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ASYMPTOTICS IN FOURIER SPACE OF SELF-SIMILAR SOLUTIONS TO THE
MODIFIED KORTEWEG-DE VRIES EQUATION

SIMAO CORREIA, RAPHAEL COTE AND LUIS VEGA

ABSTRACT. We give the asymptotics of the Fourier transform of self-similar solutions to the
modified Korteweg-de Vries equation, through a fixed point argument in weighted W1
around a carefully chosen, two term ansatz. Such knowledge is crucial in the study of stability
properties of the self-similar solutions for the modified Korteweg-de Vries flow.

In the defocusing case, the self-similar profiles are solutions to the Painlevé II equation. Al-
though they were extensively studied in physical space, no result to our knowledge describe
their behavior in Fourier space. We are able to relate the constants involved in the description
in Fourier space with those involved in the description in physical space.

1. INTRODUCTION
We consider the modified Korteweg-de Vries equation:

(mKdV) ou+> u+ed,(u®)=0, u:R, xR, —R.

Xxx

The signum ¢ € {£1} indicates wether the equation is focusing or defocusing. (mKdV) solu-
tions enjoy a natural scaling: if u is a solution then

uy (t,x) 1= Au(A3t, Ax)

is also a solution to (mKdV). We are interested in the self similar solutions of (mKdV), that
is, solutions which preserve their shape under scaling: in other words, they are solutions of
the form

U(t,x) =t~ B3y (7 Y3x)

for t > 0, x € R and where V : R — R is the self-similar profile, so that U, = U. After an
integration we see that the profile V solves the Painlevé type equation

1
@) V' = gyV—eV3+a.
A profile solution to (1) generates a self-similar solution U such that
1
2) U(t) —cdy+ av.p. (—) ast — 0", where c= fV(y)dy,
x

provided that the mean of V is well defined; we recall that this quantity is preserved by
(mKdV), and is therefore very relevant.
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Self-similar solutions play important roles for the (mKdV) flow, for the long time description
of solutions. Even for small and smooth initial data, the solutions display a modified scatter-
ing where self-similar solutions naturally appear: we refer to Hayashi and Naumkin [15, 14],
which was revisited by Germain, Pusateri and Rousset [10] and Harrop-Griffiths [12].
Self-similar solutions and the (mKdV) flow are also relevant as a model for the behavior of
vortex filament in fluid dynamics. More precisely, Goldstein and Petrich [11] proposed the
following geometric flow for the description of the evolution of the boundary of a vortex
patch in the plane under the Euler equations:

&tz = _asssz + 85,5(8552)2, ’652‘2 =1

where z = 2(t,s) is complex valued and parametrize by its arctlength s a plane curve which
evolves in time t. A direct computation shows that its curvature solves the focusing (mKdV)
(with € = 1), and self-similar solutions with initial data (2) corresponds to logarithmic spi-
rals making a corner: this kind of spirals are observed in a number of fluid dynamics phe-
nomenons. We refer to [16] and the reference therein for more details. Let us also mention
that we were also motivated by the sequence of papers by Banica and Vega [1, 2, 3, 4] for
related questions, modeled by non linear Schrédinger type equations.

In the defocusing case € = —1, equation (1) actually corresponds to the Painleve II equa-
tion, which has its own interest and was intensively studied. Very precise asymptotics where
obtained for its solutions. For example, in the case ¢ = —1, a = 0, for any x € R, there exist
a unique self similar solution V,. defined for large enough y » 1 such that

4 3p
3) Ve(y) =xAi(y)+0 (y_l/“e 3v3Y ) as y — 4o,

where Ai is the Airy function

1 +00
Ai(y) := ;L cos (53 +y§) dé.
Also, any solution to (1) which tends to 0 as y — 40 is one of the V. If furthermore
k€ (—1,1), V, is defined on R and
4
2 2
(y) = icos <_
3y[V4\3v3
1
= K2> and 6 =-3p <ln2 + Zln3> +InT(ip) + gsgnk — %

(T denotes the Gamma function). Recall for comparison the asymptotics of the Airy function:

3 _
2= 2pnly +0) +0 (Iy ¥ mly]) a5 y— -

1
where p = 2—ln<
T

. 1 2 ,3/2 _ _ 2 .3)2
Ai(Y) = —=se ™ 40 (y e ) w y e,
1 2 T
Ai = —COS | ——= 32 _ —> +0 ( _5/4111 ) as — —Q0.
() NN (B\/glyl , M M y

If x| = 1, V, is still global but is no longer oscillatory as y — —oo (it is equivalent to 4/|y|/2
and has a full asymptotic expansion); when || > 1, V is no longer defined on R (it has an

infinite number of poles). We refer to the works by Hastings and McLeod [13] and Deift and
2



Zhou [7] and the reference therein for the above results, and more (see also [8] and the
book [9]).

In the work of Perelman and Vega [16], related results were obtained in the focusing case
¢ = 1, using only ODE techniques. Observe that (1) is rescaled with respect to the way is it
presented in those works, and this accounts for the difference in the constants.

However, nothing is known on the Fourier side, even for small x (or small ¢, a). The ques-
tion of the asymptotics of V is natural and interesting by itself. It is also important for the
description of solutions to (mKdV) for large times. Indeed, the Fourier space captures the
dispersive effects of the (mKdV) flow (as it can be seen from the oscillatory behaviour of Ai
or V. as g — —o0). This is a key obviously if one wants to study the stability properties of
self-similar solutions.

Here we provide the asymptotics of V(&) at high and low frequencies &, for small (c,a).
We take our inspiration from PDE techniques, to the contrary of the above mentioned work
which relied on ODE or complex analysis methods. One major input of our techniques is that
they are amenable to perturbation: this work initiates the study of the (mKdV) flow around
self-similar solutions, which will be continued in forthcoming papers.

We work in weighted spaces based on L*: in fact it is convenient to introduce for k > 0 the
space defined Z¥ by

(5) 7k = {z €LP(R):VE >0, 2(—&) =2(E), ||z < +oo} where

(6) 2]zt := J2(&)(1 + &) |uon () + 12 (1 + &) Lo (0, 00) + 12 (1 + 1Y) Lo (—o0,0)-

We emphasize that a finite | - | ;« norm allows for a jump at zero, but with finite limits at 0*
(which are conjugate).
Our main result is the following.

Theorem 1. Given ¢ € {+1}, k€ (%, ‘7‘) and c,a € R with ¢ + a? < €, small enough, there
exist A= A(c, a) and a real valued function V € &' (R) solution to (1) such that

3

. . . ~ig¢
@) VE>0, e V(&) =y(E)elanlEl <A+Bez’aln|€e?> +z(&),

where y is a €% cut-off function such that y(§) = 0if & < 1and y(§) = 1if & > 2; the
remainder z € Z* satisfies

(8) |2] 2+ < |Al,
Y
©) z(i)—>c+ia as &—0",

and the constant a and B are related to A by

3 —3ie

(10) a=—-——|A? B=—"—

4r A 1672

Finally, the map (c, a) — Alis one-to-one onto an adequate neighbourhood of 0 € C, bi-Lipschitz,
and maps (0,0) to 0.

eialnS‘A|2A'
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Remark 2. The symmetry condition in the definition of Z* reflects the fact that we work
with real valued functions (in physical space). For the same reason, the knowledge of V

for positive frequencies & > 0 gives a complete description: for & < 0, V(&) = V(—&) and

2(&) = 2(=%).

In particular, z is continuous if and only if @ = 0, and otherwise has a jump discontinuity of

3
size —la at & = 0. Due to (9), the self-similar solution generated by V satisfies (2).
T

Remark 3. We emphasize that the description of V for large & has two terms. Although the
second one has decay, its high oscillation means that it is also a leading order term for the
derivative V', with decay 1/& like the first one.

Let us also notice that the parameters A, B and a may vary, but the phase —8&%/9 in the
second term is completely constrained. A is related to ¢, a by an (explicit) integral expression
— see Section 5.1): it would be nice to have a more computable link.

Remark 4. Performing (lengthy!) computations similar to that in the proofs, one should be
able to obtain an asymptotic expansion at any order for high or low frequencies. We will not
pursue this question here.

Remark 5. We are interested in real valued solutions to (1) as they are the most relevant for
(mKdV). However our analysis could be extended to complex valued V (simply dropping the
symmetry condition in the definition of Z¥). In that case the equation should read

1
(11) V”=§XV—£\V]2V+0L,

which corresponds to self similar equation to the gauge invariant (mKdV), and the ansatz
3

should look like ¢ + 2—la sgn(&) near & = 0, for given (c, a) € C?, and should be written with
U

unrelated constants AT, A~ instead of A,A for the asymptotics as £ — 400 or & — —o0; and
the same for B and a.

Remark 6. One natural question is the maximal size of a self-similar solution V defined on
R so that V € &'(R). A conjecture is that, when a = 0 and the size is measured by the mean
¢, one has a threshold |c| < /2 (see [6]).

This is not within the scope of our method. Our proofs are done via a fixed point argument,
which implies some smallness. We are also limited by our ansatz, with a cut-off function y
at scale 1. Maybe the result could be sharpened by the use of a cut-off on a scale depending
on (c,a).

As a consequence of the explicit Fourier expansion, we are able to link the profile constructed
in Theorem 1, with the V. constructed in physical space in [13].

