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Abstract
Unsupervised word classes induced from unannotated text corpora are increasingly used to help tasks addressed by supervised
classification, such as standard named entity detection. This paper studies the contribution of unsupervised word classes to a medical
entity detection task with two specific objectives: How do unsupervised word classes compare to available knowledge-based semantic
classes? Does syntactic information help produce unsupervised word classes with better properties? We design and test two syntax-based
methods to produce word classes: one applies the Brown clustering algorithm to syntactic dependencies, the other collects latent
categories created by a PCFG-LA parser. When added to non-semantic features, knowledge-based semantic classes gain 7.28 points of
F-measure. In the same context, basic unsupervised word classes gain 4.16pt, reaching 60% of the contribution of knowledge-based
semantic classes and outperforming Wikipedia, and adding PCFG-LA unsupervised word classes gain one more point at 5.11pt, reaching
70%. Unsupervised word classes could therefore provide a useful semantic back-off in domains where no knowledge-based semantic
classes are available. The combination of both knowledge-based and basic unsupervised classes gains 8.33pt. Therefore, unsupervised
classes are still useful even when rich knowledge-based classes exist.

Keywords: Clinical Texts; Natural Language Processing; Unsupervised Word Classes

1. Introduction
Clinical texts and biomedical literature are important
sources of medical knowledge. The exponentially growing
amount of biomedical sources in recent years requires ded-
icated tools to process this domain (Meystre et al., 2008).
Named entity recognition is the task that identifies an en-
tity’s boundaries within text and assigns the entity to their
corresponding class or category. It is usually one of the ba-
sic steps applied when extracting information from texts.
Supervised learning based on annotated corpora, typically
using sequence learning algorithms such as Conditional
Random Fields (Lafferty et al., 2001; Sutton and McCal-
lum, 2006), is now a standard method to detect entities.
Unannotated corpora are larger than annotated corpora,
making them useful for unsupervised methods to learn
word classes and help supervised methods perform entity
detection (Turian et al., 2010).
The main objective of this work is to study the use of un-
supervised word classes in medical entity recognition, and
more specifically to test different methods and variants of
unsupervised word class construction which use more ini-
tial information thanks to syntactic analysis.
The remainder of the paper is organized as follows. Sec-
tion 2. provides a brief description of previous work related
to our study. Section 3. describes the corpora we take as a
testbed for our experiments. Section 4. describes the design
and implementation of our study. Section 5. presents and
discusses experimental results. We conclude in Section 6.

2. Related Work
In an early attempt to help supervised learning with the use
of supervised word classes, Brown et al. (1992)’s cluster-
ing algorithm was used to detect standard named entities
(Miller et al., 2004). The combined method achieved a
25% reduction in error on a standard named-entity prob-
lem. In further experiments, Turian et al. (2010) also tested

the word embeddings obtained by neural language models
(Collobert and Weston, 2008; Mnih and Hinton, 2009) but
observed that Brown clusters were superior when helping
chunking or named entity recognition.
Using only one type of word representation, Brown clus-
ters had the highest F-measure on the test set compared to
Collobert and Weston (2008)’s embeddings and the hierar-
chical log-bilinear model of Mnih and Hinton (2009), and
even outperformed the use of gazetteers by 1 point of F-
measure. Combinations of these unsupervised word repre-
sentations gained close to another point of F-measure.
In the biomedical domain, Brown clusters have been
used on top of domain-specific, knowledge-based seman-
tic classes such as the UMLS semantic types (Bodenrei-
der, 2004) for medical entity recognition and relation de-
tection (de Bruijn et al., 2011). The specific contribu-
tion of Brown clusters to this top-performing system in the
i2b2 2010 challenge (Uzuner et al., 2011) amounted to 0.14
points of F-measure for entity recognition. Jonnalagadda
et al. (2012) computed a thesaurus of the 20 distribution-
ally most similar words for each input word and obtained
a 2pt increase in F-measure over the same data set. Tang
et al. (2013) tested Brown clusters and also the distribu-
tionally most similar words as features to help medical en-
tity recognition on the i2b2 2010 data set. They obtained
increases of 0.40-0.56pt F-measure in a system which per-
forms at the same level as that of de Bruijn et al. (2011),
i.e., starting from a stronger baseline than Jonnalagadda et
al. (2012). Jonnalagadda et al. (2013) used distributional
representations of words built with the Semantic Vectors
package of Widdows and Cohen (2010) to create word clus-
ters, a ‘quasi-lexicon’, and a thesaurus as above (20 near-
est neighbors): the thesaurus improves entity recognition
on the i2b2 2010 data set by 1.6pt F-measure, whereas the
quasi-lexicon and clusters obtain smaller gains. They also
observed that a combination of distributional word classes



