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This article presents a model that aims at computing deformation and simulating fractures. To allow the use of linear elasticity in small displacements for deformation of a brittle object while still enabling any rigid motion, a rigid reference is computed using the Shape Matching method and all displacements are evaluated with respect to this reference. Fractures are handled using a stress tensor computed at each vertex of the object's 3D mesh. Some accelerations are proposed, that allow a faster determination of fracture areas and a fast processing of new connected components.

INTRODUCTION

For a long time, fracture simulation has been one of the main concerns of physically-based animation [START_REF] Terzopoulos | Modeling inelastic deformation : Viscoelasticity, plasticity, fracture[END_REF][START_REF] Norton | Animation of fracture by physical modeling[END_REF]. However, despite the amount of proposed solutions, it remains a tedious process. As far as "rigid" brittle objects are concerned, the fracture simulation consists in computing the (infinitesimal) deformation of the object when subject to external constraints and detecting where a local strain or stress exceeds some threshold. Finite element models using linear elasticity (Hooke's constitutive law) has been proposed in the pioneering work presented in [START_REF] O'brien | Graphical modeling and animation of brittle fracture[END_REF]. However, such an approach and all its derivatives require the (non-linearized) Green/St-Venant deformation tensor which makes them more computationally demanding. Real time finite element methods usually assume that displacements are small and use Cauchy's infinitesimal strain tensor [START_REF] Cotin | Real-time elastic deformations of soft tissues for surgery simulation[END_REF][START_REF] Cotin | A hybrid elastic model allowing real-time cutting, deformation and force-feedback for surgery training and simulation[END_REF]. Since, in rigid bodies, fractures occur upon small deformations, this tensor seems a good choice for the simulation of such objects. Unfortunately, it does not allow the object to rotate (it produces large deformation instead), and rigid displacements cannot directly be taken into account. This limit is crippling for rigid object simulation. In this article, we propose a model that allows both rigid motion computation and strain computation using Cauchy's linear tensor, which makes it welladapted for interactive or real time environments.

In time-critical applications, the fracture process appears as a heavy step of the simulation that should benefit from any solution that allows computation time gains. We therefore highlight a method that avoids the computation of a costly fracture criterion by ignoring places where no fracture is likely to occur. Moreover, since our method explicitly computes rigid motion, it is necessary to handle each connected component of the object separately. However, after a fracture, a simulated object can split into multiple components. Unfortunately, connected component detection is a global topological property that requires a walk through the whole mesh of the object. Ideally, this walk should be proceeded only when new connected component have actually appeared. We thus propose the use of an oracle that avoids, as much as possible, such a walk.

The paper is organized as follows: After the presentation of previous work in Section 2, the model is detailed in Section 3. Section 4 presents how fractures are handled and different process improvements. Finally, Section 5 shows the obtained results before concluding.

PREVIOUS WORK

Fracture simulation relies primarily on deformation computation [START_REF] Nealen | Physically based deformable models in computer graphics[END_REF], but many approaches exist [START_REF] Muguercia | Fracture modeling in computer graphics[END_REF]. Indeed, when a deformation is computed, different criteria can be used to make cracks appear in the structure. Geometric criteria have been proposed, such as an elongation of springs beyond a given threshold [START_REF] Norton | Animation of fracture by physical modeling[END_REF] or an excessive strain tensor value [START_REF] Terzopoulos | Modeling inelastic deformation : Viscoelasticity, plasticity, fracture[END_REF]. Force or stress thresholds can be used as well. Thus, O'Brien and Hodgins proposed a simulation of fracture based on linear elasticity and the computation of a separation tensor at each mesh vertex [START_REF] O'brien | Graphical modeling and animation of brittle fracture[END_REF]. The separation tensor of a vertex is obtained from the stress tensor of the surrounding elements. By considering positive and negative eigenvalues separately, each tensor is separated into a tensile tensor and a compressive one. Tensor components of volumes surrounding a node are associated to create a new node tensor that allows to take into account both tensile and compressive stresses. This method has been extended in various approaches, for instance [START_REF] Pfaff | Adaptive tearing and cracking of thin sheets[END_REF] to simulate 2D tearing and [START_REF] Koschier | Adaptive tetrahedral meshes for brittle fracture simulation[END_REF] for adaptive resolution models. To handle fractures, it is also possible to rely on modal analysis [START_REF] Glondu | Realtime simulation of brittle fracture using modal analysis[END_REF], but this is a global method that can be quite costly, especially for high resolution meshes. Boundary element method have also been used [START_REF] Hahn | High-resolution brittle fracture simulation with boundary elements[END_REF][START_REF] Hahn | Fast approximations for boundary element based brittle fracture simulation[END_REF]. Fractures can also be applied on meshless models [START_REF] Pauly | Meshless animation of fracturing solids[END_REF].

