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Abstract

In this paper, global sensitivity analysis (GSA) and uncertainty quantification (UQ) have been

applied to the problem of natural convection (NC) in a porous square cavity. This problem is widely

used to provide physical insights into the processes of fluid flow and heat transfer in porous media. It

introduces however several parameters whose values are usually uncertain. We herein explore the effect

of the imperfect knowledge of the system parameters and their variability on the model quantities of

interest (QoIs) characterizing the NC mechanisms. To this end, we use GSA in conjunction with the

polynomial chaos expansion (PCE) methodology. In particular, GSA is performed using Sobol’ sensi-

tivity indices. Moreover, the probability distributions of the QoIs assessing the flow and heat transfer

are obtained by performing UQ using PCE as a surrogate of the original computational model. The

results demonstrate that the temperature distribution is mainly controlled by the longitudinal thermal

dispersion coefficient. The variability of the average Nusselt number is controlled by the Rayleigh

number and transverse dispersion coefficient. The velocity field is mainly sensitive to the Rayleigh

number and permeability anisotropy ratio. The heterogeneity slightly affects the heat transfer in the

cavity and has a major effect on the flow patterns. The methodology presented in this work allows

performing in-depth analyses in order to provide relevant information for the interpretation of a NC

problem in porous media at low computational costs.

Keywords: Global sensitivity Analysis – Natural convection problem – Porous media – Polynomial

Chaos Expansions

1 Introduction

Natural convection (NC) in porous media can take place over a large range of scales that may go from

fraction of centimeters in fuel cells to several kilometers in geological strata Nield and Bejan (2012).

This phenomenon is related to the dependence of the saturating fluid density on the temperature
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and/or compositional variations. A comprehensive bibliography about natural convection due to ther-

mal causes can be found in the textbooks and handbooks by Nield and Bejan Nield and Bejan (2012),

Ingham and Pop Ingham and Pop (2005), Vafai Vafai (2005) and Vadasz Vadász (2008). Comprehen-

sive reviews on NC due to compositional effects have been provided by Diersch and Kolditz Diersch

and Kolditz (2002), Simmons et al Simmons et al. (2001), Simmons Simmons (2005) and Simmons

et al Simmons et al. (2010). NC in porous media can be encountered in a multitude of technological

and industrial applications such as building thermal insulation, heating and cooling processes in solid

oxide fuel cells, fibrous insulation, grain storage, nuclear energy systems, catalytic reactors, solar power

collectors, regenerative heat exchangers, thermal energy storage, among others Nield and Bejan (2012);

Ingham and Pop (2005); Ingham (2004). Important applications can be also found in hydro-geology

and environmental fields such as in geothermal energy Al-Khoury (2011); Carotenuto et al. (2012),

enhanced recovery of petroleum reservoirs Almeida and Cotta (1995); Riley and Firoozabadi (1998);

Chen (2007), geologic carbon sequestration Farajzadeh et al. (2007); Class et al. (2009); Islam et al.

(2013, 2014); Vilarrasa and Carrera (2015), saltwater intrusion in coastal aquifers Werner et al. (2013)

and infiltration of dense leachate from underground waste disposal Zhang and Schwartz (1995).

Numerical simulation has emerged as a key approach to tackle the aforementioned applications in

the last two decades. This is today a powerful and irreplaceable tool for understanding and predict-

ing the behavior of complex physical systems. The literature concerning the numerical modeling and

simulation of convective flow in porous media is abundant Holzbecher (1998); Pop and Ingham (2001);

Viera et al. (2012); Miller et al. (2013); Su and Davidson (2015); Kolditz et al. (2015). The NC in

porous media is usually described by the conservation equations of fluid mass, linear momentum and

energy, respectively. Either Darcy or Brinkman models are used as linear momentum conservation

laws. Darcy model is a simplification of the Brinkman model by neglecting the effect of viscosity. This

simplification is valid for low permeable porous media. For high permeable porous media Brinkman

model is more suitable because the effective viscosity is about 10 times the fluid viscosity Givler and

Altobelli (1994); Falsaperla et al. (2012); Shao et al. (2016). In the traditional modeling analysis of

NC in porous media, the governing equations are solved under the assumption that all the parameters

are known. However, in real applications, the determination of the input parameters may be difficult

or inaccurate. For instance, in the simulation of geothermal reservoirs, the physical parameters (i.e.

hydraulic conductivity and porosity) are subject to significant uncertainty because they are usually ob-

tained by model calibration procedures, that are often carried out with relatively insufficient historical

data O’Sullivan et al. (2001).

The uncertainties affecting the model inputs may have major effects on the model outputs. Typical

examples about the significance of these effects (that are not exhaustive) can be found in the design

of clinical devices or biomedical applications where small overheating can lead to unexpected serious

disasters Davies et al. (1997); Ooi and Ng (2011); Wessapan and Rattanadecho (2014). Hence, the

evaluation of how the uncertainty in the model inputs propagates and leads to uncertainties in the

model outputs is an essential issue in numerical modeling. In this context, uncertainty quantification

(UQ) has become a must in all branches of science and engineering Brown and Heuvelink (2005);

Sudret (2007); De Rocquigny (2012). It provides a rigorous framework for dealing with the parametric

uncertainties. In addition, one wants to quantify how the uncertainty in the model outputs is due to

the variance of each model input. This kind of studies is usually known as sensitivity analysis (SA)

Saltelli (2002). UQ aims at quantifying the variability of a given response of interest as a function
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of uncertain input parameters, whereas GSA allows to determine the key parameters responsible for

this variability. UQ and GSA are usually conducted by a multi-step analysis. The first step consists

on the identification of model inputs that are uncertain and modelling them in a probabilistic context

by means of statistical methods using data from experiments, legacy data or expert judgment. The

second step consists in propagating the uncertainty in the input through the model. Finally, sensitivity

analysis is carried out by ranking the input parameters according to their impact onto the prediction

uncertainty. UQ and GSA have proven to be a powerful approach to assess the applicability of a

model, for fully understanding the complex processes, designing, risk assessment and making decisions.

They have been extensively investigated in the literature (e.g. Saltelli et al. (1999); Sudret (2008);

Xiu and Karniadakis (2003); Fesanghary et al. (2009); Blackwell and Beck (2010); Ghommem et al.

(2011); Sarangi et al. (2014); Zhao et al. (2015); Mamourian et al. (2016); Shirvan et al. (2017); Rajabi

and Ataie-Ashtiani (2014)). In the frame of flow and mass transfer in porous media, UQ and GSA

have been applied to problems dealing with saturated/unsaturated flow Younes et al. (2013), solute

transport Fajraoui et al. (2011); Ciriello et al. (2013) and density driven flow Rajabi and Ataie-Ashtiani

(2014); Riva et al. (2015).

A careful literature review shows that the investigation of sensitivity analysis for NC in porous media

has been limited to some special applications Shirvan et al. (2017). To the best of our knowledge, these

analyses have never been performed for a problem involving NC within a porous enclosure. Yet, NC

in porous enclosure has been largely investigated for several purposes Oztop et al. (2009); Das et al.

(2017) and several authors have contributed important results for such a configuration Bejan (1979);

Prasad and Kulacki (1984); Beckermann et al. (1986); Gross et al. (1986); Moya et al. (1987); Lai and

Kulacki (1988); Baytaş (2000); Saeid and Pop (2004); Saeid (2007); Oztop et al. (2009); Sojoudi et al.

(2014); Chou et al. (2015); Mansour and Ahmed (2015).

Hence, keeping in view the various applications of NC in porous enclosure and the importance of

uncertainty analysis in numerical modeling, a complete analysis involving GSA and UQ study is de-

veloped in this work to address this gap. The considered problem deals with the square porous cavity.

Such a problem is widely used as a benchmark for numerical code validation due to the simplicity

of the boundary conditions Walker and Homsy (1978); Manole and Lage (1993); Misra and Sarkar

(1995); Baytaş (2000); Alves and Cotta (2000); Fahs et al. (2015a); Shao et al. (2016,?); Zhu et al.