(quasi-lexicon and thesaurus) could replace UMLS-based
word classes with no loss (and even an increase) of perfor-
mance.
The present work also aims to assess the relative con-
tribution of unsupervised word classes to medical entity
detection, compared to knowledge-based semantic classes
such as provided by the UMLS. Besides, it tests new word
classes which include syntactic information in their con-
struction, which to our knowledge has not been done previ-
ously.

3. Corpora
We used two types of corpora:

• The annotated corpora from the ShARe/CLEF eHealth
Evaluation Lab (Suominen et al., 2013). The datasets
consist of de-identified clinical free-text notes from
the MIMIC II database1 (Saeed et al., 2011) of Inten-
sive Care Unit (ICU) data. The clinical reports were
given with stand-off annotations of disorder mention
spans and UMLS concept unique identifiers; we do
not consider the latter in the present mention detection
task, which corresponds to Task 1A of CLEF eHealth.

• A larger unannotated corpus obtained from the
MIMIC-II database besides the CLEF eHealth chal-
lenge. It contains about 18,000 discharge summaries.

Table 1 provides statistics on the three corpora.

Type Set # reports # words
Annotated Training 200 94 k
Annotated Test 100 88 k
Unannotated 18,000 27 M

Table 1: Statistics on corpora

4. Word classes for supervised medical
entity detection

4.1. Baseline system features
For supervised medical entity detection, we reuse a pipeline
of components (Bodnari et al., 2013) prepared for the CLEF
eHealth challenge. The features produced by this pipeline
included knowledge-based semantic classes, but no data-
driven classes. Supervised classification was performed
with the Wapiti CRF toolkit (Lavergne et al., 2010).2 The
baseline system (later called nosem) uses the following fea-
tures:

• Lexical features: token, lemma.

• Morphological features: (i) token containing only up-
per case letters, (ii) token is a digit, (iii) is capitalized
and (iv) is a punctuation.

• Syntactic features: part of speech information ex-
tracted with the cTAKES system (Savova et al., 2010).

1http://mimic.physionet.org/
2http://wapiti.limsi.fr/

• Document structure features: document type and
section type, extracted with a rule-based method
which identifies occurrences of section names in the
text (Bodnari et al., 2013).

For most types, a feature is computed based on the previous
position in the sentence, current position and next position
(for unigram features), and based on the previous+current
positions or current+next positions (for bigram features).
This is also the case for the semantic classes defined below.
Figure 1 provides an overview of the pipeline used to pro-
duce semantic features, which we detail below.
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Figure 1: Global overview of semantic feature production

Table 2 shows an excerpt from the corpus in a simplified
tabular form, processed by our pipeline. For each token
(first column), a set of attributes has been computed. We
only show a small subset of these attributes: lemma, part-
of-speech, syntactic chunk, the concept unique identifier
(CUI) from the UMLS, section from the document (herein,
“History of Present Illness”), the cluster ID produced us-
ing Brown’s algorithm (for a given configuration). We also