Proposition 7. Fix ¢ = —1 and a = 0. Then the solution V constructed in Theorem 1 coincides
with V. defined in (3), where A and « are related via the relation

1
(12) \A|2 =2In <1 2) , and ReA and x have same sign.
—K
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2. OUTLOOK OF THE PROOF

2.1. Fixed point and ansatz. In Fourier space, equation (1) takes the form
[N A 1
—=V' =&V —eZ(|V]*V) + 2—a5§:0.
i

(For convenience, we use the nonlinearity of (11), which allows for complex valued V, with-
out extra cost on the computations). Denote v(&§) =e —i&y V(&). Then

3 A . ; 3i
y =i (V’ —3i820) = —3iee € F(V|2V) + 2—la55:0
T

3i
ff el (mi+3n3) v(n1)v(n2)v(— 773)dTI1d772+2 adg_o-
N1+N2+n3=

Let us first consider the trilinear operator I, which will be central in our analysis:

a3y  I(f,g h)(&) = U el IHISE3) £ (1)) g (1) R(—n3)dnydny.
N1+n2+n3=¢&

We can rewrite I in a more suitable form. Let & =01 +1y+m3, N =n1+nyand v =1 —n,
so that 3 = £ — 1. We compute

n3+my+n3— (n +ny+n3)°
=n3+n3+n3— (1 +n2)°> =301 +n2)°n3 — 3(N1 + n2)03 — 3
= —3m1ma(n1 + M) — 3(M +m2)°n3 —3(ny + 772)713

=-3 G(n2 —V)n+n*E—n)+n(E - n)2>

1 3
=-3 (néz —&n* + —ng) + St

4 4
Hence
I(f,g,h)(E) U el E3) £ (1)) g (1) R(—ns)dnydn,
N1+n2+n3=¢
_ 3i + v — P\ -
jj - ) (LY ¢ (1Y b gy,

M +n2+n3=¢&

1 o 3i(ne? g1} Bipg2 . (MT VY n—v
g R ([ s (s (1) oo
We are thus led to define the operators
(14) I9)E) = | e ENF (- g,

n

where the phase &

1
(15) ¢(€’ 7)) = 7)52 - 5772 + anz
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and

16) k(.9 = |

v

v (122 g (1),

so that
1(f,8.h) = 3I(hK(f,8)).

Back to our problem, our goal is to find a solution to

3ie 3i
v = —ﬁl(v,v,v) + §a55=0.
Equivalently, given c, a € R, we define
3i  3ie (°
17 VE>0, W = —a——— | I(v,v, dn,
a7 £ )8 =+ pra— s | 10wy mdn

and for & < 0, ¥(v)(&) = ¥(v)(—&). We are looking for a fixed point of ¥ (and v(0") =
c+ 23—;01); we will consider it of the form

v=S+z3z,

where S is our ansatz and z is small in some adequate functional space.

We first have to find a good ansatz S for the self-similar solution v on the Fourier side, and
we will prove the existence of such a solution V using a fixed-point argument.

We consider a smooth cut-off function y with y =0 for £ <1 and y =1 for £ > 2. In order
to obtain a real valued self-similar solution, we impose that S(—&) = S(&), which means
that we may focus on the region & > 0. Then we consider the two term ansatz

. o eiBE
(18) VE>0, S(§) =y (&) <A+Bez“‘lna?),
with constants A, B € C and f3,a € R to be adjusted. Observe that S(0) = 0 (and so z(0") =
3i
c+ ﬁa).

To see if S is a good approximation of the self-similar solution, we shall compute ¥(S) and
then compare with S. The first term
eialn|£ |

in the ansatz S comes from the following heuristics. It seems natural to look first at the ¥(1),
because constants for v correspond to the Airy function for V, which is a solution to the linear
part

A" = %yAi

of the Painlevé equation (1). In fact, the leading term ¥ (1) presents slow oscillations, of the
form e!®I! for large & (this can be seen by computing the leading term I (1,1,1): this is not
done here, but would follow, in a simplified way, from the computations done in Sections 3
and 4).

Then if we use this improved approximation, we are led to compute the leading term of

W (e €]): at least formally and for a correct choice of a, it is e!*™ Il jtself!
6



Now when doing a rigorous proof, it turns out that derivatives are absolutely needed to
control the errors. But when we consider the derivatives dg I (S,8,S), we see another term at
leading order, which is given by the second, highly oscillating, term
e

£3
in the ansatz. This second term can not be avoided, and requires that we do a distinct analysis
for low and high frequencies. Fortunately, the introduction of this second term in the ansatz
does not lead to a different asymptotic development for ¥(S) and we are able to complete
the proof with the two terms ansatz (18).
This procedure is actually quite analogous to the Picard iteration scheme: one starts with a
suitable initial function and computes various iterates of ¥. In our method, we start with 1
and compute three iterates of ¥. Thankfully, the error between the third iterate and the true
solution can be controlled and a fixed point can be applied.
One of the main difficulties in completing this program is to obtain a correct estimation of
the remainder terms. In the integrals involved in (14)-(15)-(16), we see that the phases
are quadratic (or cubic), which naturally leads to stationary phase estimates. This means a
rather slow decay, and also the need to develop efficient bounds on the errors on the station-
ary phase. This should be done preferably in L* based spaces: indeed, we have pointwise
estimates on the main order terms, and the problem is critical in some sense (the ansatz has
no decay at infinity for example), so that we can not afford to lose information.
This is in sharp contrast with the analogous problem for the nonlinear Schrodinger equation.
In that case, the phases appearing in the integrals are linear, and thus are never stationary:
the analysis is much simpler.

e3ia In|g

When matching the behavior of S and ¥(S) at § = 0 and & = +0, the constants A, B, a, a and
¢ are linked. On the other side, it turns out that 8 does not depend on any other constant,

and is in fact universal:
58
5
However, to see how this phenomenon occurs, we will pursue the computations for arbi-
trary f3. In several steps, the shape of the expansions obtained will depend on f. To avoid

unnecessary computations, we will always assume that
pe(—1,-1/2).

This allows to perform the computations without dichotomy in the expression of the expan-
sion.

2.2. Organisation of the proofs and notations. Our analysis will be done in spaces based
on weighted W% in v: this is coherent with the first term of the ansatz S, which has no
decay at infinity. In our goal to construct a solution, we do not aim at dealing with rough
data, it is sufficient for us to work with relatively strong norms.

One major difficulty in the proofs is that we are not able to close an argument in a functional
space that contains both S and z. The reason which we detail below, essentially comes from
the fact that S (and self-similar solutions), although smooth, has poor decay properties at
infinity.



More precisely, in the process of closing the fixed point argument, a very delicate game
is to be played with the errors in stationary phase arguments. The control of the errors is
technically challenging, in particular, we cannot allow the use of too many derivatives.

On the one hand, we absolutely need to control at least one derivative on z, as weighted L*
spaces are not sufficient to capture the dispersive effects (see for example Lemma 11, 12 and
13).

But on the other hand, it turns out that S does not quite belong to the right weighted space,
which is essentially given by (8). Indeed for S, we only have the decay

ISl < 1AL (1 +[EDS | < Al + B,

so that we miss a power k > 1/2.

So for terms in S only, we will involve the second derivative of S (essentially via integration
by parts), to compensate the lack of decay of S. However, if we were to compute with second
derivative of z, too, then again the decay of S” would not be sufficient.

This is why, at many places in the following sections, we will prove two estimates on the
same quantity, one meant to be used for the ansatz S and the other for the remainder z.

The multiplicity of the norms involved also has an impact on the exposition in the proof, in
particular the Landau notation O. So as to keep the expression as simple as possible, we adopt
the following convention: during the proof of an estimate, the implicit constant involved in
O is allowed to depend multilinearly on the norms appearing in the factors of the right hand
side of the final estimates. For example, in the course of proving the estimate

IB(f,8)n < Clf v, g,

(where B is a bilinear map and N, N; and N, are norms), the bound L(g)(&) = O(§) (where
L is linear) means that there exist an absolute constant C such that

IL(g)(E)] < ClEllglln,

in the neighborhood in £ considered. So as to avoid ambiguity, we will specify clearly what
estimate is being proved at each step. The same convention holds for the symbol <.

We will also write f ~ g for two complex valued functions f and g if |f /g| is bounded below
and above by some strictly positive constants. We will use the notation sgn for the signum
function, which can take values in {+1} or in {+}, depending on the context.

Finally, we point out the remainder z in Theorem 1 may present a jump discontinuity at
¢ = 0. This means that, in the estimates meant for z, an integration by parts will yield a
boundary term at this point. Sometimes, for convenience of notation, we simply include this
boundary term in the integral and interpret 2’(0) as a Dirac delta distribution.

Section 3 is devoted to estimates on J. In Section 4 we compute the precise asymptotics for
K(S,S) and I(S,S,S). We prove Theorem 1 and Proposition 7 in Section 5.

3. PRELIMINARY ESTIMATES

Lemma 8. Let A > 0. Then

(19)

© 1 1

”Izd - < =

L ¢ an 217\. 237
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(20) <A

foo einzd?7 _ \/_Eem/ar

2 2

Proof. For estimate for large A, we do two integrations by parts:
o o0 2i ) 1 0 iT)2
J e”’zdn = f Jelnzdﬂ = +J e. dn
2 2 2im 20 Jy 2in?
ein”

1 1 JOO
=T T a3 dn.
2iA  4A3  Jp 12n4

Then a crude triangular inequality yield the bound

1 JOO dn <1 1\1 1
— 4 =(-+= )= <=
423 " ), 1294 \4 36/ A3 A3

. . P2
For the estimate for small A, we simply use |e'" | < 1 and

0 0 o0 A
J e dn — \/—Eei“/4 = J el dn —J el dn = —J e dn.
2 2 0 0

A

Lemma 9 (Fundamental bounds). For any § # 0,

: T x I8l 18l
1) Uelwg(n)dn — /e Sg“(g)g(O)‘ ST+ T
€] gl el
Furthermore, if there exists R > 0 such that Supp g — [—&R, &R], then
iEn? T iZeon ln|€|
@ |[ereman - [FetmOg0) < el ¢ -c.

