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1 CEA CESTA DAM, F-33114 Le Barp, France
gael.poette@cea.fr

July 5, 2018

Abstract

In this paper, we are interested in the numerical approximations of a transformation u of a set
of independent random variables X = (X1, ..., XQ)t ∈ RQ into an output one u(X) ∈ R thanks to
generalized Polynomial Chaos (gPC) based methods. In particular, we aim at recalling the main results
on the methods, their constructions, analysis and comparisons. Amongst the many derivations of gPC,
one can count integration-gPC, regression-gPC, collocation-gPC and even recently kriging-gPC. Although
the previous different methods have been compared numerically on several benchmarks in many papers,
it is still hard identifying which method performs better than the other and in which conditions. The
aim of this paper is to identify more easily under which conditions the strategies differ, are equivalent or
are more efficient.

keywords: uncertainty quantification, non-intrusive, generalized Polynomial Chaos, collocation, re-
gression, kriging

1 Introduction

In this paper, we are interested in the numerical approximations of a transformation u of a set of independent1

random variables X = (X1, ..., XQ)t ∈ RQ into an output one u(X) ∈ R. Applying the transformation
X ∈ RQ −→ u(X) ∈ R when u resumes a complex dynamical system is commonly called uncertainty
propagation. We more precisely focus on non-intrusive generalized Polynomial Chaos based methods to
approximate u(X). In particular, we aim at recalling the main results on the methods, their constructions,
analysis and comparisons. Amongst the many derivations of gPC, one can count2 integration-gPC [65, 44, 18],
regression-gPC [11, 12, 10, 66, 67], collocation-gPC [41, 53, 81, 26, 42, 43, 27] and even recently kriging-gPC
[64, 34, 63, 63, 35]. Although the previous different methods have been compared numerically on several
benchmarks in many papers [53, 81, 54, 61, 34, 63, 64, 35], it is still hard identifying which method performs
better than the other and in which conditions. The aim of this paper is to characterise some of those
conditions, independently of the dimension Q of the input uncertain vector X, of its probability measure
dPX and of any assumptions on u.

The paper is organized as follow: in the next section, we progressively introduce the different gPC based
methods encountered in the literature, from the seminal integration-gPC, to regression-gPC, collocation-gPC
and kriging-gPC. The construction of the respective approximations are recalled, their numerical analysis
performed. In particular, this constitutes the first original point of the document, care will be taken to explain
theorically some already observed numerical phenomenon. Orthogonal polynomials and their properties3, of
course, play a central role. All along the descriptions and analysis of the different methods, we consider a
fil rouge problem (Runge function) on which are applied every derivations of gPC in the same conditions. It
allows progressively highlighting the commons and differences of the gPC based expansions. Finally, the last
section is dedicated to several additional numerical comparisons of the gPC based methods. In particular,
iterative-gPC (i-gPC [57, 58]) is also amongst the latters. The paper is only stewn with very simple test-
cases: we consider it is enough to recover and illustrate experimentally the results of the performed numerical
analysis. It is also important for the sake of reproducibility of the numerical results. Furthermore, the
literature is furnished with industrial applications of these methods and we rely on references [65, 44, 18, 11,
12, 10, 66, 67, 41, 53, 81, 26, 42, 43, 27, 54, 61, 34, 63, 64, 35] to give relevant, complex and complementary
examples.

2 A progressive analysis of gPC based methods

In this section, we propose a brief state-of-the-art of gPC based methods together with their analysis and
numerical illustrations. We begin by the very first one, here denoted by integration-gPC. Many examples
can be found in [65, 44, 18, 19, 50, 71, 86, 82, 73, 74, 49, 48, 55] covering fields of applications ranging from
the acceleration of Bayesian inference for transient diffusion to failure detection for chemical reactions via
uncertainty propagation in prey-predator models etc.

1Independence is not mandatory in a gPC context, see [40, 22, 39, 11], but is very convenient.
2They will be recalled in this document, with coherent notations easing the comparison and with complete references.
3The most relevant ones for the present study are recalled in appendix A.
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2.1 The construction and properties of integration-gPC approximations

Let us begin by a very general description. It may, at first glance, look like a recipe but it is representative
of its practical use. Let us first suppose the random variable4 X has probability measure dPX . The
methodology consists in several steps:

1. it begins by building (φXk )k∈N the gPC basis orthonormal with respect to the inner product defined by
the probability measure dPX of the input random variable X, i.e. such that∫

φXk φ
X
t dPX = δk,t,∀(k, t) ∈ N2.

More details on algorithms to perform the latter step are given in appendix A.

2. The second step corresponds to the discretisation of the random variable and its probability measure
(X, dPX) by a numerical integration method with N points:

(X, dPX) ≈ (Xi, wi)i∈{1,...,N}. (1)

The set (Xi, wi)i∈{1,...,N} is commonly called an experimental design [25, 6] and is crucial, this will be
recalled and illustrated, for the approximation method.

3. The next step consists in running N independent runs of a black-box code at the a priori chosen points
(Xi, wi)i∈{1,...,N} and gathering a new collection of output points:

(u(Xi), wi)i∈{1,...,N}. (2)

This step is supposed to bear the main computational effort.

4. Once the N runs obtained, the rest is only postprocessing at the observation points of interest. The
estimation of the polynomial coefficients is then made by numerical integration in this section, i.e.
∀k ∈ {0, ..., P}

uXk =

∫
u(X)φXk (X) dPX ≈ uX,Nk =

N∑
k=1

u(Xi)φ
X
k (Xi)wi. (3)

Many authors apply other numerical methods to compute the coefficients (such as regression, colloca-
tion, kriging): they are addressed in the next sections together with their analysis.

5. Finally, one can reconstruct the truncated polynomial approximation (or the collocation or kriging
ones) using the approximated coefficients (3)

u(X) ≈ uXP,N (X) =

P∑
k=0

uX,Nk φXk (X),

and perform the desired post-treatments in order to approximate the statistical quantities of interest
(mean, variance, histograms, etc.) related to u(X).

At the end of the process, one has access to an approximation5 uXP,N (X). The error between u(X) and

uXP,N (X) in the L2-norm can be decomposed in two main parts using the orthonormality of the gPC basis6:

||u(X)− uXP,N (X)||2L2 =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

uXk φ
X
k (X)−

P∑
k=0

uX,Nk φXk (X)

∣∣∣∣∣
∣∣∣∣∣
2

L2

,

=

P∑
k=0

(uXk − u
X,N
k )2

︸ ︷︷ ︸
integration error

+

∞∑
k=P+1

(uXk )2

︸ ︷︷ ︸
truncation error

.
(4)

In (4), the error of the non-intrusive approximation have (explicitly) two parameters, N for the integration
error and P for the truncation error.
Now, let us assume

(i) the (uX,Nk )k∈Ns are infinitely accurately computed/available, i.e. we have ∀k ∈ N, uX,Nk = uXk , so that
the integration error in (4) is zero,

(ii) and the distribution of the input random variable is gaussian, i.e. dPX(x) = 1√
2π
e−

1
2x

2

dx.

In the previous conditions, the (φXk )k∈Ns are the Hermite polynomials and the convergence of (4) is ensured by
(the special case of) Cameron-Martin’s theorem [16], under condition ||u(x)||L2 is bounded. This particular
case is commonly called Polynomial Chaos (PC) whereas (4), with arbitrary measure dPX and hypothesis
(i), is denoted generalized Polynomial Chaos (gPC). Its efficiency, i.e. the gain of gPC vs. PC, has been
numerically observed in many fields of applications [72, 75, 74, 79, 37, 20, 83, 85, 84, 52]. Some complementary

4or vector.
5The upperscript X reminds of the approximation basis, P of the truncation order and N of the number of points for the

numerical approximation of the coefficients (uX,N
k )k∈{0,...,P}.

6assuming there are no errors in the gPC basis, see section A.
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theorems ensure the convergence for some particular measures7 dPX but the complete convergence theorem
for gPC has been demonstrated in [24]. Note that the general convergence theorem (for gPC) demands an
additional condition on the input distribution (it must have a uniquely solvable moment problem8). Paper
[24] also recalls the convergence is ensured for quantiles9, relative moments10, in probability11: in other
words, for every classical mathematical tools to perform a (converging) uncertainty quantification analysis.
In the following, we consider random input variables X for which the gPC convergence holds [24].

Let us go back to (4), from a more practical point of view. The above description is quite simple but to be
complete, two points remain to be tackled:

– We did not explain under which considerations the experimental design is chosen in practice for the
discretisation (1) of the couple (X, dPX). The notation (1) for the punctual discretisation of (X, dPX)
is very general and has been chosen in order to show that the material of the rest of the chapter concern-
ing non-intrusive gPC can be applied independently of this choice. Suppose the points (Xi)i∈{1,...,N}
are chosen sampled from the probability law of X and (wi = 1

N )i∈{1,...,N}, then it corresponds to the
Monte-Carlo integration method for the estimation of the coefficients. With the same writing, we can
conveniently consider Gauss quadrature points, Latin Hypercube Samples, Sparse Grids etc. The latter
sets of points in dimension Q differ only by their asymptotic error analysis with respect to integration.
We insist we here implicitly deal with converging discretisation of (X, dPX): without this assumption,
most of the following results do not hold12.
In the following, examples are given with different experimental designs to integrate {uφX0 , ..., uφXP }:
we aim at applying the same experimental design to every coefficients (uXk )k∈{0,...,P}.

– Some authors in the literature do not exactly use numerical integration methods in order to estimate the
polynomial coefficients (3). Amongst the other possibilities one can cite regression-gPC, collocation-
gPC or kriging-gPC. Their subtleties are briefly investigated, analysed and illustrated in the next
subsections 2.2–2.3–2.4.

The choice of the discretisation of the random variable X together with its probability measure dPX obvi-
ously directly impacts the quality of the gPC approximation as testifies (4). Depending on the transformation
u, the integration error may be preponderant with respect to the truncation one (see for example [47]). Con-
siderations to help choose it together with pedagogical examples can be found in [25, 6] but we would first
like to focus on Gauss points as they will be central, especially to deal with collocation-gPC.

The N Gauss points of any arbitrary measure dPX are the roots of the (N + 1)th degree polynomial
orthonormal with respect to the inner product defined by dPX , see section A.