Cracks may be applied wherever a fracture criterion is verified. However, it is possible to focus only on high stress areas, and control cracks to avoid a shattering effect [START_REF] Koschier | Adaptive tetrahedral meshes for brittle fracture simulation[END_REF]. Local geometry is not necessarily adapted to the topological modifications that the mesh should undergo. Some methods propose to virtually cut volumes while keeping well-shaped elements but the used mesh is no longer manifold [START_REF] Molino | A virtual node algorithm for changing mesh topology during simulation[END_REF]. XFEM approaches consider discontinuous element shape functions to represent and simulate fractures [START_REF] Koschier | Robust extended finite elements for complex cutting of deformables[END_REF]. Some interactive methods tend to use predefined crack patterns that locally modify the mesh [START_REF] Müller | Real time dynamic fracture with volumetric approximate convex decompositions[END_REF][START_REF] Chen | Physicsinspired adaptive fracture refinement[END_REF][START_REF] Parker | Real-time deformation and fracture in a game environment[END_REF], but cracks are not "physicallymanaged" in such cases. The solution proposed in [START_REF] Schvartzman | Fracture animation based on high-dimensional voronoi diagrams[END_REF] appears as a compromise where the crack pattern is completely applied at the time of impact (no crack propagation) but is adapted to the deformation energy field in the fracturing body and can be user-controlled.

Different deformable models can be used to find fracture zones, but many approaches rely on continuous mechanics, solved by a finite element method, as in [START_REF] O'brien | Graphical modeling and animation of brittle fracture[END_REF] and subsequent work. Since an object can break due to small displacements, using a linearized, more computationally-efficient, strain tensor is possible, but is not compatible with rotations of the object. The corotational method consists in computing local rotations at each node to extract rotation and focus on deformation only [START_REF] Müller | Stable real-time deformations[END_REF]. This method has been used to simulate fractures (Müller et al., 2004;[START_REF] Chen | Physicsinspired adaptive fracture refinement[END_REF], but is known to produce ghost forces. To avoid such forces, a rotation can be computed, not for every node but for every element. However, in such a case, the fracture criterion should rely on the stress computed for each element (Müller and Gross, 2004) and not on each node. Indeed, a node has several possibly different displacements, one for each surrounding element. Considering a node-based measure of stress can be seen as non-consistent. Approaches based on node stress criteria for corotational FEM models have been used in some work [START_REF] Busaryev | Adaptive fracture simulation of multi-layered thin plates[END_REF] although they lack theoretical backgrounds.

To conciliate computationally-efficient deformation measures and rigid motions, some methods consider that a brittle object deforms and eventually breaks only for given situations. They propose to simulate this object as a perfectly rigid one, but switch to a static computation of (linear) deformation in case of collisions [START_REF] Müller | Real-time simulation of deformation and fracture of stiff materials[END_REF][START_REF] Bao | Fracturing rigid materials[END_REF][START_REF] Liu | Meshless simulation of brittle fracture[END_REF]. It is also the case in [START_REF] Zhu | Simulating rigid body fracture with surface meshes[END_REF] by relying only on a surface mesh to compute both deformation and crack path. Such approaches suppose that only an instantaneous impact can produce fractures. Nevertheless, to simulate a fracture resulting from a progressive deformation (see Figure 7), a dynamic approach should be preferred [START_REF] Glondu | Realtime simulation of brittle fracture using modal analysis[END_REF][START_REF] Koschier | Adaptive tetrahedral meshes for brittle fracture simulation[END_REF]. Anyway, the simulation of a rigid body simulation (with only 6 degrees of freedom) is several orders of magnitude faster to compute than a finite element mesh. In time-critical applications, the computation time of a simulation step should be kept as constant as possible. It cannot be envisaged to switch from a rigid body to a finite element model without expecting a high variation of the latency of the simulation system. Instead, for such applications, we think that simulating a breakable rigid body, at every time step and not only time step with collisions, using a low-deformable model is acceptable.

