2Z)}.

For the higher dimension extension, recall that E(X · Y ) = E(XY T)
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Definition 23. X1 and X2 are said to be comonotonic, with respect to some
distribution µ if there is Z ∼ µ such that both X1 and X2 are in optimal
coupling with Z, i.e.

E(X1 ·Z) = max
X̃1∼X1

{E(X̃1 · Z)} and E(X2 ·Z) = max
X̃2∼X2

{E(X̃2 ·Z)}.

Observe that, in that case

E(X1 ·Z) = E(∇f1(Z) ·Z) and E(X2 ·Z) = E(∇f2(Z) ·Z)

for some convex functions f1 and f2. Those functions are called Kantorovitch
potentials of X1 and X2, with respect to µ.

Definition 24. The µ-quantile function of random vector X on X = Rd,
with respect to distribution µ is QX = ∇f , where f is Kantorovitch potential
of X with respect to µ, in the sense that

E(X ·Z) = max
X̃1∼X1

{E(X̃1 ·Z)} = E(∇f(Z) ·Z)

Example 13. Consider two random vectors, X ∼ N (0,ΣX) and Y ∼
N (0,ΣY ), as in [9]. Assume that our baseline risk is Gaussian. More specif-
ically, µ has a N (0,ΣU) distribution. Then X and Y are µ-comonotonic if
and only if

E(X · Y ) = Σ
−1/2
U [Σ

1/2
U ΣXΣ

1/2
U ]1/2[Σ

1/2
U ΣY Σ

1/2
U ]1/2Σ

−1/2
U .

To prove this result, because variables are multivariate Gaussian vectors, X
and Y are µ-comonotonic if and only if there is U ∼ N (0,ΣU), and two
matrices AX and AY such that X = AXU and Y = AYU . [30] proves that
mapping u 7→ Au with

A = Σ
−1/2
U [Σ

1/2
U ΣXΣ

1/2
U ]1/2Σ

−1/2
U

will tranform probability measure N (0,ΣU) to probability measure N (0,Σ).
Conversely, define

U = A−1
X X and U = A−1

Y Y

Clearly, U ∼ N (0,ΣU), as well as V . Observe further that

E(U · V ) = A−1
X E(X · Y )A−1

Y = ΣU = Σ
1/2
U Σ

1/2
U
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so by Cauchy-Scharz, U = V , a.s. So X and Y are µ-comonotonic.
In the case where µ has a N (0, I) distribution, X and Y are µ-comonotonic

if and only if
E(X · Y ) = Σ

1/2
X Σ

1/2
Y

But this is not the only was to define multivariate comontonicity.

6.3 π-Comonotonicity

Following [29], inspired by multivariate rearrangement introduced in [36] or
[25], one can befine π-comonotonicity,

Definition 25. X1 and X2 are said to be π-comonotonic, if there is Z and
some increasing functions g1,1, · · · , g1,d, g2,1, · · · , g2,d, such that

(X1,X2) = ([g1,1(X1,1), · · · , g1,d(X1,d)], [g2,1(X2,1), · · · , g2,d(X2,d)])

6.4 Properties of Multivariate Risk Measures

More generally, let R denote a multivariate risk measure.

Definition 26. A multivariate risk measure is a mapping Lp,d(Ω,F ,P)→ R.

Definition 27. A multivariate risk measure R can be

PO positive, X ≥ 0 implies R(X) ≤ 0

MO monotone, X ≥ Y implies R(X) ≤ R(Y ).

PH (positively) homogenous, λ ≥ 0 implies R(λX) = λR(X).

TI invariant by translation, k ∈ R implies R(X + k1) = R(X)− k,

IL invariant in law, X ∼ Y implies R(X) = R(Y ).

CO convex, ∀λ ∈ [0, 1], RλX + (1− λ)Y ) ≤ λR(X) + (1− λ)R(Y ).