∀i ∈ {1, ..., N}, wi =

∫
Li(x) dPX(x). (5)

Introducing the weights as above implicitly presents them as the coefficients ensuring exact integration of
polynomials up to order N . Such N -point quadrature rule is said to have degree of exactness N and is
denoted as interpolary, see [28]. Obviously, from the definition of the weights (5), given any N points, any
quadrature rule can be made interpolary. Such definition is convenient but not optimal: the optimal N -point
quadrature rule has degree of exactness 2N and is called a Gauss quadrature rule [28]. The weights can also
be defined by normalizing every eigenvectors (ΦXN (γi))i∈{1,...,N} and taking their first squared component:
as φX0 (x) = 1 in our case, dealing with probability measures, we have

∀i ∈ {1, ..., N}, wi =
1

P∑
k=0

(φXk (γi))
2

.

The last definition of the weight emphasizes their positiveness, important in practice for robustness. The main
drawback of Gauss quadratures remains linked to the curse of dimensionality. Building a multidimensional
Gauss quadrature rule implies tensorizing the points in each directions. The number of Gauss points increases
exponentially fast with the dimension Q. Regarding asymptotic error analysis, for a Gauss quadrature rule,
we have the following very general property (see [28]):∣∣∣∣∣

∫
g(x) dPX −

N∑
i=1

g(γi)wi

∣∣∣∣∣ =

∫
H2N (X, g)PX , (6)

where H2N (x, g) is the Hermite13 interpolation polynomial of order 2N relative to function g. If furthermore,
g is 2N times differentiable then the same asymptotic error can be expressed in term of ξ, existing in the

7For example if the support of dPX is bounded (uniform, arcsinus, beta laws etc.) the Stone-Weierstrass theorem ensures the
convergence of the gPC expansion. For the Poisson distribution (unbounded discrete distribution), the convergence is ensured
by the very same theorem ensuring the convergence of the Gram-Charlier expansion etc.

8It is not restrictive for the distribution of the Askey scheme [5, 84, 82, 72] nor discrete and mixed distributions but may be
problematic for the lognormal one [24].

9Relevant when one is interested in approximating a probability of failure.
10Relevant when one is interested in central quantities.
11Relevant when one is interested in approximating the probability density function of the output variable by a histogram.
12For example, in such case, (4) may diverge.
13We recall the Hermite interpolation polynomials relative to the points (Xi)i∈{1,...,N} satisfy H2N (Xi, g) = g(Xi), and

H′
2N (Xi, g) = g′(Xi), ∀i ∈ {1, ..., N}.
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support of the probability measure dPX , such that∣∣∣∣∣
∫
g(x) dPX −

N∑
i=1

g(γi)wi

∣∣∣∣∣ =

〈
φX,mN , φX,mN

〉
2N !

g(2N)(ξ), (7)

in which g(n) denotes the nth derivative of g. The constant in the error analysis strongly depends on the

smoothness (of order 2N) of the integrand. The coefficients
(〈
φX,mk , φX,mk

〉)
k∈N

correspond to the norm of

the monic orthogonal polynomial (φX,mk )k∈{0,...,P} associated to the probability measure dPX , see section
A. This normalization coefficient may also depend strongly on N , cf. (42) and (46). Obviously, for smooth
solutions, the convergence rate is fast. The Gauss quadrature rules for an arbitrary measure dPX are

gPC approximations for 3 ≤ P ≤ 20 Convergence w.r.t. P for fixed N
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Figure 1: Application of Gauss-Legendre quadrature rule forintegration-gPC and the transformation of a
uniform random variable through the Runge function with N = 11 (top) and N = 21 (bottom). The left
column present the polynomial approximations for 3 ≤ P ≤ 20. The right column present the L2-norm of
the error with respect to P for fixed N .

designed/defined [4] to ensure a good accuracy up to order 2N for the statistical moments of the input X
i.e. up to order 2N for polynomials (hence the non optimality of the definition (5)). With the above remark
in mind, assume g is polynomial of order 2N − 1, then g(n) = 0,∀n ≥ 2N and the quadrature rule is exact,
see (6).

Let us come back to our final goal, i.e. applying the quadrature rule to function g having the particular
form g = uφXl with l ∈ {0, ..., P} to build a gPC approximation of order P . Formally, we can expand u ∈ L2

on the gPC basis, i.e. u =
∑∞
k=0 u

X
k φ

X
k , and consider gl = uφXl =

∑∞
k=0 u

X
k φ

X
k φ

X
l , ∀l ∈ {0, ..., P}. In such

condition, error analysis (7) becomes∣∣∣∣∣
∫
gl(x) dPX −

N∑
i=1

gl(γi)wi

∣∣∣∣∣ =

〈
φX,mN , φX,mN

〉
2N !

∞∑
k=0

uXk (φXk φ
X
l )(2N)(ξl),

∣∣∣uXl − uX,Nl

∣∣∣ =

〈
φX,mN , φX,mN

〉
2N !

∞∑
k=0

uXk 1k+l≥2N (φXk φ
X
l )(2N)(ξl),

(8)

in which the dependence with respect to l of ξl has been made explicit. To study (8) more in detail, recall

∀k ∈ N we can rewrite φXk (X) = ΓXk φ
X,m
k (X) = ΓXk

∏k
i=1(X − γki ) with (φX,mk )k∈N the monic orthogonal

polynomial relative to (φXk )k∈N and with (γki )i∈{1,...,k} its roots14. Due to the fact we decomposed (φXk )k∈N
as a product of monomials, the previous notations allow rewriting(

φXk φ
X
l

)(2N)
(ξl) = 2N !ΓXk ΓXl Pk+l−2N (ξl),

14The roots of the orthogonal polynomials are within the support of the probability measure dPX , distinct and real, see [28].
Nevertheless, the decomposition could be done in the complex plane.
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where Pk+l−2N is a monic polynomial of order k + l − 2N . With the above equality, (8) becomes∣∣∣uXl − uX,Nl

∣∣∣ =

∞∑
k=0

uXk 1k+l≥2N
ΓXk ΓXl
(ΓXN )2

Pk+l−2N (ξl).∣∣∣uXl − uX,Nl

∣∣∣2 =

∞∑
j=0

∞∑
k=0

uXk u
X
j 1j+l≥2N1k+l≥2N

ΓXk ΓXj (ΓXl )2

(ΓXN )4
Pk+l−2N (ξl)Pj+l−2N (ξl).

P∑
l=0

∣∣∣uXl − uX,Nl

∣∣∣2 =

∞∑
j=0

∞∑
k=0

uXk u
X
j

ΓXk ΓXj
(ΓXN )2

P∑
l=0

1j+l≥2N1k+l≥2N

(
ΓXl
ΓXN

)2

Qk,j,l,N︸ ︷︷ ︸
term (∗) we can control by choosing P

.

(9)

The last term in the left hand side of (9) is exactly the L2−norm of the integration error in (4). The term
(∗) in (9) corresponds to the term we can control by choosing P with respect to N , independently of any
smoothness assumptions for u. Now, for a given k, we have (cf. section A)

ΓXk =

√
HX

2(k−1)

HX
2k

≥ 22k−1.

It implies that ∀l, N ∈ N, we have

−
(

ΓXl
ΓXN

)2

= −
HX

2(l−1)

HX
2l

HX
2N

HX
2(N−1)

≥ −24(l−N). (10)

According to the above expression, term (∗) in (9) can be controled by making sure l ≤ N, ∀l ∈ N, i.e.
choosing P ≤ N , ensuring the minimization of the residue in (8) independently of the smoothness of the
solution u. Obviously, the previous analysis is not optimal if P is kept P ≤ N . But it is relevant in the
opposite case and a gPC reconstruction with increasing P for fixed N (exponentially) accumulates errors.
This explosion of the L2 error with P as soon as P ≥ N has been observed on many numerical experiments,
see [47, 18] for example. The above numerical analysis shows it is independent of dPX and of u for the
associated Gauss quadrature rule.

We suggest illustrating this behaviour on a simple uncertainty propagation problem: consider the trans-
formation of a uniform random variable X via the Runge function

X ∼ U[−1,1] −→
1

1 + 15X2
, (11)

and apply gPC with coefficients integrated thanks to a N points Gauss-Legendre (GL) quadrature rule.
Figure 1 presents the results of the study with N = 11 and N = 21 points. The top right picture presents
a convergence study with respect to P for N = 11 GL points. The L2-norm of the error first decreases
exponentially fast (logarithmic scale for the ordinate) before increasing as quickly after P = 11 = N . The
explosion of the error after P = N is in agreement with the previous numerical analysis (cf. (9) and (10)).
The quality of the obtained gPC approximations can be observed on figure 1 top-left in the same conditions.
For the bottom pictures of figure 1, care has been taken to keep P ≤ N = 21 GL points. The exponential
convergence of the gPC approximation is ensured up to P = 20 as testifies the bottom right picture: the
increasing quality with P is observable on figure 1 (bottom-left) with a less and less oscillating approxi-
mation. Note that the readability of the left column of figure 1 can be discussed: this column is mainly
qualitative and its sense will be revealed mainly when tackling sections 2.3–2.2–2.4 and comparisons with
the approximations obtained with regression-gPC, collocation-gPC, kriging-gPC in the same conditions.
Note that in every publications dealing with gPC, P is usually kept lower than N , i.e. P ≤ N , in each
stochastic directions. We here wanted to emphasize this strategy is more than a rule of thumb and is rele-
vant independently of the input distributions dPX and of the regularity of u (for Gauss points).

2.2 The construction and properties of regression-gPC approximations

Regression has been historically at the basis of many works in statistics for modeling [25, 6, 21, 28]. It is
widely used and presents the advantage of being applicable in presence of noisy outputs, i.e. experimental
noise as well as numerical noise:

– Experimental noise refers to variability in the output at the different points of the experimental design
due to a finite accuracy of the measure instruments: two identical experiments may give slightly
different results. The differences could be made smaller with more accurate/less sensitive to external
perturbations measurement devices.

– Numerical noise refers to variability due to the use of a stochastic resolution scheme [60, 1, 46, 45, 15,
76]. In this context, running twice the same simulation in identical configurations15 leads to fluctuations
of the observables. Those fluctuations can be made smaller with finer discretisation parameters (number
of Monte-Carlo particles for example, see [36]).

