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Context and problem statement
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I Nonnegative Matrix Factorization
(NMF) is a popular tool in
Signal/Image Processing and
Machine Learning

I Goal: estimate two nonnegative n × p and p ×m matrices A and S such that an observed low-rank
nonnegative n ×m matrix X can be written as X ≈ A ·S :

I Some applications:
I Source separation, dictionary learning, graph analysis, topic modelling, collaborative filtering, low-rank nonnegative

matrix completion, sensor calibration...

I (informed) NMF for blind sensor calibration
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Blind calibration revisited as a weighted
NMF problem (affine model) [1]
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I Why is NMF so popular? Better interpretability than no-sign-constrained approaches

NMF and PCA applied to face dataset (source: [2])
I How is NMF working?

I Iterative procedure where A and S are alternatingly updated
I Historical techniques known to be slow (multiplicative updates, projected gradients, nonnegative least squares, etc)

I NMF and Big Data: How to face the data deluge?
I Distributed computing (e.g., [3])
I Online factorization (e.g., [4])
I Fast solver (e.g., [5], [6])
I Randomized strategies (e.g., [7, 8, 9, 10]

I Most randomized NMF techniques are combined with a slow solver (except for separable NMF,
which is out of the scope of this poster).

î Is there any interest to combine a fast solver with randomization?

NMF with Nesterov iterations

I In 1983, Nesterov fastens the plain Gradient Descent by replacing the line search for optimal
stepsize by its proposed iterative Optimal Gradient Descent

î NeNMF [5] much faster than MU-NMF [2] or PG-NMF [11]
I The NeNMF algorithm consists of:

I an outer loop
initialize t = 1, A1, and S1

loop
t← t+1;
St+1 ← NeInnerLoopF(X , At , St );
At+1 ← NeInnerLoopG(X , At , St+1);

end loop
I an inner loop (here detailed for an update of F )

define α0 = 1, αk+1 =
1+
√

4α2
k+1

2 , ∀k ∈ N
initialize Y0 , St , k = 0
repeat

Sk =
(
Yk − 1

L∇FJ (A,Yk )
)+

with L , ||A||22 Lipschitz constant
Yk+1 = Sk + αk−1

αk+1
(Sk − Sk−1),

until Stopping criterion reached at Iteration K
return St+1 = YK

Stopping criterion: k = MaxIter or
∣∣∣∣∣∣∇+

SJ (At ,YK )

∣∣∣∣∣∣
F
≤ ε ·

∣∣∣∣∣∣∣∣[∇+
AJ (A1,S1),∇+

SJ (A1,S1)

]∣∣∣∣∣∣∣∣
F

+ k > MinIter

Principles of random projections

I In an ideal world (i.e., noiseless and errorless), only two rows and columns of X are needed to
update S and A on the top figure, respectively

I But we are not living in an ideal world...
I Random projections is a popular tool in machine learning to speed-up computations while preserving pairwise

structure

Principles of the random projections (source: [12])

I Design of the compression scheme for NMF (e.g., using power iteration)

Require: a target rank ν (with p ≤ ν � min(n,m)) and an integer q (e.g., q = 4 in [9])
Draw Gaussian random matrices ΩL ∈ Rm×ν and ΩR ∈ Rν×n

Define BL , (XX T )q ·X ·ΩL and BR , ΩR ·X · (X T X )q

Derive L ∈ Rν×n and R ∈ Rm×ν by QR decompositions of BL and BR, respectively.
I NMF with random projections:

Require: initial matrices A and S, and compression matrices L and R.
Define XL , L ·X and XR , X ·R
repeat

Define SR , S ·R
Update A by resp. replacing X and S by XR and SR
Define AL , L ·A
Update S by resp. replacing X and A by XL and AL

until a stopping criterion

Experiments

I Simulations with rank-15 matrices X of size m = n = 500, 5000, and 10000.
I Theoretical matrices A and S are known
I Input SNR ≈ 30 dB
I Methods are run 15 s and their performance is regularly computed
I Performance criterion:

RRE ,
||X − A ·S||F
||X ||F

I Randomized NeNMF vs (already fast) vanilla NeNMF
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Performance of the randomized NeNMF (in red) vs the vanilla one (in blue) with respect to time.
Top: n = 500. Middle: n = 5000. Bottom: n = 10000.

Conclusion and perspectives

I An experimental study of the combination of random projections with an optimal solver for NMF
I The proposed approach is shown to be really fast (much more than vanilla NeNMF for very large

matrices)
I In future work, we will extend the approach to weighted NMF (matrix completion, blind sensor

calibration)
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