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ASYMPTOTICS IN FOURIER SPACE OF SELF-SIMILAR SOLUTIONS TO THE
MODIFIED KORTEWEG-DE VRIES EQUATION

SIMÃO CORREIA, RAPHAËL CÔTE AND LUIS VEGA

ABSTRACT. We give the asymptotics of the Fourier transform of self-similar solutions to the
modified Korteweg-de Vries equation, through a fixed point argument in weighted W 1,8

around a carefully chosen, two term ansatz. Such knowledge is crucial in the study of stability
properties of the self-similar solutions for the modified Korteweg-de Vries flow.
In the defocusing case, the self-similar profiles are solutions to the Painlevé II equation. Al-
though they were extensively studied in physical space, no result to our knowledge describe
their behavior in Fourier space. We are able to relate the constants involved in the description
in Fourier space with those involved in the description in physical space.

1. INTRODUCTION

We consider the modified Korteweg-de Vries equation:

Btu ` B3
x x xu ` ϵBxpu3q “ 0, u : Rt ˆRx Ñ R.(mKdV)

The signum ϵ P t˘1u indicates wether the equation is focusing or defocusing. (mKdV) solu-
tions enjoy a natural scaling: if u is a solution then

uλpt, xq :“ λupλ3 t,λxq

is also a solution to (mKdV). We are interested in the self similar solutions of (mKdV), that
is, solutions which preserve their shape under scaling: in other words, they are solutions of
the form

Upt, xq “ t´1{3V pt´1{3 xq

for t ą 0, x P R and where V : RÑ R is the self-similar profile, so that Uλ “ U . After an
integration we see that the profile V solves the Painlevé type equation

V 2 “
1
3

yV ´ ϵV 3 `α.(1)

A profile solution to (1) generates a self-similar solution U such that

Uptq á cδ0 `αv.p.

ˆ

1
x

˙

as t Ñ 0`, where c “

ż

V pyqd y,(2)

provided that the mean of V is well defined; we recall that this quantity is preserved by
(mKdV), and is therefore very relevant.
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Self-similar solutions play important roles for the (mKdV) flow, for the long time description
of solutions. Even for small and smooth initial data, the solutions display a modified scatter-
ing where self-similar solutions naturally appear: we refer to Hayashi and Naumkin [15, 14],
which was revisited by Germain, Pusateri and Rousset [10] and Harrop-Griffiths [12].
Self-similar solutions and the (mKdV) flow are also relevant as a model for the behavior of
vortex filament in fluid dynamics. More precisely, Goldstein and Petrich [11] proposed the
following geometric flow for the description of the evolution of the boundary of a vortex
patch in the plane under the Euler equations:

Btz “ ´Bsssz ` Bsz̄pBsszq2, |Bsz|2 “ 1,

where z “ zpt, sq is complex valued and parametrize by its arctlength s a plane curve which
evolves in time t. A direct computation shows that its curvature solves the focusing (mKdV)
(with ϵ “ 1), and self-similar solutions with initial data (2) corresponds to logarithmic spi-
rals making a corner: this kind of spirals are observed in a number of fluid dynamics phe-
nomenons. We refer to [16] and the reference therein for more details. Let us also mention
that we were also motivated by the sequence of papers by Banica and Vega [1, 2, 3, 4] for
related questions, modeled by non linear Schrödinger type equations.

In the defocusing case ϵ “ ´1, equation (1) actually corresponds to the Painleve II equa-
tion, which has its own interest and was intensively studied. Very precise asymptotics where
obtained for its solutions. For example, in the case ϵ “ ´1, α“ 0, for any κ P R, there exist
a unique self similar solution Vκ defined for large enough y " 1 such that

Vκpyq “ κAipyq ` O
´

y´1{4e´ 4
3

?
3

y3{2
¯

as y Ñ `8,(3)

where Ai is the Airy function

Aipyq :“
1
π

ż `8

0
cos

`

ξ3 ` yξ
˘

dξ.