Form Lemma POS Chunk CUI Section Cluster ID Gold standard Prediction
The the DT B-NP #NA HPI B-110100 O O
patient patient NN I-NP #NA HPI B-110001 O O
is be VBZ B-VP #NA HPI B-01110010 O O
a a DT O #NA HPI B-010000 O O
40 40 CD B-NP #NA HPI B-111101011100 O O
- - HYPH I-NP #NA HPI B-10010 O O
year year NN I-NP #NA HPI B-1001111101 O O
- - HYPH I-NP #NA HPI B-10010 O O
old old JJ I-NP #NA HPI B-0101110110 O O
female female NN I-NP B-C0015780 HPI B-011000000 O O
with with IN B-PP #NA HPI B-001111000 O O
complaints complaint NNS B-NP B-C0277786 HPI B-011011111100111 O O
of of IN B-PP #NA HPI B-001110 O O
headache headache NN B-NP B-C0018681 HPI B-01101001011 B-Disorder B-Disorder
and and CC I-NP #NA HPI B-00010 O O
dizziness dizziness NN I-NP B-C0012833 HPI B-0110100100 B-Disorder B-Disorder
. . . O #NA HPI B-1110 O O

Table 2: Excerpt from the annotated corpus processed by our pipeline. POS = Part-of-Speech; CUI = Concept Unique
Identifier; Reference = expected category; Prediction = predicted category

show the gold standard word label and the label predicted
by our system.

4.2. Knowledge-based semantic classes
Semantic classes for words were obtained from two human-
curated resources (Bodnari et al., 2013).

The UMLS. The Unified Medical Language System (Bo-
denreider, 2004) contains a large repository of biomedical
terms with associated semantic types. We produced for
each word eleven attributes based on various ways to ac-
cess this resource.

The Wikipedia. The Wikipedia contains an increasing
number of articles relevant to the medical domain. We used
Wikipedia category data to collect a lexicon with nine se-
mantic groups, which was used to produce two attributes
for each word.

4.3. Unsupervised, data-driven word classes
Unsupervised learning induces word representations from
unannotated corpora. We explore here the use of Brown
clusters (Brown et al., 1992) in their usual form as well
as a novel application of this method to dependency re-
lations (Section 4.3.1.), then categories obtained through
training a probabilistic context-free parser with latent cate-
gories (PCFG-LA, (Petrov et al., 2006), Section 4.3.3.).
In all cases, unsupervised learning results in a lexicon
which associates words to classes; this lexicon is then ap-
plied to the training or test corpus to add attributes to the
input words for supervised entity detection.

4.3.1. Brown clusters
Brown clusters optimize a class bigram language model
over the corpus on which they are computed, here the unan-
notated corpus of discharge summaries. We created Brown
clusters using Liang (2005)’s implementation of Brown et
al. (1992)’s clustering algorithm, requesting 320 and 1000

clusters (these provided the best results in preliminary ex-
periments) combined to five thresholds (21...5) on the min-
imum number of word occurrences. The 10 resulting clus-
terings were used as attributes to create CRF features for
each input word: for each clustering, the identifier of the
cluster which contains this word (or #NA if the word is not
present in the clusters) is added as an attribute.
An example of cluster is that named 01101111011111, com-
puted with the unannotated corpus, which contains the fol-
lowing words: LLL, RLL, RUL, bibasilar, dense, dif-
fuse, expiratory, faint, linear, multifocal, nodular, partial,
patchy, retrocardiac, scattered, trace, etc., many of which
occur as modifiers in disorder expressions in the training
corpus: patchy opacities, retrocardiac opacification, ex-
piratory wheeze, inspiratory wheeze, etc. Among these,
RUL (right upper lobe) does not occur as a term in the
UMLS. In the sentence “77 year old man with question-
able RUL pneumonia,” the word pneumonia is present as a
disorder in the UMLS, but RUL is unknown and as a re-
sult the CRF only labels pneumonia as a disorder, missing
RUL. When using Brown clusters, the feature for cluster
01101111011111 obtains a high score for being part of a dis-
order, and RUL is therefore labeled as part of the disorder
too, thus obtaining the correct complete entity.