(2017). It is also widely used to provide physical insights and better understanding of NC processes

in porous media Getachew et al. (1996); Baytaş (2000); Saeid and Pop (2004); Leong and Lai (2004);

Mahmud and Pop (2006); Choukairy and Bennacer (2012); Malashetty and Biradar (2012) . As model

inputs, we consider the physical parameters characterizing the porous media and the saturating fluid

as the permeability, porosity, thermal diffusivity and thermal expansion. All these parameters can be

described by the Rayleigh number which represents the ratio between the buoyancy and diffusion effects.

A common simplification for NC in porous media is to consider the saturated porous media with

an equivalent thermal diffusivity (based on the porosity) and neglect the key process of heat mixing

related to velocity dependent dispersion. Yet several studies have found that thermal dispersion plays

an important role in NC systems Howle and Georgiadis (1994); Metzger et al. (2004); Pedras and

de Lemos (2008); Jeong and Choi (2011); Yang and Vafai (2011); Kumar and Bera (2009); Sheremet

et al. (2016); Plumb and Huenefeld (1981); Cheng (1981); Hong and Tien (1987); Cheng and Vortmeyer

(1988); Amiri and Vafai (1994); Shih-Wen et al. (1992) and applications related to transport in natural

porous media Abarca et al. (2007); Jamshidzadeh et al. (2013); Fahs et al. (2016). Hence, main

attention is given here to understand the impact of anisotropic thermal dispersion by including the
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longitudinal and transverse dispersion coefficients in the model inputs. Furthermore, anisotropy in

the hydraulic conductivity is acknowledged as it is one of the properties of porous media which is a

consequence of asymmetric geometry and preferential orientation of the solid grains Shao et al. (2016).

Finally heterogeneity of the porous media is considered as a source of uncertainty as it has a significant

impact on NC in porous media Simmons et al. (2001); Nield and Simmons (2007); Kuznetsov and Nield

(2010); Zhu et al. (2017). As model outputs, we consider different quantities that are often used to

assess the flow and the heat transfer processes in porous cavity as the temperature spatial distribution,

the Nusselt number and the maximum velocity components.

In this work, we perform a global sensitivity analysis using a variance-based technique. In this par-

ticular context, the Sobol sensitivity indices Sobol’ (1993); Homma and Saltelli (1996); Sobol’ (2001)

are widely used as sensitivity metrics, because they do not rely on any assumption regarding the lin-

earity or monotonous behavior of the physical model. Various techniques have been proposed in the

literature for computing the Sobol indices, see e.g. Archer et al. (1997); Sobol’ (2001); Saltelli (2002);

Sobol’ and Kucherenko (2005); Saltelli et al. (2010). Monte Carlo (MC) is one of the most commonly

used methods. However, it might become impractical, because of the large number of repeated simu-

lations required to attain statistical convergence of the solution, especially for complex problem (e.g.,

Sudret (2008); Ballio and Guadagnini (2004) and references therein). In this context, new approaches

based on advanced sampling strategies have been introduced to reduce the computational burden as-

sociated with Monte Carlo simulations. Among different alternatives, Polynomial Chaos Expansions

(PCE) have been shown to be an efficient method for UQ and GSA Blatman and Sudret (2010b,a,

2011). In PCE, the key idea is to expand the model response in terms of a set of orthonormal mul-

tivariate polynomials orthogonal with respect to a suitable probability measure Ghanem and Spanos

(1991). They allow one to uncover the relationship between different input parameters and how they

affect the model outputs. Once a PCE representation is available, the Sobol’ sensitivity indices are

then obtained via a straightforward post-processing analysis without any additional computational cost

Sudret (2008). It can also be used to perform an uncertainty quantification using Monte Carlo analy-

sis at a significantly reduced computational cost (see, e.g., Fajraoui et al. (2011) and references therein).

The structure of the present study is as follows. Section 2 is devoted to the description of the

benchmark problem and the governing equations. Section 3 describes the numerical model. Section 4

describes the sensitivity analysis procedure using Sparse PCE. Section 5 discusses the GSA and UQ

results for homogeneous and heterogeneous porous media. Finally, a summary and conclusions are

given in Section 6.

2 Problem statement and mathematical model

The system under consideration is a square porous enclosure of length H filled by a saturated het-

erogeneous porous medium. The properties of the fluid and the porous medium are assumed to be

independent on the temperature. The porous medium and the saturating fluid are locally in thermal

equilibrium. We assume that the Darcy and Boussinesq approximations are valid and that the inertia

and the viscous drag effects are negligible. Under these conditions, the fluid flow in anisotropic porous

media can be described using the continuity equation and Darcy’s law written in Cartesian coordinates

as follows Mahmud and Pop (2006):

∂u

∂x
+

∂v

∂y
= 0, (1)
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u = −kx
µ

∂p

∂x
, (2)

v = −ky
µ

(

∂p

∂y
+ (ρ− ρc) g

)

, (3)

where u and v
[

LT−1
]

are the fluid velocity components in the x and y directions; p
[

ML−1T−2
]

is the

total pressure (fluid pressure and gravitational head); kx and ky
[

L2
]

are the permeability components

in the x and y directions; µ
[

ML−1T−1
]

is the dynamic viscosity; ρ and ρc
[

ML−1
]

being respectively

the density of the mixed fluid and density of the cold fluid; and g
[

LT−2
]

is the gravitational constant.

The heat transfer inside the cavity is modeled using the energy equation written as:

∂T

∂t
+u

∂T

∂x
+v

∂T

∂y
= αm

(

∂2T

∂x2
+

∂2T

∂y2

)

+
∂

∂x

(

αxx
disp

∂T

∂x
+ αxy

disp

∂T

∂y

)

+
∂

∂y

(

αxy
disp

∂T

∂x
+ αyy

disp

∂T

∂y

)

. (4)

Here T [Θ] is the temperature; αm

[

L2T−1
]

is the the effective thermal diffusivity and αdisp

[

L2T−1
]

is the thermal dispersion tensor. In this work, we use the nonlinear model with anisotropic tensor as

in Howle and Georgiadis (1994), that is defined as follows:

αxx
disp = (αL − αT )

u2

√
u2 + v2

+ αT

√

u2 + v2, (5)

αxy
disp = (αL − αT )

u · v√
u2 + v2

, (6)

αyy
disp = (αL − αT )

v2√
u2 + v2

+ αT

√

u2 + v2, (7)

where αL and αT [L] are respectively the longitudinal and transversal dispersivity coefficient, which

are considered uniform in the system. No-flow boundary conditions are assumed across all bound-

aries. The left and right vertical walls are maintained at constant temperatures Th and Tc such that

(Th > Tc), respectively. The horizontal surfaces are assumed to be adiabatic (Fig. 1).

The system (1)-(7) is completed by specifying a constitutive relationship between fluid properties

ρ and the temperature T . The density of the mixed fluid is assumed to vary with temperature as a

first-order polynomial, that is:

ρ = ρc[1− β(T − Tc)], (8)

where β is the coefficient of thermal expansion.

Special attention is given in the literature to the NC in heterogeneous porous media because of the

nonuniformity of the permeability and/or the thermal diffusivity affect significantly the overall rate

of the heat transfer. The effect of heterogeneity is especially challenging in geothermal applications

since hydraulic properties, such as permeability, can vary by several orders of magnitude over small

spatial scales Fahs et al. (2015a). In this context, the impact of heterogeneity has been studied for

both external and internal natural convection using different heterogeneity configurations (stratified,

horizontal, vertical, random, and periodic) Kuznetsov and Nield (2010) and references therein. In this

work, the heterogeneity of the porous media is described via the exponential model as in Fahs et al.
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Fig. 1: Schematic diagram of the heterogeneous porous-cavity problem

(2015b); Shao et al. (2016); Zhu et al. (2017). Based on the exponential model, the permeability in the

x− and y− directions are given by:

kx = kx0e
σy, (9)

ky = ky0e
σy, (10)

where kx0 and ky0 are respectively the permeability at y = 0 and x = 0; σ is the rate of change of

ln(k) in the y direction.