Proof. We assume & > 0, the other case is similar.
. T .z ;
fe“f"zg(n)dn - \/ge"*g(o) = Je " (g(n) — g(0))dn
* " iEnZ, 1 /
| ] e o) - g (-
n=0 Jv=0
o0

[ @or-g [ eranay
v=0

n=v

1 (* , ©o
= — v)—g'(—v e du | dy
NG L =g=v) J\m Z
(with u = \/E u). We split the previous integral at b. As
© VT
e dy = Y_¢im/4 1 0 )
J o = (VEv)

there holds

[[wm -z ( f;veiﬂzdu) av=[ (g0 g/ (e orvEn ) oo

0



vr
2

so that

[[@or-gen | etau<——[ g2

b Vgl A&l Jivi=b v

The second estimate now follows from choosing b = |£|~/2. For the first estimate, it is
necessary to refine the estimate for v > b: in fact, since

C
< )
€32 v

.7]2

J, e
e dn — —
n:\/@v 21 |€‘V

one has
TP R 1 (g ( * 1g'()] >
»d = d e\
L g(v)f \Elve ud v Zi\/EJb . v+0 L \5\3/2|v!3dv
1 g(b) 1 > g(v) ( 18]l )
= 2ilE] b +2i\/@ﬁ; 2 dv+0 BEEE

I8l | 118N >
-0 +
(blil/2 |E¥/2b2

Thus
Uei‘fnzg(n)dn — \/%ei%sg“(g)g(o)‘ < Lgb g’ (v)v]dv + ”Ii—gf + ||§|/2”le2
+ —ls) ~5(-)
ciptao e Ifls It
The claimed estimate now follows from choosing b = |£|~/2. O

The following four lemmas concern to the asymptotic behaviour of the parametric integral

J(f,8)(&) = Je‘g’“(g’")f(n)g(n — &)dn.

Lemma 10. Fixk = (1/2)*. If [§] < 2,

(23) (£, E < I+ ) f lpollg e
and

@< (10 + ) o + 1192 ool

(24) x (Iglen + I8 1l qinio11 )
10



Proof. Proof of estimate (23). It is direct:

\ [eeen s - é)dn‘ < j |
n

e L V2T PR Y
n|>1

HfHLOO({\n\d})HgHLwdTI
<1

Proof of estimate (24). We write

Jeg@(i,n)f(n)g(n —&)dn = fln|<1° * jn|>1o'

x

The first term can be bounded directly:

[ ¥ gt —ean <Iflulel [ an=oq)
In|<10

[n|<10

For |n| > 10, there is no stationary points and we can do an integration by parts. Notice that
0,®(&,m) = cn* where c is uniform in |£| < 2; Denote

G(&,m) = e ENf (n)g(n - &).
Then

| ceman=] comin+ f | aeemanae.
[n|=10 [n|=10 0 Jin|=10

Now for [¢] < [£] <2,

| as@man=| e s mieem - an
In|>10

[n|=10
—~ J e 32N £ (n)g'(n —{)dn
In|=10

The second integral is bounded directly. For the first integral, we do an integration by parts:

[ emensiaemsn-can- |
In|>10

In|>10

. 0,
e 3¢y, (ai—q)f (n)g(n— C)) dn.

Since

2 2
2 0, ® _ 0 ® - 0¢®0,, @ 0 <£> o <ﬂ> _ o)
"\ 0,® 0n®  (0,9)? n? n%2 ’

and

fFm)y=0(n7), f'(m)=0(nl">?), gn-¢) =0Q), gm-¢) =0(nl"),
we estimate

. 0r® . 0r®
|| oo (L2 smgtn—dn+ | e @ S0, (rpgln — ) dn
[n|=10 617(1) In|=10 671(1)

0P
0P

<1

~

S0(1)+J (1 g€ = n)l +If (mllg"(€ —=m)) dn

[n|=10
11



1
SO(l)—I—J dn=0(1).
=10 |1]3/2

Hence we can expand

| eeman=| emmirmgman+oqe)
[n|=10

[n|>10

and the claimed estimate follows. O

We now focus on estimates for J in the case |&| > 2. For this, we do not give a global result,
but rather we split between various regions, as it will be needed in Section 4.
First of all, let us remark that

®(&,n) =&°P(n/€), P(X):=X-X*>+ %rXS.

The polynomial P has two non-degenerate critical points X = 2/3 and X = 2:
(25) P(2)=0, P'(2)=0, P"(2)=1,

(26) P(2/3)=8/27, P'(2/3)=0, P"(2/3)=-3/2.

Around these points, we will use a stationary phase argument (see Lemma 12) using the
estimates from Lemma 9. On the other hand, we want to handle functions f with singularities
at the origin, which means that one should tread lightly around X = 0. For the remaining
regions, the integrand presents no singularity and the phase has no stationary points. Hence
we may use integration by parts to obtain strong decay estimates (see Lemma 11).

Let ¢ be a radial cut-off function such that ¢ (r) = 1forO <r < 1land ¢(r) =0forr > 7/6.
Let ¢(r) = ¢(r) — ¢ (2r) so that p(r) =1if 7/12 <r < land ¢(r) =0if r < 1/2 or

r=7/6.

Define
¢1(r) = ¢(8r/3),
pa(r) = @(4r/3),

27) p3(r) = ¢(2r/3),
p4(r) = ¢(r/3),
ps(r) =1—¢(r/3).

One checks that

p1+ P2t o3+t s=1,
and p,(r) =1if7/16 < r < 3/4 and 2/3 belongs to that interval; p3(r) =1if7/8 <r < 3/2
and 1 belongs to that interval; ,4(r) = 1if 7/4 < r < 3 and 2 belongs to that interval.
Define

T(fr8)(E) = fe—?’f“’@”)f(n)g(n &)y (n/E)dn
SO thatJ =J1 +J2+J3 +J4+J5

Lemma 11 (Non-stationary regions). Fix k > 1/2. For |§| > 2 and j = 3,5, we have

J;(f,8)(E)] < [E]7°n|g] <Hf|77|1/2“L°0({\n\>1}) + ||f/|77|3/2”L00({|n|>1})>

12



(28) x (Iglee + 101+ D)8 | on)

and

5] < 1675 (F 11 e gapoayy + 1 10 e gy )

(29) x (gl + 101+ D8 |oqmyon)

Proof. Over the supports of ¢5 and ¢s, the phase @ is not stationary: |n|? < |0,®|. We then
integrate by parts:

5.9 = [eEns, (Wﬂn)g(n - am(n/a)) dn.

The claimed estimates now follow from applying the bounds of f ang g directly (notice that
a boundary term appears at n = £ because g may be discontinuous at 0; however, this term
poses no extra difficulty). d

Lemma 12 (Stationary regions). Fix k > 1/2. For |§| > 2,
(30)

- ﬁ (e—“gﬂ(‘f)“/“f(zé)g(&)xfz + e“g“@“/“f(2&/3)g<—£/3)e‘8i53/9%) +R(E)
where
G31) R(E)I < Ty (P21 + 17620 el + Lo
and
(32 RIS g (161 L+ 11 L) (el + 1K)

Proof. We first obtain the asymptotics for J4(f, g) with the error estimate (31). Recalling
(25), we may define ¢4 such that

P(31(w)) = p?,
1, is a diffeomorphism on [—cy,d;] (¢c;,d; > 0) to its image [3/2,4] with v} > 6 > 0 and
¥(0) = 2 and ¢ (0) = /2. We can also extend it to a diffeomorphism R — R. Define the
change of variable n =, (u/&)¢& for n € [&,3&],

®(E,m) = E°P(n/E) = E3P (Y1 (u/&)) = Eu®.

Now

f e~ 3EN £ () g () — E)pa(n/E)dn
- f &3 F (o (/E)E) (41 (1/E) — 1)) (4 (/) (/E)

=: Jegiguzh(é, w)du.

13



Notice that due to g4, h(&,-) has compact support inside {u | 3/2 < ¢ (u/§) < 21/6} <
[—c1&,d &]. In particular, on the support of h, ¢;(u/E) —1 = 1/2 and we have, for any

€ supp h(&,-),

A (s E)| < If (Y1 (/E)E g ool Palloo [ oo (—cp.ay) <

and similarly

[RICHTIES

Clf g2, C
[ (u/E)EM2 |V

C C C
\1#1(11/5)5\3/2 r (/E)E 2y (u/E) — V| [ (/OEPPIE]  JEP?

Hence, using the fundamental bound (22), we get that the error is O(|&|~>/?1n |€|) and

[ e wEns gn—)un/ern - \/% e~ /4w n(E,0) + 0(|| >/ In &)

%em/‘*m@ﬂzg)g@)ﬁ +0(] 21 £])

Similarly, for ¢,: as P(2/3) = 8/27, P’'(2/3) = 0 and P"(2/3) = —3/2, we can consider the
diffeomorphism 5 : [—cy,dy] — [1/3;5/6] such that

P (1)) = 8/27 — 112,
with 1,(0) = 2/3, ,(0) = 2/+/3. Then with 1 = 9, (1s/)E,
B(5m) = £°P(n/€) = & — Eu?

And we extend 1, into a diffeomorphism on R. Then the same computations show that

j ¢~3%EN £ (1) g () — E) g (n/E)dn

g S (2E/3)8(~€/3)e Py (0) +O(1E| e

The asymptotics with the error estimate (32) follow from applying (21) instead of (22). O
Lemma 13 (Singular region). Fix k > 1/2. For |§| > 2,

1
63 (8O < g (7112 + 110 0o ) (lgle e + 1811 1)

and

1
(34) 1 (f,0)(©)] < ]

€2

(Uf oo + 1 1€ e0) (g oo + 187E )
Proof. We write

Je‘B"“’(g’”)f(n)g(n —&)e1(n/€)dn =Ty  + Trp+Trg  with

= [ gt - ) lePnan

n 0

V

T, = . e 3PEM £ (n)g(n — )P (|E[*n)dn
n

N

14



Ty = j e~3EN £ (1) (0 — £) (01 (n/E) — d(EPn))dn

Proof of estimate (33). We have
& —1/2|¢|—k —k—1
Tual+1Tial < [ Inl=21g] *dn = 0l

and, for T, 3, we apply integration by parts: since

Onn®(&,m)
(0,®(&,m))?