Indeed, finite element methods for small displacements appear to be fast enough to allow real-time interactions [START_REF] Cotin | A hybrid elastic model allowing real-time cutting, deformation and force-feedback for surgery training and simulation[END_REF][START_REF] Müller | Stable real-time deformations[END_REF]. To deal with rotations, rigid motions should be computed by an additional, coupled, model. The pioneering work in [START_REF] Terzopoulos | Physically based models with rigid and deformable components[END_REF] has shown how to combine rigid body laws of motion with linear deformations. Unfortunately, the equations of rigid motion and deformation are coupled and there-fore hard to solve in real time. The Shape Matching method aims at finding the minimum deformation between a given shape and a modification of this shape. This method has been used in Computer Graphics to simulate the deformation of a body by comparing the position of each node to its corresponding reference node in the undeformed body and adding a force which tends to minimize the difference [START_REF] Müller | Meshless deformations based on shape matching[END_REF]. In practice, this approach consists in inserting a spring between these two positions. The resulting simulation is fast and allows some special animation effects, but is usually not realistic. Note that, while observing a moving deformable object, the separation between the rigid motion and the deformation of the body is quite arbitrary. Shape Matching appears as a way to define, by minimizing deformation, the rigid reference component. This can appear as a nonphysical approach, since the motion of this rigid component is not guaranteed to be continuous (motion is not taken into account in the computation, only positions are relevant with this method). However, it is possible to smooth the motion of the rigid component to make it look like continuous. Shape Matching must be applied separately for each connected component of the object. More generally, any method that computes rigid motions explicitly, should precisely detect each new detected component after a fracture [START_REF] Müller | Real-time simulation of deformation and fracture of stiff materials[END_REF].

To overcome the above-mentioned limitations, this paper presents an approach that:

• Relies on linear elasticity to compute the deformation of a brittle object. Displacements are guaranteed to be small by optimizing the position of a rigid reference from which displacements are computed.

• Uses an accelerating technique based on Gerschgorin's theorem to find fracture locations rapidly.

• Uses an oracle based on "vertex splitting" to detect the appearance of any new connected component and update the computation of the rigid reference of each connected component.

AN ALMOST-RIGID DEFORMABLE MODEL

In our model, the deformation is considered to be as small as possible (remember that most brittle objects appear to be rigid at the macroscopic scale). In other words, most energy of the system should be spent for rigid motion, while the remaining energy should be used for deformation. At each time step, position and orientation corresponding to the rigid motion are both determined using the Shape Matching method and allow to define a, so-called, "rigid reference". In [START_REF] Müller | Meshless deformations based on shape matching[END_REF], the Shape Matching method was mainly used to avoid the use of a mesh, by supplying a mass/spring model with a fast way to handle its volumetric behavior. On the contrary, in our approach, the Shape Matching aims at computing the position and orientation of a rigid reference to compute a minimum deformation and maintaining, as long as possible, the hypothesis of small displacements required by the linear elasticity continuous model.

Figure 1 shows, for a block supported by immovable obstacles placed at its ends, both its deformed state and rigid reference. 

Principles

Our model is a tetrahedral mesh where each vertex i is characterized by a current position x i and a rest position x 0 i (defined in an undeformed and centered configuration). At each time step, the process consists in: 1. Applying Shape Matching with the current and rest positions of the mesh vertices to obtain both position (a translation vector τ) and orientation (a rotation matrix R) of the rigid reference, 2. For each vertex, computing the reference position

x ref i = Rx 0 i + τ and its displacements as

d i = x i - x ref i , 3.
Calculating the forces applied to each vertex by each tetrahedron, using an explicit finite element approach, 4. Summing all the forces applied to vertices, inferring their accelerations and integrating them twice, 5. Handling fractures.

An explicit finite element method is used [START_REF] Müller | Real-time simulation of deformation and fracture of stiff materials[END_REF] to solve the equations of linear elasticity based on Cauchy's infinitesimal strain tensor. Let C be the 6 × 6 stress-strain matrix based on Young modulus and Poisson coefficient. For each tetrahedron (e), both 6 × 12 strain-displacement matrix B (e) and 12 × 12 rigidity matrix K (e) are computed during a pre-processing phase:

K (e) = B (e) T CB (e) (1) 
At each time step and for each tetrahedron (e), the forces exerted on its vertices are computed as:

f (e) = K (e) d (e) (2) 
where d (e) is a vector that gathers the displacements of the four vertices, and f (e) gathers the forces resulting from the deformation of the tetrahedron and applied on the vertices.

