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Abstract

A new reconstruction algorithm for fluorescence diffuse optical tomography of biological tissues is proposed. The radia-

tive transport equation in the frequency domain is used to model light propagation. The adjoint method studied in this

work provides an efficient way for solving the inverse problem. The methodology is applied to a 2D tissue-like phantom

subjected to a collimated laser beam. Indocyanine Green is used as fluorophore. Reconstructed images of the spatial

fluorophore absorption distribution is assessed taking into account the residual fluorescence in the medium. We show that

illuminating the tissue surface from a collimated centered direction near the inclusion gaves a better reconstruction quality.

Two closely positioned inclusions can be accurately localized. Additionally, their fluorophore absorption coefficients can

be quantified. However, the algorithm failes to reconstruct smaller or deeper inclusions. This is due to light attenuation in

the medium. Reconstructions with noisy data are also achieved with a reasonable accuracy.

Keywords fluorescence molecular imaging, radiative transport equation, modified finite volume method, frequency

domain, inverse fluorescent source problem, Lagrangian formulation, adjoint method, biological tissue.

Nomenclature

c speed of light in vacuum (= 2.99793 108), m s−1

C concentration, M = mol cm−3

d measured fluorescent light intensity

g anisotropy factor of the Henyey-Greenstein phase function
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H observation equation

i imaginary unit, i2 = −1

J objective function

n refractive index

nnn outward unit vector normal to the medium boundary

p scattering phase function

Q partial current or boundary photon flux, W cm−2

rrr spatial position (= x, y), cm

R predicted numerical data on the tissue surface

S source power density or photon source density, W cm−3

v speed of light in host medium (tissue) (= c n−1), cm s−1

Greek symbols

ω angular modulation frequency of the input signal, s−1

ψ radiance, W cm−2 sr−1

∆Ω control solid angle

ε extinction coefficient, cm2 mol−1 = cm−1 M−1

η quantum yield

L Lagrangian

µa absorption coefficient, cm−1

µex→ema absorption coefficient of a fluorescent source in tissue (= Cε), cm−1

ΩΩΩ direction vector

µt attenuation coefficient (= µa + µs), cm−1

ψ radiance, W cm−2 sr−1

µs scattering coefficient, cm−1

ρ directional reflection coefficient

R state equation

R̃ boundary conditions for the state equation

τ fluorescence lifetime, ns

Θ angle between two directions, rad
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Υ intensity of the collimated laser beam, W cm−2

Φ fluence rate, W cm−2

φ adjoint variable

Σ interval [0, 2π]

D domain of R2R2R2

∂D boundary of the medium D

λ wavelength, m

Subscripts

S spatial

A angular

SA spatial-angular

B boundary

c collimated

out outside

s scattered

sp specular

x, y, z (Ox)-axis, (Oy)-axis, (Oz)-axis

Superscripts

∗ adjoint operator

em emission field

ex excitation field

1 Introduction

In recent years, fluorescence imaging has received particular attention. This is due considerable potential for biomedical

research and clinical applications [1, 2]. The quantification of fluorophore absorption and its distribution through biolog-

ical tissues is of major interest. Fluorescence Diffuse Optical Tomography (FDOT) is an imaging method that aims to

reconstruct the internal distribution of fluorochromes or chromophores within biological tissues. This is based on light

measurements collected at the tissue surface [1, 3–18]. Especially in small animals, this technology has facilitated moni-

toring of molecular activity, tumor growth, response to drug therapy, etc. In FDOT, a near-infrared excitation light source
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is used to measure fluorescence emission. Detection uses a CCD camera opposite the source that is rotated around the

subject. However, due to the diffuse nature of light propagation in biological tissues, the image reconstruction problem

is ill-posed and the images obtained are of low resolution. The reconstruction of the optical properties of the medium

requires an accurate forward model for light propagation combined with an efficient inverse method.

The radiative transport equation (RTE) is considered as the gold standard for accurate prediction of light propagation

through biological tissues at both the meso and the macroscale. I.e. the typical length of the scattering medium, beam

diameter, etc. are high compared to the wavelength of the incident beam [8–10, 13, 19]. Several studies deal with fluo-

rescence molecular imaging based on the diffusion equation used as forward model. Here we give a non-exhaustive list

of research into this topic [4, 11, 16, 18, 20–42]. The diffusion equation is an approximation relative to the RTE and has

limitations in optically thin media. Equally, it fails in media with small geometries where boundary effects are dominant

and where sources and detectors are not sufficiently far apart [43–46]. This presents specific problems for example in the

field of small animal fluorescence imaging. Their fluorescent sources are potentially very close to detectors on the tissue

surface. An image reconstruction method based on the RTE overcomes these limitations. There are very few reports in

the literature concerning the inverse fluorescent source problem in fluorescence molecular imaging based on RTE as the

forward model. Accordingly, this problem needs further investigation.

The image reconstruction methods for FDOT were reviewed previously [10, 47]. The methods based on the RTE can be

found in [48–50] (steady-state domain) and [51–53] (frequency domain). There was also considerable work on developing

other RTE-based methods for optical imaging [54–61]. The fluorescent source reconstruction is achieved by minimizing

an objective function. This latter describes the discrepancy between measured light intensity and predicted numerical data

on the tissue surface. The gradient of the objective function is a crucial indication of update through line minimization

of the unknown fluorescent source distribution. The adjoint method is known to be efficient for inverse problems. It

is used in research areas covered by shape optimization, fluid flow control, etc. The adjoint equation is derived from

its primal equation using integration by parts. Gradient values can be efficiently calculated from a particular quantity

of interest by solving the adjoint equation. The computation of the objective function gradient for large-scale problems

using the finite differences method is extremely time consuming. A distinct advantage of using the adjoint method is that

an explicit expression of the gradient is obtained that allows the gradient to be computed efficiently. This is achieved

by solving an additional (adjoint) equation for the adjoint variable. The computational cost is equivalent to that of the

forward model. For example, the gradient computational cost determined by the finite differences method is proportional

to the number of parameters to be reconstructed. In practice, this number can be very large; as high as several thousand
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if the parameters vary with the spatial grid nodes. Furthermore, the adjoint method is independent from the number of

parameters. Thus, it allows more accurate computing of the objective function gradient and the computational cost is

much lower than for the finite differences method. Previous analyses dealing with the adjoint formulations of the RTE can

be found in [62–64]. The adjoint method was applied to DOT problems based on RTE in the time domain [65–69] and the

frequency domain [70–75]. In the reports cited, a forward model including partly reflected boundary conditions (Fresnel

reflection) was considered in [71]. This took into account the refractive index mismatch at the air-tissue interface. The

adjoint method was applied to FDOT problems based on the RTE frequency domain in [52, 53]. In [52], a unit strength

isotropic source located at one point and transparent boundary conditions were considered in the forward model. Adjoint

formulation of the RTE was given without a Lagrangian formulation or details. In [53], a unit strength isotropic source

located at four points with partly reflected boundary conditions was considered in the forward model. The matrix form of

a Lagrangian formulation was employed and the forward model was solved implicitly using a linear system. This paper

proposes a reconstruction algorithm for FDOT of biological tissues. The RTE in the frequency domain is used to model

light propagation. The adjoint method studied in this work provides an efficient way for solving the inverse problem of

FDOT based on RTE.

The remainder of this manuscript is organized as follows. Section 2 presents the forward model in a 2D absorbing and

highly-forward scattering medium, subjected to a collimated laser beam. Section 3 deals with the mathematical back-

ground of the inverse fluorescent source problem. A continuous Lagrangian formulation is used to rigorously deduce

the adjoint RTE associated with partly reflected boundary conditions and an objective function gradient. The fluorescent

source reconstruction algorithm is also presented. Section 4 analyzes and discusses the results to reconstruct the fluo-

rophore absorption coefficient with simulated data in a 2D tissue-like phantom. Conclusions and future orientations are

summarized in the final section.

2 Forward model for light propagation in biological tissues

The forward model for light propagation determines the fluorescent source distribution. This depends on an external

excitation light source at the tissue surface denoted Υex (at the excitation wavelength of λex) and a spatial distribution

of optical properties. In the frequency domain, the intensity of light source is usually modulated in the frequency range

100 MHz to 1 GHz [1]. The demodulated transmitted intensities and phase shifts are measured at the tissue surface,

using wavelength-dependent filters to distinguish excitation and emission signals. In this study, 2D absorbing and highly-

forward scattering media like biological tissues are analyzed. The generation and propagation of fluorescent light in the
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medium can be accurately modeled by a set of two coupled RTEs in the frequency domain [10,51,52] as described below.

2.1 Introduction of some notations

To make easier the paper to read, we introduce here some notations which will be used thereafter. We assumed that the

medium D is illuminated by a collimated laser beam of direction ΩcΩcΩc. Then, the illuminated wall of the medium is defined

by:

∂Dc =
{
rrr ∈ ∂D, ΩcΩcΩc ·nnn(rrr) < 0

}
,

where nnn is the outward unit vector normal to the medium boundary. We also define the following sets:

Γ− =
{

(rrr,ΩΩΩ) ∈ ∂D × Σ, ΩΩΩ ·nnn(rrr) < 0
}
,

Γ+ =
{

(rrr,ΩΩΩ) ∈ ∂D × Σ, ΩΩΩ ·nnn(rrr) > 0
}
,

Γ+
c =

{
(rrr,ΩΩΩ) ∈ ∂Dc × Σ, ΩΩΩ ·nnn(rrr) > 0

}
,

where Σ is the interval [0, 2π].

