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An Integrated Design for Robust Actuator Fault Accommodation based
on H∞ Proportional-Integral Observer

Manh-Hung Do, Damien Koenig, and Didier Theilliol

Abstract— The main contribution of this paper is an in-
tegrated design of robust fault estimation (FE) and fault
accommodation (FA), applied to uncertain linear time invariant
(LTI) systems. In this design, the robust H∞ proportional-
integral (PI) observer allows a precise estimation of actuator
fault by dealing with system disturbances and uncertainties,
while the feed-back controller compensates the actuator fault,
and therefore assuring the closed-loop stability. Thanks to the
application of majoration and Young inequalities, the observer-
controller decoupling problem is solved and both above ob-
jectives are combined into only one linear matrix inequalities
(LMI) allowing a simultaneous solution for both observer and
controller. Finally, an example of vehicle suspension system is
illustrated to highlight the performance of the proposed method.

Index Terms— Uncertain linear system, PI Observer, Fault
diagnosis, Fault tolerant control, Vehicles.

I. INTRODUCTION

Nowadays, fault tolerant control (FTC) plays an important
role in assuring the normal system behavior against fault
occurences. One of many interesting approaches to meet
FTC objective is the observer-based controller, in which
the observer is used for fault diagnosis or state estimation,
while the controller applies the reconfiguration mechanism
based on information obtained from the observer (see [1]).
Authors in [2] has reformulated the fault and system states
into a descriptor system and then used Luenberger observer
and state-feedback controller for fault estimation and fault
compensation, respectively. In [3], a joint design for FTC
has also been developed, where a proportional-integral (PI)
observer is used to estimate the actuator fault; the tracking
error is assured by using H2/H∞ norm, and then a state-
feedback controller based on estimated states, faults and
tracking error is applied for FTC purpose. The sliding-mode
observer has also been developed for actuator fault estimation
and a fault compensation has been applied to deal with the
existing fault in [4]. Authors in [5] has developed virtual
observers with immeasurable input for fault estimation and
reformulated them into the normal observer form, so that the
actuator and sensor fault can be estimated simultaneously.

However, the above solutions have only taken into account
the observer and controller in two separate designs, which
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may cause the system instability in fault compensation where
the time for estimation and reconfiguration is critical (see
[6]). To solve this problem, an integrated design has been
developed in [7], where the observer and controller are
designed together. With this approach, the unknown input
(UI) observer is applied to eliminate disturbance impact
on fault estimation while H∞ sliding mode control assures
the quality of controlled output against system disturbance
and uncertainties. In [8], for non-UI descriptor system, a
PI observer-based controller has been developed to solve
uncertainties existing in the observer gain and handle FTC
problem. Although the above approach has justified its per-
formance, there are still some obstacles to overcome. Firstly,
the controller design demands restrictive conditions for the
positive definite matrix P of Lyapunov function, which allows
the decoupling of observer and controller design, but may
also lead to an unfeasible solution for LMI optimization.
More discussions on this problem can be found in [9].
Secondly, the decoupling condition between UI and estima-
tion errors may be not met due to UI observer exigences.
Therefore, this paper will examine these difficulties with the
following contributions:

• The integrated design of observer and controller, where
H∞ PI observer attenuates the disturbance impact on
fault estimation and the observer-controller coupling
problem is solved by the Young relation, is studied;

• Fault estimation is robust against the uncertainties in
system states (matrices A and C), which is counted in
the integrated design by applying the majoration lemma;

• Both above objectives and the robust observer-controller
interaction are resumed in only one LMI problem.

An application of vehicle suspension model is also pre-
sented in this study. In which, the PI observer promotes
the estimation of actuator fault while the combination of the
state-feedback controller and fault compensation assures the
normal behavior of suspension.

The paper is organized as follows. Firstly, the problem
formulation is presented in Section 2. In Section 3, under
fault occurrence, the integrated design of the observer and
controller against system uncertainties is constructed by us-
ing LMI optimization. The modeling for suspension system
is considered under actuator fault occurrence in Section 4.
Finally, the conclusion with remarks and future work are
presented in Section 5.