The use of explicit or semi-implicit integration schemes is theoretically possible, but in the case of fractures, very small time step (microseconds or tenths of microseconds) should be chosen. Indeed, to simulate fracture and avoid large deformation, a high stiffness (i.e. Young modulus) is required which directly impacts stability. Such small time steps are not compatible with interactivity time constraints. The implicit Euler method combined with the Newton-Raphson method to solve non linear systems [START_REF] Baraff | Large steps in cloth simulation[END_REF] allows large time steps but can result in a highly-damped behavior for stiff systems. Recently, exponential methods have been proposed [START_REF] Michels | A stiffly accurate integrator for elastodynamic problems[END_REF]. These approaches allow the resolution of stiff equations in a fast and robust way while not loosing as much mechanical energy as implicit methods. In our case, the implicit Euler system is solved as proposed in [START_REF] Hilde | A fast implicit integration method for solving dynamic equations of movement[END_REF]. This method is mainly dedicated to small time steps and does not require the computation of the Jacobian matrix of the system while still allowing a good control of the convergence of the system resolution. Other integration methods such as implicit or exponential ones could be used, for more efficient computation times for instance, but not with the intent of reducing the time step.

Fractures are handled as in [START_REF] Koschier | Adaptive tetrahedral meshes for brittle fracture simulation[END_REF]. Note that after one or more fractures, multiple connected components may appear. Shape Matching must therefore be applied on each connected component (R and τ are computed for each one), so a precise detection of any new component is mandatory. In our implementation, all the vertices that belong to hte same connected component share the same id. The various simulation steps that depend on connected components (for instance, the deformation computation) are slightly modified, to take into account the data related to the concerned connected component, using the id stored in vertices.

The overall algorithm for computing the behavior of a body is given in algorithm 1. 

Using Shape Matching

As explained in [START_REF] Müller | Meshless deformations based on shape matching[END_REF], for a given connected component, the position of its rigid reference is defined as the position of the center of mass G of its point cloud:

x G = ∑ N i=1 m i x i ∑ N i=1 m i (3)
where N is the number of vertices in the mesh, m i the mass of each of them and x i their position. The rotation is extracted from the following matrix:

A = N ∑ i=1 p i x 0 i T (4)
where p i is the relative position of the i th vertex with respect to the center of mass, that is

p i = x i -x G .
The computation is shown in algorithm 2. Note that there is no loop such as "for each element of a connected component", which could cause computation time overheads due to dedicated walk through the topological structure of the simulated body.

This method is basically an approach that computes a position that minimizes the length of all p i (grouped in a single energy function). Unfortunately, the method ignores the history of motion. Therefore, the temporal continuity of the rigid reference's orientation cannot be ensured. In practice, when the It turns out that only isolated tetrahedra (in other words, connected components with only four vertices), exhibit such a discontinuous behavior. We have investigated a first solution that considers isolated tetrahedra as rigid, since they are atomic elements of the initial mesh. This can be done in our algorithm using only a slight modification, by considering that rigid bodies can be simulated using a constrained deformable model [START_REF] Van Overveld | All you need is force: a constraint-based approach for rigid body dynamics in computer animation[END_REF]. More precisely, the vertices are first moved according to external forces, then Shape Matching is computed for the tetrahedron, as done for any connected component of the model. After that step, current vertex positions x i in isolated tetrahedra are projected onto their corresponding reference position (x ref i ). Velocity is adapted accordingly. This solution has a drawback: Isolated pseudo-rigid tetrahedra tend to stop rotating quite quickly. Indeed, angular momenta are not explicitly maintained by this approach, rotations result from the difference of velocities of the vertices of the tetrahedra. Since vertices are forced to keep their tetrahedron undeformed, they tend to loose velocity and therefore, the orientation of their tetrahedron steadies rapidly.

We have investigated another solution to compute rotation of isolated tetrahedra, by using a QR decomposition as proposed in [START_REF] Nesme | Efficient, physically plausible finite elements[END_REF]. This method provides better stability for tetrahedra (i.e. rotation matrix continuity), provided that the QR decomposition is handled with the same vertex order between two steps.

Display

Even if a high Young modulus is applied, the object can still exhibit visible deformations due to the computation time step which is too large for fractures (see Figure 1). To guarantee an accurate display of the object, the rigid reference can be displayed instead of the deformable body itself. This approach works well in practice, but has an impact on the collision process of the simulation, if overlaps must be avoided. Fortunately, since the reference body is not physically simulated, any modification of position and orientation can be applied arbitrarily, for display only. Any correction method that controls the position and orientation of a rigid body, such as an optimization algorithm to minimize overlap, can therefore be applied.