2.2 Excitation light propagation

The external light source Υex(rrr, ω), given at any location point rrr ∈ ∂D and at an angular modulation frequency ω ∈ RRR,

penetrates from the outside into the medium. Part of it propagates through the medium without being deviated, while the

rest is scattered in all directions. It is thus convenient to split the excitation radiance ψex into two components. These

are denoted ψexc (rrr, ω) = ψex(rrr,ΩΩΩ, ω)δ(ΩΩΩ −ΩcΩcΩc) for rrr ∈ D (δ is the Dirac-delta function and ΩcΩcΩc is the direction of the

collimated laser beam) and ψexs (rrr,ΩΩΩ, ω) for (rrr,ΩΩΩ) ∈ D×Σ. They are respectively the collimated and diffuse components

of excitation radiance [75, 76]. The ψexc (rrr, ω) collimated excitation radiance is governed by the Bouguer-Beer-Lambert

attenuation equation:

[
ΩΩΩc · ∇∇∇+

( i ω
vex

+ µext (rrr) + µex→ema (rrr)
)]
ψexc (rrr, ω) = 0 for rrr ∈ D. (1)

The µex→ema coefficient is the absorption coefficient of a fluorescent source in the tissue at the excitation wavelength λex.

The speed of light vex in the tissue, is given by the ratio vex = c/nex of the speed of light in vacuum and the refractive

index of the tissue. The boundary conditions of Eq. 1 are:

ψexc (rrr, ω)−Υex(rrr, ω) = 0 for rrr ∈ ∂Dc and ψexc (rrr, ω) = 0 for rrr ∈ ∂D \ ∂Dc. (2)
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It should be noted that (1)-(2) has an analytical solution given by:

ψexc (rrr, ω) = Υex(rwrwrw, ω) exp
[
−
∫ rrr

rwrwrw

( i ω
vex

+ µext (u) + µex→ema (u)
)
du
]

for rrr ∈ D and rwrwrw ∈ ∂Dc, (3)

where the integration is performed on the optical path in ΩcΩcΩc direction from the point rwrwrw at the illuminated wall, to the

point rrr in the medium. The diffuse excitation radiance ψexs (rrr,ΩΩΩ, ω) at location rrr ∈ D ⊂ R2R2R2 in direction ΩΩΩ ∈ Σ and

angular modulation frequency ω ∈ RRR is the solution of the RTE in the frequency domain at an excitation wavelength of

λex:

[
ΩΩΩ · ∇∇∇+

( i ω
vex

+ µext (rrr) + µex→ema (rrr)
)]
ψexs (rrr,ΩΩΩ, ω)

−µexs (rrr)

∫
Ω′=2π

pex(Ω
′

Ω
′

Ω
′
·ΩΩΩ) ψexs (rrr,ΩΩΩ

′
, ω) dΩ

′
− Sexc (rrr,ΩΩΩ, ω) = 0, (4)

for (rrr,ΩΩΩ) ∈ D × Σ where,

Sexc (rrr,ΩΩΩ, ω) = µexs (rrr) pex(ΩcΩcΩc ·ΩΩΩ) ψexc (rrr, ω), (5)

is an additional radiation source term to the RTE due to the diffuse part of the collimated excitation laser beam within the

medium [75, 76]. The Henyey-Greenstein (H-G) phase function is the most widely-adopted scattering phase function of

biomedical optics [8,10,76–78] and this has been used here. This function depends only on the inner product between the

incident direction Ω
′

Ω
′

Ω
′

that scattered ΩΩΩ and the anisotropy factor gex (considering the excitation light). It is expressed for

2D media as:

pex(Ω
′

Ω
′

Ω
′
·ΩΩΩ) =

1

2π

1− (gex)2(
1 + (gex)2 − 2gex Ω

′
Ω
′

Ω
′ ·ΩΩΩ

) . (6)

The boundary conditions for the diffuse excitation radiance are:

ψexs (rrr,ΩΩΩ, ω)− ρ(Θsp) ψ
ex
s (rrr,ΩspΩspΩsp, ω) = 0 with cos Θsp = ΩspΩspΩsp ·nnn = −ΩΩΩ ·nnn (specular reflection),

ψexs (rrr,ΩΩΩ, ω)− 1

π

∫
Ω′Ω′Ω′·nnn>0

ρ(Θ′) ψexs (rrr,Ω′Ω′Ω′, ω) Ω′Ω′Ω′ ·nnn dΩ′ = 0 with cos Θ′ = Ω′Ω′Ω′ ·nnn (diffuse reflection), (7)

for (rrr,ΩΩΩ) ∈ Γ−. The directional reflection coefficient ρ is given by Snell-Descartes laws assuming that the refractive

index of the outside medium (air) is unity [10, 76, 79]. The specular reflection ΩspΩspΩsp = ΩΩΩ − 2(ΩΩΩ · nnn) nnn is defined as the

direction from which a laser beam must hit the surface. Then, after a specular reflection it travels in the direction of

ΩΩΩ [79].

As for the excitation radiance, it is convenient to split the excitation fluence distribution into two components denoted Φexc

and Φexs . Then,

Φex(rrr, ω) = Φexs (rrr, ω) + Φexc (rrr, ω) for rrr ∈ D. (8)
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with Φexs (rrr, ω) =
∫

Ω=2π
ψexs (rrr,ΩΩΩ, ω) dΩ and Φexc (rrr, ω) = ψexc (rrr, ω).

The detector readings at the tissue surface are obtained from the exiting partial current or photon boundary flux. At each

boundary point we have [10, 76]:

Qexout(rrr, ω) =

∫
ΩΩΩ·nnn>0

[
1− ρ(Θ)

]
ψexs (rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ with cos Θ = ΩΩΩ ·nnn,

(
+
[
1− ρ(Θc)

]
ψexc (rrr, ω)

(
ΩcΩcΩc ·nnn

)
with cos Θc = ΩcΩcΩc ·nnn if ΩcΩcΩc ·nnn(rrr) > 0

)
, (9)

for rrr ∈ ∂D. It should be noted that the excitation reflectance Rex is such that Rex(rrr, ω) = Qexout(rrr, ω) for rrr ∈ ∂Dc.

2.3 Emission light propagation

The quantum yield by which the fluorescent source emits light in transit from an excitation state to the ground state is

denoted η and τ denotes the local lifetime of the fluorescent source. The fluorescent source term is defined by [1, 34, 37]:

Qem(rrr, ω) =
1

2π

η µex→ema (rrr)

1− i ω τ(rrr)
Φex(rrr, ω) for rrr ∈ D. (10)

The source emits isotropic light, since all directional information is lost after excitation. Multiple fluorescent sources

at a given location can be accounted for by modifying the source term. For example, the excitation fluence Φex can be

presumed to be distributed among the fluorescent sources in proportion to their absorption coefficients. The equation that

describes the transport of emitted light at the emission wavelength λem due to the fluorescent source in tissues is expressed

as:

[
ΩΩΩ · ∇∇∇+

( i ω
vem

+ µemt (rrr)
)]
ψem(rrr,ΩΩΩ, ω)− µems (rrr)

∫
Ω′=2π

pem(Ω
′

Ω
′

Ω
′
·ΩΩΩ) ψem(rrr,ΩΩΩ

′
, ω) dΩ

′
−Qem(rrr, ω) = 0, (11)

where ψem(rrr,ΩΩΩ, ω) denotes the emission radiance at position rrr in direction ΩΩΩ and at angular modulation frequency ω.

The RTE (11) is weakly coupled to the RTE (1) via the excitation fluence distribution Φex which appears in (10). Thus,

the RTE (1) has to be solved, but Φex has to be computed before the RTE (11) can be solved.

The boundary conditions for the emission radiance are:

ψem(rrr,ΩΩΩ, ω)− ρ(Θsp) ψ
em(rrr,ΩspΩspΩsp, ω) = 0 with cos Θsp = ΩspΩspΩsp ·nnn = −ΩΩΩ ·nnn (specular reflection),

ψem(rrr,ΩΩΩ, ω)− 1

π

∫
Ω′Ω′Ω′·nnn>0

ρ(Θ′) ψem(rrr,Ω′Ω′Ω′, ω) Ω′Ω′Ω′ ·nnn dΩ′ = 0 with cos Θ′ = Ω′Ω′Ω′ ·nnn (diffuse reflection), (12)

for (rrr,ΩΩΩ) ∈ Γ−. The emission photon boundary flux is:

Qemout(rrr, ω) =

∫
ΩΩΩ·nnn>0

[
1− ρ(Θ)

]
ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ with cos Θ = ΩΩΩ ·nnn, for rrr ∈ ∂D. (13)

It should be noted that the excitation reflectance Rem is such that Rem(rrr, ω) = Qemout(rrr, ω) for rrr ∈ ∂Dc.
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3 Inverse fluorescent source problem

The inverse fluorescent source problem determines the unknown spatial source distribution Qem(rrr, ω). This last is pro-

portional to the fluorophore absorption coefficient µex→ema in Eq. (10), from the measured fluorescence light intensity at

wavelength λem escaping the tissue surface. The fluorophore concentration inside the tissue gives rise to its absorption

coefficient as a linear function. A reconstructed map of the fluorophore absorption can be directly transposed onto a

map of the biochemical probe concentration distribution. All other intrinsic tissue properties, i.e. the optical parameters

µexs (rrr), µems (rrr), µexa (rrr), µema (rrr), gex, gem, nex, nem, are typically obtained from a previously performed reconstruction.

Furthermore, the quantum yield η and the local lifetime τ of the fluorophore are both known and are usually provided by

the manufacturer.