4.3.2. Dependency-based Brown clusters
In previous approaches, the Brown clusters were computed
over bigrams in an input string of words. In the present
work, we tested whether computing clusters based on syn-
tactic dependencies instead of word bigrams might improve
entity detection.
The unannotated corpus was parsed with McClosky and
Charniak (2008)’s self-trained parser and the output was
converted into Stanford reduced dependency format (De
Marneffe and Manning, 2008).
Rather than trying to change the Brown algorithm, we tried
to find a representation of the syntactic dependencies that
would be amenable to processing directly by the existing



algorithm and implementation. In this purpose, each de-
pendency was represented as a pseudo-sentence, including
the two related tokens (governor then dependent) and pos-
sibly the grammatical relation. This means that each initial
sentence is replaced with a series of pseudo-sentences, one
per dependency relation. We tested the following represen-
tations of dependency relations: (i) token-relation-token,
(ii) relation-token-token, (iii) token-token-relation, and
(iv) relation conjoined with the first token (relation-token),
second token conjoined with the relation (token-relation)
and two tokens without the relation (token-token). Experi-
ments evidenced that the pair of tokens (token-token), with-
out the relation, obtained the best results, so for the sake of
space we only consider this setting in this paper.
As for the clusters in Section 4.3.1., for each input word,
dependency-based Brown clusters contribute 10 attributes
generated by the two numbers of clusters and the five fre-
quency thresholds.

4.3.3. Latent syntactic categories
We also tested whether the latent categories obtained by
a PCFG-LA parser (Petrov et al., 2006) can be used as
(syntactico-)semantic categories. Parsers based on Prob-
abilistic Context-Free Grammar with Latent Categories
(PCFG-LA parsers) learn latent categories when trained on
a treebank. These latent categories are obtained by splitting
the syntactic categories present in the treebank in a way
which optimizes parsing accuracy. We use these categories
to create additional word attributes.

Default grammar. The unannotated corpus was parsed
with the Berkeley PCFG-LA parser (Petrov et al.,
2006) using its default grammar. Latent categories for
the corpus words were then extracted and used to build
a lexicon with ‘semantic’ categories. However, the de-
fault English grammar of the Berkeley parser is not
based on medical texts.

Specific grammar. We hypothesized that a better perfor-
mance in disorder entity recognition could be achieved
by using a grammar adapted to the specific domain
and genre of our target corpus. We therefore specifi-
cally trained a grammar for this corpus. We assumed
that the Charniak-McClosky parser (McClosky et al.,
2006), which itself is self-trained on biomedical texts
(McClosky and Charniak, 2008), should have a better
performance on these texts than the vanilla Berkeley
parser. We therefore prepared a training treebank by
extracting 10% of the unannotated corpus parsed with
the Charniak-McClosky parser, then used it with no
manual correction to train a specific grammar for the
Berkeley parser. This specific grammar was used by
the Berkeley parser to parse the larger corpus.

As an example, one of the latent categories obtained by
splitting the noun (NN) category in the corpus is NN-7,
which contains (among other) the following words: Al-
buterol, postop, Insulin, Pantoprazole, Lopressor,
platelet, oxygen, Furosemide, Glyburide, Prednisone,
Atenolol, ejection, Levofloxacin, Toprol, most of which
are drug names.

Building a lexicon of latent categories is slightly more com-
plex than for Brown clusters. This is because depending on
the context in which it occurs, a word in a sentence may
receive a variety of latent categories. For each word, we
collected all the categories it received in the automatically
parsed corpus, and ordered them by descending number of
occurrences. We only kept the categories with a number of
occurrences greater than a threshold T , and selected the top
N categories (possibly less if some or all of them did not
pass the threshold). These ordered N categories were used
to add N attributes to the word representation (again, #NA
was used as a null value if less thanN categories remained).
Based on initial experiments we kept two combinations of
T and N : (T =50, N =2) and (T =100, N =1). There-
fore, 3 attributes were created with this method.