In our simulation, no correction was however necessary, since overlaps were low enough in practice. Shape Matching is applied independently on each connected component. Should a new connected component appear after a fracture, it is unlikely that its newly-computed position and orientation are continuous with respect to the position and orientation it had previously, when it was still connected. Figure 2 illustrates this discontinuity problem. To avoid the discontinuity of display, an interpolation between its previous state and its newly-computed one is applied. More precisely, a current state is first computed, based on its original connected component. This can be easily made by applying Shape Matching on x ref i positions. Next, a target state is computed by applying Shape Matching on {x i } positions. After a fracture, current and target states differ. Target state should be used for the display of its corresponding connected component, but its position may be too far from the position where it was previously located. Current state corresponds to the location of the connected component at the fracture time. During the following time steps, we choose to modify the position and orientation of the current state so that it tends to reach the target state. Although a proportionalderivative controller could be used for this purpose, only a simple proportional controller has been used in our implementation and gives satisfying results in practice. Let τ cur and τ target be the current and the target translations respectively. Then τ cur is updated to τ cur + α(τ targetτ cur ), where α is a small value (typically 0.1 or less). A similar approach is used for rotation, based on quaternions, since they offer a convenient way to interpolate rotations [START_REF] Shoemake | Animating rotation with quaternion curves[END_REF]. If q is a quaternion representing the rotation that transforms the current orientation into the target orientation of a connected component, the quaternion q + 1 represents (after renormalization) half this rotation. By repeating this simple formula several times, we can quickly divide the angle of rotation between current and target orientation by any power of 2. Accordingly, the α value used for translation is chosen as the corresponding negative power of 2.

Note that the target state is also updated at each time step, since all x i positions change. A more general approach, where a rigid reference is simulated as a perfect rigid body, linked by two springs, one linear and the other one angular, to the deformed configuration, and subject to collisions constraints is another way to compute the current state at each time step. This approach is physically-based but results in a 2 ndorder control of the current state used for display, so possibly an undesirable latency. 

FRACTURE PROCESS

Due to the linear interpolation functions used by the finite element method, the stress tensor is constant all over each tetrahedron and can be computed as:

σ (e) = CB (e) d (e)
(5) As proposed in [START_REF] Koschier | Adaptive tetrahedral meshes for brittle fracture simulation[END_REF], a node stress tensor can be computed for each vertex as:

σ = ∑ (e) m (e) σ (e) ∑ (e) m (e) (6) 
where m (e) is the mass of the element (e). Here, the expression has been slightly modified compared to the original article, but the result is the same. Our notation only aims at showing that it is basically a weighted average value of surrounding element stress tensors. Note that, if each tetrahedron provides each of its vertices with a quarter of its mass (mass lumping technique), the denominator of equation 6 corresponds to the mass of the concerned node multiplied by 4. A fracture is applied on some vertex when at least one eigenvalue of its stress tensor exceeds a given threshold ξ. A fracture plane is built using the related eigenvector as its normal. Each surrounding tetrahedron is marked as "positive" or "negative" depending on the side of the plane where its center is positioned. Any face that is adjacent to a pair of tetrahedra with different signs is split to separate them. The whole process aims at splitting a fan of faces around the "fracture vertex" to make it split. If a fracture generates new connected components, these components must be identified to allow distinct Shape Matching applications when needed. This represents the last step of the fracture process.

To accelerate this process, two lines of approach have been considered: a fast location of fracture zones and a fast identification of new connected components. The algorithm 3 give an overview of the fracture process. 

Finding fracture location

One important time loss during fracture location comes from the necessity to compute eigenvalues of stress tensors, merely to determine if one of them may exceed some threshold ξ. In mechanical engineering, this step is often sped up using the Gerschgorin's theorem which, to our knowledge, has never been proposed to the Computer Graphics community. This theorem states that an upper bound of the eigenvalues of a square matrix M can be computed considering the sum of absolute values of some of its terms. In our case, M is a symmetric matrix, so the upper bound can be found by computing the maximum value of three terms b i , one for each column i:

b i = M ii + ∑ j =i M ji (7)
After calculating the stress tensor of a vertex, the associated b i values are computed. If all of them remain below the fracture threshold, no fracture appears at this vertex and the eigenvalues computation can be avoided. On the contrary, if the test fails, the eigenvalues must be computed since, if at least one of them is greater than the given threshold, its associated eigenvector must be known for the following steps. Note that the overall complexity is small, since only 6 floating point additions, 6 absolute values and 3 comparisons are necessary to complete Gerschgorin's test at a vertex.

Connected Component Determination

Each connected component of the body is characterized by a rigid reference, defined as a current state (position and orientation) and a target state. When a fracture occurs, one or more new connected components might appear, which should be clearly identified to update their states. Connected components identification requires to scan all the elements (for instance vertices) of the current connected component and mark them (more precisely, in our implementation, "marking vertices" means providing them with the id of their connected component). If some elements are not marked (i.e. these elements still store the id of their connected component before fracture), that means that another connected component must be identified. Reversely, if all elements are marked, that means that no other connected component exists. This is a time-consuming process (linear with respect to the number of elements to be marked, i.e. vertices or volumes) that should be avoided when no new connected component is created (in other words, when a first walk would uselessly mark every element).