Also, any solution to (1) which tends to 0 as y Ñ `8 is one of the Vκ. If furthermore
κ P p´1, 1q, Vκ is defined on R and

Vκpyq “
2

?
ρ

|3y|1{4
cos

ˆ

2

3
?

3
|y|3{2 ´

3
2
ρ ln |y| ` θ

˙

` O
´

|y|´5{4 ln |y|

¯

as y Ñ ´8

(4)

where ρ “
1

2π
ln

ˆ

1
1 ´κ2

˙

and θ “ ´3ρ

ˆ

ln2 `
1
4

ln3

˙

` ln Γ piρq `
π

2
sgnκ´

π

4
.

(Γ denotes the Gamma function). Recall for comparison the asymptotics of the Airy function:

Aipyq “
1

?
πp3yq1{4

e´ 2
3

?
3

y3{2

` O
´

y´5{4e´ 2
3

?
3

y3{2
¯

as y Ñ `8,

Aipyq “
1

?
π|3y|1{4

cos

ˆ

2

3
?

3
|y|3{2 ´

π

4

˙

` O
´

|y|´5{4 ln |y|

¯

as y Ñ ´8.

If |κ| “ 1, Vκ is still global but is no longer oscillatory as y Ñ ´8 (it is equivalent to
a

|y|{2
and has a full asymptotic expansion); when |κ| ą 1, V is no longer defined on R (it has an
infinite number of poles). We refer to the works by Hastings and McLeod [13] and Deift and
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Zhou [7] and the reference therein for the above results, and more (see also [8] and the
book [9]).
In the work of Perelman and Vega [16], related results were obtained in the focusing case
ϵ “ 1, using only ODE techniques. Observe that (1) is rescaled with respect to the way is it
presented in those works, and this accounts for the difference in the constants.

However, nothing is known on the Fourier side, even for small κ (or small c, α). The ques-
tion of the asymptotics of V̂ is natural and interesting by itself. It is also important for the
description of solutions to (mKdV) for large times. Indeed, the Fourier space captures the
dispersive effects of the (mKdV) flow (as it can be seen from the oscillatory behaviour of Ai
or Vκ as z Ñ ´8). This is a key obviously if one wants to study the stability properties of
self-similar solutions.

Here we provide the asymptotics of V̂ pξq at high and low frequencies ξ, for small pc,αq.
We take our inspiration from PDE techniques, to the contrary of the above mentioned work
which relied on ODE or complex analysis methods. One major input of our techniques is that
they are amenable to perturbation: this work initiates the study of the (mKdV) flow around
self-similar solutions, which will be continued in forthcoming papers.
We work in weighted spaces based on L8: in fact it is convenient to introduce for k ě 0 the
space defined Zk by

Zk “

!

z P L8pRq : @ξą 0, zp´ξq “ zpξq, }z}Zk ă `8

)

where(5)

}z}Zk :“ }zpξqp1 ` |ξ|kq}L8pRq ` }z1p1 ` |ξ|k`1q}L8p0,`8q ` }z1p1 ` |ξ|k`1q}L8p´8,0q.(6)

We emphasize that a finite } ¨ }Zk norm allows for a jump at zero, but with finite limits at 0˘

(which are conjugate).
Our main result is the following.

Theorem 1. Given ϵ P t˘1u, k P
`1

2 , 4
7

˘

and c,α P R with c2 ` α2 ă ε0 small enough, there
exist A “ Apc,αq and a real valued function V P S 1pRq solution to (1) such that

@ξą 0, e´iξ3
V̂ pξq “ χpξqeia ln |ξ|

˜

A ` Be2ia ln |ξ| e´i 8
9ξ

3

ξ3

¸

` zpξq,(7)

where χ is a C8 cut-off function such that χpξq “ 0 if ξ ă 1 and χpξq “ 1 if ξ ą 2; the
remainder z P Zk satisfies

}z}Zk À |A|,(8)

zpξq Ñ c `
3i
2π
α as ξÑ 0`,(9)

and the constant a and B are related to A by

a “ ´
3

4π
|A|2, B “

´3iϵ

16π
?