Notations: Rn represents the n-dimensional Euclidean
space; XT is the transpose of the matrix X; 0 and I de-
note respectively zeros and identity matrix with appropriate



dimensions; the symbol (∗) denotes the transposed block in
the symmetric position; and X† is the pseudo-inverse matrix
of X which satisfies that XX†X = X .

II. PROBLEM FORMULATION

Consider the following uncertain faulty LTI system:{
ẋ = (A+∆A)x+Bu+Edd +E f f
y = (C+∆C)x+Du+Fdd +Ff f

(1)

In which,
• x ∈ Rnx is the state vector; y ∈ Rny is the measurement

output vector; u∈Rnu is the input vector; d ∈Rnd is the
disturbance vector; f ∈ Rn f is the actuator fault vector
to be detected and estimated.

• Matrices A, B, C, D, Ed , E f , Fd , and Ff are constant
matrices corresponding to the nominal system with
appropriate dimensions. In which, E f = B and Ff = D
in case of actuator faults.

• The terms ∆A and ∆C are time-varying parameter matri-
ces corresponding to the uncertainty of nominal system.
They can be represented as:{

∆A = Ma∆aNa

∆C = Mc∆cNc
(2)

where Ma, Na, Mc, and Nc are known real constant matrices
with appropriate dimension. ∆a and ∆c are unknown real-
valued matrices satisfying that ∆T

a ∆a ≤ I and ∆T
c ∆c ≤ I.

Remark 1: In this study, only the terms ∆A and ∆C are
considered for the simplicity of design model (2). In case of
uncertainties existing in input matrices B and D, the solution
can also be obtained with the same principle with the use of
majoration lemma.

The fault accommodation strategy for system (1) is pre-
sented in the next section.

III. FAULT TOLERANT CONTROL DESIGN

Assumption 1. As discussed in [10], the faults are con-
sidered to be bounded and supposed to be in low frequency
domain, i.e., ḟ ' 0. In fact, most system faults, such as an
actuator jam or a stuck, exist in this zone (see [11], and [12]).

The integrated design combines 2 components:
• The PI Observer for actuator fault estimation:

˙̂x = Ax̂+Bu+LP(y− ŷ)+E f f̂
˙̂f = LI(y− ŷ)

ŷ =Cx̂+Du+Ff f̂

(3)

where LP and LI are the proportional and integral gains
of observer, respectively.

• The state-feedback controller u =−Kx̂ with the gain K
assuring the closed-loop stability and an input uadd =
−B†B f̂ which compensates the actuator fault. This can
be expressed as:

u =−Kx̂−B†B f̂ (4)

Defining the state and fault errors as:{
ex = x− x̂
e f = f − f̂

(5)

Substituting (4) into (1), the dynamic of system states can
be presented as:

ẋ = (A+∆A)x−BKx̂+Edd−B f̂ +E f f (6)

= (A+∆A)x−BK(x− ex)+Edd−B f̂ +E f f (7)
= (A+∆A−BK)x+(BKex +Be f )+Edd (8)

From (1) and (3), the error dynamics are expressed as:

ėx = ẋ− ˙̂x = (A−LPC)ex +(E f −LPFf )e f

+(Ed−LPFd)d +(∆Ax−LP∆C)x (9)

ė f = ḟ − ˙̂f =−LICex−LIFf e f −LIFdd−LI∆Cx (10)

In other words:

ė = (Aa−LaCa)e+(Eda−LaFd)d +(∆A−La∆C)x (11)

where estimation error: e =
[

ex
e f

]
Map =

[
Ma

0n f×n1a

]
, Aa =[

A E f
0 0

]
, La =

[
LP
LI

]
, Eda =

[
Ed

0n f×nd

]
, and Ca =

[
C Ff

]
.