3.1 Introduction of some notations

To define more easier the state equation presented therafter, we denote by Rexc (·, ψexc ), Rexs (·, ψexc , ψexs ) and

Rem(·, ψexc , ψexs , ψem) the equations (1), (4) and (11). We also denote by R̃exc (·, ψexc ), R̃exs (·, ψexs ) and R̃em(·, ψem)

the boundary conditions (2), (7) and (12). Finally, we define:

R(θ, ψexc , ψ
ex
s , ψ

em) =



Rexc (θ, ψexc )

Rexs (θ, ψexc , ψ
ex
s )

Rem(θ, ψexc , ψ
ex
s , ψ

em)

R̃exc (θ, ψexc )

R̃exs (θ, ψexs )

R̃em(θ, ψem)

(14)

We also introduce some notations related to functions spaces with their inner products. Let L2(∂Dc) be the space of

the complex valued square-integrable functions on ∂Dc. The Hermitian inner product and the norm associated with this

solution space are defined by:

〈
f
∣∣∣ g 〉

B
=

∫
∂Dc

f(rrr) g(rrr) dr and
∣∣∣∣f ∣∣∣∣2

B
=
〈
f
∣∣∣ f 〉

B
for all f, g ∈ L2(∂Dc), (15)

where f is the complex conjugate of f .

Let L2(Σ) be the space of complex valued square-integrable functions on Σ associated with the Hermitian inner product:

〈
f
∣∣∣ g 〉

A
=

∫
Ω=2π

f(ΩΩΩ) g(ΩΩΩ) dΩ for all f, g ∈ L2(Σ). (16)
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Let L2(D) and L2(D × Σ) be the spaces of complex valued square-integrable functions on D and D × Σ. The two

Hermitian inner products associated with these solution spaces are defined by:

〈
f
∣∣∣ g 〉

S
=

∫
D
f(rrr) g(rrr) dr ;

〈
k
∣∣∣ h 〉

SA
=

∫
D

∫
Ω=2π

k(rrr,ΩΩΩ) h(rrr,ΩΩΩ) dΩ dr, (17)

for all f, g ∈ L2(D) and k, h ∈ L2(D × Σ).

Let L2(Γ−) be the space of complex valued square-integrable functions on Γ− associated with the Hermitian inner

product: 〈
f
∣∣∣ g 〉

BA−
=

∫
∂D

∫
ΩΩΩ·nnn<0

f(rrr,ΩΩΩ) g(rrr,ΩΩΩ) dΩ dr for all f, g ∈ L2(Γ−). (18)

3.2 The objective function and observation equation

The spatial distribution of the fluorophore absorption coefficient µex→ema is reconstructed by applying a nonlinear opti-

mization technique to an objective function J that is an explicit function of θ = µex→ema . The real-value objective function

describes the discrepancy between the measured light intensity, demobs(rrr) and the predicted numerical data, Rem(rrr) (given

from Eq. (13)) for positions rrr ∈ ∂Dc:

J(θ) =
1

2

∣∣∣∣Rem(θ)− demobs
∣∣∣∣2
B
. (19)

where Rem(θ) is the observation equation defined as:

(Hψemθ )(rrr, ω) = Rem(θ)(rrr, ω) =

∫
ΩΩΩ·nnn>0

[
1− ρ(Θ)

]
ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ with cos Θ = ΩΩΩ ·nnn, for rrr ∈ ∂Dc. (20)

The reconstruction algorithm consists of minimizing J when the state equation is satisfied [72]:

R(θ, ψexc , ψ
ex
s , ψ

em) = 0. (21)

The nonlinear optimization algorithm chosen in this work requires knowledge of the objective function gradient with

respect to unknowns. To compute this gradient, the adjoint method is introduced as described in the following section.

3.3 The Lagrangian and adjoint method

The Lagrangian is written in the L2 space as [80, 81]:

L(θ, ψexc , ψ
ex
s , ψ

em, φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em) =
1

2

∣∣∣∣(Hψem)− demobs
∣∣∣∣2
B

+
〈
φexc

∣∣∣Rexc 〉
S

+
〈
φexs

∣∣∣Rexs 〉
SA

+
〈
φem

∣∣∣Rem〉
SA

+
〈
φ̃exc

∣∣∣R̃exc 〉
B

+
〈
φ̃exs

∣∣∣R̃exs 〉
BA−

+
〈
φ̃em

∣∣∣R̃em〉
BA−

, (22)
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where the Lagrangian multipliers are: φexc = φexc (rrr, ω) (with rrr ∈ D), φexs = φexs (rrr,ΩΩΩ, ω) and φem = φem(rrr,ΩΩΩ, ω) (with

(rrr,ΩΩΩ) ∈ D × Σ), φ̃exc = φ̃exc (rrr, ω) (with rrr ∈ ∂Dc), φ̃exs = φ̃exs (rrr,ΩΩΩ, ω) and φ̃em = φ̃em(rrr,ΩΩΩ, ω) (with (rrr,ΩΩΩ) ∈ Γ−).

They are complex functions that represent the adjoint variables associated to ψexc , ψexs , ψem in the medium and at the

medium boundary. The fundamental remark (which is trivial in appearance) is that if (ψexc , ψ
ex
s , ψ

em) is the solution of

the state equation (21) for the θ parameter, then we have the identity:

L(θ, ψexc (θ), ψexs (θ), ψem(θ), φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em) = J(θ), for all φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em. (23)

By deriving this equation it yields:

J ′(θ) δθ =
∂L(θ, ψexc , ψ

ex
s , ψ

em, φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em)

∂θ
δθ

+
∂L(θ, ψexc , ψ

ex
s , ψ

em, φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em)

∂ψexc

∂ψexc (θ)

∂θ
δθ

+
∂L(θ, ψexc , ψ

ex
s , ψ

em, φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em)

∂ψexs

∂ψexs (θ)

∂θ
δθ

+
∂L(θ, ψexc , ψ

ex
s , ψ

em, φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em)

∂ψem
∂ψem(θ)

∂θ
δθ. (24)

We denote the following independant quantities by:

δψexc =
∂ψexc (θ)

∂θ
δθ, δψexs =

∂ψexs (θ)

∂θ
δθ and δψem =

∂ψem(θ)

∂θ
δθ. (25)

Then, the adjoint variables are solutions to the following equation [80, 81]:

∂L(θ, ψexc , ψ
ex
s , ψ

em, φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em)

∂ψexc
δψexc

+
∂L(θ, ψexc , ψ

ex
s , ψ

em, φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em)

∂ψexs
δψexs

+
∂L(θ, ψexc , ψ

ex
s , ψ

em, φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em)

∂ψem
δψem = 0, (26)

and Eq. (24) is reduced to:

J ′(θ) δθ =
〈
∇∇∇J(θ)

∣∣∣δθ〉
S

=
∂L(θ, ψexc , ψ

ex
s , ψ

em, φexc , φ
ex
s , φ

em, φ̃exc , φ̃
ex
s , φ̃

em)

∂θ
δθ. (27)

Using (22) and (26) we deduce that:

〈
φexc

∣∣∣∂Rexc
∂ψexc

δψexc

〉
S

+
〈
φexs

∣∣∣∂Rexs
∂ψexs

δψexs

〉
SA

+
〈
φexs

∣∣∣∂Rexs
∂ψexc

δψexc

〉
SA

+
〈
φem

∣∣∣∂Rem
∂ψem

δψem
〉
SA

+
〈
φem

∣∣∣∂Rem
∂ψexs

δψexs

〉
SA

+
〈
φem

∣∣∣∂Rem
∂ψexc

δψexc

〉
SA

+
〈

(Hψem)− demobs
∣∣∣(Hδψem)

〉
B

+
〈
φ̃exc

∣∣∣∂R̃exc
∂ψexc

δψexc

〉
B

+
〈
φ̃exs

∣∣∣∂R̃exs
∂ψexs

δψexs

〉
BA−

+
〈
φ̃em

∣∣∣∂R̃em
∂ψem

δψem
〉
BA−

= 0. (28)
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Using (20), we change (Hψem) by Rem in the right-hand side term in the second line of (28). As Eq. (28) has to

be satisfied for all sensitivity directions δψexc , δψexs and δψem, then it leads to the following set of equations (for each

sensitivity directions):

〈
φem

∣∣∣∂Rem
∂ψem

δψem
〉
SA

+
〈
Rem − demobs

∣∣∣(Hδψem)
〉
B

+
〈
φ̃em

∣∣∣∂R̃em
∂ψem

δψem
〉
BA−

= 0,〈
φexs

∣∣∣∂Rexs
∂ψexs

δψexs

〉
SA

+
〈
φem

∣∣∣∂Rem
∂ψexs

δψexs

〉
SA

+
〈
φ̃exs

∣∣∣∂R̃exs
∂ψexs

δψexs

〉
BA−

= 0,

〈
φexc

∣∣∣∂Rexc
∂ψexc

δψexc

〉
S

+
〈
φexs

∣∣∣∂Rexs
∂ψexc

δψexc

〉
SA

+
〈
φem

∣∣∣∂Rem
∂ψexc

δψexc

〉
SA

+
〈
φ̃exc

∣∣∣∂R̃exc
∂ψexc

δψexc

〉
B

= 0, (29)

The last terms of each equation of (29) are related to the boundary conditions. Then, (29) leads also to:

〈
φem

∣∣∣∂Rem
∂ψem

δψem
〉
SA

+
〈
Rem − demobs

∣∣∣(Hδψem)
〉
B

= 0,〈
φexs

∣∣∣∂Rexs
∂ψexs

δψexs

〉
SA

+
〈
φem

∣∣∣∂Rem
∂ψexs

δψexs

〉
SA

= 0,

〈
φexc

∣∣∣∂Rexc
∂ψexc

δψexc

〉
S

+
〈
φexs

∣∣∣∂Rexs
∂ψexc

δψexc

〉
SA

+
〈
φem

∣∣∣∂Rem
∂ψexc

δψexc

〉
SA

= 0,

〈
φ̃exc

∣∣∣∂R̃exc
∂ψexc

δψexc

〉
B

= 0 ;
〈
φ̃exs

∣∣∣∂R̃exs
∂ψexs

δψexs

〉
BA−

= 0 ;
〈
φ̃em

∣∣∣∂R̃em
∂ψem

δψem
〉
BA−

= 0. (30)

We denote A∗ the adjoint operator of A. Using the definition of the adjoint operator, the equations of (30) lead to:

〈(∂Rem
∂ψem

)∗
φem

∣∣∣δψem〉
SA

+
〈
H∗
(
Rem − demobs

)∣∣∣δψem〉
B

= 0,〈(∂Rexs
∂ψexs

)∗
φexs

∣∣∣δψexs 〉
SA

+
〈(∂Rem

∂ψexs

)∗
φem

∣∣∣δψexs 〉
SA

= 0,

〈(∂Rexc
∂ψexc

)∗
φexc

∣∣∣δψexc 〉
S

+
〈(∂Rexs

∂ψexc

)∗
φexs

∣∣∣δψexc 〉
S

+
〈(∂Rem

∂ψexc

)∗
φem

∣∣∣δψexc 〉
S

= 0,

〈(∂R̃exc
∂ψexc

)∗
φ̃exc

∣∣∣δψexc 〉
B

= 0 ;
〈(∂R̃exs

∂ψexs

)∗
φ̃exs

∣∣∣δψexs 〉
BA−

= 0 ;
〈(∂R̃em

∂ψem

)∗
φ̃em

∣∣∣δψem〉
BA−

= 0, (31)

where A∗ = 2π A∗. As the equations of (31) have to be satisfied for all sensitivity directions δψexc , δψexs and δψem, the

adjoint variables must be solutions to the following set of equations:

〈(∂Rem
∂ψem

)∗
φem

∣∣∣δψem〉
SA

+
〈
H∗
(
Rem − demobs

)∣∣∣δψem〉
B

= 0,(∂Rexs
∂ψexs

)∗
φexs +

(∂Rem
∂ψexs

)∗
φem = 0,

(∂Rexc
∂ψexc

)∗
φexc +

(∂Rexs
∂ψexc

)∗
φexs +

(∂Rem
∂ψexc

)∗
φem = 0,

(∂R̃exc
∂ψexc

)∗
φ̃exc = 0 ;

(∂R̃exs
∂ψexs

)∗
φ̃exs = 0 ;

(∂R̃em
∂ψem

)∗
φ̃em = 0. (32)

Using Appendices A and B and replacing Rexc , Rexs and Rem defined by (1), (4) and (11) in Eq. (32), we obtain the
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following adjoint equations model:

[
ΩΩΩ · ∇∇∇+

(−i ω
vem

+ uemt (rrr)
)]
φem(rrr,−ΩΩΩ, ω) = µems (rrr)

∫
Ω′=2π

pem(Ω
′

Ω
′

Ω
′
· (−ΩΩΩ)) φem(rrr,ΩΩΩ

′
, ω) dΩ

′
,

[
ΩΩΩ · ∇∇∇+

(−i ω
vex

+ µext (rrr) + µex→ema (rrr)
)]
φexs (rrr,−ΩΩΩ, ω)

= µexs (rrr)

∫
Ω′=2π

pex(Ω
′

Ω
′

Ω
′
· (−ΩΩΩ)) φexs (rrr,ΩΩΩ

′
, ω) dΩ

′
+
η µex→ema (rrr)

1 + i ω τ(rrr)
φem(rrr,−ΩΩΩ, ω),

[
ΩΩΩc · ∇∇∇+

(−i ω
vex

+ µext (rrr) + µex→ema (rrr)
)]
φexc (rrr, ω)

= µexs (rrr)

∫
Ω′=2π

pex(Ω
′

Ω
′

Ω
′
· (−Ωc−Ωc−Ωc)) φ

ex
s (rrr,ΩΩΩ

′
, ω) dΩ

′
+

1

2π

η µex→ema (rrr)

1 + i ω τ(rrr)

∫
Ω′=2π

φem(rrr,Ω
′

Ω
′

Ω
′
, ω) dΩ

′
. (33)

The directions ΩΩΩ and ΩcΩcΩc were changed to −ΩΩΩ and −ΩcΩcΩc for convenience. The boundary conditions of the set of equations

(33) were derived as shown in Appendices B and C and are summarized below. If the medium boundary is assumed to be

transparent, the boundary conditions of the first two equations of system (33) are given by:

φem(rrr,ΩΩΩ, ω) = 0 for (rrr,ΩΩΩ) ∈ Γ+ \ Γ+
c and φem(rrr,ΩΩΩ, ω) = −(Rem − demobs)(rrr, ω) for (rrr,ΩΩΩ) ∈ Γ+

c , (34)

φexs (rrr,ΩΩΩ, ω) = 0 for (rrr,ΩΩΩ) ∈ Γ+, (35)

Otherwise, the medium boundary is semi-transparent with boundary conditions given by (7) and (12). Then, the adjoint

boundary conditions in the case of diffuse reflection of the first two equations of system (33) are:

φem(rrr,ΩΩΩ, ω) =
1

π

∫
Ω′Ω′Ω′·nnn<0

ρ(Θ′) φem(rrr,Ω′Ω′Ω′, ω)
∣∣∣Ω′Ω′Ω′ ·nnn

∣∣∣ dΩ′ for (rrr,ΩΩΩ) ∈ Γ+ \ Γ+
c , (36)

φem(rrr,ΩΩΩ, ω) = −
[
1− ρ(Θ)

]
(Rem− demobs)(rrr, ω) +

1

π

∫
ΩΩΩ′·nnn<0

ρ(Θ′) φem(rrr,ΩΩΩ′, ω)
∣∣∣ΩΩΩ′ ·nnn∣∣∣ dΩ′ for (rrr,ΩΩΩ) ∈ Γ+

c , (37)

φexs (rrr,ΩΩΩ, ω) =
1

π

∫
Ω′Ω′Ω′·nnn<0

ρ(Θ′) φexs (rrr,Ω′Ω′Ω′, ω)
∣∣∣Ω′Ω′Ω′ ·nnn

∣∣∣ dΩ′ for (rrr,ΩΩΩ) ∈ Γ+, (38)

with cos Θ′ = −Ω′Ω′Ω′ ·nnn and cos Θ = ΩΩΩ ·nnn.

The adjoint boundary conditions in the case of specular reflection are:

φem(rrr,ΩΩΩ, ω) = ρ(Θsp) φ
em(rrr,−ΩspΩspΩsp, ω) for (rrr,ΩΩΩ) ∈ Γ+ \ Γ+

c . (39)

φem(rrr,ΩΩΩ, ω) = −
[
1− ρ(Θ)

]
(Rem − demobs)(rrr, ω) + ρ(Θsp) φ

em(rrr,−ΩspΩspΩsp, ω) for (rrr,ΩΩΩ) ∈ Γ+
c , (40)

φexs (rrr,ΩΩΩ, ω) = ρ(Θsp) φ
ex
s (rrr,−ΩspΩspΩsp, ω) for (rrr,ΩΩΩ) ∈ Γ+, (41)

with cos Θsp = ΩspΩspΩsp ·nnn and cos Θ = ΩΩΩ ·nnn.

The boundary conditions for the adjoint excitation collimated radiance (related to the third equation of system (33)) fulfill

the condition:

φexc (rrr, ω) = 0 for rrr ∈ ∂D. (42)
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It should be noted that the adjoint variables φ̃exc , φ̃exs , φ̃em related to the boundary conditions are not used in the adjoint

equations model, since these adjoint variables vanish (see Appendix D). Moreover, it can be seen that the adjoint equations

model takes a similar form to the forward model. The adjoint equations model can be solved in a similar manner to that

used to solve the forward model. It also shows that the set of equations should be solved in the order presented in (33).

The adjoint emission equation must be solved before the adjoint excitation equation. Thus, the emission adjoint field φem

obtained first, is used as the source term in the other two equations. After the first equation is solved, the second can be

worked out and the excitation diffuse adjoint field φexs deduced. The resulting φexs field is used as the source term for the

excitation collimated adjoint field φexc .

3.4 Gradient of the objective function

As the adjoint variables φ̃exc , φ̃exs , φ̃em vanish from the previous remark, the Lagrangian can be written without these

variables. The differentiation of the Lagrangian with respect to θ in direction δθ satisfies:

∂L(θ, ψexc , ψ
ex
s , ψ

em, φexc , φ
ex
s , φ

em)

∂θ
δθ =

∂J(θ)

∂θ
δθ

+
〈
φexc

∣∣∣∂Rexc
∂θ

δθ
〉
S

+
〈
φexs

∣∣∣∂Rexs
∂θ

δθ
〉
SA

+
〈
φem

∣∣∣∂Rem
∂θ

δθ
〉
SA
. (43)

As the objective function does not depend explicitly on θ (see Eq. (19)), then we have ∂J(θ)
∂θ = 0. Using Eq. (27), Eq.

