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Cascaded Model-Free Control for trajectory tracking of quadrotors

Maria Bekcheva1, Cédric Join2 and Hugues Mounier1

Abstract— In the subject of quadrotor controller design,
usually modelling and identification are tedious and time-
consuming tasks. In this study, we propose a controller design
that avoids the quadrotor’s system identification procedures
while staying robust with respect to endogenous and exoge-
nous disturbances. To reach our goal, based on the cascaded
structure of a quadrotor, we divide the system into positional
and attitude subsystems each controlled by an independent
model-free controller. We validate our control approach in two
realistic scenarios : in presence of unknown measurement noise
and unknown time-varying wind disturbances. We provide
simulations on a realistic nonlinear quadrotor model following
an aggressive position-yaw trajectory.

I. INTRODUCTION

In the last decade the use of unmanned aerial vehicles
(UAVs) has increased significantly. From package delivery
services, military uses and disaster management to pho-
tography and entertainment, the use-cases are numerous.
Among the UAVs, quadrotors have been subject to intense
research and development. One of the main challenges is
modeling quadrotor dynamics and parameters estimation.
This process can be tedious, time consuming and prone to
modeling errors. A considerable amount of the literature
has been devoted to model-based controls (Backstepping
and sliding-mode techniques [4], Inner-Outer Loop Control
by applying PID controller for the inner-loop and nested
saturation controller for the outer-loop [5], Generalized
Proportional Integral (GPI) observer based controller [19],
Model Predictive Control [2]) among other methods. In these
model-based approaches, the modeling accuracy can directly
impact the controller success and performance. Moreover,
many quadrotor applications are outdoor and may be faced
with environmental uncertainties. Among the meteorological
uncertainties, the wind effect has one of the highest impacts
on the quadrotor performance while being very hard to
predict. Therefore, in the model definition, the wind is
usually considered as a predefined constant. As suggested in
the papers [3], [17], [14], in practice, using a PID have shown
more advantages than more advanced quadrotor controllers
because of its simplicity and robustness. We chose to use the
model-free control (MFC) since it has been already shown
successful in practice (see [9], [6] and the references therein,
and [1], [15], [16]) that the MFC have better performances
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versité Paris-Sud, France (e-mail: maria.bekcheva@l2s.centralesupelec.fr,
hugues.mounier@l2s.centralesupelec.fr

2Cédric Join is with CRAN (CNRS, UMR 7039), Université de Lorraine,
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and advantages over a simple PID. These facts motivate us
to present a cascaded-model-free approach for a quadrotor
while considering more realistic situations like time-varying
wind disturbances and measurement noise. We make our
contribution in the following framework:

• We use a minimalist structure upon which our control
scheme rests (see Equations (12), (14), (19a)-(19c)).
This structure is independent of any mass, inertia,
gyroscopic or aerodynamic effects; the only information
we use is that each positional and rotational dynamics
is of second order and that the thrust produced by the
propellers is suitably projected onto the inertial frame.

• Because of the underactuated nature of the quadrotor,
we consider an inner-outer structure of the quadrotor
that allows us to divide the control into two stages. At
the first stage, we show that it is possible to apply a
model-free control in the outer loop and from there, we
derive the desired thrust, and the desired roll and pitch
angles. We then apply again the model-free control in
the inner loop for the second stage.

• No precise information of the quadrotor physical param-
eters is required. For instance, it will be inconvenient
and in some cases imprecise to measure the mass value
[20] of the quadrotor together with its payload during
each flight.

• For the simulations, we have tested our approach with a
realistic quadrotor model that contains gyroscopic and
aerodynamic effects.