1
61’)(1)(5: T))

1

_ 1
TR

<=3
S

we obtain

= [esiema, (mﬂn)g(n ~E)(r(n/8) - ¢(€2n))> dn

—Fl/zio( 1 P S 1 N 1 )dn
g2 €2 \[E[Hkn|t2 - |nPRIER (gt tkin|t2 gtk (12

2187 4 |g|2>
0] d
+J€2/2 £2+K <\n1/2 n
=0 (lg|™* 1)

Proof of estimate (34). The bounds now write:

|g]=2
|T1,1r+|n,zrsfo dn = 0(|&[2).

and

Sanq)(g; Tl)

g2y 1 1 2062 4
= 20\ 7t )d 0 (IE[%) dn = O(|g|~*In|&)).
Ja—z £ <\€|+|n|> n+J|g—2/252 (I57%) dn = O(|E | In[£])

Ty = f ede(Em,, <;f(n)g(n —E)(pr(n/E) - ¢(£2n))> dn

4. ASYMPTOTICS FOR ¥(S)

We start with the asymptotics for K (S, S).

Lemma 14. There exists D € C, such that if |n| < 10,

: [4m |A)?
(35) K(S,S)(n) —elsenmm/4, [ZZ "~ _ pl < |n|.
3 /Il
If n = 10,
. 4 . elaln(n?/4) 1
(36) K(S,S)(n) — ™4y | —A ——— | < —.
3 Vil n|?

15



Ifn<—

47'[_2 e_ialn(|n|2/4) 1
(37) K(S,S)(n) —e ™4 [ —A <—.
3 VInl [
For the derivative, if |n| < 10,
2
(38) 0,K(S,8)(n) — elssn(n)m/4, /4_”% < i
3 n[¥2n| "~ In|

If 1 > 10, there exists a bounded function A, such that

Ay(n)| _ In|n]
(39) 0,K(S,5)(n) — ———=| < :
If n < =10, there exists a bounded function A_ such that
A_(n)| _ In[n|
(40) 0,K(S,S)(m) — < .
n ( )( ) ‘n|3/2 |n|3
Proof. Let

=5 (12)5(157).

S
2 2
Proof of (36). In this case, n > 10. With u = 4/|n|v, we have

K(S,S)(n) J 3iu/4g ( —) du
\/In vaul
A/ I|K(S,S)(n) :j +J =Ty + Top.
plsinl®2/2 JnP2/2<|u|

We start with the estimate for T, ;. Then |u| < [n|*/2/2, so that [n+u/~/|n]| = |n](1-1/2) >
4 and in that region

. . . . elB(n+u/v/n)°
§(n, u//m) = e~ialndeialnl—u/nl [ 4 | ge2ialn|(mtp/v/In/2l S~ "
s/ ) (n+u/yn)?

_ 3
A+ pedialnlr—u/y/Tay2 €P MY
(n—u/yn)?

The terms with at least one B are estimated directly: for example,

J (324 ialn(n? =42 m) 2ian|(n b/ D] € *ﬂ
lul<|nl>/2/2 (M +u/\y/n )
Inl*/2/2 1
< —— du=0(n|"*?).
f|n|3/2/2 (m+u/ym)3 (™)

We treat the term with A%: we have

5 2
eialn(nz—uz/MD _ eiaan exp <1aln <1 — u_)) — eialnlﬂl2 (1 + » < H >> 5
n|3 n[3 >/

16




for some function ¢ which is smooth on [~1/2,1/2] and such that |||y ([-1/2,1/2] < C-
Hence (z = u/|n|*/?)

2 ialn|n?—u2 ial 2 2 ,uz uz
Je?ﬂu 4gialnln®~2/ulg,, _ giamnin) Gt (14 B _3>> du
ul<Inf/2/2 " \n|

_ eialnn|2|n‘3/2j - 3ilnl’=*/4 (1+2%¢(2)) dz
PARS

3iln|*2%/4 4, _ 4n in/4 -3
e Z=)|—=e +0(n
J|z|<1/2 3n? (™)

f' 1 e3i‘”|322/4zqu (2)dz = 2 J E]n|?’zeg’i|"|322/4z¢>(z)dz
AR

Now,

31|03 Jjzj<1/2 2
2 3ilnf*s*/4 1/v2 3i|n[322/4 / > ( 1 )
= — e z2¢ (2 - e z2¢ (2))dz | =0 —=
i (720 @ = [ g @) e
So that
2 4T inja ialn(jn|/4) —3/2
Ty, =A See +O(|n|~%).
We estimate T, ,: here, it is important to decompose S as
S(E) = 51(8) +52(8),  S1(&) =Ae' ™y (£) + Ae~ Ml y (—¢).
Notice that, for all £ € R,
Al A] Bl
S1(9)I <Al Is1(E)] = , ISTE) < , 1S2(E)] < .
Writing
“ n+v n—v
Sitn ) =81 (F5) s (F57).
1(n, v) 1 5 1 5
we have

2 a "
Tyo = J e3IH7/4G <n, —> du
22 Dugs e 2 \Pym

1 1
+0 JJ 3 + du
lul>nP?/2 1 4 |n+ 3 14|n-— 3
e Uy 1 I /| = w/y/ml

. 1. u -
- Q342G < ,—>d L0 3/2
L>|n|3/2/2u a\m g ) A (In[)

_ siu2/al g < u > ~3/2
= ue S\ du+0(|n
L>|n|3/2/z w7 m (Il

3/2/9
_ [Eesmzmlgl (n L)}'” /
SO VI L etz

2 M< 1. < ,u) 1 . < M)) —3/2
- = ed (—=8 (n,— ) +——=0,5(n,— ) ) du+0(n|¥
3i Jusinprz/2 w I\ ym) uym I\ ym (1nl™)

17




2 3iu21 ~ ‘u,
- TN (n,—) du + 0(n] %)
iy Juspoprz w I\ V)

With another integration by parts,

w2 1 2 w2 1 . n[*/?/2
Bt TS (05 a5 {&—“(niﬂ
p=(n|>2/2 M Y| 3i p? ATV P

_E e# <_£5 < M) ( >>d —O(| ‘72)
3L Juzpnpr2/2 w2\ ) uz\ﬁ % n ) )= oln

This concludes the proof of estimate (36). The proof for (37) is similar.

Proof of (35). We now turn to the case when |n| < 10. We split the integral K(S,S) at
|v| = 20. For |v| < 20, everything is smooth, so that as

n.—>j e”’”zg(n, v)dve C%.
y|<20
In particular,

J e 17§ S(m, )dV—J S(v/2)%dv+O(|n)|).
|v]<20 |v]<20

For |v| > 20,
i 3 . N3
S(n,v) = g 22 (4 SBeZialnl(n+v/2|elﬂ(n+v) /8 2 856721.(1111‘(1771))/2‘61/5(7; v)>/8
(n+7)? (n—)?
Since
ialn‘"+ ialn|l+n/v| ,—ialn|1—n/v| _ n 2 n 9
e e =(1+1ia— +O( /v*)) (1 +ia— +O( /v?)
(41 —1+2lan+O( 2/v?),

one develops the pure term in A as

J eSinv2/4+ia1n|zt:|dv _ L j eBi“2/4 1+ 2ia——
|7|>20 VInl u\>20\/|?

3iu? /4

n|"/?n

O(\nls/z/u2)> du

S dy 10 e 4y + 0(|n))

1 f 1
- (mh == — |
VIl D204/ VIn \/In\ ul<20/In]
3 /4qy, +J 3 /4dy 1+ 0(|n J 31 /4 + 40 + O(|n)).
Wf o (mh = —= (inl)

Now we exemplify how to estimate the remaining terms: we write

35
-V

3 1
f e3im2/4eia1n|”+”| 2ialn|(n+v)/2| etPtnt) /de _ J BTGB 2ialn|(n+v)/2[¢ """ o dv
5 =
[v]>20 (n+v) [v|>20 (n+»)3

where ©(n, v) = 3nv*/4 + B(n + v)®/8. Notice that, since |v| > 20 and |n| < 10,

2 2 2 2
0,0 ~v, 0,,0~v, 0,0~ 6m® ~
18




Setting

=1
ia € L
my(n, v) := € ln|(”+v)/2|m,
by integration by parts,
J MM m, (n, v)dv
[v|>20
£i0(1,7) 20 e®my) (52 @(n, )
= | 7o) +f ¥ my(n, v) + 0ymy(n, v) | dv
[ 20 ,0(n, ) ' v

|v|>20 10,©(n, v)
(

[ BEIORY: ]20 f 1©(0,7) 5%9(0, v) g2ialn|v/2] ) . ;
@(n: V) (n’ V) —20 " |v|>20 lav@(O, V) 3v@(0, q)) »3 + vml( 5 V) v
V)

S B (S ; o
+J|v|>20J0 ¢ iav@(g,v) 5v@(é', ) 1(@”)4— vml(C,v) {dv

= constant + O(|n|),

This concludes the proof of (35), and completes the estimates for K(S,S).

We now turn to the estimates of 0,K(S,S). For n > 0, writing

K(S,S)(n) /43 (n, u/r/In)du,

Tl

one computes

K (.5)(n) = 5K 5)m) + o [ o004 (0,Sn, 1y ) = 0,8,/ ] ) s

—z«s,sw»ﬁ o (n-2)s (12)5 (15 ) o

S0 - (0 25 (112)5(157).

The claimed estimates for 0,K (S, S) will follow applying to the second integral computations
similar to those made for K (S, S).

Denote

Proof of (38). We split the integration at |v| = 20. If |v| < 20, the integrand is smooth and

SO
JeSinvz/4 (n _ g) % (" er ") s (n 3 v) dv=0(1).

In the region |v| > 20, we write

J e (=35 (s () an- % 7

,Jj=1,2

. _|_ v /r’_
where T, := e3”’”2/4< —Z)Sf<n )S( )dv.
3 f|v|>20 173)%\ N2
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The terms T5 1, and T 5, are brutally estimated:

ITy1a] + [ Ta.20] < f v 3dv = 0(1).