(43) is reduced to:

〈
∇∇∇J(θ)

∣∣∣δθ〉
S

=
〈
φexc

∣∣∣∂Rexc
∂θ

δθ
〉
S

+
〈
φexs

∣∣∣∂Rexs
∂θ

δθ
〉
SA

+
〈
φem

∣∣∣∂Rem
∂θ

δθ
〉
SA
. (44)

This is the expression that evaluates the gradient of the objective function. Applying Eq. (44) to θ = µex→ema we deduce

that:

〈
∇∇∇J(µex→ema )

∣∣∣δµex→ema

〉
S

=
〈
φexc

∣∣∣ψexc δµex→ema

〉
S

+
〈
φexs

∣∣∣ψexs δµex→ema

〉
SA

−
〈
φem

∣∣∣( 1

2π

η

1− i ω τ
Φex

)
δµex→ema

〉
SA
, (45)

Then, the components of the objective function gradient, with respect to µex→ema , are obtained with:

∇∇∇J(µex→ema ) = <
{
φexc ψexc +

〈
φexs

∣∣∣ ψexs 〉
A
− 1

2π

〈
φem

∣∣∣ η

1 + i ω τ
Φex

〉
A

}
. (46)

where < {z} is the real part of the complex number z. The right-hand side of (45) is a complex value but only its real part

is taken for the gradient of the objective function to be a real value.
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3.5 Implementation of the reconstruction algorithm

In our previous publications [76, 82], we developed a computational code based on a MFVM (Modified Finite Volume

Method) of high accuracy. This was to solve light propagation within a 2D absorbing and highly forward-scattering

medium (like a biological tissue) subjected to a collimated laser beam. This MFVM can be applied to arbitrarily shaped

geometries, by using unstructured triangular grids. The code has been used here to solve the coupled equations of the for-

ward and adjoint models. The adjoint model was validated by testing the inner product [83]. The objective function J was

iteratively minimized using the quasi-Newton algorithm with L-BFGS (Limited-Memory Broyden-Fletcher-Goldfarb-

Shanno) [9]. This found the unknown distribution of the fluorophore absorption coefficient. It iteratively updates an

initial estimate of the fluorophore absorption coefficient along a search direction. Once the minimum is found, the final

result is the unknown distribution of the fluorophore absorption coefficient. The updating procedure can be formulated as

detailed in [49].

4 Results and discussion

We present numerical results obtained with the reconstruction algorithm developed in the theoretical section. The cal-

culations were carried out with an Intel Xeon Processor E5-2643, 3.3GHz, 32GoRAM, 8 cores. This last uses Hyper-

Threading and Intel C compiler. The computation time for a reconstruction is about 3 hours. The algorithm was used to

localize and quantify one and two fluorescent inclusions embedded in a biological medium. The simulations were carried

out in a 2D circular domain with a 2 cm radius. The center of the circle is defined as the origin. The chosen size mim-

ics fluorescence tomographic problems that are typical for small animal imaging. The same unstructured triangular mesh

composed of 2,129 nodal points and 4,128 triangular elements was used for the forward and inverse solutions. Each inclu-

sion is a disk of 0.4 cm radius and its center is located at different positions. The intrinsic optical properties of the medium,

namely µexa = µema = 0.1 cm−1 and µexs = µems = 100 cm−1 were identical at the excitation and emission wavelengths.

The anisotropy factor of the H-G phase function g was set to 0.9. This corresponds to a highly forward-scattering medium.

The optical properties are typical for biological tissues in the near-infrared spectral range. The refractive indices of the

medium and the surrounding (air) were chosen as n = 1.4 and nout = 1.0, respectively. The medium surface was assumed

to be semi-transparent with specular Fresnel reflection at the interface. ICG (Indocyanine Green) [10, 37, 84, 85] is the

most widely-used fluorophore probe for biomedical applications and was effectively used here. The quantum yield and

lifetime of the probe were homogeneously distributed with η = 0.012 and τ = 0.52 ns, respectively. We intended to
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reconstruct the fluorophore absorption coefficient. To this end we allowed determination of the relative ICG concentration

in the medium. This process is known as the absorption-contrast mode in FDOT. The fluorescent inclusions represent

heterogeneities in the µex→ema coefficient [10]. The medium is not ideal, meaning that some ICG molecules remained in

the homogeneous background medium leading to residual fluorescence. Therefore, the fluorescence signal detected on

the surface had not only been caused by fluorescent inclusions. The fluorophore absorption coefficient in the background

was assigned the value µex→ema = 0.01 cm−1. This value was used as the initial estimate in the reconstruction algorithm

for all cases described below. A collimated source using ten boundary nodal points (positions all around the disc) was

used. These were equally spaced by about 0.1 cm and their centered points were denoted PcPcPc. 64 detectors were used that

where equally spaced along the boundary nodal points of reflectance. The intensity of the source was modulated at 100

MHz. The use of this modulation frequency leads to a large observation time which is longer than the fluorescence life

time of ICG in order to obtain sufficient fluorescence decay. To solve the RTE, the angular space (2πSr) was uniformly

subdivided into 32 control solid angles. Furthermore, there were 8 subdivisions into a control solid angle for phase func-

tion normalization [76]. The reconstruction was stopped when the normalized difference between two subsequent error

functions was smaller than 10−5. We also tested other values for the initial estimate, namely µex→ema = 10−5 cm−1,

µex→ema = 0.03 cm−1 and we obtained reconstruction results close to those for µex→ema = 0.01 cm−1. In the first case,

a fluorescent inclusion was embedded inside the homogeneous medium. Its center was located at the exact position (1,

1) as indicated by the dashed circle in Fig. 1. The true fluorophore absorption coefficient in the inclusion was assigned

µex→ema = 0.05 cm−1. For all reconstructions, the synthetic fluorescence data were generated by running the forward

model. The true spatial distribution of the fluorophore absorption coefficient we wanted to reconstruct in such a case

was used. Particular attention was paid to the optimal configuration of source positions and their collimated directions.

Figs. 1 and 2(a) depict the results when the collimated directions of the sources were Ω1
cΩ1
cΩ1
c = (0,−1) (with P 1

cP
1
cP
1
c = (0, 2))

and Ω2
cΩ2
cΩ2
c = (cos( 5π

4 ), sin( 5π
4 )) (with P 2

cP
2
cP
2
c = (2 cos(π4 ), 2 sin(π4 ))). The algorithm gave a well-defined spatial position of

the fluorescent inclusion for both directions. However, the (Ω2
cΩ2
cΩ2
c ,P

2
cP
2
cP
2
c ) source led to a superior reconstruction quality in

terms of estimation and localization of the inclusion. With the (Ω1
cΩ1
cΩ1
c ,P

1
cP
1
cP
1
c ) source, the inclusion was attached to the medium

surface and was rather bean shaped. Absorption by the retrieved fluorophore in the inclusion was slightly underestimated

relative to its real value. The surface near the inclusion could be illuminated with (Ω2
cΩ2
cΩ2
c ,P

2
cP
2
cP
2
c ). Then, the circular shape and

spatial position were clearly improved as was accuracy. Moreover, the local value retrieved in the inclusion was accurately

estimated (µex→ema = 0.05 cm−1). We could then deduce the best configuration to accurately localize and quantify a

fluorescent inclusion. It was to illuminate the medium surface near the inclusion using a centered collimated source. The
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reconstructed images of Fig. 1 and Fig. 2(a) were obtained after 129 and 138 iterations, respectively.

[Figure 1 about here.]

In the second case we assessed the effect of the inclusion depth on the reconstruction. For this the center of the inclusion

can take different exact positions, as shown by the dashed circle in Fig. 2. The ΩcΩcΩc = (cos( 5π
4 ), sin( 5π

4 )) direction (with

PcPcPc = (2 cos(π4 ), 2 sin(π4 ))) was used as a collimated direction of the source. The estimation and spatial localization of

the fluorescent inclusion became less accurate as the depth increased (Fig. 2). The algorithm failed to reconstruct deeper

inclusions, leading to poor image quality. It should be noted that illuminating with more than one collimated sources

didn’t lead to improve the reconstruction. This could be explained by the ill-posedness of the whole problem, in particular

light attenuation in the medium. The reconstructed image quality is assessed through the relative RMSE (Root Mean

Square Error). This is defined between the true and reconstructed values of the fluorophore absorption coefficient:

E = 100 ·
∣∣∣∣µex→ema (reconstructed)− µex→ema (true)

∣∣∣∣
2∣∣∣∣µex→ema (true)

∣∣∣∣
2

, (47)

where
∣∣∣∣ · ∣∣∣∣

2
denotes Euclidian norm. The relative RMSE was computed over the target region and over the whole

reconstructed image domain. As expected, Table 1 shows that the relative RMSE increases with the inclusion depth,

much more for the target region than that for the whole reconstructed image domain.

[Table 1 about here.]

[Figure 2 about here.]

As a third case, we assessed the effect of both size and depth of the inclusion on the reconstruction. The relative RMSE

over the target region is given in Fig. 3(a). For each inclusion size, the error decreases as the center of the inclusion moves

toward the sources positions. This is because the reconstruction (of shapes and values) is improved when the inclusion is

located nearer to the illuminated medium boundary. At each position of the inclusion in the medium, the relative RMSE

increases when the inclusion size decreases. As expected, the algorithm failed more to reconstruct a small inclusion

located deeper in the medium. Fig. 3(b) shows the relative RMSE over the whole reconstructed image domain versus the

depth and size of the inclusion. The error is lower (less than 36.5 %) when the inclusion size is smallest (R = 0.2 cm)

whatever its position in the medium. When the inclusion is deeper in the medium (located at the center of the medium)

the relative RMSE is inverted compared to that over the target region. This means that the reconstruction quality of the

whole domain is worst when the inclusion size is bigger and the inclusion is deeper in the medium. Moreover, when R is

bigger than 0.2 cm, the relative RMSE over the whole domain increases as the inclusion goes deeper. This is mainly due
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to the wrong inclusion location inside the homogeneous medium which leads, therefore, to a poor reconstruction quality

of the whole domain.