Recent studies have shown the interest in dividing the
control problem into two parts: one based on the model and
the other based on the model-free control to cope with model
uncertainties and/or external perturbations. In [21], model-
free sliding-mode control (based on a linearized model) is
studied, in [23] a model-free backstepping control (based
on a linearized model) and an LQR control have been
experimentally tested on a real system. In these studies,
the control law is still partially linked to the system model
knowledge.
In several works, the yaw angle is assumed to be zero due
to high nonlinear coupling in position and attitude dynamics.
In [22], an event-driven model-free control is compared with
several other controls while taking zero reference for the
yaw angle. This limits the maneuverability of quadrotors. In
our case we show that the quadrotor can follow aggressive
maneuvers while tracking the yaw angle ψ. This is a huge ad-
vantage with clear benefits on time and energy. The position-
yaw tracking as mentioned in [18] can be useful in different
use-cases e.g. Aerial Screwdriver task (the quadrotor should
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Fig. 1. The quadrotor system.

turn a screw), the Aerial Grasp (multiple quadrotors rotate
their ψ-angle to grasp an object), etc.

This paper has the following outline. In Section II, we
briefly describe the quadrotor dynamics focusing on its struc-
ture. Then in Section III, we present our cascaded model-free
approach. Finally, we validate our approach in Section V
by testing it on two scenarios when the quadrotor is faced
with unknown measurement noise and with unknown time-
varying wind disturbances. The aggressive position trajectory
is a B-spline curve with predefined control points.

II. QUADROTOR MODEL

The quadrotor is an underactuated system because it has
six degrees of freedom but only four actual inputs. The
six degrees of freedom include position motion in three
directions and rotational motion around three axes. The
schematic configuration of a quadrotor we adopted in this
study is shown in Fig. 1 that includes the corresponding
forces, angles and angular speeds.

A nonlinear model of quadrotor based on the Newton-
Euler formalism (see the paper [11] for further information
on the quadrotor model) is given by the following equations:
• Position dynamics

mẍ = (sinψ sinφ+ cosψ sin θ cosφ)u1 −Axẋ, (1a)
mÿ = (− cosψ sinφ+ sinψ sin θ cosφ)u1 −Ay ẏ,

(1b)
mz̈ = −mg + cos θ cosφu1 −Az ż, (1c)

• Attitude dynamics

Ixφ̈ = u2 + θ̇ψ̇(Iy − Iz) + Jr θ̇Ωr, (2a)

Iy θ̈ = u3 + φ̇ψ̇(Iz − Ix)− Jrφ̇Ωr, (2b)

Izψ̈ = u4 + θ̇φ̇(Ix − Iy), (2c)

where x, y and z are the position coordinates of the quadro-
tor’s center of gravity, and θ, φ and ψ are the pitch, roll and
yaw rotation angles respectively. The constant m is the mass,
g is the gravitation acceleration, Ix, Iy, Iz are the moments
of inertia, and Jr is the moment of inertia of the rotors.
The controllers are: u1 the total thrust generated by the
four propellers applied in the z direction; u2, u3 and u4

Symbols and values Variables
m = 0.53kg Quadrotor mass
Ix, Iy = 6.228×10−3kg ·m2 Inertia parameters
Iz = 1.121×10−2kg ·m2 Inertia parameter
Jr = 6.01×10−5kg ·m2 Rotor inertia moment
b = 3.13×10−5N · s2 Thrust coefficient
d = 7.5×10−7Nm · s2 Drag coefficient
Ax, Ay, Az = 0.25kg / s Drag force coefficients

TABLE I
THE PARAMETERS AND THEIR CORRESPONDING VALUES FOR THE

QUADROTOR SIMULATION.

the torques in the θ, φ and ψ directions respectively. The
constants Ax, Ay and Az are the drag force coefficients
for velocities in the corresponding directions of the inertial
frame.
The position dynamic model (1a)-(1c) contains the gravity
force mg, the thrust force in the z direction and the drag
force. The attitude dynamic model (2a)-(2c) describing the
roll, pitch and yaw rotations contains three terms which are
the actuators action, the gyroscopic effect resulting from the
rigid body rotation, and finally the gyroscopic effect resulting
from the propeller rotation coupled with the body rotation.
The control inputs u1, u2, u3, u4, and the speed Ωr are
defined as:

u1 = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4),

u2 = b(Ω2
4 − Ω2

2),

u3 = b(Ω2
3 − Ω2

1),

u4 = d(Ω2
1 + Ω2

3 − Ω2
2 − Ω2

4),

Ωr = Ω1 − Ω2 + Ω3 − Ω4

(3)

where Ωi is the angular speed of the ith rotor, and b and d
are the thrust and the drag coefficients respectively.