[v]|>20

For T3 11, using (41),

f eBinv2/4 <7) _ Z) 2ia ela1n|"+
1v]>20 2/ n+v

1 s [ Inl2n/u—1/2 [n[*n
v v ) (1 200 0P ) ) au
VIl Jlul>201/n 1+ [nf!2n/u Z

1 3ip2/a |1 <3 ) |77|1/2 31,12
=— e ——+ |z —ia +0 d
T 27 \2 T

1 f3iu2/4 1 3ip?/4
— e du+ e du +0(1)
2\/In 2/l Jiul<20y/In
= 4 dp 4+ 0

2\F p+0(1).

For Tj 51,

J eBinv2/4 (n _ l)) 3ip ezia1n|(’r]+v)/2\ei[3’(n+v) /8¢ laln\nJr
|v]>20 n+v

31/5 J e(n,v) 27’ i Zlaln|(n-&-v)/2|elalr1\nJr
v\>20

n+v

3 —1+2n/v
lﬁ J pi®my) 22NV n/ p2ialn|v/2| (1 + 2iaﬁ> (1 + 2ia 1 + O(|n|2/|1/|2)) dv
[v]>20 1+ 7)/” v v

3 : .
_ lﬁf el@(n,v)emaln\v/Z\ (—1+(4—2ia)ﬂ+O(\n|2/|v\2)>dv
v[>20 14
3if i0(n,v) ,2ialn|v/2|
= — e\ Ve ( + (4 —2ia)— )dv—i—O(l)
v[>20 14

The first term is bounded:

J el@(n,v)621a1n|v/2|d »
|v|>20

; ' 20 ; 2 .9
_ {e @(.n,v)eZLalnv/Z] +J~ . el@(n,v) a ( ) 21aln\v/2\ Zlaezlqln\v/Z‘ dv
lavg(n: V) 20 [v]>20 lave(n: V) 0 @(77: ) v

_O(l)_ ei®(n,v) 52 ( ) 2la1n|v/2| ziaezialn|v/2|
(0,8(n,v))* \ ,8(n,v) v 20

_ f L1001, 5 1 CO(1:Y) sigiayz) , 2iae 2!
|v|>20 "\ (0,8(n, )2 \ ,0(n, ) v

-o(1)

20

20



where we used the fact that, over this region,
2 2 3
0,0 ~v, 0;,0~v 0

VVV

The second term is also handled with an integration by parts:

i : 20
J i0(n,v) ,2ialn|v/2| nd el@)(n,v)EZlaln\v/z\n
e e —dy = — :
[v]>20 v iv0,0(n, v) .

2 .
_ J el® (’)V—V@ezmlnh’/ﬂﬂ 1 p2ialn|v/2| I 2ian dv
|v[>20 (0,0)2 v 0,0 vz 2

=0(n)+0 <Jv>20 ;?de> =0(n)

Proof of (39). Now we consider the case ) > 10. We write

Jeginvzﬂ <7) 2) (TI + v> ( ) dv="Ty1+ T4o+ Ty3 where
Ty, = Jv<n/2 (3inV?/4 (77 )S (7) + V> g (7) ; v> v
T4’2:L>n/zesiMZ/4 (ﬂ—g> S (77 >S<n;v>dv

+v
2
. + n—v
T MU R
43 Je M=5)22\" 5 )4

For T, ;, we have, for some function ¢ with |[¢ |y1.:0(_1/2,1/2) < o0,

— /5 _ 3 8
Ty :AJ (3421 =Y atn (2—?)/4] g gpe-2iatnlin-vy2 € ; dv
[vI<lnl/2 n+v n—)

:éf eBinv2/42n_ veialn|(n27v2)/4| _1_0(‘,',”72)
[v[<|nl/2 n+v

:A2|n|eia1n(n2/4)J e3in 2/42 72 % pialn(1—2") g | o(|n™%)
|z]<1/2 l+z

_ A2|nelatntr?/ ) f (1 4+ 20 (7)) dz

|z|<1/2
We then proceed as in the non-derivative case and obtain

Ty, — jqA2 lTE/4 ialn(n /4)+O(|7)|_2)
’ 3|n|
The term T, , is handled as T, ,, using integration by parts and the generic bounds on S:
T4z = O(In|™?).

Finally, we consider T, 3 = T4 4 + T4 5, where

Tys _Bfeie(n,vm—_z” p2ialn|(n+)/2] <1 L 2 )x <n+ V>
’ n+v (n+ v)3 9
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1 e 2ialn|(n+7)/2| (1 _ (nzjiav)3> X (_TI —zi_ v> )S <T) ; v) dvy

and

; 3
T, — 8B Jesinvz (n _ Z) elplt2'/8 o2ialn|(1+7)/2] (M)
+5 2/ (m+ )3 2

B e—Zialn\(nJrv)/Z\X/ (_%’) >S (n ; 1’) dv.

Notice that y’ has compact support. Hence the term K5 can be handled by successive inte-
grations by parts, using the fact that the integrand is C°(R). We then focus on Kj. Define

2(1 +X)3 so that ©(n, v) = n°Q(v/n).

_ 342
Q(X)—4X—|—

We consider the case where the polynomial Q" has two distinct zeros r (that is, when
B > —1). Set Q. = Q(X;) and Q’i = Q"(X,). For a fixed e small, we take smooth cut-
off functions 6, such that

6.=1lon(ry —e,ry+e), 6,=00nR\(ry—2ery+2e€).

Write

T) 2y 21a1n|(n+v)/2| ( 2ia > n+v n—v
_— 1 S

N n—_ZVe_zialn|(n+V)/2| (1 __2ia ) X <_77 . S <n 2 V)
n+v (P ’

and split T4 4 as

o= Y jl@w 2(1,%)6;(v/m)d v

jef{t}
+B [ e my (5, 9)(1 - 0. — 0 )(v/m)dv
Writing ms(n, v) = my(n, v)(1 — 6, — 6_)(v/n), some direct computations yield

mg(n,v) = 0(1), d,m(n,v) =0(|»|[71), 5,ms(n,v)=0(|%72), [v>2In]
and, because of the term (n —2v)/(n + v) for n + v close to 1,

my(n,v) = O(|nl),  dyms(n,v) =0(nl), &5,mz(n,»)=0(Inl), [v|<2ln|

We treat the last integral with a stationary phase argument:
go [ é2.0(n,)
ms(n, v) + 0,ms(n, v) | dv
Jla @( ,V) <ave(n,v) 3(77 ) v 3(')7 )

i ( V) 5vm3(’f):”)
‘ J <o ( @,6(n,7)? m?’(”’”)_<ave<n,v>>2>d”

22
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1 1
sf —6dv~|—f —3dv=O(|n|_2).
[v|>2[n| ¥ [v|<2ln| 1

For the stationary regions (for example, close to r_), one considers a bijection A_ : [ —
[r_ —2€,r_ + 2¢] such that

"

Q1) = Q-+ k2, A0 =1, A(0)=1, X [>1/2

and the change of variables v = A_(u/n)n:

: —2v -
Jel@(ﬂ,*’)nn = S (TI 5 > my(n, v)0_(v/n)dv

e [ gtz (10=Z ) S22 2 o /) G

— ein’Q- JeiQN"“Z/zh(u,n)d,u
Since

1
[A(u,m)| <1, \8nh(u,n)|<-ﬁﬂ,

the application of (22) yields
eln°Q- JeiQ””“z/zh(u,n)du

_ gl | 27

Q" ||n|

e! 538 m, (1 r_n) +0(|n|~2In|n]|)

Therefore, for 1) large,

Toa= 23 B [e00my(n,9)0;(s/n)d v+ 0(1nl 1l

jeft}
21 imgn(qramy L~ 27— (ezl-a1n|(1+r,)n/2| I efZialn|(1+r,)’r]/2\>Aeialn|(1+r,)n/2\
Q" In| 147

_ 2 iZsg(@in
Q%] T4ry
+0(|n|"*1In|n])

Ai(n)

~

where A is a bounded function. Gathering the estimates for T, ,, T4 5 and T, 3, one arrives
at the claimed result.
This concludes the proof of estimate (39). The proof of (40) is completely analogous. [

_ ,iQ.n®

i yl—2ry <62ialn\(1+r+)n/2\ N e—2ialn|(1+r+)n/2|>Aeia1n|(1+r+)n/2|

+0(|n|"*1n|n|)

Lemma 15. Fix 6/7 <y < 1. Then for |&| < 10,

(42) I(S,S,8)(€) = 0(1).
23



Also, for £ > 10,
ialn|&|

€]

e

(43) I(S,8,5)(&) = (E+Fe2ialn‘5|e*8153/9) +0(|g[77?)

and for £ < —10,

—ialn|g] , _
(44) 1(5,5,5)(&) = £ (

H E+Fe—2ialn|§|68i€3/9> +O(|g|2+172)

where the constants E, F € C are defined by

Van

(45) E=n|APA, and F = iTeia1n3|A|2A.

Proof. Set )
f(E)=K(S,5)(8), g(&)=S5(8).
Then, using Lemma 14, we have
F(E) =0(IE[72), IF(&) =O(lg| ).
It then follows from Lemma 10 that for || < 10,
1(5,5,5)(€) = 0(1),
which proves (42).

The estimate (44) can be derived from (43) by symmetry as

I(S,S,S)((S) = I(S’S’S)(_g)'

Hence it suffices to prove the latter.
Proof of (43). If £ > 10, we have from Lemmas 11 and 12,

165,5,5)(6) = 375 (¢ @01g(6) 3 + O 2 )€ 3 o

N———

+ 2 (K(S,5),8) +0(1&]¥2Ing)).

We focus on the term J; (K(S,S),S), which cannot be estimated using Lemma 13.
If n/& is in the support of ¢, |n| < 3/8-7/6|&| = 7/16|&|. As || = 10, [n—&| = 9|&]/16 = 5

and ,

‘ oiB(N—E)
S(n—¢g)=elenn=—¢l{ap-— .