The system (1)-(3) can be reformulated in dimensionless form as:

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0, (11)

u∗ = −eσ
∗y∗ ∂p∗

∂x∗
, (12)

v∗ = −rke
σ∗y∗ ∂p∗

∂y∗
+Ra · T ∗, (13)

where p∗ =
kx0
µαm

p; u∗ =
H

αm
u; v∗ =

H

αm
v; T ∗ =

T − Tc

∆T
; ∆T = Th − Tc is the temperature

difference between hot and cold walls; x∗ =
x

H
; y∗ =

y

H
;σ∗ = σ · H; rk =

ky0
kx0

. Ra represents the

Rayleigh number, that is given by:

Ra =
ky · ρc · β · g ·∆T ·H

µαm
. (14)

The steady-state energy equation can be written in dimensionless form as:
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u∗ ∂T
∗

∂x∗
+v∗

∂T ∗

∂y∗
=

(

∂2T ∗

∂x∗2
+

∂2T ∗

∂y∗2

)

+
∂

∂x∗

(

αxx,∗
disp

∂T ∗

∂x∗
+ αxy,∗

disp

∂T ∗

∂y∗

)

+
∂

∂y∗

(

αxy,∗
disp

∂T ∗

∂x∗
+ αyy,∗

disp

∂T ∗

∂y∗

)

,

(15)

αxx,∗
disp = (α∗

L − α∗
T )

(u∗)
2

√

(u∗)
2
+ (v∗)

2
+ αT

√

(u∗)
2
+ (v∗)

2
, (16)

αxy,∗
disp = (α∗

L − α∗
T )

u∗ · v∗
√

(u∗)
2
+ (v∗)

2
, (17)

αyy,∗
disp = (α∗

L − α∗
T )

(v∗)
2

√

(u∗)
2
+ (v∗)

2
+ α∗

T

√

(u∗)
2
+ (v∗)

2
, (18)

where α∗
L =

αL

H
; α∗

T =
αT

H
.

3 The numerical model

Numerical simulation of thermal-driven transfer problem is highly sensitive to discretization errors. Fur-

thermore, hydraulic anisotropy, heterogeneity and anisotropic thermal dispersion render the numerical

solution more challenging as they require specific numerical techniques. Therefore, it is extremely im-

portant to select the appropriate numerical methods for solving the governing equations. In this work,

we use the advanced numerical model developed by Younes et al., Younes et al. (2009) and Younes

and Ackerer Younes and Ackerer (2008). In this model, appropriate techniques for both time inte-

gration and spatial discretization are used to simulate coupled flow and heat transfer. For the spatial

discretization, a specific method is used to achieve high accuracy for each type of equation. Thus, the

Mixed Hybrid Finite method is used for the discretization of the flow equation. This method produces

accurate and consistent velocity fields even for highly heterogeneous domains Farthing et al. (2002);

Durlofsky (1994). The heat transfer equation is discretized through a combination of a discontinuous

Galerkin (DG) and Multipoint flux approximation (MPFA) methods. For the convective part, the DG

method is used because it provides robust and accurate numerical solutions for problems involving steep

fronts Younes and Ackerer (2008); Tu et al. (2005). For the diffusive part, the MPFA method is used

because it allows for the handling of anisotropic heterogeneous domains and can be easily combined

with the DG method Younes and Ackerer (2008). The method of lines (MOL) is used for the time

integration. This method improves the accuracy of the solution through the use of adaptive higher-

order time integration schemes with formal error controls. The numerical model has been validated

against lab experimental data for variable density flow Konz et al. (2009). It has been also validated

by comparison against semi-analytical solutions for NC in porous square cavity Fahs et al. (2014,?),

seawater intrusion in heterogeneous coastal aquifer Younes and Fahs (2015) and seawater intrusion

in anisotropic dispersive porous media Fahs et al. (2016). We should note that the numerical model

allows for transient simulations while in the GSA study we consider the steady state solutions. Hence

transient solutions are performed until a long nondimensional time to ensure steady conditions
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4 Polynomial Chaos Expansion for Sensitivity Analysis

GSA is a useful tool that aims at quantifying which input parameters or combinations thereof con-

tribute the most to the variability of the model responses, quantified in terms of its total variance.

Variance-based sensitivity method have gained interest since the mid 90’s, in this particular context.

Here, we base our analysis on the the Sobol’ indices, which are widely used as sensitivity metrics Sobol’

(1993) and do not rely on any assumption regarding the linearity or monotonous behavior of the phys-

ical model.

In the sequel, we consider Y = M (X), a mathematical model that describe a scalar output of

the considered physical system, which depends on M -uncertain input parameters. M may, represent

a scalar model response. In the case of vector-valued response, i.e.; {Y ∈ R
N , N > 1}, the following

approach may be applied component-wise. We consider the uncertain parameters as independent

random variables gathered into a random vector X = {X1, ..., XM} with joint probability density

function (PDF) fX and marginal PDFs {fXi
(xi), i = 1, ...,M}. Within this context, we will introduce

next the variance-based Sobol’ indices. The interested reader is referred to Sudret (2008); Le Gratiet

et al. (2016) for a deeper insight into the details.

4.1 Anova-based sensitivity indices

Provided that the function M is square-integrable with respect to the probability measure associated

with fX , it can be expanded in summands of increasing dimension as:

M(X) = M0 +

M
∑

i=1

Mi(Xi) +
∑

1≤i<j≤M

Mij(Xi, Xj) + ...+M12...M (X), (19)

where M0 is the expected value of M(X), and the integrals of the summands Mi1,i2,...,is with

respect to their own variables is zero, that is:

∫

DXik

Mi1,i2,...,is(Xi1,i2,...,is)fXik
(Xik) = 0 for 1 ≤ k ≤ s, (20)

where DXik
and fXik

(Xik) respectively denote the support and marginal PDF of Xik .

Eq (19) can be written equivalently as:

M(X) = M0 +
∑

u 6=0

Mu(Xu). (21)

Here u = {i1, i2, ..., iM} ⊆ {1, 2, ...,M} are index sets and Xu are subvectors containing only those

components of which the indices belong to u. This representation is called the Sobol’ decomposition.

It is unique under the orthogonality conditions between summand, namely:

E[Mu(Xu)Mv(Xv)] = 0. (22)

Thanks to the uniqueness and orthogonality properties, it is straightforward to decompose the total

variance of Y , denoted D in a sum of partial variance Du:

D = Var [M(X)] =
∑

u 6=0

Du =
∑

u 6=0

Var [Mu(Xu)] , (23)

where:
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Du = Var [Mu(Xu)] = E[M2
u(Xu)]. (24)

This leads to a natural definition of the Sobol’ Indices Su:

Su = Du/D, (25)

which measures the amount of the total variance due to the contribution of the subset Xu. In

particular, the first-order sensitivity index is defined by:

Si = Di/D. (26)

The first-order sensitivity indices Si measures the amount of variance of Y that is due to the

parameter Xi considered separately. The overall contribution of a parameter Xi to the response

variance including its interactions with the other parameters is then given by the total sensitivity

indices. They include the main effects Si and all the joint terms involving parameter Xi, i.e.

ST
i =

∑

Ii

Du/D, Ii = {u ⊃ i}, (27)

In principle, one should rely upon the total sensitivity index to infer the relevance of the parameters

Saltelli and Tarantola (2002). The higher ST
i , the more Xi is an important parameter for the model

response. In contrast, Xi is termed unimportant (in terms of probabilistic modelling) if ST
i = 0.

The evaluation of Sobol’ indices requires the computation of 2M Monte Carlo integrals of the

model response M (X). This can be costly to manage, especially when dealing with time-consuming

computational models. Fortunately, the Sobol’ indices can easily be computed using the Polynomial

Chaos Expansion (PCE) technique Sudret (2008). They are analytically obtained via a straightforward

post-processing of the expansion. The PCE will be described in the next section.

4.2 Polynomial chaos expansion

The model response can be casted into a set of orthonormal multivariate polynomial as:

Y = M(X) =
∑

α∈A

yαΨα(X), (28)

where A is a multi-index α = {α1, ...,αM}, {yα,α ∈ A} are the expansion coefficients to be deter-

mined, {Ψα(X),α ∈ A} are multivariate polynomials which are orthonormal with respect to the joint

pdf fX of X, i.e E[Ψα(X)Ψβ(X)] = 1 if α = β and 0 otherwise.