In this section, we briefly detail the principles of regression together with its properties. For this, let us
consider a sequence of linearly independent functions FP (x) = (f0(x), ..., fP (x))t. Classically in regression

15but with different initial seeds for the random number generators.
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approximation, the sequence is chosen as FP (x) = (1, x, ..., xP )t, see [25, 6]. Let X −→ u(X) be our random
variable of interest, then the regression model uFP (x) of u is defined as the vector product

uFP (X) = U tPFP (X),

where UP = (u0, ..., uP )t is defined by the vector of RP minimizing the least square error, i.e. such that

UP = Argmin
V ∈RP

[J(VP )] = Argmin
V ∈RP

‖u(X)− V tPFP (X)‖2L2 . (12)

Differentiating J(VP ) = V tPFP (X) with respect to VP = (v0, ..., vP )t, we get

∇VP
J(VP ) = 2‖(u(X)− V tPFP (X))FP (X)‖L2 ,

and UP is consequently the (unique due to the convexity of J) solution of

∇VP
J(VP ) = 0⇐⇒

∫
u(X)FP (X) dPX =

∫
V tPFP (X)FP (X) dPX . (13)

From the above expression (13), in the particular case FP (x) = ΦXP (x) = (φX0 (x), ..., φXP (x))t, the minimum
of J is attained at the vector of gPC coefficients (uX1 , ..., u

X
P )t.

Now, equations (12) and (13) were stated assuming perfect integration accuracy. The above expressions
(12)–(13) are in practice discretised via the introduction of an experimental design (Xi, wi)i∈{1,...,N} applied
to the process of interest resulting in (u(Xi), wi)i∈{0,...,P}. Equation (12) is consequently replaced in practice
by

UNP = Argmin
VP∈RP

[JN (VP )] = Argmin
VP∈RP

N∑
i=1

wi(u(Xi)− V tPFP (Xi))
2, (14)

commonly called weighted least-squared minimization. Then JN (VP ) is minimum for VP ∈ RP satisfying

[
(FNP )tNWNF

N
P

]
VP =

[
WNF

N
P

] u(X1)
...
u(XN )

 , (15)

where WN = diag(w1, ..., wN ), and

FNP =

 f0(X1) ... f0(XN )
... fk(Xj) ...
fP (X1) ... fP (XN )

 .

This leads to

[
WNF

N
P

]
=

 w1f0(X1) ... wNf0(XN )
... wjfk(Xj) ...
w1fP (X1) ... wNfP (XN )

 ,

[
(FNP )tWNF

N
P

]
=



N∑
i=1

wif
2
0 (Xi) ...

N∑
i=1

wif0(Xi)fP (Xi)

...

N∑
i=1

wifk(Xi)fl(Xi) ...

N∑
i=1

wif0(Xi)fP (Xi) ...

N∑
i=1

wif
2
P (Xi)


.

(16)

Of course, whatever the choices of (N,P ) ∈ N2, the matrix (16) is invertible. The solution UNP satisfies the
well-known (unbiased estimator see [25])

UNP =
[
(FNP )tWNF

N
P

]−1 [
WNF

N
P

] u(X1)
...
u(XN )

 . (17)

The conditioning of matrix (16) depends on both the choice of the basis FP (x) and of the experimental
design (Xi, wi)i∈{0,...,N}. Suppose FP (x) = (1, x, ..., xP )t, then matrix (16) has expression

N∑
i=1

wi ...

N∑
i=1

wiX
P
i

...

N∑
i=1

wiX
k+l
i ...

N∑
i=1

wiX
P
i ...

N∑
i=1

wiX
2P
i


→

N→∞

 sX0 ... sXP
... sXk+l ...
sXP ... sX2P

 , (18)

and tends to the Hankel matrix (38) defined in section A whose determinant is known to tend to zero quickly
as P grows. It is consequently harder and harder to numerically inverse with P increasing. Figure 2 presents
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Regression approximations for 3 ≤ P ≤ 20 Convergence w.r.t. P for fixed N

G
L

p
o
in

ts
N

=
11

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

X

GL points
gPC

Regression

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14  16  18  20
P

G
L

p
o
in

ts
N

=
2
1

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

GL points
gPC

Regression

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14  16  18  20
P

Figure 2: Application of Gauss-Legendre quadrature rule for regression and the transformation of a uniform
random variable through the Runge function with N = 11 (top) and N = 21 (bottom). The left column
present the polynomial approximations for 3 ≤ P ≤ 20. The right column present the L2-norm of the error
with respect to P for fixed N .

the results obtained with regression16 on the Runge function in exactly the same conditions as in section 2.1
together with the results obtained by integration-gPC. If we focus on the convergence studies (right column)
with respect to P for fixed numbers of GL points N = 11 and N = 21, integration-gPC and regression have
the same behaviour: for a small number of points of the experimental design, the polynomial order must be
kept low as the error decreases then increases for N = 11 as soon as P goes beyond P = N = 11. Nonetheless,
for polynomial orders higher than P = N = 11, the error is a little bit more controlled with the regression
approximation. The shapes of the regression approximations for the different order for N = 11 (top left of
figure 2) are quite different than the one obtained with integration (top left of figure 1). When P is kept
P ≤ N , the results obtained with integration-gPC or regression are equivalent (up to the accuracy/cost of a
matrix inversion) as testifies the bottom pictures of figure 2: by definition, the L2-minimization is invariant
with a change of basis.

Now suppose a particular form for FP (x) = ΦXP (x) = (φX0 (x), ..., φXP (x))t with (φXk )k∈{0,...,P} the components
of a chosen gPC basis. The obtained approximations are denoted regression-gPC ones in this document and
in the literature [11, 13, 67, 14, 10, 12]. Let us introduce U int,N

P = (uX,N0 , ..., uX,NP )t the vector of coefficients
of the gPC approximation obtained by integration. From (15), it is easy noticing that the regression solution

UNP is related to the integration coefficients U int,N
P by the relation:

N∑
i=1

wi(φ
X
0 (Xi))

2 ...

N∑
i=1

wiφ
X
0 (Xi)φ

X
P (Xi)

...

N∑
i=1

wiφ
X
k (Xi)φ

X
l (Xi) ...

N∑
i=1

wiφ
X
0 (Xi)φ

X
P (Xi) ...

N∑
i=1

wi(φ
X
P (Xi))

2


UNP = U int,N

P . (19)

According to (6), if we also assume P ≤ N , the Gauss quadrature rule ensures the exact orthornormality
of the gPC basis even with N < ∞ (i.e. even in a finite integration accuracy context). Consequently, with
such choice, we have

UNP = U int,N
P ,

explaining their equivalent performances for P ≤ N . Otherwise (i.e. if N > P ), the regression-gPC coeffi-
cients and the integration ones differ from the fact the integration coefficients may not minimize the weighted
least squared error, this is emphasized in figure 3. For P > N , the regression-gPC approximations have a
better control (better conditioning of (16)) of the L2 error than both classical regression and integration-gPC.

16i.e. with FP (x) = (1, ..., xP )t.
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Regression-gPC approximations for 3 ≤ P ≤ 20 Convergence w.r.t. P for fixed N
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Figure 3: Application of Gauss-Legendre quadrature rule for regression-gPC and the transformation of a
uniform random variable through the Runge function with N = 11 (top) and N = 21 (bottom). The left
column present the polynomial approximations for 3 ≤ P ≤ 20. The right column present the L2-norm of
the error with respect to P for fixed N .

The main interest of regression-gPC is to be able to deal with any experimental design, independently of
its integration accuracy, still ensuring a relatively good conditioning of matrix (16). It is particularly conve-

Regression-gPC for 3 ≤ P ≤ 20 Convergence w.r.t. P for fixed N
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Figure 4: Application of Gauss-Legendre quadrature rule for regression-gPC and the transformation of a
uniform random variable through the Runge function with N = 11 (top) and N = 21 (bottom). The left
column present the polynomial approximations for 3 ≤ P ≤ 20. The right column present the L2-norm of
the error with respect to P for fixed N .

nient for experimental settings (in opposition to numerical experiments) and has been originately designed
[25, 6, 21] for its ability to take into account experimental noise.
The above property is emphasized in figure 4 in which we briefly investigate the sensitivity to the choice of
the experimental design for integration-gPC and regression-gPC. Figure 4 (left) shows the results obtained
with regression-gPC with N = 14 equispaced17 points (uniform experimental design). Figure 4 (right) allows
comparing the results obtained with integration-gPC and regression-gPC for N = 14 GL points and N = 14
equispaced ones. For the GL points, the behaviour is similar to what was presented in figure 3 which here
corresponds to our reference. With the equispaced experimental design, the integration accuracy is lower
than with the GL points. Integration-gPC consequently gives less satisfactory results with such design:
the two approaches have equivalent L2-performances only up to P = 5. For higher polynomial orders, the
integration error becomes preponderant with respect to the truncation one. With regression-gPC on another
hand, the accuracy of the GL and equispaced experimental designs are comparable up to order P = 9.

17Equispaced points in [−1, 1] with weights 1
N

is still a discretisation of the uniform distribution on [−1, 1].
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2.3 The construction and properties of collocation-gPC approximation

Regressions are convenient especially when one has to deal with experimental/numerical noise. When consid-
ering numerical experiments, some resolution schemes may be reproducible in the sense two runs of the same
configuration gives exactly the same results. Dealing with reproducible simulation codes, one may demand
the stochastic approximation method to be able to strictly recover the numerical results at the experimental
design points, see [41, 53, 81, 26, 42, 43, 27]. This can be obtained using interpolation methods such as
Lagrange interpolation or high-order splines for example.

Lagrange interpolation can be obtained applying formulae (17) in the particular case N = P . In practice,
in order to avoid the inversion of a possibly badly conditioned matrix, the Lagrange formulae ∀i ∈ {1, ..., N}
is applied

Li(x) =

N∏
j=1

i 6=j

x−Xj

Xi −Xj
. (20)

The resulting collocation approximation is then given by

uLN (X) =

N∑
j=1

u(Xi)Li(X). (21)

In term of asymptotical error analysis, we have the following well-known property: suppose u ∈ C0([a, b]),
and an experimental design (Xi)i∈{1,...,N} with N distinct nodes, then there exists ξ ∈ [a, b] such that

u(X)− uLN (X) =
u(N)(ξ)

N + 1!