(n=¢) CISE

As P(0) = 0 and P’ does not vanish on (—1/2,1/2) (P’(0) = 1), there exists a diffeomorphism
Ps: (—c3,dg) — (—1/2,1/2) to its image, and such that
Vve (—cs,d3), P(ys(v)) =
(Y'(0) =1,¢c3 =—P(—1/2) <3/4,d3 = P(1/2) < 1/2). We extend 15 to a diffeomorphism
R — R such that for all |v| > 10, 43(v) = . In particular, for some constant C3 > 0,
VveR, 0<1/C3<y(v)<Cs.
Also let C5 be such that

Vve[—10,10], |¢3(v) —v| < C3v?,  [¢ph(v) — 1| < Cy.
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Hence for all |n| < &/2, there holds, with n = 3(u/&)&)
®(&,1) = E°P(u/E) = E2p.

We now decompose in three terms:

Je‘Bi“’(g’")K(SJS)(n)S(n = &)p1(n/E)dn =Tsy + Tsp+ T3 with

Tos = | e ®EnK(s,5)(n)S(n - p( M
n=

Ty, = f SRR (5,5) ()3 — £) (€] m)dn
n<

Tss = fe_3iq’(5’”)1<(5,5)(n)5(n — &) (1 (/&) — & ([E]"))dn

Then, for & > 0,

—ip(n-¢)*
Ty, = el %\A\zj o—siv(En) _L_ jialnjn— <A+Bezialn|(n—£>/z—el !
n>0

Vil (n—¢)?
28 20g|
+DL e 3EN g (1E[')dn +0 (L |"7\dn>

The last term gives O(|£|~%"). The penultimate term:

0
-

]
—0(g %) +0 (J

The second term is brutally bounded by

\n!zlé\dn> =0(lg|'™)

|E]7Y
fo E]73n]~2dn = 0(1€]>772)

For the first term,

—3i¢(£n)—eimlnm| ialn(§-n) Y
>Oe ’ € ¢ (I1&"n)dn
n=

Vil

- i e
— plalnf¢| e 3i®(En)
n=0 n

—ialn|n|

(1+0(n/€)¢ (&' n)dn

—ialn|n|
; _3 e
_planlgl [ sie(En)

n=0 vV |

Performing the change of variables n = ¢5(n/£3)E,

—3ie(gm) L Tn)dn = sigy____ L T ’ d
LJ (e Lzoe e T

25

¢ (|€['m)dn +O(|g|7+731/2)

)qb(ily'n)dn

2/Em /e, 2 [ air 2 a3
| e emg ernyan = | e (gl + e (e 1) gl
0



_ i e—3iv 1
1€l Jy=0 [YPs(v/E3)E3]

Now the integrated term vanishes as soon as || 745 (v/&3) > 7/6. Butif | v| = 7K /6-|E|* 77,
Y3 (v/E3) = 71E|7177 /6 and y5(v/E3)|E|®) = 0. Hence we can assume v € [0, 7|&|277/6], so
that [v/£3] < 2|€|7177 < 1/10. Thus

ST s (v/E%) 5 (v/E%)d v

1

1
‘x/h/)s(V/?)&g\ V]

_ A
<X
HE

and so

_3i 1 1
| e ——gqerman -

VIl

1 2K[E[>Y \/mdv
+O<\£!L HE )

_ L 673“’—1 dv
€] Jy=o0 ||
1

+ |_2‘| v)()e_sw\/ﬁ (P (IE]M T3 (v/E3))PL(v/E3) — 1) dv +O(|g|713172)

Observe that
SEI T3 (v/E%)P5(v/E%) =1 = (1€ T3 (v/E7)) — 1+ @ (IE] s (v/E%)) (W5 (v/E%) — 1)
=0 (Lpjeier) +0 (/& U piciepr)
2y (S UEM 743 (v/E)Wh (v/8%) 1) = 0 (&7 C 1y yeper ) +0 (JEI L pyargens ) -

Hence, with the phase 37,

o

-mﬁqs<|5\1w3<v/53>>«/)g<v/53>dv

—ialn|v|
1 —3iv€

il e e
’€| v=0 \/m
1 10‘€|27Y 10‘5'277’
=17 o(|v|=%? dq;+f o (|y|~1/2 3) dy
ray(fmwm (In72) ) (1v7v2/18P)

10/g>77

10/
+f O(|v|_1/2|§|_(2_”>dv+f o (g2 vV dv
6127 /10 0

=0(|g|*77?)

(@ EI s (v/E))(v/E%) — 1) dv

where the main contribution comes from the first and third terms. Thus we arrive at

Ty = AR [y o) + 0(g' ) + 0(g )
’ 3 €] Ji=o viEl

ialn|&|

13

C  o(lg[ 2

2
= AP
3
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(recall that 6/7 < y < 1). Analogously, one may prove that

ialn|€|

€]

Finally, we look at Ts 5: performing an integration by parts, we have

e

21 _
Tsy = ?A‘A‘Z +O(|&] 2+Y/2)-

Tos = [ e0Eng ( e S )(n)g(n—é)(wl(n/ﬁ)—¢>(€Vn))>dn
70,

f|§|/2 ( g 2|€| "1 13 g
= n+ O< ) Ui
gl §2 \[&][n]/2 | v2 &2 \|n|V/2

Jrfeslcb(in)ga @1( )a K(S,8)(1m)S(n —&)(p1(n/E) — $(ETm))dn.

The first term gives O(|&]~>/?), the second O(|E|~2*7/2). For the last term, one must use the
asymptotics for 0,K(S,S ). Due to (38), (39) and (40),

2,K(8,S)(n) = O(In|~*?)
uniformly on 1 € R, so that

@ 1 =
J <&n>manz<<s,s><n>s<n — &) (@1 (n/E) — $(ETm))dn

28 1
= L—r/zo (52“’3/2) = o(|§|—2+r/2).

The conclusion is that, for £ > 2,

|
u
N—

165.5.5)(6) = [ 2 (¢ FK(6.5)22)5(6) 5 + K (5.5) 2/ (-5/3)e 1)

V3

_ ‘5’ <E+F621a n|§\e—81§ /9) JrO(|€|—2+)’/2)

where E and F are given by (45). O

5. CONSTRUCTION OF A SELF-SIMILAR SOLUTION

5.1. Matching the asymptotics. Using the computations of the previous section, we now
adjust the constants A, B, a, 3, ¢, a to obtain the final ansatz around which a fixed point ar-
gument is likely to run.

We recall that E and F are defined explicitly in A in (45). Define for simplicity of notation

1) :=1(v,v,v).
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ialn ||

As the integral of [(S) — EﬁT is convergent on [1, +0) (due to (43)) and that

Jg eialnm‘dn _ l(eialn|€| — 1),

1 I ia
the asymptotic expression (43) of I(S), tells us that for £ » 1,
3i 3ie (.
v(S = —a———= | I(S d
S =c+ gra— 5 | HS)man
3i € E E .
c+2na 47_[2(1 (S) a—i— ¢ +O(|&] ),
with
1 © /- elaln|n|
46 s = [ i1man+ [ (i - ) an
0 1 In|
Now we match the asymptotics of S and ¥(S) at infinity, for the oscillating el@n €l term:
3E 3
47) 22 A e a= A
4m2a 41

Moreover, we also match the two oscillating terms of 9 S and 9:¥(S) = —(3ie/4n?)I(S,S,S),
for £ » 1: this gives
3
(48) B=-8/9, 4n’iaA=—3iEe, 3iPB = —ﬁp.
T
The last condition defines B and the second one is already guaranteed. In fact, the conditions

on the derivative are truly the structural ones, while the remaining conditions on the function
itself relate to constants of integration.

Remark 16. The above relation between a and A is also present in the work of Hayashi and
Naumkin [15]. Indeed, we can infer from their computations that, up to a specific phase cor-
rection (depending only on the modulus of the solution), the self-similar profile converges,
as t — o0, to a fixed function. This implies that the phase correction, in our case, is given by
e'@nl€] . Since we assumed that the self-similar solution has, asymptotically, modulus equal

. . . 3
to |A|, one may use the formula of Hayashi and Naumkin to deduce the relation a = i A%
T

Summing up, our ansatz S now only depend on A, and we will denote it Sy: it is given for
£E>=0by

. . eiig?
(49) Sa(E) := g (§)eme A+Be2““n'5'7 , Sa(=8) = S4(8),
where
3e 3 .
(50) a=a(A):=—"=|A?, B=B(A):= ——¢9"3|424.
(@)= (4) = T
With these definitions, observe that we can reformulate Lemma 15 as
3ie . . _
6D veer, |-2Hs0(6) — )| < min, 1),
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Matching the constants is more delicate, because the fixed point is of the form S +2: although
the small remainder z will not affect the oscillating terms, it does affect the constants ¢ and
a.

More precisely, given c,a € R, our goal is to find A € C and a function z such that S, + z is
a fixed point of ¥ = ¥, , (the map V¥ is defined in (17) in terms of c, a; it is convenient in
this Section to make this dependence explicit). Matching the constants in the asymptotic for
S, + 2 (which is 0) and for ¥(S, + z) yields

3i
c+ ﬁa - ﬁ(3mf(A z) —A) =0 where
1 o /o eialn|n|
(52) F(Az) = f I(Sy+2)(n)dn + f <I(SA +2)(n) — m|A]PA ] > dn.
0 1
Taking real and imaginary part in the above relation, we want to solve the system
3¢ 2
(53) c=—£ReA—mImﬂ(A z) and a——%ImA—i-z—Reﬂ(A 2),

(and ¥, ,(Sp +2) = Sp +2).

In the remainder of this section, we will complete the proof of Theorem 1 by solving the
fixed point equation, and the implicit system (53). We proceed in the following way.
First, we assume A € C is given, and we construct a fixed point for the function

(54) 2= We(az),a(az)(Sa+2) —Sa
where ¥, , is defined in (17) and c(A,z) and a(A, z) are defined by (53). We denote this fixed
point z,.

Second, we prove that the map A +— (c(A,24), @(A,2,)) is bijective locally around 0 (heuristi-
cally, it is because .# (A, z) is cubic in A, z). Given ¢ and a, its inverse provides the amplitude
A to define the ansatz, and thus desired self-similar profile.