This model will be used for the simulation. Table I lists the
parameter values used for the simulation model in Section
V.

III. CONTROL DESIGN

In this section, first we summarize some of the main ideas
on Model-Free Control (MFC) introduced in [9]. Then, we
construct the cascaded-model-free controller for the quadro-
tor by using only a minimal nominal dynamics.

A. Preliminaries for Model-Free Control

The unknown differential equation describing the in-
put/output behaviour of a finite-dimensional system with a
single control variable u and a single output variable y

E(y, ẏ, . . . , y(ι), u, u̇, . . . , u(κ)) = 0,

E : Rι+1 × Rκ+1 → R,E ∈ C∞(Rι+1 × Rκ+1)

can be described as:



y(ν) = E(t, y, ẏ, . . . , y(ν−1), y(ν+1), . . . , y(ι)u, u̇, . . . , u(κ)),
(4)

where 0 < ν 6 ι,
∂E

∂y(ν)
6= 0. For simplicity, the Equation

(4) can be represented in short time interval by an ultra-local
model as:

y(ν) = F + αu (5)

where
• α ∈ R is a non-physical constant parameter chosen such

that αu and y(ν) will be of the same order of magnitude.
In the recent study [7], α is considered as a time-
varying parameter in order to overcome the presence
of unknown delays.

• the time-varying function F (t) is approximated by a
piecewise constant function. It represents the rest of the
unmodelled dynamics in the input-output behaviour of
the system and the unknown endogenous and exogenous
disturbances. Therefore, it adapts to the changes of the
system at each actuation step.

Obtaining a good estimate of F̂ can be achieved by
considering it as νth iterated integral on a short time interval
[t−T, t] (see [10]). For instance, when ν = 2, we can rewrite
the equivalent of the equation (5) in the Laplace form as:

s2Y (s)− sy(0)− ẏ(0) =
F

s
+ αU(s) (6)

We get rid of the initial conditions y(0) and ẏ(0) by
differentiating twice the equation (6) w.r.t. to the Laplace
variable s.

2Y (s) + 4s
dY

ds
+ s2

d2Y

ds2
=

2F

s3
+ α

d2U

ds2
(7)

To greatly attenuate the noise, we multiply the both sides of
equation (7) by s−3

2

s3
Y (s) + 4

1

s2
dY

ds
+

1

s

d2Y

ds2
=

2F

s6
+
α

s3
d2U

ds2
(8)

In the time domain, we get

F̂ =
5!

2T 5

∫ t

t−T

(
(M2−4σM+σ2)y(σ)− α

2
M2σ2u(σ)

)
dσ,

(9)
where M = T − σ. The choice of the window T results
in a trade-off. The larger is T , the smaller is the effect
of noise but the larger is the error due to truncation. For
a precise mathematical foundation on the treatment of the
noise through iterated time integrals, see [8], which is based
on non-standard analysis, and also [13] which rests on
Jacobi polynomials. The closed-loop control applied to the
ultra-local model (5) is defined as the so-called intelligent
controller

u = −
F̂ − y(2)d + C(e)

α
(10)

where yd is the output reference trajectory, e = y−yd is the
tracking error, and C(e) = Kpe + Kdė is a PD controller.
Combining (5) and (10), it yields the following closed-loop

error dynamics

ë+Kdė+Kpe = eF = F − F̂ . (11)

If the estimate F̂ is good, the error eF ' 0 is small and
choosing the gains such that Kp > 0,Kd > 0 guarantees a
good tracking of yd.