4.4. Design of experiments
Given the above-mentioned sets of attributes, the goals of
our experiments were to answer the following questions:

• What is the performance of knowledge-based seman-
tic classes (i.e., classes based on the UMLS or on the
Wikipedia) with respect to the baseline system with no
semantic classes (Section 5.1.);

• In a setting where no knowledge-based semantic
classes would be available, what is the performance of
data-driven semantic classes (i.e., word-based Brown
clusters, dependency-based Brown clusters, and la-
tent syntactic categories); besides, do syntax-aware
semantic classes bring an advantage over non-syntax-
aware semantic classes (Section 5.2.);

• What is the relative performance of knowledge-based
and data-driven classes (Section 5.3.).

All experiments were performed on the task of DISOR-
DER entity detection, using ten-fold cross-validation on
the CLEF eHealth 2013 training set, with unsupervised
attributes computed on the unannotated MIMIC-II corpus
(see Section 3.). The results displayed in the tables are av-
erage precision, recall, and F-measure over these ten folds.

5. Results and discussion
5.1. Baseline system and knowledge-based

semantic classes
Table 3 shows the results obtained with a baseline sys-
tem which uses no semantic classes (NOSEM), with a sys-
tem which only uses one type of knowledge-based seman-
tic class (Wikipedia or UMLS), or with a combination of
these. Our baseline system emphasizes precision over re-
call, a characteristic often found in CRFs.
The use of only UMLS attributes comes a few F-
measure points (4pt) short of the baseline system NOSEM,
which shows the importance of this knowledge source.
Wikipedia-contributed attributes have a good precision too,
but much lower coverage than UMLS attributes: this shows
that Wikipedia is a resource of good quality which is worth
considering even in a specialized domain, but that a large,
dedicated resource such as the UMLS is best suited to the
needs of the domain. Adding Wikipedia attributes on top



Feature set P R F
NOSEM 85.31 65.10 73.85
Wikipedia 79.03 24.32 37.20
UMLS 78.22 63.31 69.98
UMLS + Wikipedia 78.98 64.50 71.01
NOSEM + Wikipedia 86.58 68.02 76.18
NOSEM + UMLS 88.10 74.23 80.57
NOSEM + UMLS + Wikipedia 88.28 75.05 81.13

Table 3: Performance of baseline features (NOSEM),
knowledge-based semantic classes, and their combination

of UMLS attributes gains another 1pt F-measure, or 0.5pt
when both are added to NOSEM: Wikipedia contributes in-
formation that is not present in the UMLS.
Combining all three types of attributes boosts the F-
measures of both NOSEM and knowledge-based semantic
classes by about 10pt: they contribute quite different infor-
mation.

5.2. Baseline system and data-driven word
classes

Table 4 shows the performance obtained by the same base-
line system (NOSEM), by a system which only uses one type
of data-driven word classes, or with a combination of these.

Feature set P R F
NOSEM Br Br-dep LA LA-spec
NOSEM 85.31 65.10 73.85

LA 72.86 59.45 65.47
LA-spec 74.61 62.57 68.06

Br 77.28 71.53 74.30
Br-dep 78.65 71.74 75.04
Br-dep LA 80.64 71.63 75.86

Br LA 80.02 72.45 76.05
Br LA-spec 80.48 72.44 76.25

Br-dep LA-spec 81.21 73.20 77.00
NOSEM LA 85.32 67.09 75.11
NOSEM LA-spec 85.53 67.72 75.59
NOSEM Br-dep 85.52 71.72 78.01
NOSEM Br 84.06 72.78 78.01
NOSEM Br-dep LA-spec 85.09 72.17 78.10
NOSEM Br LA 84.49 72.85 78.24
NOSEM Br-dep LA 84.98 72.62 78.31
NOSEM Br LA-spec 85.33 73.47 78.96

Table 4: Performance of baseline features (NOSEM), data-
driven semantic classes, and their combination (LA = La-
tent categories with default grammar, LA-spec = Latent
categories with specific grammar, Br = word-based Brown
clusters, Br-dep = dependency-based Brown clusters)