N∏
i=1

(X −Xi). (22)

Note that the collocation approximation does not necessarily converge. Its converging behaviour is strongly
correlated to the choice of the experimental design relative to the evolution of u(N)(ξ) with N . Figure 5 (top)
presents the collocation approximations of Runge function18 obtained for N going from 1 to 20 of a uniform
experimental design (equispaced points in [−1, 1]): the collocation approximations seem to diverge19 as N
increases, as testifies the convergence study of figure 5 (top-left).

The question arising now is: is it possible to choose an experimental design ensuring the convergence of

the collocation approach. It is commonly known, see [56], that max
x∈[a,b]

∣∣∣∏N
i=1(x−Xi)

∣∣∣ from (22) is O( 1
2N )

at the roots of Chebyshev’s polynomials (CC points) and that they are enough to compensate the growth
of u(N)(ξ) with N for Runge function. The roots of Chebyshev polynomials are Gauss points and some
authors numerically observed the latter property of Chebyshev roots holds with Gauss ones for arbitrary
distributions. This leads to stochastic collocation, or collocation-gPC in the literature, see [41, 53, 81, 26,
42, 43, 27, 32, 80, 78, 69, 62]. It refers to the use of Lagrange polynomials at the Gauss quadrature points
associated to the probability measure of the input random variable X (or the roots of the gPC polynomials
associated to the probability measure of X). With such a choice, the L2−norm of (22) becomes

‖u(X)− uLN (X)‖2L2 =

(
u(N)(ξ)

N + 1!

)2 ∫ ( N∏
i=1

(X − γi)

)2

dPX . (23)

The product of monomials in the above expressions with (γi)i∈{1,...,N} being Gauss points is nothing more

than the monic polynomial φX,mN associated to dPX , see section A. This leads to

‖u(X)− uLN (X)‖2L2 =

(
u(N)(ξ)

N + 1!

)2 ∫ (
φX,mN (X)

)2

dPX ,

(42)
=

(
u(N)(ξ)

N + 1!

)2(
1

ΓXN

)2 ∫ (
φXN (X)

)2
dPX︸ ︷︷ ︸

δN,N=1

,

(42)
=

(
u(N)(ξ)

N + 1!

)2
HX

2N

HX
2(N−1)

,

(46)

≤
(
u(N)(ξ)

)2 1

2(4N+2)(N + 1!)2
.

(24)

The fast converging term 1
2(4N+2)(N+1!)2

proper to the use of Gauss points in the above expression allows

competing with eventual fast increasing derivatives u(N)(ξ).
Figure 5 presents the collocation-gPC approximations of Runge function (i.e. Lagrange polynomials at

GL points) in the same conditions as in the previous sections. As testifies the convergence study of figure
5 (right), collocation-gPC exhibits an exponential convergence behaviour, but the global accuracy at each
order/number of points N = P remains slightly higher than for integration-gPC and regression-gPC. This
is mainly due to systematic oscillating behaviour between the points, see figure 5 bottom-left. Of course, for
P = 20 in figure 5 (right), regression-gPC degenerates toward collocation-gPC.

18This example is well-known, I claim no originality here.
19In this case, it is possible to prove it diverges, see [17, 23] or https://math.stackexchange.com/questions/775405/fx-1-1x2-

lagrange-polynomials-do-not-always-converge-why/807784#807784 for example.
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Collocation approx. for 3 ≤ P = N ≤ 20 Convergence w.r.t. P = N
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Figure 5: Application of Gauss-Legendre quadrature rule for collocation-gPC and the transformation of a
uniform random variable through the Runge function with N = 11 (top) and N = 21 (bottom). The left
column present the polynomial approximations for 3 ≤ P ≤ 20. The right column present the L2-norm of
the error with respect to P for fixed N .
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Figure 6: Convergence studies for integration-gPC, regression-gPC (both for fixed P = 5) and collocation-
gPC with respect to N for approximating Runge function (11).

Collocation-gPC has only one parameter as N = P : in figure 5, we compared collocation-gPC to
integration-gPC and regression-gPC with N = 21. For the latters, the comparison may seem unfair, es-
pecially for high polynomial orders P . In figure 6, we perform some convergence studies keeping P = 5
fixed for integration-gPC and regression-gPC and compare them to the collocation-gPC approximations
with increasing N . The convergence studies have two regimes for the integration-gPC and regression-gPC
approximations, only one for collocation-gPC:

– in the first regime, defined by N ≤ 7, the three methods exhibit an exponential convergence rate
(log-scale). We recall we chose P = 5 for this example, implying a small numbers of points (N ≤ P ).

– Beyond N = 7 points, integration-gPC and regression-gPC’s accuracies stagnate: this stagnation floor
corresponds to the fact the truncation error (second term in (4)) becomes preponderant with respect
to the integration one as N increases. This is emphasized by the fact this floor is the same for the two
approximation methods as they share the same experimental design.

For collocation-gPC, the error keeps on decreasing exponentially with N = P . This is due to the fact that
for collocation-gPC, the asymptotic error only depends on parameter N , see (24).
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From the two previous sections, one may wonder whether it is possible to take advantage of both methods.
Regression-gPC allows taking into account noisy outputs and exhibits a fast convergence rate with respect to
P . Collocation-gPC ensures recovering exactly the outputs at the experimental design points and exhibits
a convergence rate mainly depending on the spacing between the points once the integration accuracy
reached. A compromise between regression-gPC and collocation-gPC would be a penalized regression with
the introduction of Lagrange multipliers to ensure, as constraints, the approximations are interpolary with
u at the design points [70]. This idea is at the basis of kriging, briefly presented in the next section.

2.4 The construction and properties of kriging-gPC approximations

The reader interested in kriging may find very different denominations such as simple kriging, Ordinary
kriging, Universal kriging etc. Our starting point is kriging-gPC, which is here a less elaborated version20 of
what can be found in [64, 34, 63, 35]. We focus on this variant of kriging as it is the most general we know
and, of course, is related to a gPC basis which is the aim of this paper. Basically, kriging-gPC consists in
choosing FP (X) = ΦP (X) as an approximation basis in a (universal21) kriging approximation: it confers to
the resolution similar advantages as the ones emphasized in the section comparing regression and regression-
gPC (good conditioning). We insist the section is non-exhaustive regarding kriging technics and we rely on
very pedagogical publications dedicated to them [70, 9, 34, 63] for a complete state-of-the-art. This section
mainly aims at comparing and understanding the differences between kriging-gPC and gPC approximations
and provide an original numerical analysis of the methods.

Kriging is also known as Gaussian process modeling. It assumes the ouput random variable of interest
u(X) is a realization of a Gaussian random process. Let us sketch the idea behind the methodology in the next
lines. Recall we aim at approximating the transformation of the known random variable X into the unknown
one u(X). The gPC approximation relied on a polynomial approximation, i.e. u(X) ≈

∑P
k=0 u

X
k φ

X
k (X)

where (φXk )k∈{0,...,P} is the gPC basis and (uXk )k∈{0,...,P} the gPC coefficients. Kriging-gPC relies on rewriting

u(X) =

P∑
k=0

uXk φ
X
k (X) + ZXP (X),

i.e. as a gPC development plus its residue ZXP (X) =
∑∞
k=P+1 u

X
k φ

X
k (X) in the P−truncated gPC basis

associated to X. In a kriging context,
∑P
k=0 ukφ

X
k (X) is commonly called the trend. Kriging introduces an

additional mathematical ingredient whose aim is to approximate the random variable ZXP , the residue of the
gPC development. The idea is to assume ZXP (X) ∼ σ2

KZ(X) is a zero-mean gaussian process of variance
σ2 independent of X, with K refering to the covariance kernel of the process. The gaussian process is fully
characterised by K defined by K(u, v) = E [Z(u)Z(v)] and such that σ2

K = E
[
Z2(X)

]
. Suppose K is known,

then several constraints must be satisfied for Z to be a relevant gaussian process to approximate u(X).
Introduce µZ(u) = E[Z(u)], then we must for example have

E[u(X)] = uX0 + E[µZ(X)],

E[u2(X)] =

P∑
k=0

(uXk )2 +

P∑
k=0

uXk E
[
φXk (X)µZ(X)

]
+ E

[
µ2
Z(X)

]
,

....,

(25)

and so on. Ensuring the constraints are satisfied for moments22 higher than 2 is directly linked to how K is
chosen or built with respect to u. In practice, kriging models:

– first generally assume a particular parametered shape of the covariance function K(u, v, θ) where θ is
to be calibrated.

– The second step consists in calibrating θ, i.e. computing θ̂ minimizing differences with the above
constraints in a norm which remains to be defined at this stage of the discussion. This can be done by
various means (Maximum Likelihood, Cross Validation estimation, etc. see [64, 34, 63, 35, 9, 7]).

– Once θ̂ obtained, we have access to the random variable µ(X, θ̂) and its predictive variance σ2(X, θ̂)
with explicit matrix vector formulas (briefly detailed in the following).

In practice, K is often chosen homogeneous, i.e. K(u, v, θ) = K(u− v, θ), and for a given choice of K and θ
we have (see [34])

µ(X, θ) = UNP (θ)tΦP (X) + k(X, θ)tWNK
−1(θ)

 u(X1)− UNP (θ)tΦP (X1)
...
u(XN )− UNP (θ)tΦP (XN )

 ,

σ2(X, θ) = σ2
K(θ)

(
1− [ΦtP (X), kt(X, θ)]

[
0 (WNΦNP )t

(WNΦNP )t WNK(θ)

] [
ΦP (X)
k(X, θ)

])
,

where µ(X, θ), σ2(X, θ) are the mean and variance of the gaussian process approximating u(X). The nota-
tions are almost the same as the ones of section 2.2: (Xi)i∈{1,...,N} are the points of the experimental design,

20less elaborated in the sense in [64, 34, 63, 35], the authors provide an algorithm in order to choose automatically the gPC
order P whereas in this document we choose it a priori.

21If I am not mistaking.
22By construction, kriging ensures having the same estimated first and second moments (hence mean and variance) as u(X).
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WN = (w1, ..., wN )t the vector of their weights and

UNP (θ) =

 uX0 (θ)
...
uXP (θ)

 ,ΦP (X) =

 φX0 (X)
...
φXP (X)

 ,ΦNP =

 φX0 (X1) ... φX0 (XN )
... ΦXk (Xj) ...
φP (X1) ... φXP (XN )

 .