[Figure 3 about here.]

In the thourth case, a second inclusion with a lower fluorophore absorption coefficient (µex→ema = 0.03 cm−1) was

considered. This allowed us to distinguish between two fluorescent inclusions at different separations. For this purpose,

two examples are presented. Fig. 4(a) shows the reconstructed image when both inclusions were closed. The centers of

the inclusions were located at (−1, 1) and (1, 0.8) and the phantom medium was simultaneously illuminated by ΩlcΩlcΩlc =

(cos( 7π
4 ), sin( 7π

4 )) withP lcP
l
cP
l
c = (2 cos( 3π

4 ), 2 sin( 3π
4 )) and ΩrcΩrcΩrc = (cos( 5π

4 ), sin( 5π
4 )) withP rcP

r
cP
r
c = (2 cos(π4 −

π
32 ), 2 sin(π4 −

π
32 )). Fig. 4(b) depicts the result for a somewhat higher separation between the two inclusions. Here, the centers of

the inclusions were located at (−1, 1) and (1.4, 0) and the medium was illuminated by ΩlcΩlcΩlc = (cos( 7π
4 ), sin( 7π

4 )) with

P lcP
l
cP
l
c = (2 cos( 3π

4 ), 2 sin( 3π
4 )) and ΩrcΩrcΩrc = (−1, 0) with P rcP

r
cP
r
c = (2, 0). The dashed circles in the figures indicate the exact

positions of the inclusions. For both separations, the inclusions were accurately recovered and localized in the medium.

The algorithm can detect and reconstruct separately the two different fluorescent inclusions. This is so even when they

are only separated by small distances (see Fig. 4(a)). The mean retrieved values of both inclusions in the small and large

separation cases are (0.024 cm−1, 0.031 cm−1) and (0.025 cm−1, 0.038 cm−1), respectively. The mean retrieved values

of inclusions were always underestimated compared to their exact values. Also, when the inclusions are relatively close

to each other the fluorescent photons interfere.

[Figure 4 about here.]

In the last case study, the robustness of the reconstruction algorithm was tested in the presence of noisy data with Gaussian

distribution [86]. The noise was added to the complex simulated measurement reflectance (module and phase shift). The

simulated measurement data are corrupted by adding random errors: 3 %, 6 % and 10 %. Like the first case, the probed

medium contains one inclusion. The relative RMSE versus the noise level is shown in Table 2. The example of 10 %

noise is illustrated in Fig. 5. This figure shows that despite the relatively high noise level, the inclusion is accurately

reconstructed. Furthermore, the local retrieved value is well-estimated. This confirmed that the proposed algorithm

is robust and efficient, even in the presence of noisy data. However, artifacts and some perturbations of the medium

boundary are note compared to the noise-less reconstructed image (see Fig. 2(a)). This is because detection occurred on

the surface and the algorithm converged around a random value. Higher noise levels for the boundary data led to degraded

image quality. Relative RMSE decreases with the noise level, much more for the whole reconstructed image domain than
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that for the target region. (see Table 2).

[Figure 5 about here.]

[Table 2 about here.]

5 Conclusion

We studied the inverse problem of fluorescent source. This is based on ICG for a 2D tissue-like phantom subjected to

a collimated laser beam. For the first time, we derived the adjoint model for fluorescence molecular imaging based on

the RTE. By using the adjoint model an explicit expression of the objective function gradient is obtained, which can be

computed efficiently. This is ensured by solving an additional (adjoint) equation for the adjoint variable. The latters’s

computational cost is equivalent to that of the forward model. The coupled forward and adjoint models were solved with

the same modified finite volume method. This had been demonstrated in a previous publication to be highly accurate [76].

The objective function was iteratively minimized using a nonlinear optimization L-BFGS algorithm. Reconstructed im-

ages were obtained. These had simulated data for fluorescence signals on the tissue surface. Thus, the spatial fluorophore

absorption distribution was assessed taking into account the residual fluorescence in the medium. Positions and directions

of the sources were measured on a single fluorescent inclusion. We showed that illuminating the tissue surface from a

collimated centered direction near the inclusion gave a better reconstruction quality. Furthermore, we analyzed the effect

of both size and depth of the inclusion on the reconstruction. We found that the algorithm failed to reconstruct smaller

or deeper inclusions. This was due to light attenuation in the medium. Also, two closely positioned inclusions could

be accurately localized. Additionally, their fluorophore absorption coefficients could be quantified. Reconstructions with

noisy data were achieved with a reasonable accuracy for several random noise levels. The sum of our results demonstrated

that the algorithm is robust. Also, it yields promising results in fluorescence molecular imaging. The present work was a

prerequisite study to evaluate the potential of the algorithm. We plan to extend it to 3D geometries (for real applications)

using parallel computing with MPI and Open MP, running on a set of multi-core machines.

Appendix A. Calculations of adjoint operators

From (8), (10) and (11), we have:

∂Rem

∂ψexs
= −η µ

ex→em
a (rrr)

1− i ω τ(rrr)
. (48)
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The Eqs. (17) and (48) yield

〈
φem

∣∣∣∂Rem
∂ψexs

δψexs

〉
SA

= −
∫
D

∫
Ω=2π

φem(rrr,ΩΩΩ, ω)
η µex→ema (rrr)

1− i ω τ(rrr)
δψexs (rrr, ω) dΩ dr, (49)

and (∂Rem
∂ψexs

)∗
φem = −η µ

ex→em
a (rrr)

1 + i ω τ(rrr)
φem(rrr,ΩΩΩ, ω). (50)

From (4) and (5), we have:

∂Rexs
∂ψexc

= −µexs (rrr) pex(ΩcΩcΩc ·ΩΩΩ). (51)

The Eqs. (17) and (51) yield

〈
φexs

∣∣∣∂Rexs
∂ψexc

δψexc

〉
SA

=

∫
D
−µexs (rrr)

(∫
Ω=2π

pex(ΩcΩcΩc ·ΩΩΩ) φexs (rrr,ΩΩΩ, ω) dΩ
)
δψexc (rrr, ω) dr, (52)

and (∂Rexs
∂ψexc

)∗
φexs = −µexs (rrr)

∫
Ω=2π

pex(ΩcΩcΩc ·ΩΩΩ) φexs (rrr,ΩΩΩ, ω) dΩ with
1

2π

(∂Rexs
∂ψexc

)∗
=
(∂Rexs
∂ψexc

)∗
. (53)

From (8), (10) and (11), we have:

∂Rem

∂ψexc
= − 1

2π

η µex→ema (rrr)

1− i ω τ(rrr)
. (54)

The Eqs. (17) and (54) yield

〈
φem

∣∣∣∂Rem
∂ψexc

δψexc

〉
SA

= − 1

2π

∫
D

η µex→ema (rrr)

1− i ω τ(rrr)

( ∫
Ω=2π

φem(rrr,ΩΩΩ, ω) dΩ
)
δψexc (rrr, ω) dr

=
〈(∂Rem

∂ψexc

)∗
φem

∣∣∣ δψexc 〉
S
, (55)

with (∂Rem
∂ψexc

)∗
φem = − 1

2π

η µex→ema (rrr)

1 + i ω τ(rrr)

∫
Ω=2π

φem(rrr,ΩΩΩ, ω) dΩ and
1

2π

(∂Rem
∂ψexc

)∗
=
(∂Rem
∂ψexc

)∗
. (56)

Appendix B. Adjoint boundary conditions without the term
〈
Rem − demobs

∣∣∣(Hδψem)
〉
B

The boundary conditions of the adjoint RTE in the time domain for semi-transparent boundaries (with diffuse reflection)

were derived by Boulanger et al. [69]. Here we propose to adapt these boundary conditions for the adjoint RTE in the

frequency domain. Let ψ and φ be two functions of the space L2(D × Σ). Using integration by parts and the divergence

theorem, we obtain:

〈
φ
∣∣∣(ΩΩΩ · ∇∇∇)ψ〉

SA
=

∫
∂D

∫
Ω=2π

φ(rrr,ΩΩΩ, ω) ψ(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr −
〈(

ΩΩΩ · ∇∇∇
)
φ
∣∣∣ψ〉

SA
. (57)
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Then−
(
ΩΩΩ·∇∇∇

)
is the adjoint of the transport operator

(
ΩΩΩ·∇∇∇

)
, provided the boundary term vanishes for all ψ ∈ L2(D×Σ),

i.e.: ∫
∂D

∫
ΩΩΩ′·nnn<0

φ(rrr,ΩΩΩ′, ω) ψ(rrr,ΩΩΩ′, ω) ΩΩΩ′ ·nnn dΩ′ dr = −
∫
∂D

∫
ΩΩΩ·nnn>0

φ(rrr,ΩΩΩ, ω) ψ(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr. (58)

If ∂D is assumed to be transparent (no reflection at the boundary), the left-hand side of (58) is equal to zero since

ψ(rrr,ΩΩΩ, ω) = 0 for (rrr,ΩΩΩ) ∈ Γ−. This implies that the right-hand side of (58) is also equal to zero and φ must satisfy the

adjoint boundary conditions φ(rrr,ΩΩΩ, ω) = 0 for (rrr,ΩΩΩ) ∈ Γ+. If ∂D is assumed to be semi-transparent, using the boundary

conditions (7) in the case of diffuse reflection, the left-hand side of (58) is equal to:

∫
∂D

(∫
ΩΩΩ′·nnn<0

φ(rrr,ΩΩΩ′, ω) ΩΩΩ′ ·nnn dΩ′
) ( 1

π

∫
ΩΩΩ·nnn>0

ρ(Θ) ψ(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ
)
dr with cos Θ = ΩΩΩ ·nnn, (59)

=
1

π

∫
∂D

(
lim

Nl→∞

Nl∑{
l, ΩlΩlΩl·nnn<0

}φ(rrr,ΩΩΩl, ω) ΩlΩlΩl ·nnn ωl
)(

lim
Nk→∞

Nk∑{
k, ΩkΩkΩk·nnn>0

} ρ(Θk) ψ(rrr,ΩkΩkΩk, ω) ΩkΩkΩk ·nnn ωk
)
dr, (60)

where Nl and Nk are the total numbers of discrete ordinates ΩΩΩl and ΩΩΩk, respectively. The quadrature weights wl and wk

are associated respectively to the discrete ordinates ΩΩΩl and ΩΩΩk [10]. The discrete angles and directions are chosen such

that:

Θk = Θl ∈ Σ, cos Θk = ΩkΩkΩk ·nnn = ΩlΩlΩl · (−nnn) = cos Θl for all 1 ≤ k ≤ Nk and 1 ≤ l ≤ Nl. (61)

Then, the relation (60) is also equal to:

1

π

∫
∂D

lim
Nk→∞

lim
Nl→∞

Nk∑{
k, ΩkΩkΩk·nnn>0

}
Nl∑{

l, ΩlΩlΩl·nnn<0
} ρ(Θk) φ(rrr,ΩΩΩl, ω) ψ(rrr,ΩkΩkΩk, ω) ΩkΩkΩk ·nnnΩlΩlΩl ·nnn ωk ωl dr, (62)

=
1

π

∫
∂D

lim
Nk→∞

lim
Nl→∞

Nk∑{
k, ΩkΩkΩk·nnn>0

}
Nl∑{

l, ΩlΩlΩl·nnn<0
} ρ(Θl) φ(rrr,ΩΩΩl, ω) ψ(rrr,ΩkΩkΩk, ω) ΩkΩkΩk ·nnnΩlΩlΩl ·nnn ωk ωl dr, (63)

=
1

π

∫
∂D

lim
Nk→∞

Nk∑{
k, ΩkΩkΩk·nnn>0

}
(

lim
Nl→∞

Nl∑{
l, ΩlΩlΩl·nnn<0

} ρ(Θl) φ(rrr,ΩΩΩl, ω) ΩlΩlΩl ·nnn ωl
)
ψ(rrr,ΩkΩkΩk, ω) ΩkΩkΩk ·nnn ωk dr, (64)

=

∫
∂D

∫
ΩΩΩ·nnn>0

( 1

π

∫
ΩΩΩ′·nnn<0

ρ(Θ′) φ(rrr,ΩΩΩ′, ω) ΩΩΩ′ ·nnn dΩ′
)
ψ(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr with cos Θ′ = −Ω′Ω′Ω′ ·nnn. (65)

By identification of the right-hand side of (58) with (65), the relation yields:

φ(rrr,ΩΩΩ, ω) =
1

π

∫
ΩΩΩ′·nnn<0

ρ(Θ′) φ(rrr,ΩΩΩ′, ω)
∣∣∣ΩΩΩ′ ·nnn∣∣∣ dΩ′, (66)

for (rrr,ΩΩΩ) ∈ Γ+ with cos Θ′ = −Ω′Ω′Ω′ ·nnn.

Using the boundary conditions (7) in the case of specular reflection, the left-hand side of (58) is now equal to:

∫
∂D

∫
ΩΩΩ′·nnn<0

∫
ΩΩΩ·nnn>0

φ(rrr,ΩΩΩ′, ω) ΩΩΩ′ ·nnn ρ(Θsp) ψ(rrr,ΩΩΩ, ω) δ(ΩΩΩ−ΩspΩspΩsp) dΩ dΩ′ dr, (67)
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where cos Θsp = ΩspΩspΩsp ·nnn > 0 with ΩspΩspΩsp = ΩΩΩ′ − 2(Ω′Ω′Ω′ ·nnn) nnn. In this case, Ω′Ω′Ω′ ·nnn = −ΩspΩspΩsp ·nnn and (67) is equal to:

−
∫
∂D

∫
ΩΩΩ′·nnn<0

∫
ΩΩΩ·nnn>0

ρ(Θsp) φ(rrr,ΩΩΩ′, ω) ΩΩΩ ·nnn ψ(rrr,ΩΩΩ, ω) δ(ΩΩΩ−ΩspΩspΩsp) dΩ dΩ′ dr, (68)

= −
∫
∂D

lim
Nk→∞

lim
Nl→∞

Nk∑{
k, ΩkΩkΩk·nnn>0

}
Nl∑{

l, ΩlΩlΩl·nnn<0
} ρ(Θsp) φ(rrr,ΩΩΩl, ω) ΩkΩkΩk ·nnn ψ(rrr,ΩkΩkΩk, ω) δ(ΩkΩkΩk −ΩspΩspΩsp) dr, (69)

Using (61), it follows that:

= −
∫
∂D

lim
Nk→∞

lim
Nl→∞

Nk∑{
k, ΩkΩkΩk·nnn>0

}
Nl∑{

l, ΩlΩlΩl·nnn<0
} ρ(Θsp) φ(rrr,ΩΩΩl, ω) ΩkΩkΩk ·nnn ψ(rrr,ΩkΩkΩk, ω) δ(ΩlΩlΩl + ΩspΩspΩsp) dr, (70)

= −
∫
∂D

∫
ΩΩΩ′·nnn<0

∫
ΩΩΩ·nnn>0

ρ(Θsp) φ(rrr,ΩΩΩ′, ω) ΩΩΩ ·nnn ψ(rrr,ΩΩΩ, ω) δ(Ω′Ω′Ω′ + ΩspΩspΩsp) dΩ dΩ′ dr, (71)

= −
∫
∂D

∫
ΩΩΩ·nnn>0

ρ(Θsp) φ(rrr,−ΩspΩspΩsp, ω) ψ(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr. (72)

By identification of the right-hand side of (58) with (72), the relation yields:

φ(rrr,ΩΩΩ, ω) = ρ(Θsp) φ(rrr,−ΩspΩspΩsp, ω) for (rrr,ΩΩΩ) ∈ Γ+ with cos Θsp = ΩspΩspΩsp ·nnn. (73)

Now, let ψ and φ be two functions of the space L2(D). Using integration by parts and divergence theorem, we obtain:

〈
φ
∣∣∣(ΩΩΩc · ∇∇∇)ψ〉

S
=

∫
∂D

φ(rrr, ω) ψ(rrr, ω) ΩΩΩc ·nnn dr −
〈(

ΩΩΩc · ∇∇∇
)
φ
∣∣∣ψ〉

S
. (74)

Then−
(
ΩΩΩc ·∇∇∇

)
is the adjoint of the transport operator

(
ΩΩΩc ·∇∇∇

)
, provided the boundary term vanishes for all ψ ∈ L2(D).

Using the boundary conditions (2), it follows that:

∫
∂Dc

φ(rrr, ω) Υ(rrr, ω) ΩΩΩc ·nnn dr = 0. (75)

Hence, we obtain:

φ(rrr, ω) = 0 almost everywhere for rrr ∈ ∂Dc and φ(rrr, ω) = 0 elsewhere. (76)

Appendix C. Adjoint boundary conditions with the term
〈
Rem − demobs

∣∣∣(Hδψem)
〉
B

Let ψem and φem be two functions of the space L2(D×Σ). Applying integration by parts and the divergence theorem to

the transport operator of the first equation of (30), we obtain:

〈
φem

∣∣∣(ΩΩΩ · ∇∇∇)ψem〉
SA

+
〈
Rem − demobs

∣∣∣(Hψem)
〉
B

=

∫
∂D

∫
Ω=2π

φem(rrr,ΩΩΩ, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr

−
〈(

ΩΩΩ · ∇∇∇
)
φem

∣∣∣ψem〉
SA

+
〈
Rem − demobs

∣∣∣(Hψem)
〉
B
. (77)
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To ensure that −
(
ΩΩΩ ·∇∇∇

)
is the adjoint of the transport operator

(
ΩΩΩ ·∇∇∇

)
, the boundary terms of the right-hand side of (77)

must vanish for all ψem ∈ L2(D × Σ), i.e.:∫
∂D

∫
ΩΩΩ′·nnn<0

φem(rrr,ΩΩΩ′, ω) ψem(rrr,ΩΩΩ′, ω) ΩΩΩ′ ·nnn dΩ′ dr

+

∫
∂D

∫
ΩΩΩ·nnn>0

φem(rrr,ΩΩΩ, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr +
〈
Rem − demobs

∣∣∣(Hψem)
〉
B

= 0. (78)

If ∂D is assumed to be transparent (no reflection at the boundary), the first term of (78) is equal to zero since

ψem(rrr,ΩΩΩ, ω) = 0 for (rrr,ΩΩΩ) ∈ Γ− and:∫
∂D

∫
ΩΩΩ·nnn>0

φem(rrr,ΩΩΩ, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr +
〈
Rem − demobs

∣∣∣(Hψem)
〉
B

= 0. (79)

As (79) has to be satisfied for all ψem ∈ L2(D × Σ), φem(rrr,ΩΩΩ, ω) = 0 for (rrr,ΩΩΩ) ∈ Γ+ \ Γ+
c and using (20) it follows

that:∫
∂Dc

∫
ΩΩΩ·nnn>0

φem(rrr,ΩΩΩ, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr = −
∫
∂Dc

∫
ΩΩΩ·nnn>0

(Rem − demobs)(rrr, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr.