Assumption 2. For the existence of the PI observer in (4),
the pair (Aa,Ca) in (11) is assumed to be detectable, which
can be expressed as the following condition (see [10]):

rank
[

sI−Aa
Ca

]
= rank

sI−A −E f
0 sIn f

C Ff

= nx +n f

∀Re(s)≥ 0 (12)

The closed-loop system can be expressed as:

 ẋ
ėx

ė f

 =

 A+∆A−BK BK B
∆A−LP∆C A−LPC E f −LPFf

−LI∆C −LIC −LIFf


 x

ex

e f


+

 Ed

Ed−LPFd

−LIFd

d

e f =
[
0 0 I

] x
ex

e f


(13)

Remark 2: Due to the certainty existence, the terms (∆A−
LP∆C) and (−LI∆C) in (13) are not null, which presents a
challenge for the separated design to assure the robustness of
observer-controller interaction. Therefore, the existence of an
integrated solution is necessary. More details on performance
of 2 approaches are found in simulation results of Section 4.

As usual (see [10]), the main objective of robust PI H∞

observer is to minimize the effect of disturbance d on the
fault estimation error e f in (13), which can be rewritten as:

min
γ>0
‖Se f d‖∞ = min

γ>0

‖e f ‖2

‖d‖2
≤ γ (14)



The robust stability of the closed-loop system (13) and the
disturbance attenuation objective (14) can be achieved if the
following condition (15) is satisfied:

V̇ + eT
f e f − γ

2dT d < 0 (15)

where the Lyapunov candidate function is chosen as:

V =
[
xT eT

x eT
f
]

P

 x
ex
e f

 ,P > 0 (16)

Some remarks on LMI and inequality problems are pre-
sented by the following lemmas:

Lemma 1. (Majoration lemma) (see [13])
If there exists FT F ≤ I, for given matrices X and Y with

appropriate dimensions, the following statement is always
true with an arbitrary scalar σ > 0:

XFY +Y T FT XT ≤ σXXT +σ
−1Y TY (17)

Lemma 2. (Schur complement) (see [14])
Let Q < 0, S and R be given matrices, the following

statements are equivalents:[
Q R
RT S

]
< 0

Q−RS−1RT < 0
(18)

Lemma 3. (Young relation) (see [14])
For given matrices X and Y with appropriate dimensions,

we have for any invertible matrix F and scalar ε > 0 that:

XTY +Y T X ≤ εXT FX + ε
−1Y T F−1Y (19)

Theorem 1. If there exist such symmetric positive definite
matrices P1, P2 and P3; matrices Q1, Q2, and Q3; and given
positive scalars ε,σ1,σ2,σ3,σ4 that the following LMI is
satisfied: 

Ω11 Ω12 Ω13 Ω14


0
0

Q3Mc
0


(∗) Ω22 0 0 0
(∗) 0 Ω33 0 0
(∗) 0 0 Ω44 0
(∗) 0 0 0 −σ

−1
4


< 0 (20)

where

Ω11 =


Γ′′11 0 B Ed
0 Γ′22 Γ23 Γ24
(∗) (∗) Γ′33 Γ34
(∗) (∗) (∗) Γ44

 Ω12 =


BQ1 0

0 I
0 0
0 0

 (21)

Ω13 =


P1NT

a P1NT
c

0 0
0 0
0 0

 Ω14 =


0 0

P2Ma Q2Mc
0 0
0 0

 (22)

Ω22 =

[
−ε−1P1 0

0 −εP1

]
(23)

Ω33 =

[
− σ1σ2

σ1+σ2
0

0 − σ3σ4
σ3+σ4

]
(24)

Ω44 =

[
−σ

−1
2 0

0 −σ
−1
3

]
(25)

Γ
′′
11 = AP1 +P1AT −BQ1−QT

1 BT +σ1MaMT
a (26)

Γ
′
22 = P2A+AT P2 +Q2C+CT QT

2 (27)

Γ
′
33 = Q3Ff +FT

f QT
3 + I (28)