We propose to use an oracle that can test this case, in order to speed up the overall component identification. Of course, it must be efficient enough to avoid false positive cases as much as possible (that is, cases where the oracle announces new connected components whereas no such component has appeared actually). Moreover, the oracle should be fast enough: If its computation algorithm is too complex, it will not be able to compete with a complete walk through the structure. We found an efficient oracle by considering how many vertices split after each face split. Indeed, when two adjacent tetrahedra are separated, the support edges and vertices of the face must necessarily split to allow the creation of a new connected component. In Figure 3, it is shown that the three vertices and three edges of a triangular face actually split when a new connected component appears. Note that if three vertices split, then the three edges necessarily split. Therefore, after a face split, the vertices and only the vertices of the face are checked for a split. If, at least, one of these does not split, it is ensured that no new connected component has been created. On the contrary, if the three vertices split, then a new connected component may appear, and this should be checked further. Note that the vertex split criterion must be checked after the split of each face of a fan and not once the overall split is over. An appropriate topological model should be used to ensure that the vertex split is tested effectively [START_REF] Lienhardt | N-dimensional generalized combinatorial maps and cellular quasimanifolds[END_REF]. Note that both criteria are local whereas the connected property is global. It cannot be expected that our oracle produces only right predictions, false positives are still possible: For instance, such a phenomenon appears when two parts of an object are locally separated, but are still joined if the entire structure is considered, as shown in Figure 4. When using the vertex split oracle, face ordering may sometimes influence the final result and produce false positive cases,as shown in Figure 5. For each subfigure, the red arrow shows the last face that is split. In (a), only two vertices (green and yellow) split and in (b), only one vertex (yellow) splits. In such cases, the oracle is right and states that there cannot be a new connected component (which is the case: the surrounding parts remain adjacent, for instance around the black vertices, since these vertices do not split). In (c), how-ever, the last face makes three vertices split (red, green and yellow ones). In this case, the oracle is false, since it concludes that a new connected component has appeared. Note that, if only one other face remained to be split at that time, the central vertex of the fan would not split (it splits only when the last face is split) and the oracle would not conclude that a new connected component appears. As a consequence, faces of fans with an edge at the surface of the object (as it is the case in the figure) should be checked first if possible, because these faces produces false positive if split at the end of the process. The algorithm 4 show the complete split process. 

RESULTS

Several examples have been simulated and are represented in Figures 6 and7. In both cases, the simulated object is the same. The first one (Figure 6) corresponds to a classical fracture scenario where rigid objects are shot toward a breakable one. This example shows the shattering effect obtained when a fracture is applied wherever the fracture criterion is true. The second case study (Figure 7) corresponds to a tension that progressively deforms an object so that it eventually breaks. First, this example shows that fractures may appear well after a collision has occurred, so the dynamic approach of fracture is mandatory. Second, it illustrates that the display of the rigid reference is very useful. Indeed, in practice, the deformable mesh undergoes visible deformations before fracturing (this is the reason why the object does not break immediately). The display of the deformable mesh would not have produced the same visual effect. Another case study aims at simulating a more complex object, namely the Stanford Bunny (Figure 8). The mesh parameters used by the simulation are given in table 1. c), if the pointed face is the last face to be split, at least one of its vertex (in black) does not split. In (d), if the pointed face is the last face to be split, the oracle predicts a new connected component as its three vertices (red, yellow and green) split. This face, with an edge at the surface of the mesh, should be split when at least one other face of the fan has not been split yet.

In these scenarios, collision and self-collision detection has been handled using an approximative but fast approach. They were mainly based on a penalty method: Any environment obstacle is approximated by a force field (for instance, ground or rigid bodies). Every tetrahedron of the breakable body is bounded by a sphere that also produces a repulsive force field for points located inside it. Each vertex is checked against all the force fields (a regular grid is used for speeding up this step). Collision between vertices and tetrahedron force fields are taken into account only if they do not belong to the same connected component (this is quickly determined as each vertices knows the id of its connected component). A more precise but efficient collision detection and response could be used [START_REF] Glondu | Fast collision detection for fracturing rigid bodies[END_REF], but requires to be adapted to deformable bodies if used in our approach.

Note that the Broyden method to solve the implicit integration equations does not converge as quickly as a Newton-Raphson resolution. Note also that no parallelization (CPU multithreading or GPU) has been applied on the algorithms, except the use of SIMD processor instructions for FEM computations. We are completely aware that these times could be largely improved as most similar approaches are usually based on GPU programming. However, the frac- ture process is hard to parallelize in practice (because of conflict access to the topological structures of the object). This is why we did not worry on parallelizing the simulation itself to get a better performance and chose to focus on fracture only.

