A Patient-Specific 3D Model for Port Placement in Robotic Surgery
Mohammadreza Maddah, Cédric Dumas, Caroline G. L. Cao

To cite this version:
Mohammadreza Maddah, Cédric Dumas, Caroline G. L. Cao. A Patient-Specific 3D Model for Port Placement in Robotic Surgery. Surgetica 2017, Nov 2017, Strasbourg, France. hal-01831302

HAL Id: hal-01831302
https://hal.science/hal-01831302
Submitted on 19 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Patient-Specific 3D Model for Port Placement in Robotic Surgery
M.R Maddah1,2, Cedric Dumas2, Caroline G.L. Cao1
1 Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, OH, USA
2 LS2N, Institut Mines-Télécom, Nantes, France

Introduction
Planning port placement is a vital task in a robotic laparoscopic hysterectomy procedure. Decision aids for optimal port-placement can be developed based on:
➢ Known geometric model of the robotic system (Fig 1)
➢ Estimated geometric model of the surgical site
➢ Patient-specific morphology
One critical component of this decision-aid requires the reconstruction of a 3D model of a patient’s abdominal cavity, and the robot model.

Objective
To find the optimal ports location on the patient's abdomen, the suitability of the points (on the abdominal surface, patient-specific model) for the ports location is preliminary evaluated based on the points accessibility for the robot manipulators. The accessible points are then filtered, and selected by the manipulability index (the manipulators ability to manipulate and pivot the surgical tools at RCM point). The points with the highest manipulability index are marked on the patient’s abdomen as the preliminary candidates for the entry ports location of the manipulators.

Method
Patient-specific model:
➢ The internal 3D model is constructed from pre-operative CT scans. Using 3D image segmentation, the target organ (uterus) is located in the internal model.

Manipulator actuated joints

Robot Model:
➢ The robotic manipulator (actuated joints) is modeled by D-H parameters (Fig 1).
➢ Given the target organ location in the patient-specific model, the points on the patient-specific model are assessed if they are accessible for the manipulator by solving the inverse kinematics equation, $X'=Jθ'$. If the Jacobian det(JJ^T) is not zero, the point is accessible for the robot manipulator.
➢ The manipulability index, $W=\sqrt{JJ^T}$, is defined based on the manipulators ability to pivot and manipulate the surgical tool at RCM point uniformly (Fig 1). For any specific configuration of the manipulator, $θ_5$–$θ_6$ in Fig 1, W is calculated for all the points on the patient-specific model. The points that satisfy $W>$0.18 are selected as the preliminary locations of the ports for each of the manipulator (Da Vinci Si).

Results
➢ The accessible points (in green) for the endoscope manipulator are shown on the patient specific model in Fig 3.
➢ The points with the highest manipulability index for the endoscope, arm1, arm2, and arm3 are shown in Fig 4.

Discussion
➢ Considering the target organ location, the robot joints configuration, and the abdominal shape after insufflation, the accessible points with the highest performance index (manipulability) were calculated. These points are the preliminary locations of the entrance ports that are marked on the patient-specific model.

Acknowledgments
This work was supported by a grant from the Ohio Third Frontier to the Ohio Imaging Research and Innovation Network (OIRAIN).