B. Cascaded-model-free approach for the quadrotor

Problem statement: We want to ensure that the quadro-
tor tracks the desired time-varying position trajectory
(xd, yd, zd) and yaw angle ψd without precise information of
the physical parameters and forces (for instance, the mass,
the inertias and the aerodynamic forces) and despite external
disturbances. We propose a cascaded model-free setting of
the quadrotor based on a minimal nominal dynamics (see
Equations (12), (14), (19a)-(19c)).

Inspired by the quadrotor dynamics structure, we divide
the control in two stages (see Fig. 2): the outer loop with
slow dynamics which controls the position, and the inner
loop with fast dynamics which controls the attitude. From the
quadrotor structure, we observe that the position dynamics
depends on the attitude dynamics.

C. Outer-loop Position control

The model-free setting of the vertical z-dynamics (1c) is
given by

z̈ = Fz + αzu1 (12)

where Fz represents the neglected dynamics and the external
disturbances, and αz is a constant parameter. To estimate the
time-varying Fz over a time interval of length T , we use
Equation (9). We set the control law for the thrust u1 as:

u1 =
1

αz
(−F̂z + z̈d −Kpzez −Kdz ėz) (13)

where ez = z − zd and ėz = ż − żd are the tracking errors
of the vertical position and velocity respectively. To operate
safely the quadrotor requires a positive thrust u1 > 0.
The model-free setting of the xy-dynamics (1a)-(1b) is given
by (

ẍ
ÿ

)
=

(
Fx
Fy

)
+ αxyRψ

(
sinφ

sin θ cosφ

)
u1. (14)

where αxy = (αx, αy)T are constants, and Fx and Fy
are the neglected dynamics and disturbances for x and y
respectively. The rotation matrix Rψ ∈ SO(2) is given by

Rψ =

(
sinψ cosψ
− cosψ sinψ

)
, R−1ψ = RTψ , ‖Rψ‖ 6 1.

Here, ‖·‖ denotes the Euclidean norm.
Setting a new virtual input (vx, vy)T defined as:(

ẍ
ÿ

)
=

(
vx
vy

)
= Rψ

(
sinφd

sin θd cosφd

)
u1, (15)
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we obtain

vx =
1

αx
(−F̂x + ẍd −Kpxex −Kdxėx), (16a)

vy =
1

αy
(−F̂y + ÿd −Kpyey −Kdy ėy). (16b)

where ex = x− xd and ey = y − yd are the tracking errors
for x and y respectively. From there, we can deduce the
reference trajectories θd and φd for the attitude dynamics by
expressing the virtual input measures vx and vy in the body
frame where ψ = 0 (no yaw dependence) by:(

sinφd
sin θd cosφd

)
=

1

u1
R−1ψ

(
vx
vy

)
,

(
v̄x
v̄y

)
(17)

Hence we consider the following desired angles φd and θd:

φd = arcsin(v̄x), (18a)

θd = arcsin
( v̄y

cosφd

)
. (18b)

D. Inner-loop Attitude control

The attitude dynamics (2a)-(2c) are given by the following:

φ̈ = Fφ + αφu2, (19a)

θ̈ = Fθ + αθu3, (19b)

ψ̈ = Fψ + αψu4 (19c)

The attitude control performance is crucial since it is directly
related to the actuators efficiency. After deducing the desired
attitude φd, θd from the slow outer loop (18a)-(18b), the fast
inner loop is stabilized by an MFC controller as

u2 =
1

αφ
(−F̂φ + φ̈d −Kpφeφ −Kdφėφ), (20)

u3 =
1

αθ
(−F̂θ + θ̈d −Kpθeθ −Kdθ ėθ), (21)

where eφ = φ− φd, eθ = θ − θd, ėφ = φ̇− φ̇d, ėθ = θ̇ − θ̇d
are the tracking errors of the angular positions and estimated
angular velocities respectively. Similarly, for the yaw angle,
we apply the Model-Free control as

u4 =
1

αψ
(−F̂ψ + ψ̈d −Kpψeψ −Kdψ ėψ). (22)