The multivariate polynomials Ψα are assembled as the tensor product of their appropriate univariate

polynomials, i.e

Ψα(x) =
M
∏

i=1

φ(i)
αi
(xi), (29)

where φ
(i)
αi

is a polynomial in the i-th variable of degree αi. These bases are chosen according

to the distributions associated with the input variables. For instance, if the input random variables

are standard normal, a possible basis is the family of multivariate Hermite polynomials, which are

orthogonal with respect to the Gaussian measure. Other common distributions can be used together
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with basis functions from the Askey scheme Xiu and Karniadakis (2002). A more general case can

be treated through an isoprobabilistic transformation of the input random vector X into a standard

random vector. The set of multi-indices A in Eq. (28) is determined by an appropriate truncation

scheme. In the present study, a hyperbolic truncation scheme Blatman and Sudret (2011) is employed,

which consists in selecting all polynomials satisfying the following criterion:

|α‖q =

(

M
∑

i=1

α
q
i

)1/q

≤ p, (30)

with p being the highest total polynomial degree, 0 < q ≤ 1 being the parameter determining the

hyperbolic truncation surface. This truncation scheme allows for retaining univariate polynomials of

degree up to p, whereas limiting the interaction terms.

The next step is the computation of the polynomial chaos coefficients {yα,α ∈ A}. Several intrusive
(e.g. Galerkin scheme) or non-intrusive approaches (e.g. stochastic collocation, projection, regression

methods) Sudret (2008); Xiu (2010) are proposed in the literature. We herein focus our analysis on the

regression methods also known as least-square approaches. A set of N realization of the input vector,

X = {x(1), ...,x(N)}, is then needed, called experimental design (ED). The set of coefficient are then

computed by means of the least-square minimization method, that is:

ŷα = argmin
y
α
∈RcardA

1

N

N
∑

i=1

(

M
(

x(i)
)

−
∑

α∈A

yαΨα(x
(i))

)2

. (31)

The number of terms in Eq. (28) may be unnecessarily large, thus a sparse PCE can be more

efficient to capture the behavior of the model by disregarding insignificant terms from the set of re-

gressors. We herein adopt the least angle regression (LAR) method proposed in Blatman and Sudret

(2011) which involves a sparse representation containing only a small number of regressors compared

to the classical full representation. The reader is referred to Efron et al. (2004) for more details on the

LARS technique and to Blatman and Sudret (2011) for its implementation in the context of adaptive

sparse PCE.

It can be worth noting that the constructed PCE can also be employed as a surrogate model of the

target output in cases when evaluating a large number of model responses is not affordable. It is thus

important to assess its quality. A good measure of the accuracy is the Leave-One-Out (LOO) error,

which allows a fair error estimation at an affordable computational cost Blatman and Sudret (2010a).

The relative LOO error is defined as:

ǫLOO =

N
∑

i=1

(M(x(i))−MPC(x(i))

1− hi

)2/ N
∑

i=1

(

M(x(i))− µ̂Y

)2

, (32)

where hi is the ith diagonal term of matrix

Ψ(ΨTΨ)−1ΨT , where Ψ = {Ψij = Ψj

(

Xi
)

} and µ̂Y = 1
N

∑N
i=1 M(x(i)).

4.3 Polynomial chaos expansions for sensitivity analysis

Once the PCE is built, the mean µ and the total variance D can be obtained using properties of the

orthogonal polynomials Sudret (2008), such that:
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µ = y0, (33)

D =
∑

α∈A\0

y2α. (34)

As mentioned above, the Sobol’ indices of any order can be computed in a straightforward manner.

The first order and total Sobol’ indices are then given by Sudret (2008):

Si =
∑

α∈Ai

y2α/D, Ai = {α ∈ A : αi > 0, αj 6=i = 0}, (35)

and

ST
i =

∑

α∈AT

i

y2α/D, AT
i = {α ∈ A : αi > 0}. (36)

Of particular interest is the marginal effect (also called univariate effect, see Deman et al. (2016))

of the parameters Xi, which enables investigation of the range of variation across which the model

response is most sensitive toXi. It corresponds to the sum of the mean values and first-order summands

comprising univariate polynomials only, i.e.:

E[M(X) | Xi = xi] = M0 +
∑

α∈Ai

yαΨα(xi). (37)

5 Results and discussions

The PCEs presented in the previous section are used to perform UQ and GSA for the problem of

natural convection in porous square cavity. The dimensionless form of the governing equations leads

to define the model input parameters as follows:

• The average Rayleigh number (Ra): the Rayleigh number represents the ratio between the buoy-

ancy and the diffusion effects. It depends on the porous media properties (porosity, thermal

diffusivity and permeability), fluid properties (thermal diffusivity, viscosity, density and thermal

expansion), the characteristic domain length and the temperature gradient. For isotropic porous

media, the Rayleigh number is defined based on the scalar permeability of the porous media. For

the general case of an anisotropic porous media, Ra is defined based on the permeability in the

vertical direction (ky) Bennacer et al. (2001). In this work, we are concerned with anisotropic

heterogeneous porous media. Thus, we distinguish between local Rayleigh number based on the

local permeability (see Eq. (14)) and the average Rayleigh number based on the overall average

permeability Fahs et al. (2015a). The local Ra number can be formulated as follows:

Ra = Ra0e
σ∗y∗

, (38)

where Ra0 is the local Rayleigh number at the bottom of the domain. The average Rayleigh

number Ra is then obtained by integrating the local Ra overall the domain, that is given by:

Ra = Ra0

∫ 1

0

eσ
∗y∗

dy∗ =
eσ

∗ − 1

σ∗
Ra0. (39)

The range of variability of the average Rayleigh number Ra is from 0 to 1000. This range of

variation is physically plausible.
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• The permeability anisotropy ratio (rk): this ratio is commonly used to describe the hydraulic

anisotropy of the porous media Abarca et al. (2007); Bennacer et al. (2001). In this work, the

model used to describe the heterogeneity of the porous media leads to a constant anisotropy ratio,

calculated based on the permeability on the x and y directions at the bottom of the domain (kx0

and ky0
). As a common practice in porous media, the range of variability of rk is considered to

be between 0 and 1 Abarca et al. (2007).

• The non-dimensional dispersion coefficients (α∗
L and α∗

T ): these parameters correspond to the

longitudinal and transverse thermal dispersion coefficients. They account for the enhancement

of heat transfer due to hydrodynamic dispersion. The longitudinal dispersion α∗
L corresponds to

the heat transfer along the local (Darcy) velocity vector while the transverse dispersion α∗
T acts

normally to the local velocity. A detailed review about the physical understanding of longitudinal

and transverse thermal dispersion is given in Howle and Georgiadis Howle and Georgiadis (1994).

According to Howle and Georgiadis Howle and Georgiadis (1994), Abarce et al., Abarca et al.

(2007) and Fahs et al., Fahs et al. (2016), α∗
L was varied between 0.1 and 1 and α∗

T between 0.01

and 0.1.

• The rate of heterogeneity variation (σ∗
z): this parameter is used to quantify the effect of the

heterogeneity distribution on the model outputs. In fact, the geometrical distribution of the het-

erogeneity in the computational domain is not often well-defined. For instance, in hydrogeology,

the heterogeneity distribution cannot be clearly described because hydraulic parameters do not

correlate well with lithology. As in Fahs et al., Fahs et al. (2015a) and shao et al., Shao et al.

(2016), the range of variability of (σ∗
z) is assumed to be from 0 to 4.

Uncertainty in these parameters is related to our imperfect knowledge of the porous media properties

(porosity, permeability tensor, heterogeneity distribution) and thermo-physical parameters of both

porous media grains and saturating fluid (thermal conductivity and dispersion). Without further

information, and in view of drawing general conclusions, uniform distributions are selected for all

parameters. Moreover, the parameters are assumed to be statistically independent.