2
eia ln3|A|2A.(10)

Finally, the map pc,αq ÞÑ A is one-to-one onto an adequate neighbourhood of 0 P C, bi-Lipschitz,
and maps p0, 0q to 0.
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Remark 2. The symmetry condition in the definition of Zk reflects the fact that we work
with real valued functions (in physical space). For the same reason, the knowledge of V̂

for positive frequencies ξ ą 0 gives a complete description: for ξ ă 0, V̂ pξq “ V̂ p´ξq and
zpξq “ zp´ξq.
In particular, z is continuous if and only if α“ 0, and otherwise has a jump discontinuity of

size
3i
π
α at ξ“ 0. Due to (9), the self-similar solution generated by V satisfies (2).

Remark 3. We emphasize that the description of V̂ for large ξ has two terms. Although the
second one has decay, its high oscillation means that it is also a leading order term for the
derivative V̂ 1, with decay 1{ξ like the first one.
Let us also notice that the parameters A, B and a may vary, but the phase ´8ξ3{9 in the
second term is completely constrained. A is related to c,α by an (explicit) integral expression
– see Section 5.1): it would be nice to have a more computable link.

Remark 4. Performing (lengthy!) computations similar to that in the proofs, one should be
able to obtain an asymptotic expansion at any order for high or low frequencies. We will not
pursue this question here.

Remark 5. We are interested in real valued solutions to (1) as they are the most relevant for
(mKdV). However our analysis could be extended to complex valued V (simply dropping the
symmetry condition in the definition of Zk). In that case the equation should read

(11) V 2 “
1
3

xV ´ ϵ|V |2V `α,

which corresponds to self similar equation to the gauge invariant (mKdV), and the ansatz

should look like c `
3i
2π

a sgnpξq near ξ“ 0, for given pc,αq P C2, and should be written with

unrelated constants A`, A´ instead of A, Ā for the asymptotics as ξÑ `8 or ξÑ ´8; and
the same for B and a.

Remark 6. One natural question is the maximal size of a self-similar solution V defined on
R so that V P S 1pRq. A conjecture is that, when α“ 0 and the size is measured by the mean
c, one has a threshold |c| ă π{2 (see [6]).
This is not within the scope of our method. Our proofs are done via a fixed point argument,
which implies some smallness. We are also limited by our ansatz, with a cut-off function χ
at scale 1. Maybe the result could be sharpened by the use of a cut-off on a scale depending
on pc,αq.

As a consequence of the explicit Fourier expansion, we are able to link the profile constructed
in Theorem 1, with the Vκ constructed in physical space in [13].

Proposition 7. Fix ϵ “ ´1 and α“ 0. Then the solution V constructed in Theorem 1 coincides
with Vκ defined in (3), where A and κ are related via the relation

|A|2 “ 2 ln

ˆ

1
1 ´κ2

˙

, and Re A and κ have same sign.(12)
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2. OUTLOOK OF THE PROOF

2.1. Fixed point and ansatz. In Fourier space, equation (1) takes the form

´
i
3

V̂ 1 “ ξ2V̂ ´ ϵF p|V |2V q `
1

2π
αδξ“0.

(For convenience, we use the nonlinearity of (11), which allows for complex valued V , with-
out extra cost on the computations). Denote vpξq “ e´iξ3

V̂ pξq. Then

v1 “ e´iξ3
pV̂ 1 ´ 3iξ2V̂ q “ ´3iϵe´iξ3F p|V |2V q `

3i
2π
αδξ“0

“ ´
3iϵ
4π2

e´iξ3
ĳ

η1`η2`η3“ξ

eipη3
1`η3

2`η3
3qvpη1qvpη2qv̄p´η3qdη1dη2 `

3i
2π
αδξ“0.