Γ23 = P2E f +Q2Ff +CT QT
3 (29)

Γ24 = P2Ed +Q2Fd (30)
Γ34 = Q3Fd (31)

Γ44 =−γ
2I (32)

then the gains K =Q1P−1
1 , LP =−P−1

2 Q2, and LI =−P−1
3 Q3

can assure the asymptotically robust stability of system (13).
Proof: Assuming that P in (16) has the form:

P = diag(P−1
1 ,P2,P3) (33)

where P−1
1 ,P2, and P3 are symmetric positive definite

matrices. As a result, (16) can be expressed as:

V =V1 +V2 +V3 = xT P−1
1 x+ eT

x P2ex + eT
f P3e f (34)

The condition (15) is rewritten as:

V̇1 +V̇2 +V̇3 + eT
f e f − γ

2dT d < 0 (35)

In which,

V̇1 = ẋT P−1
1 x+ xT P−1

1 ẋ (36)

= xT (P−1
1 A+AT P−1

1 −P−1
1 BK−KT BT P−1

1 )x

+ xT (P−1
1 Ma∆aNa +NT

a ∆
T
a MT

a P−1
1 )x

+ xT (P−1
1 BK)ex + eT

x (K
T BT P−1

1 )x

+ xT (P−1
1 B)e f + eT

f (B
T P−1

1 )x

+ xT P−1
1 Edd +dT ET

d P−1
1 x (37)

V̇2 = ėT
x P2ex + eT

x P2ėx (38)

= eT
x (P2A+AT P2 +Q2C+CT QT

2 )ex

+ eT
x (P2E f +Q2Ff )e f + eT

f (E
T
f P2 +FT

f QT
2 )ex

+ eT
x (P2Ed +Q2Fd)d +dT (ET

d P2 +FT
d QT

2 )e

+(eT
x P2Ma)∆a(Nax)+(xT NT

a )∆
T
a (M

T
a P2ex)

+(eT
x Q2Mc)∆c(Ncx)+(xT NT

c )∆
T
c (M

T
c QT

2 ex) (39)

V̇3 = ėT
f P3e f + eT

f P3ė f (40)

= eT
f (Q3Ff +FT

f QT
3 )e f + eT

f Q3Cex + eT
x CT QT

3 e f

+ eT
f (Q3Fd)d +dT (FT

d QT
3 )e f

+(eT
f Q3Mc)∆c(Ncx)+(xT NT

c )∆
T
c (M

T
c QT

3 e f ) (41)

where Q2 = P2LP and Q3 = P3LI
Applying lemma 1, ∀σ1,σ2,σ3,σ4 > 0:

V̇1 ≤ xT (P−1
1 A+AT P−1

1 −P−1
1 BK−KT BT P−1

1

+σ1P−1
1 MaMT

a P−1
1 +σ

−1
1 NT

a Na)x

+ xT (P−1
1 BK)ex + eT

x (K
T BT P−1

1 )x

+ xT (P−1
1 B)e f + eT

f (B
T P−1

1 )x

+ xT P−1
1 Edd +dT ET

d P−1
1 x (42)



V̇2 ≤ eT
x (P2A+AT P2 +Q2C+CT QT

2 +σ2P2MaMT
a P2

+σ3Q2McMT
c QT

2 )ex + xT (σ−1
2 NT

a Na +σ
−1
3 NT

c Nc)x

+ eT
x (P2E f +Q2Ff )e f + eT

f (E
T
f P2 +FT

f QT
2 )ex

+ eT
x (P2Ed +Q2Fd)d +dT (ET

d P2 +FT
d QT

2 )ex (43)

V̇3 ≤ eT
f (Q3Ff +FT

f QT
3 +σ4Q3McMT

c QT
3 )e f

+ eT
f Q3Cex + eT

x CT QT
3 e f + xT (σ−1

4 NT
c Nc)x

+ eT
f (Q3Fd)d +dT (FT

d QT
3 )e f (44)