The results of the numerical model will be analyzed using several quantities of interest (QoI) which

are controlled by the model inputs. To describe flow process we use the maximum dimensionless velocity

components (u∗
max and v∗max). For the heat transfer process, the assessment is based on the spatial

distribution of the dimensionless temperature (T ∗). In addition, and as it is customary for the cavity

problem, the heat processes are assessed using the wall average Nusselt number Nu given by:

Nu =

∫ 1

0

Nu(y∗) dy∗, (40)

where Nu is the local Nusselt number. The local Nusselt number represents the net dimensionless

heat transfer at a local point on the hot wall. It is defined as the ratio of the total convective heat

flux to its value in the absence of convection. When thermal dispersion is considered, the local Nusselt

number is defined as follows Howle and Georgiadis (1994); Sheremet et al. (2016):

Nu =

(

1 + α∗
T

√

(u∗)
2
+ (v∗)

2

)

∂T ∗

∂x∗

∣

∣

∣

∣

x∗=0

. (41)
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5.1 Homogeneous case

5.1.1 Numerical details

Preliminary simulations were performed for different grid size in order to test the influence of grid dis-

cretization on the QoIs. They were performed under regular triangular mesh obtained by subdividing

square elements into four equal triangles (by connecting the center of each square to its four nodes).

Regular grids are used here to avoid instabilities and inaccuracies that can be caused by the change

in mesh sizes within irregular grids. The most challenging configuration of the uncertain parameters

is considered. This corresponds to the case with the highest Rayleigh number (Ra = 1, 000) and

anisotropy ratio (rk = 1) and lowest values of longitudinal and transverse thermal dispersion coeffi-

cients. For such a case, the heat transfer process is mainly dominated by the buoyancy effects which

are at the origin of the rotating flow within the cavity. As a consequence, the steady state isotherms

are sharply distributed and they have a spiral shape as they follow the flow structure due to the small

thermal diffusivity. A relatively fine mesh should be used in this case to obtain a mesh independent

solution. Several simulations are performed by increasing progressively the mesh refinement and by

comparing the solution for two consecutive levels of grid. The tests revealed that the uniform grid

formed by 40, 000 elements is adequate to render accurate results and capture adequately the flow and

heat transfer processes. All simulations were run for 8 minutes because this is the required time for

the homogeneous problem to reach the steady state solution. These discretization parameters are kept

fixed in subsequent simulations.

In view of computing the PCE expansion of the model outputs in terms of the 4 input random

variables X = {Ra, rk, α
∗
L, α

∗
T }, several sets of parameter values sampled according to their respective

pdf’s are needed. For this purpose, we use an experimental design of size N = 150 drawn with Quasi

Monte Carlo sampling (QMC). It is a well-known technique for obtaining deterministic experimental

designs that covers at best the input space ensuring uniformity of each sample on the margin input

variables. In particular, Sobol’ sequences are used. PCE meta-models is constructed by applying

the procedure described in Section 3 for the considered QoI’s. In the case of multivariate output

(temperature), a PCE is constructed component-wise (i.e.; for each points of the grid). The candidate

basis is determined using a standard truncation scheme (see Eq. (27)) with q = 1. The maximum degree

p is varied from 1 to 20 and the optimal sparse PCE is selected by means of the corrected relative LOO

error (see Eq. (29)). The corresponding results (e.g. polynomial degree giving the best accuracy,

relative LOO error and number of retained polynomials) of the PCE are given in Table 1 for the three

scalar output Nu, u∗
max and v∗max. For instance, when the average Nusselt number is considered, the

optimal PCE is obtained for p = 4 and the corresponding LOO error is errLOO = 8.6 × 10−4. The

sparse meta-model includes 63 basis elements, whereas the size of full basis is 70. In Fig. 2, we compare

the values of the PCE with the respective values of the physical model at a validation set consisting

of 1, 000 MC simulations. We note that these simulations do not coincide with the ED used for the

construction of the PCE. An excellent match is observed for both Nu and v∗max; which is also illustrated

by a small LOO error (less than 0.001). Discrepancies between PCE and true model are observed for

u∗
max; especially for larger values of u∗

max. The related LOO error is equal to 5.81× 10−2.

5.1.2 Global sensitivity analysis

This section is devoted to GSA in order to identify the most influential parameters and to understand

the marginal effect of the parameters onto the model outputs. Depending on the output QoI’s, a
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Fig. 2: Homogeneous case: Comparison between PCE and the true model on 1, 000 validation runs for

the model outputs.

Table 1: Results of the utilized PCE
Nu u∗max v∗max

popt 5 6 4

errLOO 8.6× 10−4 5.81× 10−2 3.93× 10−4

Size of the Sparse Basis 63 47 41

different behaviour of the parameters is observed. The first and total Sobol’ indices are computed, as

well as second-order one, based on the obtained PCEs of the various QoI’s. Referring to the results in

Table 1, the relative LOO error varies from 0.04% to 5.8%. It is important to emphasize that excellent

GSA results are obtained by PCE as soon as errLOO < 10−3. Moreover, the results obtained for u∗
max
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are also deemed acceptable.

• GSA of the temperature distribution

Fig. 3a illustrates the spatial distribution of the mean of the temperature based on PCE. In this

case, the presented approach is applied component-wise. Indeed, the PCE of a numerical model with

many outputs is carried-out by metamodelling independently each model output. Fig. 3a shows that

the distribution of the mean temperature reflects the general behavior of the heat transfer in the case of

NC in square porous cavity. The isotherms are not vertical as they are affected by the circulation of the

fluid saturating the porous media. In order to evaluate how far the temperatures are spread out from

their mean, we plot in Fig. 3b the distribution of the temperature variance. As a general comment, a

symmetrical behavior of the variance around the center point is observed. The temperature variance is

negligible in the thermal boundary layers of the hot and cold walls (deterministic boundary conditions)

and in the relatively slow-motion rotating region at the core of the square. It becomes significant at

the horizontal top and bottom surfaces of the porous cavity. The largest variance values are located

toward the cold wall at the top surface and the hot wall at the bottom surface. In these zones the flow

is nearly horizontal. The fluid is cooled down (resp. heated) at the top (resp. bottom) by the effect of

the cold (resp. hot) wall.

(A) spatial distribution of the mean value of the

temperature

(B) spatial distribution of the variance

Fig. 3: Homogeneous case - spatial distribution of the temperature statistical moments.

The sensitivity of the temperature field to the variability of the random parameters can be assessed

by means of spatial maps of the Sobol’ indices. Fig. 4 shows the spatial distribution of total Sobol’

indices due to uncertainty in Ra, rk, α
∗
L and α∗

T . We recall that the total Sobol’ indices involve the

total effect of a parameter including nonlinearities as well as interactions. Thus, they allow us to rank

the parameters according to their importance. Focusing on Fig. 4, we can see that the most influential

parameters are α∗
L and α∗

T . A complementary effect between these parameters is observed. The effect

of α∗
L is more pronounced than that for α∗

T as its zone of influence is located in the region where the

temperature variance is maximum. It is worth nothing that complementary effect between the influence

of α∗
L and α∗

T can be explained by reformulating the dispersive heat flux in terms of the dot product

of the velocity and temperature gradient vectors. Considering Eqs. (5)-(7) the thermal dispersive flux

qdisp can be rearranged as follows:
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[

qxdisp
qzdisp

]

=









αT

(

| V | ∂T
∂x

− u

| V | (V · ∇T )

)

+
uαL

| V | (V · ∇T )

αT

(

| V | ∂T
∂y

− v

| V | (V · ∇T )

)

+
vαL

| V | (V · ∇T )









. (42)

where V is the velocity vector. This equation reveals that the longitudinal (resp. transverse) dispersion

is an increasing (resp. decreasing) function of V · ∇T . Around the top and bottom surfaces of the

cavity, the velocity is almost horizontal and parallel to the thermal gradient. Hence, V · ∇T exhibits

its maximum value and by consequence temperature distribution in these zones is mainly controlled

by α∗
L (see Fig. 4). The velocity near the vertical walls is vertical and relatively perpendicular to the

thermal gradient. V · ∇T tends towards zero (minimum value). Hence, the temperature distribution

in these regions is mainly controlled by α∗
T (see Fig. 4d).