Let us first consider the trilinear operator I , which will be central in our analysis:

Ip f , g, hqpξq :“ e´iξ3
ĳ

η1`η2`η3“ξ

eipη3
1`η3

2`η3
3q f pη1qgpη2qh̄p´η3qdη1dη2.(13)

We can rewrite I in a more suitable form. Let ξ“ η1 `η2 `η3, η“ η1 `η2 and ν“ η1 ´η2
so that η3 “ ξ´η. We compute

η3
1 `η3

2 `η3
3 ´ pη1 `η2 `η3q3

“ η3
1 `η3

2 `η3
3 ´ pη1 `η2q3 ´ 3pη1 `η2q2η3 ´ 3pη1 `η2qη2

3 ´η3
3

“ ´3η1η2pη1 `η2q ´ 3pη1 `η2q2η3 ´ 3pη1 `η2qη2
3

“ ´3

ˆ

1
4

pη2 ´ ν2qη`η2pξ´ηq `ηpξ´ηq2
˙

“ ´3

ˆ

ηξ2 ´ ξη2 `
1
4
η3

˙

`
3
4
ην2.

Hence

Ip f , g, hqpξq “ e´iξ3
ĳ

η1`η2`η3“ξ

eipη3
1`η3

2`η3
3q f pη1qgpη2qh̄p´η3qdη1dη2

“

ĳ

η1`η2`η3“ξ

e´3ipηξ2´ξη2` 1
4η

3q` 3i
4 ην

2
f

´η` ν

2

¯

g
´η´ ν

2

¯

h̄pη´ ξqdη1dη2

“
1
2

ż

η
e´3ipηξ2´ξη2` 1

4η
3qh̄pη´ ξq

ˆ
ż

ν
e

3i
4 ην

2
f

´η` ν

2

¯

g
´η´ ν

2

¯

dν
˙

dη

We are thus led to define the operators

Jp f , gqpξq “

ż

η
e´3iΦpξ,ηq f̄ pη´ ξqgpηqdη,(14)

where the phase Φ

Φpξ,ηq “ ηξ2 ´ ξη2 `
1
4
η3,(15)

5



and

Kp f , gqpηq “

ż

ν
e

3i
4 ην

2
f

´η` ν

2

¯

g
´η´ ν

2

¯

dν,(16)

so that

Ip f , g, hq “
1
2

Jph, Kp f , gqq.

Back to our problem, our goal is to find a solution to

v1 “ ´
3iϵ
4π2

Ipv, v, vq `
3i
2π
αδξ“0.

Equivalently, given c,α P R, we define

@ξą 0, Ψpvqpξq “ c `
3i
2π
α´

3iϵ
4π2

ż ξ

0
Ipv, v, vqpηqdη,(17)

and for ξ ă 0, Ψpvqpξq “ Ψpvqp´ξq. We are looking for a fixed point of Ψ (and vp0`q “

c `
3i
2πα); we will consider it of the form

v “ S ` z,

where S is our ansatz and z is small in some adequate functional space.
We first have to find a good ansatz S for the self-similar solution v on the Fourier side, and
we will prove the existence of such a solution V using a fixed-point argument.
We consider a smooth cut-off function χ with χ ” 0 for ξă 1 and χ ” 1 for ξą 2. In order
to obtain a real valued self-similar solution, we impose that Sp´ξq “ S̄pξq, which means
that we may focus on the region ξą 0. Then we consider the two term ansatz

@ξą 0, Spξq “ χpξqeia ln |ξ|

˜

A ` Be2ia ln |ξ| eiβξ3

ξ3

¸

,(18)

with constants A, B P C and β , a P R to be adjusted. Observe that Sp0q “ 0 (and so zp0`q “

c `
3i
2πα).