We now define the functional spaces for z and some multilinear estimates in the following
Section 5.2, before completing these two steps in Section 5.3.

5.2. Functional spaces for the fixed point. Thus we are left with the fixed point equation,
and the implicit system (53) relating c, a on one side and A on the other side.

With the choice of ansatz (49)-(50) above, we try to set up a fixed point argument. We take
a remainder gz such that

() = ¢+ >—a-+0(|n)), #(n) = O(1), foro<n<1,

z(n) =0(In[™), #(n) =0(In™*"")  forn>1.

We want to choose k in such a way that the remainder in the matching between S, and ¥(S,)
satisfies the above properties. It will turn out that k = 1 —y/2 € (1/2,4/7) works.

The analysis will be carried out in the space Z¥; we will also use a slightly different quantity,
which handles low frequencies more precisely:

(55)

3i - k k
2li et 310 = 1 = ¢ = @)l Hlieo,n) + [z ln ooy + 11+ 02 o )
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We then look for a fixed point of (54) over the set {z € Z¥ : |2
€>0.
First of all, writing

RG]

n

i+ 2o < €}, for some small

e 3IEN] () &) <Le%nv2f (7) er ”) g (7’ ; ”) dV> dn

1
where ®(&,n) =n&*—&n* + 2”3’

one has
I(f’gih) = I(gaf’h> = I(hing)a
which is easily seen in the variables 1;, 1, and n5. Hence all we need to estimate are the:
(1) Linear term: I(2,S,,S4);
(2) Quadratic term: I(S4,2,w);
(3) Cubic term: I(z,w,u);
We choose these arrangements so that no term of the form K (S, z) appears and put different
remainders keeping in mind that we will need to prove that ¥ is a contraction.

Lemma 17. Let z,w € ZX. Then

el Il
66 Kew)n)| < lelalwlz 0K Ewl s TEE o] <1,
and
Z|| 7k ||W|| 7k Z|| 7k (|W|| 7k
67 Kewl s TEEE o)< EEEE for ol 1,

Proof. Proof of (57) for K(z,w). We start with |n| > 10. Then
P2 uw Y
Vak(zwn) = | 155 (2w (- 2L Y au
lul<Inf3/2/2 Vv Vi

» u u
+J 3K /4y (n + —) w (n — —> du.
lul<|nl?/2/2 Vvn VN

In the region |u| < |n|*/%/2, we write

T _ B g J 3inv?/4 -
[ e (ne Lo (=) e | s (-

and split the integral at v = £:

‘jvké

3
L 1/2 s J |<1/2 ZT:eBinng/drz(n(l Fy)wn( = )d
<< V<

<[ mldv=api,
v|<t

2 s, 1
= ok - [ e /“(— L s+ wln(1 )
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+ % (&' (1 +»)w(n(l—») +2(n1+)w'(n(l - V))>>d”
= 0(|n[ 3¢ + 0(Jn[~>*In).

’73/2

We now choose £ = |7 , which implies that the contribution of the region {|u| < |n|*/?}

is O(|n|~%).
For the region |u| > |n

: 1 u u
631“2/4”,—2 (7) + —> w <n — —> du
J|u|>n|3/2/z U V1 v
- ~ 1 [ [
—o(al+ [ (= (g (g 45 )
| =(n[*/2/2 p? v v

it (0 ) () i () (- 35) o

Without loss of generality, we look at the region where u has the same sign as 7, so that the

contribution is bounded by
w
(%))
(135

|3/2
)

1 1 1
O(|n|~*2 +J —u/val T+ —=|u n"‘du+(—
e R R 0 R ) .

=0o(In|™**) + 0(In|~>>) + o(In|71*7F)
Hence

K (z,w)| = O(|n|~*7%), |n|>1.

Proof of (56) for K(z,w). Now we consider the case |n| < 10. We split the integral K at
|v| = 20. For |v| < 20, everything is bounded and so

[l e (1w (15 av=om

In the region |v| > 20, we use the decay of z and w to obtain

J gf |v|=2kdv = 0(1).
[v|>20 [v]|>20

(Here we used k > 1/2 but this part could be dealt with for k smaller). This completes the
estimates for K (z,w).

We now turn to the derivative estimates J,K(z,w). We compute for n > 0:
1
OpK(z,w) = —%K(z, w)
#3027 =3) (v () + (1) v (5 @
21 2 2 2 2 2

It is enough to treat the integral term with derivative in 2.
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Proof of (57) for 0,K(z,w). We start with n) > 10. The jump term occurs at » = —n and is
3in?/a1 31 _ 1-k
e aw =0 .
5 5w =0(n[")
In the region |v| < |n|/2, we simply estimate

UIV|<|17|/2

In the region |v| > |n|/2, if v has the opposite sign as 1 (hence negative),

J - J_zn + f_n_l + J_n + <e3invz/4 (n -~ 3) w (7) — v)) + J_nﬂ + J_n/z
>z I Je2m o Jn 2 2 vy —n+1
—2

uj r r —n—1
SJ I n + v~ 1dv+f
—00 —21n

< vty = ofial ),
[v[<Inl/2

n
DR P BRI T

1—k AR 2k k—1
+O(\n)+f \n]dv+f " m+ v " dy
-n —n+1

o - n/2
SJ |”_2kd”+|nll_kf IVI‘l—kdv+o(ln|1"‘)+|nl_kf v "1 kdy
1

1-k
S O(|n[").
Here we really need k > 1/2 to ensure convergence. When v has the same sign as 7, the
decays are stronger. Thus, with the prefactor %

|0,K (z,w)| =0(n| %), |n|>1.

Proof of (56) for 0,K(z,w). For |n| < 10, we split the integral at |v| = 20. For |v| < 20, we
bound directly and obtain O(1). For |v| > 20,

Lﬁﬂ>20

(We used again k > 1/2, even though it might be dealt with in some other way). Hence for
In| <1,

$J lv||v| 72 1dv = O(1).
|v|>20

|0,K (z,w)| = O(In| ). O
Lemma 18. Let z,w,ue Z* and A€ C, |A| < 1. Then
(1) (Linear estimate)
11(2,54,54)(8)] S AP 2] 2 min{1, €] 7'}
(2) (Quadratic estimate)
11(S4,2,w)(E)| < |Al[2] 2| W/ z« min{1, [E] 71}
(3) (Cubic estimate)

. —k—
[1(z, w,10) (8)] < ||z [W]| 7+ ] 7« min{1, [ €] 77
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Proof. First, notice that, because of the definition of B in terms of A, all bounds on S, are
linear in A and all bounds on K(S,,S,) are quadratic in A. Since

I(Z’SAJ SA) = J(K(SAJ SA)’Z)J I(SA’Z’W) = J(K(z’ W)’SA)J
I(z,w,u) =J(K(w,u),z),

the claimed estimates follow from direct application of Lemmas 10 to 13, using the estimates
of Lemmas 14 and 17. 0

5.3. Proofs of the main results. We define the maps c,a : C x ZX — R (as explained in
Section 5.1) by

(58) c(Az)= —eReA— %Imy(A,z) and a(4,z) =~ 25 mA+ S Re s (4,5),
where £ (A, z) is defined in (52).
Lemma 19. For all (A,z) € C x Z*, |A] < 1, we have
lc(Az) — c(Aw)| + |a(A2) — alAw)] < (A + z]5 + [w]Z) |z — w2
Proof. Observe that the term .#(A, z) is cubic in z and A, as expressed in Lemma 18. Hence

lc(A,z) —c(Aw)| + |a(Az) —a(A,w)| < |£(Az) — F(A W)

[ i+ 2@ - sy + i

0
< (AP + 12156 + [wlZe) Iz — wilze. O

<

~

The next result constructs the fixed point of the map
(59) \I’A tZ \ch(A,z),a(A,z) (Sa+2z)—Sx

for any given A € C small. (In the next results, do not confuse the small parameters € or €;
with the signum ¢).

Theorem 20. Fix k € (1/2,4/7). For Ae C, |A| < €, sufficiently small, the map ¥, admits a
(unique) fixed point which we denote z, € Z*, and such that

’zA|k,c(A,zA)+%a(A,zA) < 3|A|‘
In other words the function v := S, + 24 satisfies for £ > 0

VE) = el + Sralha) = o5 | Ty

and v(—&) = v(&).
Proof. In this proof only, the implicit constants in the O are absolute. Fix M > 0 and define
E={zeZ":|z||x <M}
endowed with the distance d (z,w) = ||z — w| z«. It is trivial to check that (E, d) is a complete
metric space. From the definition (59) and (17), forz € Z k and E>0
. 3i 3ie (.
Ty(3)(E) = clA2) + —altz) — =5 | (4 2)(n)dn - S,(E).

0
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Then the matching asymptotics of ¥(S) and S and the estimates of Lemma 18 imply that,
for0< & <1,

Wa(2)(€) = c(A,2) + %a(A,Z) + (2[5 + AP + la)o(E])

¥(z2)'(8) = —%f(SA +2)(&) = S4(&) = (|z15 + AP +[A)o(1).
For £ > 1,
. 3i 3ie (*.
Ua(2)(E) =c(A2) + %a(A,z) ) . I[(S4+2)(n)dn —S(&)

3i 3ie 3ie ([* /- etaln|n|
—cA2) + LaAz)— 2L g z) + 2L i(s —E d
c(a2) + 2halhs) - 2 o)+ 2 [ (Hs+2)(m )an

2 M

3ie (© _etalninl
| B an sy

Cam2 T
Now, from Lemma 18,

F(Sa+2)() — T(S2) ()] = (APzl + 212,)0(18] ),
so that

L Oo(f(SAJrZ)(n) —1(Sa)(m))dn = (A2 2 + |z 5)0(1E] 7).

When integrating (43), the second, highly oscillating term is negligeable so that

FOO (f(SA)(n) - EeialnM) dn = |APO(IE]777%) = [APO (g ).
i3 n

Also,

dn = —A + Ae'enIEl]

3ie Jé efaln|n|
an2 )i Inl
Sa(E) = Ae' ™Il + A0(jEIT).