(80)

By identification, we have the following adjoint boundary conditions:

φem(rrr,ΩΩΩ, ω) = −(Rem − demobs)(rrr, ω) for (rrr,ΩΩΩ) ∈ Γ+
c . (81)

If ∂D is assumed to be semi-transparent with diffuse reflection, the first term of (78) is equal to (65) and∫
∂D

∫
ΩΩΩ·nnn>0

( 1

π

∫
ΩΩΩ′·nnn<0

ρ(Θ′) φem(rrr,ΩΩΩ′, ω) ΩΩΩ′ ·nnn dΩ′
)
ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr

+

∫
∂D

∫
ΩΩΩ·nnn>0

φem(rrr,ΩΩΩ, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr +
〈
Rem − demobs

∣∣∣(Hψem)
〉
B

= 0. (82)

with cos Θ′ = −Ω′Ω′Ω′ ·nnn. By identification, the following relation yields:

φem(rrr,ΩΩΩ, ω) =
1

π

∫
ΩΩΩ′·nnn<0

ρ(Θ′) φem(rrr,ΩΩΩ′, ω)
∣∣∣ΩΩΩ′ ·nnn∣∣∣ dΩ′ for (rrr,ΩΩΩ) ∈ Γ+ \ Γ+

c , (83)

and using (20) it follows that:∫
∂Dc

∫
ΩΩΩ·nnn>0

( 1

π

∫
ΩΩΩ′·nnn<0

ρ(Θ′) φem(rrr,ΩΩΩ′, ω) ΩΩΩ′ ·nnn dΩ′
)
ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr

+

∫
∂Dc

∫
ΩΩΩ·nnn>0

φem(rrr,ΩΩΩ, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr

= −
∫
∂Dc

∫
ΩΩΩ·nnn>0

[
1− ρ(Θ)

]
(Rem − demobs)(rrr, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr, (84)

with cos Θ = ΩΩΩ ·nnn. By identification, the following relation yields:

φem(rrr,ΩΩΩ, ω) = −
[
1− ρ(Θ)

]
(Rem− demobs)(rrr, ω) +

1

π

∫
ΩΩΩ′·nnn<0

ρ(Θ′) φem(rrr,ΩΩΩ′, ω)
∣∣∣ΩΩΩ′ ·nnn∣∣∣ dΩ′ for (rrr,ΩΩΩ) ∈ Γ+

c , (85)
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If ∂D is assumed to be semi-transparent with specular reflection, the first term of (78) is equal to (72) and

−
∫
∂D

∫
ΩΩΩ·nnn>0

ρ(Θsp) φem(rrr,−ΩspΩspΩsp, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr

+

∫
∂D

∫
ΩΩΩ·nnn>0

φem(rrr,ΩΩΩ, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr +
〈
Rem − demobs

∣∣∣(Hψem)
〉
B

= 0. (86)

with cos Θsp = ΩspΩspΩsp ·nnn. By identification, the following relation yields:

φem(rrr,ΩΩΩ, ω) = ρ(Θsp) φ
em(rrr,−ΩspΩspΩsp, ω) for (rrr,ΩΩΩ) ∈ Γ+ \ Γ+

c , (87)

and using (20):

−
∫
∂Dc

∫
ΩΩΩ·nnn>0

ρ(Θsp) φem(rrr,−ΩspΩspΩsp, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr

+

∫
∂Dc

∫
ΩΩΩ·nnn>0

φem(rrr,ΩΩΩ, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr (88)

= −
∫
∂Dc

∫
ΩΩΩ·nnn>0

[
1− ρ(Θ)

]
(Rem − demobs)(rrr, ω) ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ dr, (89)

with cos Θ = ΩΩΩ ·nnn. By identification, the following relation yields:

φem(rrr,ΩΩΩ, ω) = −
[
1− ρ(Θ)

]
(Rem − demobs)(rrr, ω) + ρ(Θsp) φ

em(rrr,−ΩspΩspΩsp, ω) for (rrr,ΩΩΩ) ∈ Γ+
c . (90)

Appendix D. Determination of the adjoint variables φ̃exc , φ̃exs , φ̃em

These terms are determined from (30).

〈
φ̃exc

∣∣∣∂R̃exc
∂ψexc

δψexc

〉
B

=

∫
∂Dc

φ̃exc (rrr, ω) δψexc (rrr, ω) dr = 0. (91)

Then,

φ̃exc (rrr, ω) = 0 almost everywhere for rrr ∈ ∂Dc. (92)

In the case of diffuse reflection, from (7) it yields:

〈
φ̃exs

∣∣∣∂R̃exs
∂ψexs

δψexs

〉
BA−

=

∫
∂D

∫
ΩΩΩ·nnn<0

φ̃exs (rrr,ΩΩΩ, ω) δψexs (rrr,ΩΩΩ, ω) dΩ dr

− 1

π

∫
∂D

(∫
Ω′Ω′Ω′·nnn>0

ρ(Θ′) δψexs (rrr,Ω′Ω′Ω′, ω) Ω′Ω′Ω′ ·nnn dΩ′

)(∫
ΩΩΩ·nnn<0

φ̃exs (rrr,ΩΩΩ, ω) dΩ

)
dr = 0 with cos Θ′ = Ω′Ω′Ω′ ·nnn. (93)

In the case of specular reflection, from (7) it yields:

〈
φ̃exs

∣∣∣∂R̃exs
∂ψexs

δψexs

〉
BA−

=

∫
∂D

∫
ΩΩΩ·nnn<0

φ̃exs (rrr,ΩΩΩ, ω) δψexs (rrr,ΩΩΩ, ω) dΩ dr

−
∫
∂D

(
ρ(Θsp) δψ

ex
s (rrr,ΩspΩspΩsp, ω)

)(∫
ΩΩΩ·nnn<0

φ̃exs (rrr,ΩΩΩ, ω) dΩ

)
dr = 0 with cos Θsp = ΩspΩspΩsp ·nnn. (94)
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A solution of Eqs. (93) and (94) is given by φ̃exs (rrr,ΩΩΩ, ω) = 0 for (rrr,ΩΩΩ) ∈ Γ−.

In the case of diffuse reflection, from (12) it yields:

〈
φ̃em

∣∣∣∂R̃em
∂ψem

δψem
〉
BA−

=

∫
∂D

∫
ΩΩΩ·nnn<0

φ̃em(rrr,ΩΩΩ, ω) δψem(rrr,ΩΩΩ, ω) dΩ dr

− 1

π

∫
∂D

(∫
Ω′Ω′Ω′·nnn>0

ρ(Θ′) δψem(rrr,Ω′Ω′Ω′, ω) Ω′Ω′Ω′ ·nnn dΩ′

)(∫
ΩΩΩ·nnn<0

φ̃em(rrr,ΩΩΩ, ω) dΩ

)
dr = 0 with cos Θ′ = Ω′Ω′Ω′ ·nnn. (95)

In the case of specular reflection, from (12) it yields:

〈
φ̃em

∣∣∣∂R̃em
∂ψem

δψem
〉
BA−

=

∫
∂D

∫
ΩΩΩ·nnn<0

φ̃em(rrr,ΩΩΩ, ω) δψem(rrr,ΩΩΩ, ω) dΩ dr

−
∫
∂D

(
ρ(Θsp) δψ

em(rrr,ΩspΩspΩsp, ω)

)(∫
ΩΩΩ·nnn<0

φ̃em(rrr,ΩΩΩ, ω) dΩ

)
dr = 0 with cos Θsp = ΩspΩspΩsp ·nnn. (96)

A solution of Eqs. (95) and (96) is given by φ̃em(rrr,ΩΩΩ, ω) = 0 for (rrr,ΩΩΩ) ∈ Γ−.
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Figure 1: Reconstruction of the fluorescent inclusion. The center of the inclusion is located at (1, 1). The collimated
direction of the source was Ω1

cΩ1
cΩ1
c = (0,−1) with P 1

cP
1
cP
1
c = (0, 2).
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(a) Center of the inclusion located at (1, 1).

(b) Center of the inclusion located at (0.8, 0.8).

(c) Center of the inclusion located at (0.5, 0.5).

(d) Center of the inclusion located at the origin.

Figure 2: Reconstruction of the fluorescent inclusion located at different positions.
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(a) Target region.

(b) Whole domain.

Figure 3: The relative RMSE versus the size and depth of the inclusion.
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(a) Centers of the inclusions located at (−1, 1) and (1, 0.8).

(b) Centers of the inclusions located at (−1, 1) and (1.4, 0).

Figure 4: Reconstruction of two fluorescent inclusions located at different positions.
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Figure 5: Reconstruction of the fluorescent inclusion when 10 % of noise was added to the simulated measurement data.
The center of the inclusion is located at (1, 1).

38



List of Tables
1 The relative RMSE versus the inclusion depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2 The relative RMSE versus the noise level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

39



Position of the center of the inclusion (1,1) (0.8,0.8) (0.5,0.5) (0.0)
Relative RMSE computed over the target region 27.22 % 55.00 % 71.10 % 78.55 %

Relative RMSE computed over the whole reconstructed image domain 36.14 % 45.53 % 54.18 % 54.13 %

Table 1: The relative RMSE versus the inclusion depth.

40



Noise σm = 0 % σm = 3 % σm = 6 % σm = 10 %
Relative RMSE computed over the target region 27.22 % 29.69 % 30.97 % 31.16 %

Relative RMSE computed over the whole reconstructed image domain 36.14 % 39.58 % 49.31 % 63.35 %

Table 2: The relative RMSE versus the noise level.
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