The average and maximum simulation times are shown in Table 2 for both corotational and our shapematching-based method. These times correspond to a complete time step, including collision and self-collision detection. The same object with the same physical properties are simulated in both methods. As shown, the corotational method is always slower than ours. This mainly shows that the rotations for each volume element always require more time to compute than a shape-matching on the connected components. Applying fractures on a simulated model usually implies a computation time overhead, about 20% for simple models but that can be up to 50% for the stanford bunny (which involves a lot of multiple synchroneous fractures). The maximum computation time when applying fractures is also mentioned in the table, although we do find this time very significant. Indeed, we have noticed that this maximum time usually occurs once, at the beginning of a fracturing phase, and is not reached anymore during the subsequent fractures.

Table 2: Average and maximum simulation times obtained for our different scenarios using corotational and our method without fracture (i.e. with an unreachable fracture threshold). For our method, the average and maximum computation times with fractures is also given. All these times include collision and self-collision detection. The effect of the different accelerations have been evaluated. First, the impact of Gerschgorin's test has been measured. This test is, in average, 3 times faster than an immediate computation of the eigenvalues. Table 3 shows the effectiveness of this test, since about 80% or more successful tests actually correspond to a large eigenvalue that implies a fracture.

The split vertex oracle for new connected components has also been tested. In table 3, the efficiency, that is the ratio of true positives, for the split-vertex oracle has been measured, in our different test cases. It can be seen that, for over 90% of cases, the oracle is right. So the oracle is a satisfactory way to detect if some new component has appeared. Note also that, in all our experiments, the oracle has never produced any false negative.

Table 4 shows the computation times dedicated to the fracture process. Several comments can be made. First, the worst case for the basic rupture process, that, by default, searches for new connected components, occurs when no new connected component is created. Indeed, all the structure must be (uselessly) walked through to find this result. This proves that an oracle that speeds up the new connected component detection is really of interest. Next, the additional cost of using split-vertex oracle is measured by comparing the computations times in case of new connected component creation using the oracle or not. This cost represents of at most 2% of computation time. But, this cost is clearly justified, because, when no new component appears, the rupture time can be reduced by, at least, 55%, and the global reduction can reach 67%. To provide a meaningful comparison, we have implemented the same node tensor fracture criterion on a corotational FEM (even if, in previous work section, we pointed out that this approach was lacking a theoretical background). This implementation also uses the Gerschgorin's theorem to speed up the broadphase that seeks for fracture nodes. We found that corotational FEM tends to produce lower node stress tensors (which is quite expected: Node displacements are lower since element rotations are cancelled). As a consequence, the shattering effect is reduced and the final animation is quite different from the one obtained with our method based on Shape Matching.

LIMITATIONS

The obtained fracture results heavily depend on the initial tetrahedral mesh of the simulated object. Remeshing techniques could be used to adapt the mesh in the fracture zone, as several approaches have already proposed [START_REF] Su | Energy stability and fracture for frame rate rigid body simulations[END_REF][START_REF] Müller | Real time dynamic fracture with volumetric approximate convex decompositions[END_REF]. These techniques are compatible with our method, provided that the rest positions and mass of the new vertices that appear after a remeshing are determined and the mechanical data of elements (stiffness and strain/deformation matrices) are updated accordingly, which can be done at the price of a little computation time. These techniques apply on a given connected component, so no side-effect on existing connected components are expected during the remeshing.

We actually investigated a local remeshing solution based on tetrahedron subdivisions based on Loop scheme as proposed in [START_REF] Meseure | Adaptive resolution for topology modifications in physically-based animation[END_REF]. This kind of remeshing is adapted to physical simulation since the shape of most elements is preserved, although scaled by a factor 1/2. This solution works well in practice for deformable body simulation, however, it is not adapted to fracture. Indeed, after a subdivision, the strain-displacement matrix B (e) of each new elements is scaled by a factor 2 and its volume, and consequently its mass, by a factor 1/8. The node stress tensor (Equation 6) is directly impacted by such modifications and the choice of mass as a weighting coefficient is no longer adapted if the resolution of the mesh is not uniform. Without a meaningful computation of node stress tensors, the criterion used to detect fracture (a high eigenvalue) is no longer relevant. As proposed in [START_REF] Pfaff | Adaptive tearing and cracking of thin sheets[END_REF] in 2D, a more appropriate tensor, that is, independent on mesh resolution, should be computed. More investigations are needed.