SA subadditive, R(X + Y ) ≤ R(X) +R(Y ) .
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One should keep in mind that [LI] means that

R(X) = sup
X̃∼X
{R(X̃)}.

If R is a convex lower semi-continuous risk measure, then

R(X) = sup
Y ∈Q
{E(X · Y )−R?(Y )}

where R? is the Fenchel transform of R, for some set Q.

Definition 28. A multivariate risk measure R on Lp,d is

SC strongly coherent if R(X + Y ) = sup
X̃∼X,Ỹ ∼Y

{R(X̃ + Ỹ )}

MC a maximal correlation measure if

R(X) = sup
Y ∈Y⊂Lq,d

{E(X · Y )}

for some Y.

6.5 µ-Comonotonicity and Strong Coherence

Even if the extention is not unique, the concept of µ-comonotonicity seems
to be the natural extension of what we obtained in the univariate case,

Proposition 32. Let R denote a multivariate convex risk measure on Lp,d,
the following statements are equivalent

• R is strongly coherent

• R is µ-comonotone additive (for some µ) and invariant in law

• R is a maximal correlation measure

Proof. As mentioned in the previous section, since R is a convex lower semi-
continuous risk measure, then

R(X) = sup
Y ∈Y
{E(X · Y )−R?(Y )}

where R? is the Fenchel transform of R, for some set Y .
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Let us prove that [SC] implies [MC]. If R satisfies [SC], then it satisfies
[LI], and

R(X) = sup
X̃∼X
{R(X)} = sup

Y ∈Y

{
sup
X̃∼X
{E(X̃ · Y )−R?(Y )}

}
Observe that the penalty function R? satisfies [LI] since

R?(Y ) = sup
X∈Lp,d

{E(X · Y )−R(X)}

= sup
X∈Lp,d

{
sup
X̃∼X
{E(X̃ · Y )−R(X̃)

}
= sup

X∈Lp,d

{
sup
X̃∼X
{E(X̃ · Y )︸ ︷︷ ︸

maximal correlation

−R(X)

}

(the maximal correlation satisfies [LI]).
Observe that

R(X) = sup
Y ∈Y
{E(X · Y )−R?(Y )}

can be writen

R(X) = sup
Q∈Q
{RQ(X)−R?(Y )} where Q =

{
Q
∣∣∣∣dQdP ∈ Y

}
Recall that in the univariate case,

RQ(X) =

∫ 1

0

QX(t)Q dQ
dP

(t)dt

Conversely, let us prove that [MC] implies [SC]. Consider here X and Y
that are µ-comononotone, i.e. there is Z ∼ µ such that

E(X ·Z) = sup
Z̃∼Z
{E(X · Z̃)}

and
E(Y ·Z) = sup

Z̃∼Z
{E(Y · Z̃)}
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As discussed previously, it means that there are convex functions fX and fY
such that X = ∇fX(Z) and Y = ∇fY (Z) (a.s.). So X + Y = ∇(fX +
fY )(Z), fX + fY being a convexe function lower semi-continuous. So X +Y
is comonotonic with both X and Y . Thus, we can write

E[(X + Y ) ·Z] = sup
Z̃∼Z
{E[(X + Y ) · Z̃]} = R(X + Y )

and

E[(X + Y ) ·Z] = sup
Z̃∼Z
{E[X · Z̃]}+ sup

Z̃∼Z
{E[Y · Z̃]} = R(X) +R(Y )

which means that R satisfies [SC].

Example 14. Example 12 can be extended in higher dimension.

RQ(X) = sup

{
E(X · Y ) | Y ∼ dQ

dP

}
with

X ∼ N (0,Σx) and
dQ
dP
∼ N (0,Σu).

In that case
RQ(X) = trace

(
[Σ1/2

u ΣxΣ
1/2
u ]1/2

)
For instance, if

X ∼ N
(

0,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
and

dQ
dP
∼ N (0, I).

then
RQ(X) =

√
σ2

1 + σ2
2 + 2σ1σ2

√
1− ρ2.