Data-driven word classes alone. Latent categories alone
obtain a better F-measure than Wikipedia alone because
their higher recall more than compensates for a lower preci-
sion. Retraining the parser on a part of the domain-specific
corpus results in categories that gain 2.5pt F-measure.
Brown clusters alone outperform UMLS alone and even
the baseline NOSEM attributes: in our setting, distributional

analysis alone performs better than a combination of lex-
ical, morphological, syntactic and document structure fea-
tures. It does so by a strong increase in recall, at the expense
of a decrease in precision. This is the inverse of the pref-
erence for precision of our baseline system. Dependency-
based Brown clusters also bring an improvement of 0.7pt
F-measure over bigram-based Brown clusters.
PCFG-LA latent categories are obtained by splitting syn-
tactic categories into more specific subcategories. We may
thus compare them to using only part-of-speech (POS)
information. A system trained with only part-of-speech
information (not displayed in Table 4) obtains (P=49.58,
R=22.16, F=30.63), to be compared to the rows for LA
or LA-spec which obtain much higher results. We believe
that the more specific categories, added to the description
of each word by three categories instead of only one POS,
account for this large difference.

Combination of data-driven word classes. When com-
bined, Brown clusters and Latent categories further gain
2pt F-measure, which shows that they capture different
types of information. Further adding the NOSEM attributes
gains another 2pt F-measure. All in all, this falls short of
NOSEM plus knowledge-based classes by 2pt F-measure.
On the one hand, we can say that rich knowledge-based
classes such as obtained by the UMLS (and to a lesser ex-
tent Wikipedia) still do a better job of helping the detec-
tion of disorders, both in terms of precision and recall. On
the other hand, we also observe that the huge human effort
invested to build these resources only gains 2pt in our set-
ting. Finally, we note that the combination of unsupervised
word classes with the baseline NOSEM features boosts re-
call while leaving precision untouched.

Combination of baseline and data-driven word classes.
In combination with the NOSEM attributes, dependency-
based Brown clusters bring a positive or negative contri-
bution depending on the presence or absence of LA / LA-
spec attributes. In contrast, the specific grammar for la-
tent categories improves the results compared to the default
grammar in most of the cases. Nevertheless, in all cases
combining Brown clusters with PCFG latent categories im-
proves over either of them.

5.3. Baseline system and all word classes
Table 5 recalls the performance obtained by the baseline
system (NOSEM, here abbreviated as N). It then shows
a selection of combinations of knowledge-based semantic
classes and data-driven word classes. Finally, it displays
a selection of combinations of NOSEM and both types of
word classes. The combination of all knowledge-based
classes and all data-driven classes (last row in part two
of the table) reaches 80.64 F-measure, which improves
over the combination of only knowledge-based classes
(F=71.01) or only data-driven classes (F=77.00). It is very
close to the best result of Table 3 which combined NOSEM
with knowledge-based classes (F=81.13). This probably
means that data-driven classes encode most of the lexi-
cal and syntactic information provided to NOSEM. The
full combination of baseline attributes (NOSEM) and both
types of word classes reaches F=82.39, which improves the
above-mentioned best result by 1.3pt. This shows that in



Feature set P R F
N W U Br Br-dep LA LA-spec
N 85.31 65.10 73.85

W LA 77.35 63.26 69.60
U LA 83.42 72.96 77.84
U LA-spec 83.89 73.37 78.28

W U LA 84.16 73.61 78.54
W U LA-spec 84.70 74.01 78.99

U Br 81.78 76.63 79.12
W U Br 81.93 76.74 79.25
W U Br LA-spec 84.29 77.20 80.59
W U Br LA 84.27 77.31 80.64