The left side of (35) can be expressed as:

V̇1 +V̇2 +V̇3 + eT
f e f − γ

2dT d ≤
[
xT eT

x eT
f dT ]

Γ


x
ex
e f
d


(45)

where

Γ =


Γ11 Γ12 Γ13 Γ14
(∗) Γ22 Γ23 Γ24
(∗) (∗) Γ33 Γ34
(∗) (∗) (∗) Γ44

 (46)

Γ11 = P−1
1 A+AT P−1

1 −P−1
1 BK−KT BT P−1

1

+σ1P−1
1 MaMT

a P−1
1 +(σ−1

1 +σ
−1
2 )NT

a Na

+(σ−1
3 +σ

−1
4 )NT

c Nc (47)

Γ12 = P−1
1 BK (48)

Γ13 = P−1
1 B (49)

Γ14 = P−1
1 Ed (50)

Γ22 = P2A+AT P2 +Q2C+CT QT
2

+σ2P2MaMT
a P2 +σ3QMcMT

c QT
2 (51)

Γ33 = Q3Ff +FT
f QT

3 +σ4Q3McMT
c QT

3 + I (52)

The sufficient condition for the robust stability of (13) is
that:

Γ < 0 (53)

Pre- and post-multiplying this inequality by diag{P1, I, I}:

Γ1 =


Γ′11 BK B Ed
(∗) Γ22 Γ23 Γ24
(∗) (∗) Γ33 Γ34
(∗) (∗) (∗) Γ44

< 0 (54)

where

Γ
′
11 = AP1 +P1AT −BQ1−QT

1 BT +σ1MaMT
a

+(σ−1
1 +σ

−1
2 )P1NT

a NaP1 +(σ−1
3 +σ

−1
4 )P1NT

c NcP1
(55)

Q1 = KP1 (56)

The term Γ1 can be expressed as:

Γ1 = Ω1 +


BK
0
0
0

[0 I 0 0
]
+


0
I
0
0

[(BK)T 0 0 0
]

(57)

where Ω1 =


Γ′11 0 B Ed
0 Γ22 Γ23 Γ24
(∗) (∗) Γ33 Γ34
(∗) (∗) (∗) Γ44


Applying lemma 3 with F = P1, X =

[
(BK)T 0 0 0

]
,

and Y =
[
0 I 0 0

]
:

Γ1 ≤ Γ2 (58)

Γ2 = Ω1 + ε


BK
0
0
0

P1
[
(BK)T 0 0 0

]

+ ε
−1


0
I
0
0

P−1
1
[
0 I 0 0

]
(59)

= Ω1 +


BQ1 0

0 I
0 0
0 0

[εP−1
1 0
0 ε−1P−1

1

][
(BQ1)

T 0 0 0
0 I 0 0

]
(60)

The condition (53) holds if:

Γ2 < 0 (61)

Applying Schur complement on Γ2, we obtain:
Ω1


BQ1 0

0 I
0 0
0 0


(∗)

[
−ε−1P1 0

0 −εP1

]

< 0 (62)

Applying Schur complement many times on Ω1 in order
to rewrite the above inequality as LMI form in (20). That
completes the proof for robust stability of (13).

An application of the proposed design to vehicle suspen-
sion system is presented in the next section to prove its
performance against the actuator fault.

IV. APPLICATION TO VERTICAL CAR SYSTEM

A. Suspension modeling

The quarter-car, or semi-active suspension in our example,
can be modeled by a mass-spring-damper system (see Fig. 1),
which contains: the sprung mass ms represents a quarter of
the chassis body and zs is the vertical displacement around
the equilibrium point of ms; the sprung mass mus represents
the wheel / the tire of the vehicle and zus is the vertical
displacement around the equilibrium point of mus; the semi-
active suspension is composed of a spring with the stiffness
coefficient ks and a controllable damper with the damping
coefficient c, in which cmin ≤ c≤ cmax; the tire is modeled by
a spring with the stiffness coefficient kt ; and the road profile
zr is considered as unknown input d for the suspension.