It additionally introduces K(θ), the matrix of general term Ki,j(θ) = K(Xj − Xi, θ) and k(X, θ) =

(k(X −X1, θ), ..., k(X −XN , θ))
t
. Besides, the estimations of the coefficients of the development together

with the variance parameter are given by

UNP (θ) =
[
(ΦNP )tWNK

−1(θ)ΦNP
]−1

WNΦNPK
−1(θ)

 u(X1)
...
u(XN )

 ,

σ2
K(θ) =

 u(X1)
...
u(XN )

− ΦNP U
N
P (θ)

t

WNK
−1(θ)

 u(X1)
...
u(XN )

− ΦNP U
N
P (θ)

 ,

(26)

in which θ remains to be chosen. Equations (26) express the minimization of the L2−norm (least-square
error, similar to regression): as hinted at in [34], if K = IN

23 where IN is the identity of size N , then (26)
degenerates toward (17) for the regression-gPC approximation.

The discussion about the relevant shape of the covariance function K or the way the parameter θ is tuned
is beyond the scope of this document and we refer to [9, 7, 8] for the reader interested in deepening those
considerations. The covariance kernel K can be evaluated but in general, it is chosen a priori. The most
classical choices are gaussian, exponential or Matérn kernels24. Kriging provides σ2 as a measure of precision.
However this measure relies on the correctness of the covariance function, see [7, 9]. In other words, the term
predictive variance may be strong and it, in general, reflects an assumption. If it does not hold, the error
estimation might be bad and no error estimation properties are guaranteed. However, typically, still a good
interpolation is achieved for the random variable µ(X), mean of the Gaussian process and we focus on it in
the next numerical analysis and tests.

We first go through the numerical analysis of (the mean of) the kriging-gPC approximation. We aim
at helping interpreting the numerical results and comparisons with the previously presented approximations
(regression-gPC and collocation-gPC mainly) displayed in figure 7. Being an interpolation method, the
analysis can benefit some very well-known results: first, let us rewrite the mean of the kriging-gPC process
under a more friendly form. By noticing that

µ(X, θ) =
∑
k=0

uXk (θ)φXk (X)

+(k(X −X1, θ), ..., k(X −XN , θ))K
−1(θ)


u(X1)−

P∑
k=0

uXk (θ)φXk (X1)

...

u(XN )−
P∑
k=0

uXk (θ)φXk (XN )

 ,
(27)

the expression can be recast as

µ(X, θ) =
∑
k=0

uXk (θ)φXk (X) +

N∑
i=1

aPi k(X −Xi, θ). (28)

Expression (28) may appear downgrading in comparison to (27) as many important properties of the ap-
proximation do not anymore explicitly appear in the coefficients (aPi )i∈{1,...,N}. Still, it is enough for the
following material. Let us introduce the functional F such that

F (X, θ) = u(X)− µ(X, θ)− g(X, θ)

N∏
i=1

(X −Xi).

We define X as an arbitrary point in Supp(X) such that ∀i,X 6= Xi and

g(X, θ) =
u(X)− µ(X, θ)
N∏
i=1

(X −Xi)

. (29)

The functional F has consequently N + 1 roots X1, ..., XN , X. Assume furthermore that u(X) and k(u, v, θ)
are CN+1 where, we recall, N is the number of points of the experimental design. Then according to Rolle’s
theorem, ∃ξ0 such that F (N+1)(ξ0, θ) = 0. Let us now consider two situations, P ≤ N in the first case and
P > N in the second one:

23closely related to the particular choice k(u, v) = δu(v).
24which recovers continuously with a parameter both the gaussian and the exponential kernels.
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– first, suppose P ≤ N so that differentiating N + 1 times F resumes to

F (N+1)(X, θ) = u(N+1)(X)−
N∑
i=1

aPi k
(N+1)(X −Xi, θ)− gP≤N (X, θ)(N + 1!).

Using the fact that F (N+1)(ξ0, θ) = 0 allows identifying gP≤N as

gP≤N (X, θ) =
1

N + 1!

(
u(N+1)(ξ0)−

N∑
i=1

aPi k
(N+1)(ξ0 −Xi, θ)

)
.

Using the above expression of gP≤N with respect to ξ0 in (29) leads to the following error estimator:

u(X)− µ(X, θ) =
1

N + 1!

(
u(N+1)(ξ0)−

N∑
i=1

aPi k
(N+1)(ξ0 −Xi, θ)

)
N∏
i=1

(X −Xi), (30)

Equation (30) can be compared to (22) for collocation by noticing that

u(X)− µ(X, θ) =
1

N + 1!

(
u(N+1)(ξ0)−

N∑
i=1

aPi k
(N+1)(ξ0 −Xi, θ)

)
N∏
i=1

(X −Xi),

=
u(N+1)(ξ0)

N + 1!

N∏
i=1

(X −Xi)︸ ︷︷ ︸
(∗) recalls (22) for collocation

− 1

N + 1!

N∑
i=1

aPi k
(N+1)(ξ0 −Xi, θ)

N∏
i=1

(X −Xi)︸ ︷︷ ︸
(∗∗)

.
(31)

The first term (∗) in (31) recovers the collocation error term. The error only depends on P via the
coefficients (aPi )i∈{1,...,N} in the second term (∗∗). Taking the L2−norm of (31) leads to

||u(X)− µ(X, θ)||2L2 =(
u(N+1)(ξ0)−

N∑
i=1

aPi k
(N+1)(ξ0 −Xi, θ)

)2

1

(N + 1!)2

∫ ( N∏
i=1

(X −Xi)

)2

dPX ,
(32)

which is to be compared to (23). The latter testifies one can decrease the constant multiplying the
convergence rate25 of the approximation method if K (via a wise choice of k(N+1) relative to u(N+1)) is
sufficiently well suited. Note also that conversely, nothing prevents it from increasing it, with respect to
collocation, if it is not. Now, for Gauss points (same calculations as (24)), the convergence in L2−norm
as N goes to infinity of the kriging-gPC is ensured provided the constant in (32) does not grow too
fast with N as for collocation-gPC.

– Suppose now P > N and differentiate N + 1 times F to obtain

F (N+1)(X, θ) = u(N+1)(X) +

P∑
k=0

uXk (θ)
(
φXk (X)

)(N+1) −
N∑
i=1

aPi k
(N+1)(X −Xi)− gP>N (X)(N + 1!).

To simplify the above expression, we can rewrite φXk (X) = ΓXk φ
X,m
k (X) = ΓXk

∏k
i=1(X − γki ), ∀k ∈

{0, ..., P} with φX,mk the monic orthogonal polynomial relative to φXk . In the latter expression,
(γki )i∈{1,...,k} are the roots26 of φXk . For k > N , the (N + 1)th derivative of φXk can be expressed
as (

φXk (X)
)(N+1)

= ΓXk
∑

i1+...+ik=N+1

CN+1
i1,...,ik

k∏
j=1

(X − γkj )(ij),

with the multinomial coefficients given by CN+1
i1,...,ik

= N+1!∏k
j=1 ij !

. Each (X−γkj )j∈{1,...,k} being monomials,

(ij)j∈{1,...,k} ∈ {0, 1}k: otherwise, the above expression would be zero as k < N + 1. In other words
the multinomial coefficients simplify to

(
φXk (X)

)(N+1)
= (N + 1)!ΓXk

∑
i1+...+ik=N+1

k∏
j=1

(X − γkj )(ij).

Now, once again using the fact that F (N+1)(ξ0, θ) = 0 ensures

gP>N (X, θ) = gP≤N (X, θ) +

P∑
k=0

uXk (θ)ΓXk
∑

i1+...+ik=N+1

k∏
j=1

(ξ0 − γkj )(ij),

N fixed
=

P�N
gP≤N (X, θ) +O(ΓXP ).

25The constant is equal to (u(N+1)(ξ0) −
∑N

i=1 a
P
i k

(N+1)(ξ0 − Xi, θ))
2. The convergence rate is here related to

1
(N+1!)2

∫
(
∏N

i=1(X −Xi))
2 dPX together with a choice of the experimental design (Xi)i∈{1,...,N}.

26For a gPC basis, we know those roots are real, distinct in Supp(X) but the material holds for an arbitrary choice of FP (X),
with complex roots.

13



Using the above expression in (29) leads to the following error estimator for the mean µ(X, θ):

u(X)− µ(X, θ) =

1

N + 1!


+u(N+1)(ξ0)−

N∑
i=1

aPi k
(N+1)(ξ0 −Xi)

+(N + 1)!

P∑
k=0

uXk (θ)ΓXk
∑

i1+...+ik=N+1

k∏
j=1

(ξ0 − γkj )(ij)


N∏
i=1

(X −Xi).
(33)

With (33), it is easy verifying for fixed N and P � N , u(X) − µ(X, θ)∼ΓXP ∼
P�N

∞. The analysis

even shows that in this regime, the asymptotic behaviour is independent of the choice of K(u, v, θ).
In other words, the same analysis allows explaining the behaviour of regression-gPC for P > N in the
examples of the previous figures (obtained with the particular choice K(u, v, θ) = δu(v)).
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Figure 7: Application of Gauss-Legendre quadrature rule for kriging-gPC and the transformation of a uniform
random variable through the Runge function with N = 11 (top) and N = 21 (bottom). The left column
present the polynomial approximations for 3 ≤ P ≤ 20. The right column present the L2-norm of the error
with respect to P for fixed N . The kriging kernel is chosen exponential (34) and a dichotomy is applied to
calibrate θ.