The sensitivity of the temperature field due to Ra is less important than that of α∗
L and α∗

T (Fig.

4a). Its zone of influence expands along the cavity diagonal bisector with increasing magnitude toward

the cavity center and near the corners. The effect of Ra on the temperature distribution is related

to the heat mixing by thermal diffusion and/or the convection due to the buoyancy effects. Around

the top right and bottom left corners the fluid velocity is very small as it should be zero right on the

corners to satisfy the boundary conditions. Hence heat mixing between hot and cold fluids by thermal

dispersion is almost negligible. In addition, around these corners the thermal boundary layers are

very thin. Thus, the temperature gradient is very important so that mixing by thermal diffusion is

dominating and by consequence temperature distribution is sensitive to Ra. In the center of the cavity

the thermal dispersion tensor is also negligible because the rotating flow is relatively slow. Hence

mixing is mainly related to diffusion and by consequence sensitivity to the Ra is relatively important.

Fig. 4b indicates that the temperature distribution is slightly sensitive to the permeability ratio. The

zone of influence of rk matches well with the region in which the flow is strongly bidirectional. This

is physically understandable, since rk expresses the ability of a porous media to transmit fluid in a

direction perpendicular to the main flow. Hence rk is a non-influent parameter in the zones where the

flow is almost unidirectional.

• GSA of the scalar QoIs

Fig. 5 shows bar-plots of the first order and total Sobol indices of the average Nusselt number Nu.

Inspection of the sensitivity indices showed that the variability of Nu is mainly due to the principal

effects of Ra and α∗
T . The most influential parameter is Ra with ST

Ra
= 0.8. A small influence of rk

and α∗
L is also observed. Interactions between the random parameters are not significant (not shown).

The maximum value obtained is SRa,α∗
T

= 0.035. The results are summarized in Table 2.

Table 2: Homogeneous case - Sobol’ indices for Nu

Ra rk α∗

L α∗

T

Si 0.739 0.0547 0.0252 0.1093

ST 0.803 0.077 0.0235 0.158

To further elaborate our investigation, we examine the marginal effect of the uncertain parameters

on the model response. This effect corresponds to the evolution of the model output with respect to

a single parameter averaged on the other parameters (Eq. (37)). Indeed, if a parameter is sensitive,
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(A) Spatial distribution of total Sobol’ index of Ra; (B) Spatial distribution of total Sobol’ index of rk;

(C) Spatial distribution of total Sobol’ index of α∗

L; (D) Spatial distribution of total Sobol’ index of α∗

T ;

Fig. 4: Homogeneous case - Spatial distribution of the total Sobol’ indices for the temperature

significant variations (positive or negative slopes) are expected whereas a weakly sensitive parameter

results in small variations of the model responses. Results for the marginal effect of the parameters on

Nu are shown in Fig. 6. Different scales are observed indicating their level of influence. In general,

the marginal effects are in agreement with the global sensitivity analysis.

Fig. 6a demonstrates that Nu increases with Ra. Indeed, the increase of Ra enhances the buoy-

ancy effects and reduces the thickness of the thermal boundary layer in the lower part of the hot wall.

This leads to higher values of Nu as the temperature distribution becomes steep near the hot wall,

especially around the bottom corner. Same behavior of Nu is observed against α∗
T (Fig. 6d). This

parameter affects slightly the velocity field (as it will be shown later in this paper). It slightly affects

the temperature distribution at the hot wall as we can see in the Figures 3 and 4d. Hence considering

the expression of Nu (Eq. (41) ) it is logical that Nu increases with α∗
T . Similar results have been

reported in Hong and Tien (1987) where authors showed that when the transverse dispersion effect

dominates, the heat transfer is greatly increased. This is also in agreement with the results reported by

Sheremet et al., Sheremet et al. (2016) for natural convection in a porous cavity filled with a nanofluid.
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Fig. 5: Homogeneous case - Total Sobol’ indices for the average of the average of Nusselt number Nu;

Fig. 6b shows that Nu decreases with the increase of the permeability anisotropy ratio (rk). This is

consistent with the results obtained in Bennacer et al., Bennacer et al. (2001) and Ni and Beckermann Ni

and Beckermann (1991) for natural convection (without thermal dispersion) and for equivalent ranges

of parameters. This behavior can be explained by the fact that at a constant value of the Rayleigh

number (i.e. ky is constant), the increase of rk can be interpreted as a decrease of the permeability in

the horizontal direction kx. This entails a weaker convective flow with more expanded thermal bound-

ary layers ( in the lower part of the hot wall) and by consequence smaller Nu. The marginal effect

of α∗
L (Fig. 6c) indicates the existence of two regimes for the evolution of the Nusselt number. Thus,

we have a decreasing Nu for α∗
L < 0.25 and an inverse behavior for α∗

L > 0.25. Indeed, when α∗
L is

increased, the mixing zone between the hot and cold fluids expands in the direction of the flow. This

will push the highest and lowest isotherms towards the vertical walls and increase by consequence the

thermal gradient in the vertical boundary layers. On the other hand, this redistribution of the thermal

gradient leads to an attenuation of the rotating flow within the cavity. Thus, referring to the expression

of the Nusselt number (Eq. (41)), we can deduce that, for small values of α∗
L (< 0.25), Nu decreases

as the velocity variation is predominating. For large values of α∗
L (> 0.25), Nu increases because the

effect of the thermal gradient becomes significant and more important than the velocity.

Fig. 7 shows bar-plots of the first order and total Sobol’ indices of the maximum velocity u∗
max.

Results indicate that the variability of u∗
max is mainly controlled by Ra and rk. Interactions between

Ra and rk are also observed. They explain 14.5% of the total variance of u∗
max. The total effect of α∗

T

accounts for approximately 1.0%. In Fig. 8, we display the marginal effect of the uncertain parameters

on u∗
max. One can observe that u∗

max increases with the increase of Rayleigh number Ra, indicating

that the buoyancy-induced flow along the horizontal surfaces becomes much stronger as Ra is increased.

On the contrary, we note that u∗
max decreases with the increase of rk, as the latter corresponds to the

decrease of the permeability in the horizontal direction. We can also note that small variations of u∗
max
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Fig. 6: Homogeneous case - Univariate effects of the input parameters on the average Nusselt number Nu

are observed when rk > 0.2.

Figs. 8c-d confirm that u∗
max is slightly sensitive to α∗

L and α∗
T . One can observe that an increase of

α∗
L is associated with a decrease of u∗

max. The effect of α∗
L on the velocity can be understood with the

help of the stream function form of the flow equation. This form can be obtained by applying the curl

operator on the Darcy’s law. It is a Poisson equation with the horizontal component of the tempera-

ture gradient as source term. This equation is subject to zero stream function as boundary conditions.

The corresponding solution is concentric streamlines. The shape of these streamlines (center, orienta-

tion, spacing and density) depends on the source function. For the problem of natural convection in

square cavity, the maximum horizontal temperature gradient is located at the right bottom and left top

corners. The resulting streamlines have a concentric ellipsoidal shape with focal axis oriented in the

direction of the line connecting the maximum gradient points (the cavity first bisector). The increase

of α∗
L leads to the enhancement of the heat mixing by longitudinal dispersion in the zones where the

velocity is parallel to the temperature gradient (outside the boundary layers of the hot and cold walls).

By consequence, the horizontal temperature gradient decreases in this zone and increases outsides. This
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implies that, on the one hand, the reorientation of the focal axis of the ellipsoidal shaped streamlines

in the horizontal direction and, on the other hand, an attenuation of the stream function maximum

value. Hence, the rotating flow decelerates, u∗
max decreases and the point of maximum velocity moves

toward the center of the cavity surfaces. Reverse behavior can be observed when α∗
T is increased. In

such a case the transverse heat mixing is enhanced in the zone where the velocity is orthogonal to

the temperature gradient (within the boundary layers). Transverse heat flux is horizontal in this case.

Hence, the horizontal temperature gradient decreases within the boundary layers and increases outside.