Example 15. In example 14 we were solving

RQ(X) = sup
{
E(X · Ỹ ) | Ỹ ∼ Y

}
with X ∼ N (0,Σx) and Y ∼ N (0,Σu), which mean minimizing transporta-
tion cost, with a quadratic cost function. The general solution is

E(∇fX(Y ) · Y )

Thus, here
∇fX(Y ) = Σ−1/2

u [Σ1/2
u ΣxΣ

1/2
u ]1/2

]
Σ−1/2
u
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6.6 Examples of Multivariate Risk Measures

In the univariate case, the expected shortfall ESX(α) is the maximal corre-
lation measure associated with a baseline risk U ∼ B(1− α, 1).

In the multivariate case, one can define ESX(α) as the maximal cor-
relation measure associated with a baseline risk U ∼ B(1 − α, 1). More
specifically, P(U = 0) = α while P(U = 1) = 1− α. Define

f(x) = max
c,P(XT1≥c)=α

{xT1− c},

then f is a convex function, ∇f exists and pushes from the distribution of
X to the distribution of U . Thus, the maximal correlation is here

E
(
XT1 · 1{XT1≥c}

)
.

Actually, the maximal correlation risk measure is the univariate expected
shortfall of the sum,

ESX(α) = ESXT1(α)

7 Dynamic Risk Measures
As we will see in this section, dynamic risk measures should - somehow - be
consistent over time: what is preferred at time t should be consistent with
what is preferred at another time s 6= t). A strong time consistency concept
will be related to the dynamic programming principle. In continuous time,
such risk measure will be obtained as solutions of some backward stochastic
differential equation.

Dynamic risk measures, in discrete or continuous time, will simply denote
sequences of conditional risk measures, adapted to the underlying filtration.
So the first step will be to characterize those conditional risk measures.

7.1 Conditional Risk Measures

Let G ⊂ F denote a sub-σ-algebra.

Definition 29. A conditional risk measure can satisfy

G-TI For any X ∈ L∞ and K ∈ ∞ -G-measurable, R(X +K) = R−K.

47



G-CV For any X, Y ∈ L∞ and Λ ∈ ∞ -G-measurable, with Λ ∈ [0, 1],

R(ΛX + (1− Λ)Y ) = ΛR(X) + (1− Λ)R(Y ).

G-PH For any X ∈ L∞ and Λ ∈ ∞ -G-measurable, with Λ ≥ 0, R(ΛX) =
ΛR(X).

Definition 30. R is a G-conditional convex risk measure if it satisfies [MO],
G-conditional [TI] and [CV], and R(0) = 0. R is a G-conditional coherent
risk measure if it is a G-conditional convex risk measure that satisfies G-
conditional [PH].

A risk measure is said to be representable if

R(X) = esssup
Q∈PG

{−EQ(X|G)− α(Q)}

where α is a random penalty function, associated to R.
If R is G-conditional convex risk measure, it can be represented using

α(Q) = esssup
X∈L∞

{−EQ(X ∈ |G)−R(X)}

IfRisaG−conditionalcoherentriskmeasure, itcanberepresentedasR(X) =
esssup
Q∈QG

{−EQ(X|G)}whereQG = {Q ∈ PG|EQ(X|G) ≥ −R(X) for all X ∈

L∞}.

7.2 On which set(s) of measures will we work with?

In the static setting, we considered random variables defined on probability
space (Ω,F ,P). From now on, we will consider adapted stochastic processes
X = (Xt) on the filtered space (Ω,F , (Ft),P)

The || · ||∞ norm on (Ω,F , (Ft),P) is defined as

||X||∞ = inf{m ∈ R| sup
t
{|Xt|} < m}.