Combining the above and using the cancellation due to the definition (58), we get

(60) Ba(2) (&) = (25 + AP +1aho(g] ).
Similarly,
6D Bu(e) (&) = 55 1(54+2)(E) — () = (J2l + AP + Do)

We now turn to difference estimates. As A is fixed, using the estimates of Lemmas 19 and 18,
one easily shows that

B4 (2)(E) — T (w) (E)] < (]2 + [wl2e + |AP) |z — ] zcO(min{1, £ *})
[Ba(2) (&) = Ba(w) (E)] < (I2]24 + Wl + A1) |2 — w] 2¢O (min{1, [E]T*1)
Hence, for any z,w € E,

[Pa@)]k < A+ AP + 215, < |Al + M°
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and
d(Tu(2), Taw)) < (|2]2 + [w]2e + 1417)d (2, w) < (AP + M?)d (2, w).

Therefore, for M = 2|A| and |A| < €; sufficiently small, ¥, : E — E is a strict contraction. By
Banach’s fixed point theorem, there exists a unique z, € E such that

Vi=Su+24 =S84 +Us(2) =S4+ Uu(S +32) — Sy = Uy (v).
It remains to see that \z\k’c(A’ZH%a(A’Z) < 3|A|. We already know that ||z|z« < 2|A|; the rest
follows from the fact that, for 0 < & <1,

. . 5 .
AE) = clAi) + alAz) — 55 | T(s +2)(m)dn
= (A za) + = aldz) + (Jsl3, +1AP)O(E]). 0

We now complete the proof of Theorem 1, by reverting the roles of (c, @) and A. Fix k € (3, ;)
until the end of this section. We first prove some Lipschitz continuity of the maps A — I (4, 2)
and A — z,.
Introduce for convenience of notation the remainder term in I(S, + 2):

3ie - ,
(62) RAZ)(E) i= —=51(54+2) — $4(8)

The estimate (51) gives decay on R(A,0), and in the next lemma we claim a difference
estimate.

Lemma 21. Let € > 0 small enough, and A;,A, € C such that |A;|,]|A,| < e, and z € Z* such
that |z|z« < 3e. Then for all £ € R,

R(A1,2)(€) — R(A3,2) ()] < €A1 — Ay In®(2 + [E])O(min(1, || ).

Sketch of the proof. R(A,2)(&) is given by a sum of integrals which, after the appropriate
integration by parts, can all be estimated directly with absolute values on the integrand. Re-
garding the dependence on A for these integrals, when it appears in the amplitude constants,
we can directly estimate the difference and obtain a |A; — A,| factor together with the same
decay (by the same computations, done in Sections 3 and 4). The “worst” dependence on A
is when it occurs in the phases; observe that this only happens through a(A) = (3/47)|A|? in
the oscillating term e’ €l (the key is that in the highly oscillating terms with phase e~/ 953,
there is no dependence on A: 8 is independent of A!). This leads to terms of the form

(63) elatinnl _ giel)ininll < la(Ay) — a(Ay)|In|n| < [A; —Az|In(2 + [n]).
As a consequence we obtain the claimed estimate. O

So there is a logarithmic loss when performing difference estimates. However, this can be
compensated by decreasing slightly the parameter k, which controls the decay rate in Z¥,
and so we recover Lipschitz continuity for the maps we are interested in.

Lemma 22. For any €, > 0 sufficiently small, the following holds true. Let A;,A, € C with
A1, |As| < €, and z,w € Z¥ such that |2z, |[w|z« < 3¢ then

64) |#(A1,2) — #(Ag, w)| < CE(|Ay —Ap| + 5 — W z0),
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(65) HzAl - ZAZHZ’(*‘s < C(5>€2‘A1 —A2|,
where £ is as in (52) and C (&) only depends on §.

Proof. Proof of estimate (64). Using lemma 18, we have

+0
|#(A2,2) — I Az, w)| < L [1(Sa, +2)(n) —I(Sa, +w)(n)|dn

< (e + 215 + IwlZ0 12 = w22,

which gives Lipschitz continuity of .# with respect to the z variable. For the A variable, we
have by definition,

S(Az) = f: SL(E)dE + f

0
and the three integrals are convergent. Hence

+o0 +oo o3ialn|E],—8iE%/9

RA)(ENE + | P

1 +0o0
9 (A,2) — 5 (Ag,2)] < L 1S4, (8) = Sh (E)]dE + f R(A1,2)() — R(Ay, 2)(E)|dE

0

to p3iala)In || p3ia(A)n|é|
e e K

The first two terms are O(e?|A, — A;|) (using Lemma 21 for the second). The last term is
explicit, by performing an integration by parts, we see that, as in (63), it is bounded by

+a0 e3ia(Ar)InE| e3ia(Ay) In[g] ’ T 1n(2 + &)

F(A))—/————— —F(A,))—————|dE < %A, — A f — =274
fl\(l - ) g < e -l [ 22 e
S €%lA; —Ay|.

_|_

Proof of estimate (65). Recall that
3ie -
/ —_— e ——
ZA— 47TZI(SA+ZA).
By Lemmas 18 and 21, we infer that for k — 6 > 1/2,

24, (8) =24, ()] < 75 (11(Sa, +2,)(&) = I(Sa, +24,)(£)]

+[(Sa, +24,)(8) — I(Sa, +24,)(8)])
< €%2a, — 24, [k—sO(min(1, || 71 7FF0))
(66) + €%A; — Ap|In*(2 + |€])O(min(1, [£]717F))
Hence

[+ 1[0 ) (24, —2a,) (M1 < €724, —2Za, k5 + C(8)€2|A — A,
(actually one can choose C(6) ~ 1/8). This is the derivative estimate. For the function
estimate, it suffices to integrate (66), using the fact that z4 (£),2a,(&) — 0 as & — +o0. This
gives, for £ > 0
24, (&) — 24, (8)] < €[24, — 24,k —5O0(min(L, |E] 7))
+ €Ay — Ay|In3(2 + |£[)O(min(1, |€]75)).
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By symmetry, this inequality also holds for £ < 0, and hence
I(1+ ’T)|k_5)(ZA1 —24,)(N) |0 < €%[2a, — 2a,l|zc—5 + C(8)|A; — Ay
Summing up, we get for some constant C independent of A;,A,, d,
|za, — 24, | 265 < C€*|24, — 2, | 255 + C(8)|A; — Ayl
Choosing € so small that Ce? < 1/2, we get
|24, — 24, | zk-5 < C(0)|A; — Ayl U
We can now complete the proof the Theorem 1.

Proof of Theorem 1. We consider the map
f: C—R?
A f(A) = (C(A: ZA): a(A’ ZA))

— (—eReA——i%éReﬂ@&a@,—%gfhnA4—é%ReﬂQ&zQ)
We claim that there exists ¢, > 0 and a neighborhood ¥ of 0 € C? such that f : ¥ — B is
bijective and bi-Lipschitz, where B is the open ball centered at (0, 0) of radius €, of R?.
Observe that this means that given (c, a) such that ¢2 + a? < ¢, there exist a unique Ae ¥
such that the compatibility condition (53) are fulfilled with z = 24, and so 2z, is the sought
for remainder.

If f was 6!, we would merely apply the inverse function theorem, but our estimates do
not quite reach this regularity. Actually, f is a Lipschitz perturbation of the invertible R-

1 0

linear map L € ¥4(C, ]RZ) associated to the matrix < 0 2_n> (we identified C and R?). More
3

precisely, fix k € (3, ;) and § > 0 so small that k — & > 3, then Lemma 22 shows that the

map A+— #(A,z,) has Lipschitz constant C(&)e on B. Hence the same is true for g := f — L,

that is, for all A;,A, € B,

lg(A1) — g(Az)] < C(8)eg|A; — Ag|.
We use the following weakened version of the inverse function theorem.

Claim 23. Let (E,| - |g), (F| - ||r) be two Banach spaces and L € ¥ (E,F) a (bi-) continuous
invertible linear map. Consider f = L + g where g is a c-Lipschitz map defined on a neighbour-
hood of 0 € E, with values in F and such that g(0) = 0.
Ifc<|L7! HELE, then there exists two open sets (containing 0) V of E, and W of F (W can be
chosen to be a ball centered at 0), such that f is bijective V.— W and bi-Lipschitz, and f ! has
Lipschitz constant less than
1
1-1 :
1L~z g —¢

We apply this claim to f and this concludes the proof of Theorem 1. O

Proof of Proposition 7. Either using a refined version of [ 14, Lemma 2.1] or applying directly
some stationary phase arguments, one may show that the solution built in Theorem 1 satisfies
in physical space
V(y) >0 as y— +oo.
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Therefore, using the existence and uniqueness of decaying self-similar solutions (see [13,
Theorem 1]), we conclude that our solution coincides with the solution V. built in [13], for
some k. To see the precise relation between A and «, let us compute briefly the leading order
term of V when y — —oo0. Since the second term in the anstatz and the remainder z are in
L?, we have

1 ©o :

V(y)= —Ref AeYETEelalng ) (5yqr 4+ 12 remainder.

T 0

A standard stationary phase argument shows that the main asymptotics are given by the

contribution of the point &, = 1/|y|/3. At this point, the phase R(£) = y& + &2 is stationary

and
R(&o) = —2|}’/3|3/2> R”(go) = 2\/ 3ly|.

We then obtain, for y — —o0o,

1 . 2 .
V(y) = — ReAeR(%0) _ZT_ialn% 4 12 remainder
T R”(go)
Al < 2 32, 4 > 2 :
=—cos| —— +—In|y|+ 6, ] + L“-remainder,
NCENE WAt

for some 6 € R, and so

) 1 347 3 1
|Al* = 21n , a=——=—1In .
1— k2 41 2n 1— k2

Finally, it also follows from [13] that « is positive if and only if V,. has a positive average
(meaning that ¢ > 0). Since ¢ and ReA have the same sign, the claimed result follows.  [J
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