The direction of the focal axis moves toward the first bisector and the maximum value of the stream

function increases. The streamlines becomes more spaced at the vertical walls and more closed at the

top surfaces. The value of u∗
max increases and its location at the top (resp. bottom) surface moves

toward the cold (resp. hot) wall.

Fig. 9 shows the bar-plots of the first order and total Sobol indices of the maximum velocity v∗max.

Results shows that the variability of v∗max is mainly due to the principal effects of Ra. Unlike u∗
max,

v∗max is only slightly sensitivity to rk.

The differences between the first-order and total indices are negligible, indicating insignificant in-

teractions between the parameters.

Fig. 10 represents the marginal effect of the different parameters on the v∗max. As expected, a

different magnitude of variations is obtained indicating the level of influence of the parameters. The

largest variation is obtained with the Rayleigh number Ra. Fig. 10a shows that v∗max increases with

the increase of Ra as this latter intensify the rotating flow within the cavity. The marginal effect of

v∗max to the permeability ratio rk is slightly flatter (see Fig. 10b) and confirm the weak sensitivity of

v∗max to rk. The obtained negative slope is the consequence of the horizontal velocity reduction caused

by the decrease of kx. This finding is consistent with the results obtained in Bennacer et al., Bennacer

et al. (2001). As expected, the marginal effects of v∗max to α∗
L and α∗

T are nearly flat (Fig. 10(c-d)). A

rather negative slope of v∗max versus α∗
L is observed indicating that the enhancement of the longitudinal
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Fig. 8: Homogeneous case - Univariate effects of the input parameters on u∗max

dispersive mixing between the hot and cold fluid leads to an attenuation of the convective flow. Fig.

10d shows that v∗max decreases with the increase of α∗
T due to the redistribution of the temperature

gradient.
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5.1.3 Uncertainty quantification

The constructed PCE can be employed as a surrogate model of the target output. Statistical analysis

is then affordable by performing a large Monte Carlo simulations on the PCE approximations at a very

low additional computational cost upon sampling the random input parameter space. We depict in

Fig. 11 the probability density function (PDF) of the scalar QoIs. The PDFs computed by relying on

the PCE using 105 Monte Carlo simulations are compared with the PDFs computed with the 1, 000

Monte Carlo (MC) simulations of the physical model. Note that we limit our comparison to 1, 000

MCs of the complete model because of the computational burden. A number of conclusions can be

drawn with respect to Fig. 11. The marginal PDFs resulting from the PCEs compare very well with

the PDF obtained by relying on numerical MC simulations at a total cost of 150 simulations though.

Positively skewed distributions, with longer tails toward larger values are observed for both output Nu

and u∗
max . The long tail of the PDF of the Nu is associated with setting characterized by low values

of α∗
T , whereas the long tail of u∗

max is associated with setting characterized by low values of rk. A flat

distribution with short tails is obtained for v∗max . This is due to the fact that v∗max is mainly sensitive

to the Rayleigh number Ra and that they are linearly related.

In the following, we investigate the level of correlation between QoI’s pairs by determining the

correlation coefficient, defined as the covariance of the two output variables divided by the product

of their standard deviation. Table 3(a) lists the correlation coefficient evaluated using 1, 000 MC

simulations. To further elaborate on the accuracy of the PCE, the correlation coefficient results obtained

by relying on PCE are also shown (see Table 3(b)). Again, the agreement between the full model and

the PCE is quite remarkable. A strong positive correlation between u∗
max and v∗max is observed. This

is related to the fact that u∗
max and v∗max are both affected by the Rayleigh number Ra and they both

increase with its increase.

Table 3: Correlation coefficient of the QoIs evaluated with 1, 000 MC simulations (Black fonts) and PCE.

(a) Correlation coefficient of the

QoIs based on 1, 000 MC simulations

Nu u∗max v∗max

Nu 1 0.078 0.209

u∗max 0.078 1 0.717

v∗max 0.209 0.717 1

(b) Correlation coefficient of the

QoIs based on PCE

Nu u∗max v∗max

Nu 1 0.070 0.226

u∗max 0.07 1 0.712

v∗max 0.226 0.712 1

5.2 Effect of heterogeneity

In this section, an heterogeneous porous media will be considered. The heterogeneity is assumed to

follow the exponential model given in Eq. (9) and (10). The effect of heterogeneity is expressed in terms

of the rate of change of the permeability σ∗. Consequently, five independent input random variables

X = {Ra, rk, α
∗
L, α

∗
T , σ

∗} are now considered uncertain with uniform marginal distributions.

The spatial discretization required to reach the converged numerical solution is highly dependent

on the degree of heterogeneity. Indeed, an increase in the heterogeneity degree results in an increase of

the local Rayleigh number, leading to a locally steeper and rougher solution than for the homogeneous

24



Nu

-20 0 20 40 60 80 100 120

0

0.01

0.02

0.03

PCE

Original model

u
∗

max

-500 0 500 1000 1500 2000

×10
-3

0

1

2

3

PCE

Original model

v
∗

max

-400 -200 0 200 400 600 800 1000

×10
-3

0

1

2

3

PCE

Original model

Fig. 11: Homogeneous case - Marginal pdf obtained by relying on PCE (red lines) and 1, 000 MC Simu-

lations (blue lines).

case Shao et al. (2016). Consequently, finer meshes are required to obtain a mesh independent solution.

As for the homogeneous case, the most challenging configurations of parameters are thoroughly tested.

A special irregular mesh is used to obtain the converged finite element solution. This mesh involves

local refinement on the high-permeability zones where the buoyancy effects are more significant. A

non uniform grid of 64, 000 nodes is used. All simulations were performed for 8[t] in order to be sure

that the steady state solution is reached. These discretization parameters are kept fixed in subsequent

simulations.

In view of computing the PCE expansion of the model outputs, an experimental design drawn with

QMC of size N = 150 is considered. As in the previous case, the candidate basis is determined using a

standard truncation scheme with q = 1 for all the outputs. The corresponding results (e.g. polynomial

degree giving the best accuracy, relative LOO error and number of retained polynomials) of the PCE

are given in Table 4 for the three scalar output Nu, u∗
max and v∗max. An accurate PCE is obtained for

both Nu and v∗max, where LOO error is about 1%. A less accurate PCE is obtained for u∗
max, where

LOO error is larger than 0.1.
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Table 4: Results of the utilized PCE
Nu u∗max v∗max

popt 6 5 6

errLOO 1.1× 10−2 2.88× 10−1 9.68× 10−3

size of the sparse basis 46 26 63

• GSA of the temperature field

Fig. 12a illustrates the spatial distribution of the mean temperature by relying on the PCE. It

shows that the isotherms are more affected by the circulating flow than that of the homogeneous case;

especially in the high permeable zones (near the top surface of the cavity). Indeed, the local Rayleigh

number exceeds the average value Ra, leading eventually to a more intense convective flow.

(A) Spatial distribution of the mean value of the

temperature

(B) Spatial distribution of the variance

Fig. 12: Heterogeneous case - spatial distribution of the temperature statistical moments.

The corresponding depictions of the temperature variance is shown in Fig. 12b. First, we observe

is that the spatial distribution of the variance is not anymore symmetric as in the homogeneous case.

The heterogeneity results in a different distribution of the variance while maintaining the same level

of variability. The smallest variation zone is located at the boundary layer of the vertical walls and

in the slow-motion region, as for the homogeneous case. It should be noted here that, due to the

effect of increased permeability, the slow-motion region expands horizontally and moves up toward the

right corner Fahs et al. (2015a). The zone of low temperature variance exhibits similar behavior. The

largest variance zone moves to the low permeable layers and it is shifted toward the hot wall. The high

permeability at the top layers leads to a reduction of the variance of the temperature.

The spatial maps of the total Sobol’ indices are depicted in Fig. 13. It demonstrates that, due

to the heterogeneity, the symmetry of the Sobol’ indices spatial distribution around the center of the

cavity is completely destroyed. Fig. 13 indicates that α∗
L, α

∗
T and σ∗ have significant influence on the

temperature distribution.