Let L∞ denote the set of all bounded adapted stochastic processes, in the
sense that

L∞ = {X|||X||∞ <∞}.
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We now need to extend the form < X, s >= E(Xs) defined on L∞ × L1

on the set of stochastic processes. Set

<X, s >= E

(∑
t∈N

Xt∆at

)
= X0a0 +X1(a1 − a0) +X2(a2 − a1) + · · ·

This will be used when considering risk evaluation at time 0, but it might be
interesting to evaluate risk at some time τ (which can be deterministic, or
some stoping time). In that case, define

<X, s >τ= E

(
∞∑
t=τ

Xt∆at
∣∣Fτ)

It is then possible to define

L∞τ = {X = (0, 0, · · · , 0, Xτ , Xτ+1, · · · )|||X||∞ <∞}.

7.3 Dynamic Risk Measure

Definition 31. A dynamic monetary risk measure is a sequence of mappings
Rτ = (Rt)t≥τ , on L∞τ is a conditional monetary risk measure if

MO If X ≤ Y , then Rτ (X) ≥Rτ (Y )

Fτ -RG If A ∈ Fτ then Rτ (1AX) = 1A ·Rτ (X) (regularity condition)

Fτ -TI If K ∈ L∞ is Fτ measurable, then Rτ (X +K) = Rτ (X)−K

Observe that [Fτ -RG] is actually equivalent toRτ (0) = 0. This condition
is weaker than the [Fτ -PH] property.

Definition 32. A dynamic monetary risk measure is a sequence of mappings
Rτ = (Rt)t≥τ , on L∞τ is a dynmaic convex risk measure if it satisfies [MO],
[Fτ -RG], [Fτ -TI] and

Fτ -CV If Λ ∈ [0, 1] is Fτ measurable, then

Rτ (ΛX + (1− Λ)X) ≤ ΛRτ (X) + (1− Λ)Rτ (Y )

Definition 33. A dynamic monetary risk measure is a sequence of mappings
Rτ = (Rt)t≥τ , on L∞τ is a dynamic coherent risk measure if it satisfies [MO],
[Fτ -RG], [Fτ -TI], [Fτ -CV] and
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Fτ -PH If Λ ∈ L∞ is positive, and Fτ -measurable, then Rτ (Λ·X) = Λ·Rτ (X)

Finally, from a dynamic risk measure, it is possible to extend the concept
of acceptence set.

Definition 34. Given a dynamic monetary risk measure Rτ = (Rt)t≥τ , on
L∞τ . An (Ft)-adapted stochastic process X is considered acceptable if

X ∈ ARτ with ARτ = {X|Rτ (X) ≤ 0}

Based on those definition, it is possible to get a representation theorem
for dynamic convex risk measures, following [4] and [11]. Define

Qτ = {Z − (Ft)− adapted | < 1,Z >τ= 1}

called set of (Ft)-adapted density processes.

Proposition 33. A dynamic convex risk measure Rτ that is continuous from
above (its acceptence set ARτ is closed) can be representes as follows,

Rτ (X) = sup
Z∈Qτ

{<X,Z >τ −αmin,τ (Z)}

where the minimal penalty is defined as

αmin,τ (Z) = sup
Y ∈ARτ

{< Y ,Z >τ}

7.4 On time consistency

In order to get a better understanding of what time consistency could mean,
consider the following example.

Example 16. Assume that, at time t,

Rt(X) = esssup
Q∈Q

{EQ(−X|Ft)}

where Q is a class of probability measures, i.e. Q ⊂ M1(P). Here, a worst
case scenario is considered, in the sense that if Z{Q is the random variable
EQ(−X|Ft), then the essential supremum is the smallest random variable Z
such that P(Z ≥ Z{Q) = 1 for all Q ∈ Q.
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We have a two period binomial tree - see Figure 4. It is a simple Heads
& Tail game. After 2 Heads or 2 Tails, the payoff is +4, while it is −5
with 1 Head and 1 Tail. There are two probabilities, considered by the agent,
Q = {Q1,Q2}. Observe that

EQi(?) = 0 for i = 1, 2.