To see if S is a good approximation of the self-similar solution, we shall compute ΨpSq and
then compare with S. The first term

eia ln |ξ|

in the ansatz S comes from the following heuristics. It seems natural to look first at the Ψp1q,
because constants for v correspond to the Airy function for V , which is a solution to the linear
part

Ai2 “
1
3

y Ai

of the Painlevé equation (1). In fact, the leading term Ψp1q presents slow oscillations, of the
form eia ln |ξ| for large ξ (this can be seen by computing the leading term Ip1,1,1q: this is not
done here, but would follow, in a simplified way, from the computations done in Sections 3
and 4).
Then if we use this improved approximation, we are led to compute the leading term of
Ψpeia ln |ξ|q: at least formally and for a correct choice of a, it is eia ln |ξ| itself!

6



Now when doing a rigorous proof, it turns out that derivatives are absolutely needed to
control the errors. But when we consider the derivatives Bξ IpS, S, Sq, we see another term at
leading order, which is given by the second, highly oscillating, term

e3ia ln |ξ| eiβξ3

ξ3

in the ansatz. This second term can not be avoided, and requires that we do a distinct analysis
for low and high frequencies. Fortunately, the introduction of this second term in the ansatz
does not lead to a different asymptotic development for ΨpSq and we are able to complete
the proof with the two terms ansatz (18).
This procedure is actually quite analogous to the Picard iteration scheme: one starts with a
suitable initial function and computes various iterates of Ψ. In our method, we start with 1
and compute three iterates of Ψ. Thankfully, the error between the third iterate and the true
solution can be controlled and a fixed point can be applied.
One of the main difficulties in completing this program is to obtain a correct estimation of
the remainder terms. In the integrals involved in (14)-(15)-(16), we see that the phases
are quadratic (or cubic), which naturally leads to stationary phase estimates. This means a
rather slow decay, and also the need to develop efficient bounds on the errors on the station-
ary phase. This should be done preferably in L8 based spaces: indeed, we have pointwise
estimates on the main order terms, and the problem is critical in some sense (the ansatz has
no decay at infinity for example), so that we can not afford to lose information.
This is in sharp contrast with the analogous problem for the nonlinear Schrödinger equation.
In that case, the phases appearing in the integrals are linear, and thus are never stationary:
the analysis is much simpler.

When matching the behavior of S and ΨpSq at ξ“ 0 and ξ“ ˘8, the constants A, B, a,α and
c are linked. On the other side, it turns out that β does not depend on any other constant,
and is in fact universal:

β “ ´
8
9

.

However, to see how this phenomenon occurs, we will pursue the computations for arbi-
trary β . In several steps, the shape of the expansions obtained will depend on β . To avoid
unnecessary computations, we will always assume that

β P p´1, ´1{2q.

This allows to perform the computations without dichotomy in the expression of the expan-
sion.

2.2. Organisation of the proofs and notations. Our analysis will be done in spaces based
on weighted W 1,8 in v: this is coherent with the first term of the ansatz S, which has no
decay at infinity. In our goal to construct a solution, we do not aim at dealing with rough
data, it is sufficient for us to work with relatively strong norms.
One major difficulty in the proofs is that we are not able to close an argument in a functional
space that contains both S and z. The reason which we detail below, essentially comes from
the fact that S (and self-similar solutions), although smooth, has poor decay properties at
infinity.
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More precisely, in the process of closing the fixed point argument, a very delicate game
is to be played with the errors in stationary phase arguments. The control of the errors is
technically challenging, in particular, we cannot allow the use of too many derivatives.
On the one hand, we absolutely need to control at least one derivative on z, as weighted L8

spaces are not sufficient to capture the dispersive effects (see for example Lemma 11, 12 and
13).
But on the other hand, it turns out that S does not quite belong to the right weighted space,
which is essentially given by (8). Indeed for S, we only have the decay

}S}L8 À |A|, }p1 ` |ξ|qS1}L8 À |A| ` |B|,

so that we miss a power k ą 1{2.
So for terms in S only, we will involve the second derivative of S (essentially via integration
by parts), to compensate the lack of decay of S. However, if we were to compute with second
derivative of z, too, then again the decay of S2 would not be sufficient.
This is why, at many places in the following sections, we will prove two estimates on the
same quantity, one meant to be used for the ansatz S and the other for the remainder z.