A closer look to the temperature variance confirms that, as for the homogeneous case, α∗
L is the most

sensitive parameter since its zone of influence intersects well with the zone of maximum temperature

variance. Comparing to the homogeneous case, the zone of influence of α∗
L expands in the zones of low
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(A) Spatial distribution of total Sobol’ index of Ra; (B) Spatial distribution of total Sobol’ index of rk;

(C) Spatial distribution of total Sobol’ index of α∗

L; (D) Spatial distribution of total Sobol’ index of α∗

T ;

(E) Spatial distribution of total Sobol’ index of σ∗;

Fig. 13: Heterogeneous case - Spatial distribution of the total Sobol’ indices for the temperature

permeability (toward the bottom surface of the cavity) and contracts in the high permeable zones (at

the top surface). Indeed, when the slow-motion region moves up toward the right corner, the zones in

which the velocity vector is horizontal (parallel to the gradient) shrinks near the top surface and grows

in the lower part of the cavity. The reverse is true for the zone of influence of α∗
T . This zone expands

vertically near the hot wall and contracts near the cold wall. This behavior is also attributable to the

shifting of the slow-motion region toward the top right corner due to heterogeneity. The sensitivity
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of the temperature distribution to the rate of change of heterogeneity σ∗ is mainly important around

the zone of slow rotating motion as it can be seen in Fig. 13e. The zone of influence of Ra expands

around the right bottom corner (Fig. 13a). This behavior is related to the expansion of the zone

in which the velocity is relatively weak as a consequence of the low permeability near the cavity

bottom surface. Conversely, around the top left corner the high permeability induces faster convective

flow associated with higher dispersion tensor. Hence, mixing by thermal dispersion dominates and

temperature distribution becomes less sensitive to Ra. Fig. 13b shows that in the case of heterogeneous

porous media, rk becomes more influential on the temperature distribution than for the homogeneous

case. Its zone of influence expands around the top left corner.

• GSA of the scalar QoIs

Fig. 14 shows bar-plots of the first order and total Sobol’ indices of the three model outputs ( Nu,

u∗
max and v∗max).
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Fig. 14: Heterogeneous case - Total Sobol’ indices for the model outputs

This figure allows drawing the following conclusions:

• The heterogeneity of the porous media does not affect the rank of the parameters regarding their

influences on the model outputs. Ra and α∗
T remain the most influential parameters for Nu, Ra

and rk for u∗
max, and Ra for v∗max.
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• The uncertainty associated with the rate of change of the heterogeneity σ∗ has no effect on Nu.

This is coherent with the results obtained for the temperature distribution that shows that the

effect of σ∗ is located relatively far from the hot wall in the slow-motion region.

• The influence of σ∗ is more important on u∗
max and v∗max, which is reasonable because the velocity

is directly related to the permeability level of heterogeneity.

• One can also observe that the heterogeneity renders Nu and v∗max more sensitive to rk. In fact,

in vertically stratified heterogeneous domains (as it is the case here), the anisotropy can be at

the origin of a vertical flow that can transmit the fluid from a certain layer to lower or upper

ones with different permeability. Hence any change of rk may have a strong effect on the flow as

different layers of heterogeneity can be involved.

The investigation of the marginal effects of the parameters on the model outputs showed that the

conclusions drawn for the homogeneous case still hold for the heterogeneous porous media. This is why

we hereby discuss only the marginal effect of σ∗. The results show a slight variation of Nu against σ∗.

Indeed, the increase of sigma leads to the attenuation of the local velocity at the lower part of the hot

wall and an intensification in the upper part. The attenuation of the horizontal velocity around the

bottom surface is associated to a reduction of the thermal dispersion and by consequence a decrease

of the temperature gradient. Reverse process occurs at the upper surface and leads to the increase of

the thermal gradient. As a consequence, the local Nusselt number decreases in the lower part of the

vertical wall and increases at the upper part. Upper and lower local Nusselt numbers tend to balance

out each other and lead to small variation of the Nu. Marginal effects of σ∗ on u∗
max and v∗max are

given in Fig. 15. This figure confirms the high sensitivity of u∗
max and v∗max to sigma. It indicates also

an increasing variation of u∗
max and v∗max against σ∗ as a result of the permeability increasing at the

top surface of the cavity.
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Fig. 15: Heterogeneous case - Univariate effects of σ∗ on u∗max and v∗max.

6 Summary and conclusions

The proposed study handled the topic of natural convection problem in heterogeneous porous media

including velocity-dependent dispersion. The considered benchmark is the popular square cavity filled
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with a saturated porous medium and subject to differentially heated vertical walls and adiabatic hor-

izontal surfaces. The simplicity of the geometry and the boundary conditions renders this problem

especially suitable for testing numerical models but also useful to provide physical insights into the

involving processes. It introduces however several uncertain parameters, namely: the average Rayleigh

number (Ra), the permeability anisotropy ratio (rk), the non-dimensional dispersion coefficients (α∗
L

and α∗
T ).

The imperfect knowledge of the system parameters and their variability significantly affect the flow

and heat transfer patterns. It is thus of utmost importance to properly account for the aforementioned

uncertainties within the frame of uncertainty and sensitivity Analysis. In this work, we analyze the

impact of the uncertain parameters on the output quantities of interest (QoIs) allowing assessment

of flow and heat transfer. To describe the flow process, we use the maximum dimensionless velocity

components (u∗
max and v∗max). For the heat transfer process, the assessment is based on the spatial

distribution of the dimensionless temperature (T ∗) and the average Nusselt number Nu on the hot

wall. The effect of heterogeneity was also investigated by considering a stratified heterogeneous porous

media with an exponential distribution of the permeability as a function of depth. The rate of change

of the permeability σ∗ is then considered uncertain.

Herein, we performed a comprehensive global sensitivity analysis and uncertainty quantification

through performing the probability distributions by means of surrogate modeling. Sparse PCE are

used for this purpose. Our results lead to the following major conclusions.

• Sparse PCE proved particularly efficient in providing reliable results at a considerably low compu-

tational costs. All results derived for the homogeneous (resp. heterogeneous) case were obtained

at the cost of only 150 simulations of the computational model. Note that those runs could have

been carried out in parallel on any distributed computing architecture. Due to the inexpensive-

to-evaluate formulation of the sparse PCE meta-model, the probability density functions (PDF’s)

of the QoIs have been accurately estimated. An excellent agreement between sparse PCE and

MC results is obtained.

• The Sobol’ indices of the temperature distribution allow specifying the spatial zone of influence

of each parameter. Results showed that the variability of the temperature distribution is largely

influenced by the effect of α∗
L and α∗

T . Nevertheless, the effect of α∗
L on the temperature distri-

bution is more pronounced than that for α∗
T as its zone of influence is located in the region where

the variance is maximum.

• The variability of Nu is mainly due to main effects of Ra and α∗
T . Indeed, the Rayleigh number

dramatically influence the flow profile and heat transfer within the cavity, as well as the thermal

boundary layer thickness. The variability of u∗
max is mainly due to main effects of the ratio of

anisotropy rk, and Ra while the variability of v∗max is mainly controlled by Ra.

• The effect of the heterogeneity results in a different distribution of the variance of the temperature

while maintaining the same level of variability. The zone of largest temperature variance becomes

located in the low permeable layer near the bottom surface of the cavity. In this case, the isotherms

are more affected by the circulating flow than in the homogeneous case, especially in the high

permeable zones, associated to a more intense convective flow. Results shows that the average

Nusselt number is not sensitive to the heterogeneity rate while an increase of σ∗ is associated to

an increase of the maximum velocity u∗
max and v∗max.

• Marginal effects of each parameters are also readily obtained from PCE. As opposed to classical
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”one-at-a-time” sensitivity analyses, where all parameters but one are frozen so as to study the

effect of the remaining one, the univariate effect curves account for the uncertainties in the other

parameters. Quantitative conclusions have been drawn, which confirm qualitative interpretations.

This study represents a prototype to point out the benefit of GSA and UQ to understand how the

complex system of natural convection in porous media behaves. This kind of study shall be useful for

safe design and risk assessment of systems involving natural convection in porous enclosure.
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