CONCLUSION AND FUTURE WORK

This paper has presented a model that allows the computation of small deformations of a brittle object while still allowing rigid motions. To speed up fracture management, the Gerschgorin's test has been proposed to easily locate fracture zones. A simple oracle is also used to prevent the execution of heavy algorithms needed in case of new connected components. These improvements provide interesting computation times, although no parallelization has been exploited to compute deformations. It is definitely one of our major goals, although the fracture process itself is not really parallelizable. We also want to improve visualization, by displaying more complex fracture surfaces as done in [START_REF] Koschier | Adaptive tetrahedral meshes for brittle fracture simulation[END_REF] (it would only be a visual artifact, with no cost on the fracture process itself). Furthermore, one remaining problem concerns the number of cracks (that is fan splitting) that can be handled in one step. Indeed, 

Figure 1 :

 1 Figure 1: Model/reference coupling: A deformable model (wireframe) is computed using dynamics laws and a rigid reference (filled faces) is computed using Shape Matching.

Figure 2 :

 2 Figure 2: Discontinuity issue with Shape Matching. (a) A red block is deformed (red dotted line) and Shape Matching provides a position of the rigid reference (solid line). (b) A fracture occurs and the object is split. Shape Matching is separately applied on both connected components and results in a discontinuous state with respect to their positions in (a).

Algorithm 3 :

 3 findFractures() // Compute each tetrahedron stress tensor and report it to its vertices foreach Tetrahedron t do Vec12 d = getVertexDisplacements(t) ; t.σ = matC × t.matB × d ; foreach Vertex v of t do v.σ+ = t.mass × t.σ ; end // Average each vertex stress tensor foreach Vertex v do v.σ/ = (4 × v.mass) ; end // Check where a fracture occurs foreach Vertex v do if gerschgorinTest(v.σ, ξ) then Vec3 eigenval = eigenValues(v.σ) ; if max(eigenval) ≥ ξ then split(v, eigenvec(max(eigenval)) ; end end

Figure 3 :

 3 Figure 3: Oracle to detect if one new connected component appears after a face split. In (a), only one vertex and two edges split, so there is no new connected component. In (b), three vertices and three edges split, so one new connected component may appear.

Figure 4 :

 4 Figure 4: False positive of any local oracle. A local separation has occured, so any local oracle predicts a new connected component, but the separated faces still belong to the same connected component (initially topologicallyequivalent to a torus).

Figure 5 :

 5 Figure 5: False positive of split vertex oracle. (a) represents a series of adjacent edges (in magenta) at the mesh surface (in blue). A fan (dotted lines) is defined around a vertex (in yellow), inside the mesh, just below the surface faces. In (b) and (c), if the pointed face is the last face to be split, at least one of its vertex (in black) does not split. In (d), if the pointed face is the last face to be split, the oracle predicts a new connected component as its three vertices (red, yellow and green) split. This face, with an edge at the surface of the mesh, should be split when at least one other face of the fan has not been split yet.

Figure 6 :

 6 Figure 6: Two balls striking a monolith.

Figure 7 :

 7 Figure 7: A brittle block collapses under its own weight.

Table 1 :

 1 Different test scenarios and their characteristics

	Scenarios	#Tetras #Vertices
	Struck monolith	413	174
	Strained block	413	174
	Falling bunny	6142	1363

Table 4 :

 4 Computation times for the rupture process in different scenarios with and without split-vertex oracle, for ruptures that create new connected components (CC) or not.

		Without Oracle (ms)	With Oracle (ms)
	Scenarios	new CC	no new CC	new CC	no new CC
	Struck monolith	0.97	1.2	0.99	0.5
	Strained block	0.96	1.06	0.98	0.48
	Falling bunny	30.73	32.3	31.2	10.66

Table 3 :

 3 Efficiency of Gerschgorin's test and split-vertex oracle for different scenarios. The third column represents the number of fan splits. The fourth column represents the number of fractures that actually result in the creation of new connected components (CC) and the corresponding ratio. The fifth column represents the number of cases where the split-vertex oracle predicts new connected components, the corresponding ratio, as well as the efficiency calculated by checking if new connected components actually appeared. crack is allowed per simulation step, no shattering effect occurs in general. The number of handled cracks should however be bounded.

		Gerschgorin #fractures #CC creations	#new CC predictions
	Scenarios	efficiency		#	ratio	#	ratio	efficiency
	Struck monolith	85%	198	112 56.6% 119 61.1%	94.1%
	Strained block	92%	190	104 54.7% 111 58.4%	93.7%
	Falling bunny	78%	1639	759 46.3% 833 50.8%	91.1%
	if only one						
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