To illustrate the above material, we suggest going through the application of kriging-gPC to the Runge
function in the same conditions as in the previous paragraphs. The covariance function is here chosen as an
exponential one

K(u, v, θ) = θ exp (−|u− v|θ), (34)

and θ is calibrated performing a simple dichotomy to minimize the predictive variance σ2
K(θ) as suggested

in [64, 34, 63, 35]. Figure 7 presents the kriging-gPC approximations together with the ones obtained by
integration-gPC and regression-gPC in the same conditions (the comparisons with collocation-gPC will be
tackled later on). Let us first comment on the qualitative results of the first column of figure 7: for a
low number of quadrature points (N = 11), kriging-gPC behaves as the previous approximations and re-
main very oscillatory. As N increases to 21 (bottom-left picture), the oscillations are way more controlled
and the kriging-gPC results are much less sensitive to the choice of the truncation order P than the other
approximations. The quantitative convergence results of the right column of figure 7 show first that for
P ≤ N , the kriging-gPC approximations outperform the other ones. We recall kriging-gPC benefits an
additional discretisation parameter K which here is very efficient in the sense it probably allows interesting
compensations between term (∗) and term (∗∗) in expression (31). For higher polynomial order, i.e. in the
top pictures of figure 7 with N = 11 and P ≥ N , analysis (33) becomes more and more relevant and we

recover experimentally that the L2−norm of the error ||u(X) − µ(X, θ̂)||L2 = O(ΓXP ) grows fast with P .
The figure even allows recovering the fact that in such conditions (N fixed and P � N) kriging-gPC and
regression-gPC give equivalent results as expected by the error analysis of (33): in this regime the leading
term is independent of the choice of K. If now P is kept lower than N = 21 as in the bottom right picture
of figure 7, error analysis (32) applies: the kriging-gPC approximations give very satisfactory results with a
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Figure 8: Convergence studies for regression-gPC, kriging-gPC (both for fixed P = 5 and P = 10) and
collocation-gPC with respect to N for approximating Runge function (11).
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Figure 9: Convergence studies with respect to N for approximating Runge function (11) with a uniform
experimental design. We compare the performances of integration-gPC, regression-gPC, kriging-gPC (all for
fixed P = 5) and collocation and kriging-gPC both with N = P .

flatter convergence curve testifying of a less sensitive behaviour with respect to the discretisation parameter
P than other methods.

To fully understand the influence of the covariance function, let us finally perform a convergence study
with respect to N for fixed P = 5 and P = 10 (same conditions as in figure 6). The results are presented in
figure 8: the left picture compares the convergence studies with respect to N obtained with regression-gPC
as in section 2.2 and kriging-gPC for fixed P = 5 and P = 10. Both methods present two regimes: in the first
one, characterised by N ≤ P , regression-gPC and kriging-gPC gives exactly the same results in L2−norm. It
is in agreement with the previous analysis (33) testifying of a relative independence of the choice of K of the
approximation in such configuration. For N > P , regression-gPC approximations stagnate as the truncation
error remains preponderant with respect to the integration one. On another hand, for kriging-gPC, the
accuracy of the approximations continues to increase with N due to the covariance term in (32) ensuring a
convergence driven by the spacing between the points of the experimental design in this regime. The right
picture of figure 8 presents the same curves together with the collocation-gPC one: for N > P for which
error analysis (32) applies, the kriging-gPC approximations do not systematically give better results than
collocation-gPC. This is due to the fact the covariance function

– may be well-suited for some couples (N,P ), for example for P = 5 and N ∈ {5, ..., 13} or for P = 10
and N ∈ {10, ..., 16},

– and not so well in comparison to collocation for others: typically for large N > 17 in the example of
figure 8 (right).

Once again, this was predicted by the numerical analysis (32). Kriging-gPC, via the introduction of an
additional discretisation tool (the covariance kernel K), ensures a second convergence regime for N ≥ P
in comparison to integration-gPC or regression-gPC which can both lead to approximations of stagnating
accuracy. The choice of the covariance kernel, in this regime, strongly affects the convergence rate of the
approximation (slope of the L2−norm of the error with respect to N) and can lead to better approximations
than integration-gPC/regression-gPC/collocation-gPC if K is well suited. Note that K needs, this was
especially emphasized in (31)–(32), to depend on N to make sure kriging-gPC outperform them ∀N ∈ N.

Finally, one may wonder what happens with kriging-gPC when applied on a uniform experimental design,
in the same conditions as figure 5 on which the divergence of collocation (not gPC) has been highlighted.
Expressions (24) (collocation-gPC) and (32) (kriging-gPC) are very similar: their only difference comes from
the part in (32) depending on the covariance kernel k. The results obtained on Runge’s function with an
uniform experimental design (same conditions as in figure 5) are displayed in figure 9. It presents convergence
studies with respect to N for integration-gPC, regression-gPC and kriging-gPC for P = 5. It furthermore
presents the results obtained for collocation (not gPC as we do not use Gauss points) with P = N and
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kriging-gPC with P = N . First, integration-gPC and regression-gPC behaves as in figure 6, the stagnation
occuring once a good integration accuracy reached. Collocation (not gPC) diverges with such experimental
design (same as in figure 5). Now, two different kriging-gPC convergence studies are displayed: for P = 5
fixed and for P = N . For kriging-gPC with P = N (same conditions as collocation), the curve diverges:
in such conditions, the introduction of the exponential covariance kernel (34) is not enough (see (31)) to
compensate the fast growth of u(N)(ξ0) with N of Runge function. On another hand, for kriging-gPC
and P = 5 fixed (which is not feasible with collocation), the curve first coincides with regression-gPC but
converges with increasing N after N = 5.

3 Few other applications and comparisons of gPC based methods

In this last section, we first compare integration-gPC, regression, regression-gPC, collocation-gPC and
kriging-gPC on a discontinous solution: the aim is to illustrate we recover the same results as predicted
by the numerical analysis performed in the previous section, independently of the regularity of u. Further-
more, we also add some i-gPC approximations, see [57, 58], to the comparisons.

3.1 Integration-gPC vs. regression-gPC vs. collocation-gPC vs. kriging-gPC
vs. discontinuous solution

In this paragraph, we compare the previous gPC based approximations on a discontinuous solution. First
because such low regularity solutions are of interest in many (of my) applications [38, 75, 26, 2, 57]. Second,
to put forward the results of the numerical analysis of section 2 are independent of any regularity assumptions
on u. We suggest applying integration-gPC, regression, regression-gPC, collocation-gPC and kriging-gPC to
a discontinuous function X −→ 1]−∞, 3

10 ](X) with X ∼ U([−1, 1]).
Figure 10 presents the results obtained with the four forementioned gPC based methods on the latter

function. The presentation is slightly different than previously as the left column now displays the best
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Figure 10: Application of Gauss-Legendre quadrature rule for gPC, regression, regression-gPC, collocation-
gPC and kriging-gPC for the approximation of the transformation of a uniform random variable through a
discontinuous function. The experimental designs have with N = 11 (top) and N = 21 (bottom). The left
column present the best approximations obtained with every of the previous methods. The right column
present the L2-norm of the error with respect to P for fixed N . The kriging kernel is chosen exponential
(34) and a dichotomy is applied to calibrate θ.

approximations obtained with every methods with N = 11 (top) and N = 21 (bottom). The right column
shows convergence studies with respect to P in the same conditions with N = 11 (top) and N = 21 (bottom).
Note that the convergence study obtained with collocation-gPC is not presented in the top right picture as
it implies much more points (as P = N) than N = 11.

We suggest beginning by commenting the convergence studies of the right column of figure 10. For
N = 11 (top right), integration-gPC, regression, regression-gPC have the same behaviour: the error slightly
decreases before exploding. The one of kriging-gPC is more singular: the error is way lower than for the
other approximations for small P but increases as fast as regression-gPC as soon as P > N . We once
again recover numerically the fact that for P � N , the explosion rate is independent of the choice of the
covariance kernel (K(u, v) = δu(v) for regression-gPC, K(u, v) as in (34) for kriging-gPC), see (33). Having
the same behaviour for the Runge function and for the discontinuous one of this section, we also recover
it is independent of u. The top left picture of figure 10 presents the best approximations obtained with
every methods with N = 11. For integration-gPC, regression, regression-gPC, it corresponds to P = 5.
For collocation-gPC, it corresponds to N = P = 11. For kriging-gPC, it corresponds to P = 1. First, the
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integration-gPC and regression approximations perfectly match and, as expected, poorly recover the function
of interest. Regression-gPC presents a similar behaviour as integration-gPC and regression. Collocation-
gPC and kriging-gPC coincide at the N = 11 points of the experimental design. Kriging-gPC is way less
oscillatory but interpolates almost linearly between the points of the experimental design on both sides of
the discontinuity and not between the others.

For N = 21, the convergence studies of the resolution schemes is displayed on the bottom right picture of
figure 10. First, the non-monotonuous convergence of collocation-gPC is singular. Once again, integration-
gPC and regression presents very similar results with an increase of the error as P becomes greater than N .
The error for regression-gPC is more controlled. The kriging-gPC error, even if the lowest amongst every
methods, keeps increasing from P = 1 to P = N before equaling the one for regression-gPC for P > N . The
fact the error is the lowest for P = 1 testifies the covariance kernel ensures the accuracy for this function
(at least up to P = 20). This is interesting as the introduction of the kernel is usually justified by some
smoothness hypothesis for u. Here, this assumption does not hold but the approximation remains relevant.
Figure 10 bottom left presents the best results obtained with every methods: it corresponds to P = 20
for integration-gPC, regression and regression-gPC, to P = N = 21 for collocation-gPC and to P = 1 for
kriging-gPC. First, even if every approximations have a quantitatively better accuracy (L2-norm) than in
the previous case, qualitatively, the coarser approximations (for N = 11) look better. The integration-gPC,
regression and regression-gPC approximations are very oscillatory, especially in the vicinities of the bound-
aries of [−1, 1]. Surprisingly, collocation-gPC is less oscillatory than the three previous methods. The best
approximation remains the one obtained with kriging-gPC, even if almost linearly interpolating between
the points on each side of the discontinuity. The most accurate kriging-gPC approximation is once again
obtained for P = 1: this implies the covariance kernel is responsible for this accuracy, more than the poly-
nomial trend, even if relying on smoothness hypothesis of the solution.

In the next section, we suggest revisiting the two test-cases tackled in this paper adding a last gPC based
approximation, i-gPC [57, 58]. The latter has been built in order to deal with discontinuous solutions.

3.2 Integration-gPC vs. regression-gPC vs. collocation-gPC vs. kriging-gPC
vs. i-gPC

In [57, 58], we introduced a new gPC based method, iterative-gPC. The idea behind this new component of
gPC is to

– exploit the fact that different gPC basis performs differently on the same output function u,

– and design a gPC based approximation more adapted to discontinuous solutions.

The i-gPC method has been compared to integration-gPC in [57, 58] on several test-cases. The natural
question arising now is how does i-gPC perform in comparison with the different approximations of section
2? We here apply integration-gPC, regression, regression-gPC, collocation-gPC, kriging-gPC and i-gPC to
the same functions studied in sections 2 and 3.1 (discontinuity and Runge function).