IV. AGRESSIVE TRAJECTORY TRACKING

In this section, we give the predefined aggressive
trajectory that the quadrotor will follow. In most cases, the
trajectory is a straight line or circular orbit. We choose
the B-spline curves (the definition of a B-Spline curve
can be found in the Appendix) because they are always
contained in the convex hull of their control polygon: the
basis functions are positive and sum up to one (partition
of unity), and have a local support [12]. By increasing the
degree of the B-spline curve and/or by inserting extra knots,
the distance between the control polygon and the B-spline
curve can be reduced.
We consider here an aggressive motion
[xd(t), yd(t), zd(t), ψd(t)] : [t0 tf ] → R3 × SO(2)
defined as a B-spline curve:

xd(t) =

10∑
j=1

axjBj,d,

yd(t) =

10∑
j=1

ayjBj,d,

zd(t) =

10∑
j=1

azjBj,d,

(23)

with degree d = 4, knot vector t =
{0, 0, 0, 0, 0, 2.5, 5, 7.5, 10, 12.5, 15, 15, 15, 15, 15}, and
control point vectors Ax = (axj)

10
xj=1, Ay = (ayj)

10
yj=1

and Az = (azj)
10
zj=1 for xd(t), yd(t) and zd(t) respectively.

We specialize the reference angle ψd to a sigmoid between
two constant angles a situation frequently needed in practice.

ψd(t) =
Ψf −Ψi

2
(1 + tanh(γ(t− tm))) + Ψi (24)

where Ψi = 0rad is the initial ψ-angle and Ψf = 1.5rad
is the final ψ-angle of the quadrotor; γ = 0.4 is the slope
parameter of the sigmoid and tm = 7 .

V. SIMULATION RESULTS

To demonstrate the proposed control we consider a re-
alistic quadrotor simulator where we use the quadrotor
model defined by the equations (1a)-(1c), (2a)-(2c) and (3)
presented in Section II. Similar to the usual case in practice,
the controller runs at 20Hz, and the sensor data is updated



P V P V P V
Kpx 3 Kdx 2 αx 1
Kpy 3 Kdy 2 αy 1
Kpz 10 Kdz 15 αz 2
Kpφ 2 Kdφ 0.5 αφ 1
Kpθ 1 Kdθ 0.5 αθ 1
Kpψ 3 Kdψ 2.5 αψ 9

TABLE II
THE CONTROL GAINS (P: PARAMETER, V:VALUE).

at 100Hz. The aim here is to track the positions xd, yd
and zd, and the yaw angle ψd. As initial positions and
initial angles, we take (x0, y0, z0) = (−1.8, 1, 0)[m] and
(φ0, θ0, ψ0) = (0, 0, 0)[rad] respectively. The initial linear
velocities and initial angular velocities are zero. The control
point vectors for the reference trajectories are the following:

Ax = {−2,−1, 0, 2, 3, 3.5, 3.5, 5, 6.5, 7.5} ,
Ay = {1.2, 2.5, 3.3, 1.8, 1.5, 2.5, 4, 4, 4, 4} ,
Az = {0, 0.2, 0.5, 2.5, 3.5, 3.9, 4.7, 6.5, 5.7, 3.5} .

(25)

Our trajectory is parametrized to avoid known static obstacles
is a situation frequently needed in practice. In the nominal
case (without disturbances), we observe in Fig. 3 (trajectory
tracking), Fig. 4 (control inputs) and Fig. 5 (unknown
dynamics estimation) satisfactory results when the position
and the yaw angle change significantly. The 3D tracking is
plotted in Fig. 6. The control gains that we consider are
given in Table II. The values for αi are chosen from a large
possible range each dependant on the corresponding state
dynamics.

A. Scenario 1: Unknown measurement noise

For this scenario, we include the presence of the measure-
ment noise b(t) ∼ N (0, σ2) as an additive white Gaussian
noise with zero mean and standard deviation σ = 0.15 in the
four measured outputs x, y, z and ψ. The noisy measured
outputs are set as:

x̂ = x+ b, ŷ = y + b,

ẑ = z + b, ψ̂ = ψ + b.
(26)

Fig. 7 shows the noisy sensor measurements (green line)
and the tracking trajectory of the quadrotor (blue line) that
follows the desired trajectory (red line). From the result in
Fig. 7 (trajectory tracking) and Fig. 8 (control inputs), it is
apparent that the control approach is robust to the sensor
disturbances without previous knowledge of the noise.