The suspension dynamics are described by the following
equations ( [15]):{

msz̈s =−ks(zs− zus)−Fc

musz̈us = ks(zs− zus)+Fc− kt(zus− zr)
(63)

Where Fc = cżde f is the damper force; zde f = zs− zus is
the displacement (deflection) between the chassis and the tire
position; and żde f is the deflection speed.

In order to obtain LTI model of suspension system, the
damper force Fc can be decomposed into 2 components:

Fc = cżde f = c0żde f +u (64)

In which, u is the model input corresponding to the varying
part of semi-active damper force Fc; c0 is the nominal value
of damper, which corresponds to a passive damper when
there is no control input u.

According to [16], in case of semi-active suspension, the
authors chose c0 = (cmin + cmax)/2 as the nominal damping
value, so the control input u in (64) is supposed to be limited
in the symmetric region [−u∗max,u

∗
max], where u∗max = (cmax−

cmin)żde f /2. However, in this example, we only focus on the
performance of FTC system, not the saturation problem.

The faulty LTI model has been considered for the study
as: {

ẋ = Ax+Bu+Edd +E f fa

y =Cx+Du+Fdd +Ff fa
(65)

In which, x =
[
zs żs zus żus

]T is the state vector; y =[
zde f z̈us

]T is the output vector; d is the road profile zr
considered as unknown input; u is the control input; fa is
the actuator fault;

A =


0 1 0 0
− ks

ms
− c0

ms
ks
ms

c0
ms

0 0 0 1
ks

mus

c0
mus

− kt+ks
mus

− c0
mus

, Fd =
[
0 kt

mus

]T
,

C =

[
1 0 −1 0
ks

mus

c0
mus

− kt+ks
mus

− c0
mus

]
, Ed =

[
0 0 0 kt

mus

]T
,

Ff = D =
[
0 1

mus

]T
, and E f = B =

[
0 − 1

ms
0 1

mus

]T
.

The parameters of suspension, which satisfy the Assump-
tion 2, are presented in the table I.

Fig. 1. The quarter-car scheme.

TABLE I
SUSPENSION PARAMETERS

Parameters Unit Value Description
ms kg 2.578 A quarter-car chassis mass
mus kg 0.485 Rear tire mass
ks N/m 349 Suspension stiffness
cmin N.s/m 18 Minimum damping coefficient
cmax N.s/m 85 Maximum damping coefficient
kt N/m 3067.5 Tire stiffness

B. System uncertainty

The damping coefficient c is varying from cmin to cmax, so
it has the uncertainty of ∆c0 = (cmax−cmin)/2 comparing to
the nominal value c0.

The uncertainty effect on system dynamics are presented
by the eigenvalues of (A±∆A) with ∆A = 0 and with both
cmax and cmin cases, as presented as following:
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Fig. 2. Dynamics of uncertain system.

Fig. 2 proves an important influence of the damping
coefficient’s variation on the system dynamics. Therefore, the
application of the robust observer and controller is necessary
to deal with this uncertainty.
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C. PI Observer Performance Analysis

Following from the assumption 1 and authors in [15],
the actuator fault fa is supposed to exist in low frequency,
while the working frequency of road profile d is from 0 to
20 Hz. By solving LMI optimization problem, optimal H∞

performance of the PI observer is calculated: γ = 0.25.
The frequency analysis is illustrated in Fig. 3 and Fig. 4 to

evaluate the sensitivity of the fault estimation error e fa to the
disturbance and the estimation performance of PI observer.

Fig. 3 shows an efficient attenuation of the road profile
d (cm) impact on the fault estimation error e fa . It has a
maximum at 1.73 Hz, which emphasizes the worst case of
−14.3 dB in its frequency range.

In Fig. 4, |T f̂a fa | = 0 from 0 to 0.1 Hz, so the actuator
fault fa can be well estimated if its bandwidth is less than
0.1 Hz.