Let us begin with function X −→ 1]−∞, 3
10 ](X) with X ∼ U([−1, 1]), intensively studied in section 3.1.

Figure 11 is in the same vein as figure 10: we only added the curves obtained with i-gPC. Let us begin
by commenting on the convergence study with respect to P of figure 11 (top-right): the general behaviour
of i-gPC is comparable to the ones of the other approximation methods. The error first decreases than
explodes as soon as P > N. With such low number of points of the experimental design, it is complex
controling the integration error term in (4) along the iterations (see [58]) of i-gPC. For some polynomial
orders, the i-gPC error is slightly more important than the integration-gPC one, which should not happen
with an accurate numerical integration, see [57, 58]. This is the case for P = 4, 5, 6 for example. For those
polynomial orders, the stopping criterion should have stopped the algorithm one iteration earlier. Still, the
i-gPC approximations remain controled and of comparable qualities as the ones obtained with the other
methods. Figure 11 (top-left) presents the best approximations obtained with every methods: the curves are
the same as figure 10 described in section 3.1 except we added the i-gPC one. The best i-gPC approximation
is obtained with P = 3. It is much less oscillatory than the other methods and the discontinuous behaviour
of the solution is already captured.

The bottom pictures of figure 11 (bottom) present the same studies with N = 21 GL points. With such
an accurate numerical integration, i-gPC gives the best results as soon as P > 2. The convergence curve
for i-gPC is always below the other ones. The best i-gPC approximation is displayed figure 11 (bottom-left)
together with the best ones of the other methods: it is the less oscillatory of every approximations and it
captures the discontinous behaviour of the solution.

To complete the comparison of i-gPC with the other methods of the litterature, we perform the same
study on Runge function. The results are displayed in figure 12. First, once again, for a small number of
points of the experimental design, the behaviour of i-gPC is similar to the ones of the other methods. A
decrease of the error before an explosion: the smoothness of Runge function does not improve this point.
Furthermore, as before, the small number of points makes the control of the integration error in (4) along
the iterations (see [58]) very difficult and i-gPC does not always perform better than gPC: if P is kept
lower than N in another hand, see P = 2, 3 in figure 12 (top-right), the results obtained with i-gPC are
intermediary to the ones obtained with gPC, regression, regression-gPC (upper bound) and kriging-gPC
(lower bound). Qualitatively, see figure 12 (top-left) the i-gPC approximation gives equivalent results as the
other methods. Now, if N = 21, the integration is very accurate and i-gPC gives better results than gPC,
regression, regression-gPC, up to P = N = 20. Kriging-gPC remains more efficient on such smooth output
function even if qualitatively, every best approximations are indistinguishable (see figure 12 bottom-left).
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Figure 11: This figure is the same as figure 10 but we added the curves obtained with i-gPC. Application of
Gauss-Legendre quadrature rule for gPC, regression, regression-gPC, collocation-gPC, kriging-gPC and i-gPC
for the approximation of the transformation of a uniform random variable through a discontinuous function.
The experimental designs have with N = 11 (top) and N = 21 (bottom). The left column present the best
approximations obtained with every of the previous methods. The right column present the L2-norm of the
error with respect to P for fixed N . The kriging kernel is chosen exponential (34) and a dichotomy is applied
to calibrate θ.
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Figure 12: This figure is in the same vein as figure 11 except we consider Runge function instead of a
discontinuous one. Application of Gauss-Legendre quadrature rule for gPC, regression, regression-gPC,
collocation-gPC, kriging-gPC and i-gPC for the approximation of the transformation of a uniform random
variable through Runge function. The experimental designs have with N = 11 (top) and N = 21 (bottom).
The left column present the best approximations obtained with every of the previous methods. The right
column present the L2-norm of the error with respect to P for fixed N . The kriging kernel is chosen
exponential (34) and a dichotomy is applied to calibrate θ.

4 Conclusion

In this paper, we performed the numerical analysis of integration-gPC, regression-gPC, collocation-gPC and
kriging-gPC in equivalent conditions. The paper is complementary with the furnished literature in which
every gPC derivations are in general only pairwise experimentally compared27. The comparisons have mainly

27see for example [54, 61, 34, 63, 64, 35] for many interesting experimental comparison of kriging and gPC, on many different
statistical observables and norms.
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been made in the L2−norm. With this numerical analysis, we aimed at identifying more easily under which
conditions the strategies differ, are equivalent or are efficient. For example, we showed that taking P ≤ N
in gPC based approximations28 with Gauss points is almost optimal, independent of the regularity of u
and of the distributions of the input parameters. In such conditions P ≤ N , integration-gPC is equivalent
(L2-norm) to regression-gPC and even to collocation-gPC if N = P . It ensures fast postprocessings for the
gPC-reconstruction of random variable u(X) especially interesting when many outputs of interest must be
approximated (see [59]). Integration-gPC may be less flexible than regression-gPC with which it is easy
a posteriori taking into account additional points of the experimental design. Collocation-gPC ensures an
interpolary approximation. Kriging-gPC presents the advantages of both regression-gPC and collocation-
gPC and may avoid stagnating approximations as P ≤ N with increasing N but is not ensured to converge
for every experimental designs. i
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[10] M. Berveiller, B. Sudret, and M. Lemaire. Stochastic Finite Element: a Non Intrusive Approach by
Regression. Rev. Eur. Méc. Num., 15(1-2-3):81–92, 2006.

[11] G. Blatman. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity
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[57] G. Poëtte and D. Lucor. Non Intrusive Iterative Stochastic Spectral Representation with Application to
Compressible Gas Dynamics. J. of Comput. Phys., 2011. DOI information: 10.1016/j.jcp.2011.12.038.
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ter, Éric Sciences appliquées.

[71] X. Wan and G. E. Karniadakis. Stochastic Heat Transfer Enhancement in a Grooved Channel. J. Fluid
Mech., 565:255–278, 2006.

21



[72] X. Wan and G.E. Karniadakis. Beyond Wiener-Askey Expansions: Handling Arbitrary PDFs. SIAM
J. Sci. Comp., 27(1-3), 2006.

[73] X. Wan and G.E. Karniadakis. Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simula-
tions. Comp. Meth. Appl. Mech. Engng, 195:5582–5596, 2006.

[74] X. Wan and G.E. Karniadakis. Long-Term Behaviour of Polynomial Chaos in Stochastic Flow Simula-
tions. Comput. Meth. Appl. Mech. Engrg., 216(5582-5596), 2006.

[75] X. Wan and G.E. Karniadakis. Multi-Element generalized Polynomial Chaos for Arbitrary Probability
Measures. SIAM J. Sci. Comp., 28(3):901–928, 2006.

[76] Yunsong Wang. Optimization of Monte Carlo Neutron Transport Simulations with Emerging Archi-
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A The construction of the gPC basis

A gPC basis is nothing more than an orthonormal polynomial basis. The gPC procedure only helps the
uncertainty analyst a priori choosing an efficient one, see section 2 and [72]. Orthonormal polynomials have
been intensively studied in the literature, see amongst others [68, 3, 28, 31]. In this document, we do not aim
at being exhaustive on the subject. We only recall their main properties, those useful for the construction
of an arbitrary gPC basis associated to the inner product defined by an arbitrary probability measure dPX .
We also prepare some notions and notations for the question of numerical integration with Gauss quadrature
rules which is central for collocation-gPC (section 2.3).

A.1 Inner product defined by an arbitrary probability measure

Let dPX be an arbitrary probability measure related to an arbitrary random variable X. Care will be
taken in this section to be able to consider any random variable, continuous (gaussian, uniform,...) and even
discrete/categorial (binomial, multinomial,...). We introduce the inner product defined by the probability
measure dPX as

〈f, g〉X =

∫
f(x)g(x) dPX(x). (35)

The above inner product, for a probability measure of a discrete random variable having D + 1 <∞ states
(xj)j∈{0,...,D} with probabilities (pj)j∈{0,...,D} > 0, resumes to

〈f, g〉X =

∫
f(x)g(x) dPX(x) =

∫
f(x)g(x)

D∑
j=0

pjδxj (x) =

D∑
j=0

pjf(xj)g(xj). (36)

In this particular case, the output random variable is in a finite vector space (of size D + 1 < ∞). With
expression (36), we insist on the fact that the notation (35) is compatible with continuous and discrete input
random variables. The notations are inspired from the ones of [28].

A sequence of P orthogonal polynomials (φXk )k∈{0,...P} associated to the probability measure dPX has
the following properties:

22



– φXk is of degree k,

–
〈
φXk , φ

X
l

〉
X

= 0, ∀(k, l) ∈ {0, ..., P}2 such that k 6= l.

The sequence is said

– orthonormal if
〈
φXk , φ

X
k

〉
X

= 1 ∀k ∈ {0, ..., P},

– monic if the coefficient of the highest degree (i.e. of xk for φXk ) for every polynomials of the sequence

(φXk )k∈{0,...,P} is 1. In this document, we use the additional upperscript m, i.e. (φX,mk )k∈N, to denote
monic (orthogonal) polynomials.

Obviously, the families (φX,mk )k∈N of monic orthogonal polynomials and (φXk )k∈N of orthonormal polynomials
are related. Their relative expression will be given in the next section once an additional notion introduced.
For conciseness in the following, the sequence of polynomials orthonormal with respect to the inner product
defined by a given probability measure dPX is refered as the polynomials associated to X or dPX . Such
sequence is closely related to the statistical moments of its corresponding random variable X or probability
measure dPX . In the next section, we recall this important link.