There is no worst case, for all probabilities in Q, the expected payoff is the
same. So, the agent should accept the risk at time 0. Assume that at time 1
the agent wants to re-evaluate the riskiness of the game. The strategy will be
to consider conditional probabilities.

If we went up from time 0 to time 1, then

• under Q1: EQ1(−?) = −1

• under Q2: EQ1(−?) = +2

and if we went down from time 0 to time 1, then

• under Q1: EQ1(−?) = +2

• under Q2: EQ1(−?) = −1

So, the worst case scenario is that the risk is +2. Hence, for both knots - i.e.
whatever happened at time 1 - the agent should reject the risk.

This is somehow inconsistent.

Definition 35. A dynamic monetary risk measure R = (Rt) is said to be
(strongly) time consistent if for all stochastic process X and all time t,

Rt(X) = Rt(X · 1[t,τ ] −Rτ (X) · 1[τ,∞))

where τ is some Ft-stopping time.

We have here the interpretation of the previous exemple: the risk should
ne the same

• with a direct computation at time t

• with a two step computation, at times t and τ

Further, as proved in [4]
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Figure 4: Time insconsistency, with a two period binomial model, an some
worst case scenarios over Q = {Q1,Q2}.
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Proposition 34. The dynamic risk measure Rt is time consistent if and
only if AR[t,T ] = AR[t,τ ] +AR[τ,T ]

A weaker condition can be obtained, to characterize time consistency

Proposition 35. A dynamic monetary risk measure R = (Rt) is said to be
(strongly) time consistent if for all stochastic process X and all time t,

Rt(X) = Rt(X · 1{t} −Rt+1(X) · 1[t+1,∞))

Proof. Let us prove it assuming that t ∈ {0, 1, . . . , T}. Consider some
stochastic process X and define

Y = X · 1[t,τ ] −Rτ (X) · 1[τ,∞)

When t = T , then Rt(X) = Rt(Y ). Let us now consider some backward
induction. One can write - using the recursive relationship and the [TI]
assumption,

Rt(Y ) = Rt(−1{τ=t}Rt(X)1[t,∞) + 1τ≥t+1Y )

= 1{τ=t}Rt(X) + 1{τ≥t+1}Rt(Y )

= 1{τ=t}Rt(X) + 1{τ≥t+1}Rt(Y 1{t} −Rt+1(Y )1[t+1,∞))

= 1{τ=t}Rt(X) + 1{τ≥t+1}Rt(X1{t} −Rt+1(X)1[t+1,∞))

= Rt(X)

In the case of time consistent convex risk measure, it is possible to express
the penalty function using some concatenation operator, see [4]

7.5 Entropic Dynamic Risk Measure

As discussed previously, the entropic risk measure is a convex risk measure,
related to the exponential utility, u(x) = 1 − e−γx. Define the realteive
entropy - corresponding to the popular Kullback-Leibler divergence - of Q
with respect to P, with Q� P, defined as

H(Q|P) = E
(
dQ
dP

log
dQ
dP

)
= EQ

(
log

dQ
dP

)
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Such a function can be a natural penalty function. More specifically,
consider

α(Q) =
1

γ
H(Q|P)

that will penalize for risk aversion. Thus, in the static case, the entropic risk
measure was

R(X) = sup
Q∈M1(P)

{
EQ(−X)− 1

γ
H(Q|P)

}
.

Following [8], define

Rt(X) =
1

γ
logE(e−γX |Ft)

Proposition 36. The dynamic entropic risk measure is a dynamic convex
measure that is (strongly) time consistent.

Proof. Observe that

Rt(−Rt+1(X)) =
1

γ
logE

(
e
γ
γ

logE[e−γX |Ft+1]|Ft
)

=
1

γ
logE

(
E
(
e−γX |Ft+1

)
vertFt

)︸ ︷︷ ︸
=logE(e−γXvertFt)

so we recognize Rt(X).
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