D. Simulation condition in closed loop

The closed-loop system is simulated during 12 seconds.
Road profile d: is modeled as a sinus signal. The fre-

quency fc is chosen as 1.73 Hz, which represents one of the
worst case that the suspension has to handle (see Fig. 3)

d = zr = 0.2sin(2π fc) (cm) (66)

Fault Scenario: Abrupt fault (stepwise) has been consid-
ered for the test. A step up is chosen for the sake of modeling
fa existing in damper actuator.

fa =

{
6 if (2s≤ t ≤ 9s)
0 otherwise

(N) (67)

System uncertainty: is modified by ∆a and ∆c, which
represent the uncertainty in the damping coefficient. Those
terms are chosen as sinus signals to satisfy the condition that
∆T

a ∆a ≤ I and ∆T
c ∆c ≤ I

∆a = ∆c = sin(2π30) (68)

The frequency of uncertainty is chosen as 30 Hz, which
depends on the characteristics of suspension.
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Fig. 4. Sensitivity function |T f̂a fa |= | f̂a/ fa|.

The distribution matrices for system uncertainty are pre-
sented below:

Ma =
[
0 −∆c0

ms
0 ∆c0

mus

]T
Mc =

[
0 ∆c0

mus

]T
(69)

Na = Nc =
[
0 1 0 −1

]
(70)

Initial conditions: initial system states are chosen as:

x(0) =
[
zs(0) żs(0) zus(0) żus(0)

]T
=
[
0 0 0 0

]T
(71)

E. Simulation result in closed loop

In order to evaluate FTC performance, 2 designs of
controller are considered:
• Integrated design: is the proposed method where ob-

server and controller gains are designed simultaneously.
• Separated design: the robustness interaction between

the observer and controlled system is neglected. As
mentioned in [2], the controller is assumed as : u′ =
−K′x−B†B fa, so (1) becomes:{

ẋ = (A+∆A−BK′)x+Edd
y = (C+∆C−BK′)x+Fdd

(72)

The stability of the closed-loop system (72) is assured
if the gain K′ stabilizes the term (A+∆A−BK). On
the other hand, the state x and the fault fa can only be
estimated from PI observer (obtained from Theorem 1),
so the control input for separated design is rewritten as:
u′ =−K′x̂−B†B f̂a.

As observed in Fig. 5, the displacement position zde f
is stabilized under actuator fault occurrence in both cases,
which means that FTC objective is achieved. On the other
hand, the separated design takes more time to stabilize the
controlled signal and its peak in displacement output is
also higher when the actuator fault occurs. Therefore, the
performance of the integrated design is proved to be better
than that of the separated design.

The actuator fault estimation is presented in Fig. 6. In
both design methods, under the influence of road profile
disturbance, the actuator fault fa is well estimated with the
rising time about 2 seconds. In other words, the H∞ PI
observer has justified its effectiveness in fault estimation.

The control input is also reconfigured by FTC mechanism.
In Fig. 7, the control input has to decrease to compensate
for the rise of actuator fault from 2 to 9 seconds, and then
it comes back to normal behavior when there is no fault. In
spite of that, the control designed by the separated method
has slower reaction comparing to integrated design.

V. CONCLUSION AND FUTURE WORKS

Through the simulation, the integrated observer-controller
design has proven its performance in fault tolerant control.
In which, by applying H∞ norm, the PI observer attenuates
the disturbance impact on actuator fault estimation, while
the combination of state-feedback control and fault compen-
sation has assured the normal system behavior. Moreover,
the system uncertainty and the decoupling condition for



Fig. 5. Fault tolerant control result from 0 to 12 seconds.

Fig. 6. Actuator fault estimation.

observer-controller design have been taken into account for
the proposed design and LMI optimization, which allows a
robust stability of the closed-loop system. For future work,
the application of the proposed design to linear parameter-
varying system is also an interesting research topic.
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