A.2 Moments of a probability measure and Hankel determinants

Consider an arbitrary random variable X having probability measure dPX and suppose ∀k ∈ N

sXk =

∫
xk dPX(x) <∞. (37)

Then the sequence of numbers (sXk )k∈N is called the sequence of moments of the random variable X or of
the probability measure dPX . Note that if the support of X/ dPX is bounded, the existence of the sequence
(37) of moments such that (37) ∀k ∈ N is straightforward. We define the Hankel matrices/determinants of
the random variable X or of the probability measure dPX by ∀k ∈ N

HX
2k =

∣∣∣∣∣∣∣∣∣∣
sX0 sX1 ... sXk
... ... ... ...
sXn sXn+1 ... sXn+k

... ... ... ...
sXk ... ... sX2k

∣∣∣∣∣∣∣∣∣∣
, HX

2k+1 =

∣∣∣∣∣∣∣∣∣∣
sX1 sX2 ... sXk+1

... ... ... ...
sXn sXn+1 ... sXn+k

... ... ... ...
sXk+1 ... ... sX2k+1

∣∣∣∣∣∣∣∣∣∣
. (38)

Determining whether a sequence of finite real numbers (sk)k∈N are moments of a unique or not random
variable/probability measure is what is commonly called the classical moment problem. If such random
variable/probability measure exists and is unique, the problem is said determinate. If it exists and is not
unique, the problem is said indeterminate. Depending on the support of the random variable/probability
measure, the moment problem is called [51, 4]:

– The Hausdorff moment problem when X/ dPX has a bounded support, i.e. X ∈
∏Q
i=1[ai, bi]. In

this particular case, if a sequence (sXk )k∈N is a sequence of moments of a random variable/probability
measure, then the problem is determinate [51, 33, 4].

– The Stieltjes moment problem when X/ dPX has a half-line support, i.e. X ∈
∏Q
i=1[ai,∞[. In such

conditions, if a sequence (sXk )k∈N is a sequence of moments of a random variable/probability measure,
the problem may be indeterminate. A sufficient condition for uniqueness can be express as

∞∑
k=0

(sXk )
−

1

2k =∞. (39)

It is called Carleman’s condition see [4].

– The Hamburger moment problem when X/ dPX has an unbounded support, i.e. X ∈ RQ. In such
conditions, a sequence of moments may also be indeterminate and the Carleman’s condition see [4] in
this case is given by

∞∑
k=0

(sX2k)
−

1

2k =∞. (40)

Consequently, depending on the support of the random variable/probability measure of interest, if existence
holds, uniqueness is not always straightforward. In the indeterminate cases, the solutions of the moment
problem form a convex set. Most of all for our applications, in the determinate moment problem case, the
set of polynomials are dense in the associated Hilbert space and provides converging properties to the gPC
basis [24].

So far, we mainly dealt with uniqueness and assumed existence. Let (sXk )k∈N be a sequence of numbers
satisfying ∀k ∈ N sXk <∞. Suppose the Hankel determinants defined by (38) satifies:

– either ∀k ∈ N HX
2k > 0 and HX

2k+1 > 0,

– or ∀(2k, 2k + 1) ∈ {0, ..., D}2 HX
2k > 0 and HX

2k+1 > 0 and HX
2k = HX

2k+1 = 0 for larger k,
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then the sequence is a sequence of moments of a random variable/probability measure for the classical
moment problem (i.e. independently of being a Hausdorff, Stieltjes or Hamburger moment problem). Note
that in the second case, the Hilbert space associated to the existing measure is finite-dimensional and of size
D + 1.

As briefly tackled before, the existence of a set of dense polynomials associated to a given random
variable/probability measure X/ dPX is closely related to the existence and the determinacy of its moments.
In the following section, we present Christoffel’s formulae which explicits the relation between moments of a
random variable and orthonormal polynomials associated this same one.

A.3 Christoffel’s formulae, Jacobi’s matrix and construction procedures

Christoffel’s formulae [4, 33] explicits the relation between the sequence of moments (sXk )k∈N of a random
variable X and the set of orthonormal polynomials (φXk )k∈N associated to X. It is given by

∀n ∈ {0, ..., P}, φXn (x) =
1√

HX
2(n−1)H

X
2n

∣∣∣∣∣∣∣∣∣∣
sX0 sX1 ... sXn
... ... ... ...
sXk sXk+1 ... sXn+k

... ... ... ...
1 x1 ... xn

∣∣∣∣∣∣∣∣∣∣
. (41)

In (41) appears the previous Hankel determinants (38) and the fact that the polynomial sequence may only
exist up to a certain order D whether the Hankel determinants are all strictly positive or if there exists
an order after which they are all zero. In the following, we keep considering, for convenience, polynomials
orders k ∈ N even if for some probability measure they exist only up to a certain order P ∈ N. With (41),

it is easy verifying, see [4], the monic orthogonal polynomials (φX,mk )k∈N can be expressed with respect to
both the orthonormal ones (φXk )k∈N and the Hankel determinants as we have ∀k ∈ N:

φXk (x) = ΓXk φ
X,m
k (x) =

√
HX

2(k−1)

HX
2k

φX,mk (x). (42)

Christoffel’s formulae (41) obviously represents a way to build the gPC basis associated to the probability
measure dPX . It definitely has a theoretical interest but it is scarcely used in practice due to the difficulty
to accurately numerically compute the Hankel determinants. The problem is more and more ill-conditioned
as the polynomial order increases. To illustrate this, suppose the sequence of moments (sXk )k∈{0,...,2P} of an
existing random variable X are not accurately known29 and assume a perturbation of these moments such
that

(sεk)k∈{0,...,2P} = (sXk + εk)k∈{0,...,2P} ≈ (sXk )k∈{0,...,2P}.

For the sake of simplicity of the following developments, we suppose a particular form for the perturbation
ε = (ε0, ..., ε2P ) = (0, ..., 0, δ) so that we suppose every moments of order n ∈ {0, ..., 2P − 1} are accurately
computed whereas the last one sX2P is perturbed by δ. The polynomials orthornormal with respect to the
perturbed moments coincide with the one of X up to order P − 1 and we have

φεP (x) =
1√

HX
2(P−1)H

ε
2P

∣∣∣∣∣∣∣∣∣∣
sX0 sX1 ... sXn
... ... ... ...
sXk sXk+1 ... sXn+k

... ... ... ...
1 x1 ... xP

∣∣∣∣∣∣∣∣∣∣
, (43)

so that ε only affects the last Hankel determinantHε
2P . Now, from the definition ofHε

2P and by a development
of the last line of the determinant, we have

Hε
2P = HX

2P + δHX
2(P−1) so that φεP (x) =

1√
1 + δ

HX
2(P−1)

HX
2P

φXP (x).
(44)

Consequently, the sequence of polynomials (φXk )k∈N associated to X and the sequence of polynomials (φεk)k∈N
associated to the perturbed moments are such that ∀n ∈ {0, ..., P − 1}, φεn = φXn and for the last component,
we have

φεP (x) = φXP (x)− 1
2

HX
2(P−1)

HX
2P

φXP (x)δ +O(δ2). (45)

It is known in the litterature [30, 29, 4, 33] that in the previous conditions ∀n ∈ {0, ..., P}

HX
2n

HX
2(n−1)

≤ 2−(4n+2) leading to

∣∣∣∣ dφXP
dδ

∣∣∣∣ ≥ 24P+1, (46)

which testifies for a higher and higher sensivity of the orthornormal basis components with respect to a
small inaccuracy in the statistical moments/Hankel determinants (δ) as the polynomial order P increases.
The inaccuracy δ may come from an approximation of the moments but also from roundoff errors due to
the determinant computation algorithm. In order to avoid such aliasing errors, more stable algorithm are

29they may be only computed, estimated etc.
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available such as the Chebyshev one or the modified Chebyshev one (see [28]). Those algorithms intensively
use another important property of orthonormal polynomials. For any set of orthonormal polynomials up to
order P , there exists two sequences of coefficients (αk)k∈{0,...,P} and (βk)k∈{0,...,P} such that ∀k ∈ {0, ..., P}√

βk+1φ
X
k+1(x) = (x− αk+1)φXk (x)−

√
βkφ

X
k−1(x), (47)

where ∀k ∈ {0, ..., P}, we have

αk =

∫
xφXk (x)φXk (x) dPX(x)

〈φk, φk〉X
,

and (βk)k∈{0,...,P} are such that ∀k ∈ {0, ..., P}

βk =

〈
φXk , φ

X
k

〉
X〈

φXk−1, φ
X
k−1

〉
X

.

Equation (47) is refered to as the three term recurrence formulae in the literature. The Chebyshev algorithms,
even if known to be more stable, may also suffer inaccuracy30 in the estimations of (αk, βk)k∈N. The relation
between the moments and the coefficients of the three-term recurrence formulae can be explicited, we refer
to [68, 28] for the interested reader. It must be kept in mind that the orthornormal basis associated to any
random variable with a too important order may bear unworkable inaccuracies.

The three-term recurrence formulae can be written in a matrix form by introducing the Jacobi matrix of
order P defined by

JXP =


α1

√
β1 0 0 ... 0√

β1 α2

√
β2 0 ... 0

0
√
β2 α3

√
β3 ... 0

0 ... ... ... ... 0
0 ... ... ... ...

√
βP

 . (48)

Denote by ΦXP = (φX0 , ..., φ
X
P )t the vector of P + 1 components of the sequence of orthonormal polynomials

associated to X, the three-term recurrence formulae ensures that

xΦXP (x) = JXP ΦXP (x) +
√
βPφ

X
P+1(x)eP , (49)

where eP = (0, ..., 0, 1)t of size P + 1. It is then interesting noting that the P + 1 roots (γi)i∈{0,...,P} of
polynomial φXP+1 are the eigenvalues of the Jacobi matrix of order P . We have ∀k ∈ {0, ..., P}

γkΦXP (γk) = JXP ΦXP (γk),

the vectors (ΦXP (γk))k∈{0,...,P} consequently being the corresponding eigenvectors. This property is inten-
sively used in order to build Gauss quadrature rules, see section 2.

A.4 Taking into account discrete/categorical input variables with gPC

In the previous sections, care has been taken to detail the case of discrete random variables with D + 1
states even if the notations and the results did not particularly need it. We here want to insist on the
fact that discrete input random variables are included in the gPC framework (already in [77] or in the
Askey scheme [5]). The construction procedure for the gPC basis of any discrete law is exactly the same
as for continuous random variables or at least the same as for random variables having an infinite sequence
of orthonormal polynomials. The only difference being one should not try to built the gPC basis after a
certain order depending on the number of states of the categorial random variable. By convention in the
following and without loss of generalities, we denote by (φXk (X))k∈N the gPC basis associated to any ran-
dom variable X: if X is discrete then ∃k0 ∈ N such that ∀k > k0, φ

X
k has no sense but the notation still holds.

30As the sequence (βk)k∈N is obviously related to the sequence of moments, see (41).
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