N W LA-spec 86.41 71.72 78.38
N W Br 85.11 74.08 79.21
N W Br LA-spec 85.04 74.40 79.36
N U LA-spec 87.94 74.87 80.88
N W U LA-spec 88.13 75.69 81.44
N U Br-dep 87.91 76.46 81.79
N U Br LA-spec 87.02 77.31 81.88
N W U Br LA 87.33 77.15 81.92
N U Br 87.22 77.28 81.95
N W U Br-dep 88.09 76.63 81.99
N W U Br 87.49 77.48 82.18
N W U Br-dep LA-spec 88.59 76.71 82.22
N W U Br LA-spec 87.55 77.80 82.39

Table 5: Performance of the combination of knowledge-
based and data-driven classes (N = baseline with no seman-
tic classes, W=Wikipedia, U = UMLS, LA = Latent cate-
gories with default grammar, LA-spec = Latent categories
with specific grammar, Br = word-based Brown clusters,
Br-dep = dependency-based Brown clusters)

the present setting where we can pool two kinds of rich
knowledge-based classes, the data-driven classes only bring
a moderate additional improvement. In contrast, adding
knowledge-based classes (UMLS + Wikipedia) to the best
combination of data-driven classes with NOSEM boosts the
F-measure by 3.4pt F-measure: this underlines the impor-
tance of these classes when they are available.

Ablation studies. Table 6 reproduces the best result and
some of the rows of Table 5 to show ablation experi-
ments. The most contributing set of attributes in this fi-
nal configuration is the UMLS (3pt F-measure), followed
by NOSEM (1.8pt) and word-based Brown clusters (1.0pt).
The remaining two sets of attributes (Wikipedia and LA-
spec) contribute much less to the final F-measure (0.5pt and
0.2pt). Besides ablation, we also examined the effect of the
dependency-based variant of the Brown clusters: they in-
crease the precision of the system, but decrease its recall,
which leads to a slightly lower F-measure. We also confirm
that using a specific grammar instead of the default gram-
mar for the PCFG-LA parser improves the results, with a
0.5pt gain in F-measure (in fact, using the PCFG-LA word
categories with the default grammar is worse than not using
them at all).

Feature set P R F −δ
N W U Br Br-dep LA LA-spec
N W Br LA-spec 85.04 74.40 79.36 3.0

W U Br LA-spec 84.29 77.20 80.59 1.8
N W U LA-spec 88.13 75.69 81.44 1.0
N U Br LA-spec 87.02 77.31 81.88 0.5
N W U Br LA 87.33 77.15 81.92 0.5
N W U Br 87.49 77.48 82.18 0.2
N W U Br-dep LA-spec 88.59 76.71 82.22 0.2
N W U Br LA-spec 87.55 77.80 82.39 0.0

Table 6: Ablation studies with respect to the best config-
uration (δ is the loss incurred by removing one set of at-
tributes). See Table 5 for the other abbreviations.

Sets of features Minimum Median Maximum
Wikipedia 3.17 (NA) 4.80
UMLS 2.90 16.40 21.59
LA-spec 63.16 86.40 94.08
LA 83.60 91.90 95.53
Br-dep 74.50 96.59 97.65
Br 97.91 98.87 99.30

Table 7: Coverage (in %) of the corpus by knowledge-based
and data-driven attributes (see Table 5 for abbreviations)

5.4. Coverage of word classes
An important factor in understanding the systems is to mea-
sure the coverage of the attributes on the corpus. By this we
mean the proportion of occurrences of tokens in the cor-
pus for which a non-null value is provided by a lexicon for
a given attribute. Knowledge-based semantic classes and
data-driven semantic classes are each represented by a set
of attributes: 2 for Wikipedia, 11 for UMLS, 10 for Brown
clusters and 3 for PCFG-LA categories. Table 7 provides
coverage information for each set of attributes: the lowest,
median and highest value obtained by an attribute in this
set. Since Wikipedia only has two attributes, it only has
two values which are displayed in the table as minimum
and maximum values.
The rows in the table are sorted by maximum value in as-
cending order. We observe that the medical lexicon that we
built from Wikipedia has the lowest coverage, which ex-
plains its low recall. The UMLS essentially contains med-
ical terms, most of which are built around a head noun.
These properties explain the moderate coverage of UMLS
attributes.
In principle, data-driven classes are susceptible to obtain
full coverage of the words in the annotated corpus, since
they are induced from a much larger unannotated corpus
of the same origin. Their actual coverage depends on the
thresholds imposed in the implemented methods. Never-
theless, for Brown clusters, even with our highest threshold
of 32 occurrences in the unannotated corpus, between 98%
and 99% of the word occurrences in the annotated corpus
are present in a cluster. Dependency-based Brown clus-
ters have slightly lower coverage due to the use of reduced
dependencies, which result for instance in the suppression
of prepositions and their replacement with reduced depen-
dency names such as prep of. The thresholds imposed on