B. Scenario 2: Unknown time-varying wind disturbance

In this scenario, we investigate the quadrotor tracking in
presence of wind disturbance that is not constant and is not
assumed to be known. The high varying wind disturbances
used in the simulations (displayed in Fig.11) are represented
by a sum of sinusoidal waves:

w(t) = 1.5µ31 + µ7 + 0.5µ2 + 0.015µ11 + 0.15b(t) (27)

where µp(t) = sin
( tπ
p

)
and b(t) is the random Gaussian

noise. We add this disturbance in the simulation model as an
additive force disturbance such that

mẍ = (sinψ sinφ+ cosψ sin θ cosφ)u1 −Axẋ+ w(t),

(28a)
mÿ = (− cosψ sinφ+ sinψ sin θ cosφ)u1 −Ay ẏ + w(t),

(28b)
mz̈ = −mg + (cos θ cosφ)u1 −Az ż + w(t). (28c)

We observe the unknowns Fi for i = x, y, z, ψ in the
nominal case (see Fig. 5) and in the presence of wind
disturbance (see Fig. 10). We show that the precise estimation
of the unknown Fi for i = x, y, z, ψ leads us to a robust
control performance. The trajectory tracked by the quadrotor
in presence of time-varying wind disturbance depicted in Fig.
9 is almost identical to the nominal case.

VI. CONCLUSION

This methodology offers a cascaded model-free control
design of a quadrotor. It stays robust, despite unknown
disturbances. We have shown that a complex trajectory
tracking on realistic scenarios is feasible. In the future works,
we shall test our approach on an experimental platform.
Considering the low complexity and the good performances
of the proposed control, it sheds new lights on a possible
commercial off-the-shelf solution. A complete stability anal-
ysis of the proposed system (quadrotor and cascaded model-
free controller) is in final stages and will be presented in a
forthcoming publication.

APPENDIX

Definition 1: (B-splines [12])
Let the degree d be a nonnegative integer and let the knot
vector t = (tj), be a non-decreasing sequence of real
numbers of at least d + 2. The jth B-spline of degree d
with knots t is defined by:

Bj,k,t(x) =
x− tj
tj+d − tj

Bj,d−1,t +
tj+k − x

tj+1+d − tj+1
Bj+1,d−1,t

(29)

for all real numbers x, with

Bj,0,t(x) =

{
1, if tj 6 x < tj+1

0, otherwise.
(30)

Definition 2: (B-spline curves). Let a knot vector for a
total of n B-splines be defined as:

t = (tj)
m=n+d+1
j=1 = [0, . . . , 0︸ ︷︷ ︸

d+ 1

, td+1, . . . , tm−d−1, 1, . . . , 1︸ ︷︷ ︸
d+ 1

]

The linear space of all linear combinations of these B-splines
is the spline space Sd,t defined by

Sd,t =
{ n∑
j=1

cjBj,d | cj ∈ R for 1 6 j 6 n
}
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Fig. 6. 3-D Position tracking of the B-spline path in the nominal case. (Objects in the simulation are given just as potential obstacles, but no obstacle
avoidance algorithm is yet used.)
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Fig. 7. Tracking trajectories in presence of noise (noisy measurements and real state position)
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Fig. 8. Control inputs in presence of noise
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Fig. 9. Tracking outputs in presence of wind disturbance
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Fig. 10. Estimation of the unknowns Fi for i = x, y, z, ψ in presence of wind disturbance
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Fig. 11. Wind disturbance

An element f =
n∑
j=1

cjBj,d of Sd,t is called a B-spline curve

or a spline function, of degree d with knots t, and (cj)
n
j=1

are called the control points of the B-spline curve.
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