latent categories were higher (50 and 100) and may explain
the slightly lower coverage of these categories. This cover-
age remains high, with maximums of 94-95%.
In summary, data-driven word classes have a higher cover-
age of the corpus than knowledge-based semantic classes.
Their contribution to the performance of the system, when
added to knowledge-based classes, acts through an increase
in recall. But because they are noisier, they also de-
crease precision. Since the system based on NOSEM plus
knowledge-based classes lacks recall, they improve its F-
measure.

5.5. Limitations
This study has the following limitations. First, it considers
only one corpus in one domain. Similar studies should be
performed on a variety of corpora to check the generaliza-
tion of these observations. Second, this dataset deals with
only one type of entity (disorders). The impact of the vari-
ous types of word classes that we studied in this paper could
also vary depending on the number of entity types present
in an annotated corpus and their nature.
Besides, concerning syntax-informed word classes, i.e.,
dependency-based Brown clusters and PCFG-LA word cat-
egories, we note that syntactic analysis was performed on
texts where sentence splitting was often incorrect, lead-
ing to some erroneous parses. Improved sentence split-
ting might lead to a more accurate comparison of methods.
We expect however that the induced changes should remain
marginal.
Finally, the ablation studies in Table 6 show that although
the UMLS has a much smaller coverage of the full anno-
tated corpus, it does provide the largest contribution to re-
call (the first row of the table, which shows results without
UMLS, has the lowest recall), followed by Brown clusters
(third row in the table). Measuring coverage over the target
entities and their vicinity, instead of over the full corpus,
might therefore be more relevant.

6. Conclusion
We have performed systematic experiments to study
the contribution of both knowledge-based and unsuper-
vised word classes to disorder recognition, using the
CLEF eHealth 2013 challenge data. They showed that
knowledge-based word classes obtained from the UMLS
and Wikipedia drastically boost (+7.3pt F-measure) a base-
line system which has no semantic classes (NOSEM), with a
main contribution of the UMLS (6.7pt). We also observed
that in the absence of knowledge-based classes, unsuper-
vised word classes also improve the NOSEM system, albeit
by a smaller margin (5.1pt), with a main contribution by
Brown clusters.
We proposed two novel methods to compute word classes
based on syntactic information: dependency-based Brown
clusters and PCFG-LA word categories. Our experiments
with dependency-based Brown clusters were not conclu-
sive. We also observed that PCFG-LA categories brought
improvements when based on a grammar that has been
trained on a similar corpus. When added to the knowledge-
based classes, unsupervised word classes brought a moder-

ate additional improvement (1.3pt), highlighting the impor-
tance of the knowledge-based classes in our context.
This study should be extended to new data sets with mul-
tiple and different types of entities, and other domains or
specialties. Other methods could also be tested to com-
pute word classes based on syntactic representations, such
as modifying Brown’s algorithm to model syntactic depen-
dencies in a more principled way. Neural network ‘word
embeddings’ (e.g., (Collobert and Weston, 2008; Mnih and
Hinton, 2009; Mikolov et al., 2013)) are also a popular way
to derive data-driven word representations and word classes
which add yet another class of methods to try to match the
power of knowledge-based semantic classes.
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