The multiplicity of the norms involved also has an impact on the exposition in the proof, in
particular the Landau notation O. So as to keep the expression as simple as possible, we adopt
the following convention: during the proof of an estimate, the implicit constant involved in
O is allowed to depend multilinearly on the norms appearing in the factors of the right hand
side of the final estimates. For example, in the course of proving the estimate

}Bp f , gq}N ď C} f }N1
}g}N2

,

(where B is a bilinear map and N , N1 and N2 are norms), the bound Lpgqpξq “ Opξq (where
L is linear) means that there exist an absolute constant C such that

|Lpgqpξq| ď C |ξ|}g}N2
,

in the neighborhood in ξ considered. So as to avoid ambiguity, we will specify clearly what
estimate is being proved at each step. The same convention holds for the symbol À.
We will also write f „ g for two complex valued functions f and g if | f {g| is bounded below
and above by some strictly positive constants. We will use the notation sgn for the signum
function, which can take values in t˘1u or in t˘u, depending on the context.
Finally, we point out the remainder z in Theorem 1 may present a jump discontinuity at
ξ “ 0. This means that, in the estimates meant for z, an integration by parts will yield a
boundary term at this point. Sometimes, for convenience of notation, we simply include this
boundary term in the integral and interpret z1p0q as a Dirac delta distribution.

Section 3 is devoted to estimates on J . In Section 4 we compute the precise asymptotics for
KpS, Sq and IpS, S, Sq. We prove Theorem 1 and Proposition 7 in Section 5.

3. PRELIMINARY ESTIMATES

Lemma 8. Let λą 0. Then
ˇ

ˇ

ˇ

ˇ

ż 8

λ
eiη2

dη´
1

2iλ

ˇ

ˇ

ˇ

ˇ

ď
1
λ3

,(19)
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ˇ

ˇ

ˇ

ˇ

ż 8

λ
eiη2

dη´

?
π

2
eiπ{4

ˇ

ˇ

ˇ

ˇ

ď λ.(20)

Proof. For estimate for large λ, we do two integrations by parts:
ż 8

λ
eiη2

dη“

ż 8

λ

2iη
2iη

eiη2
dη“

1
2iλ

`

ż 8

λ

eiη2

2iη2
dη

“
1

2iλ
´

1
4λ3

´

ż 8

λ

eiη2

12η4
dη.

Then a crude triangular inequality yield the bound

1
4λ3

`

ż 8

λ

dη
12η4

“

ˆ

1
4

`
1

36

˙

1
λ3

ď
1
λ3

.

For the estimate for small λ, we simply use |eiη2
| ď 1 and

ż 8

λ
eiη2

dη´

?
π

2
eiπ{4 “

ż 8

λ
eiη2

dη´

ż 8

0
eiη2

dη“ ´

ż λ

0
eiη2

dη. □

Lemma 9 (Fundamental bounds). For any ξ‰ 0,
ˇ

ˇ

ˇ

ˇ

ż

eiξη2
gpηqdη´

c

π

|ξ|
ei π4 sgnpξq gp0q

ˇ

ˇ

ˇ

ˇ

À
}g}8
a

|ξ|
`

}g 1}8

|ξ|
(21)

Furthermore, if there exists R ą 0 such that Supp g Ă r´ξR,ξRs, then

(22)

ˇ

ˇ

ˇ

ˇ

ż

eiξη2
gpηqdη´

c

π

|ξ|
ei π4 sgnpξq gp0q

ˇ

ˇ

ˇ

ˇ

ď C
ln |ξ|

|ξ|
}g 1}8, C “ CpRq.

Proof. We assume ξą 0, the other case is similar.
ż

eiξη2
gpηqdη´

c

π

ξ
ei π4 gp0q “

ż

eiξη2
pgpηq ´ gp0qqdη

“

ż 8

η“0

ż η

ν“0
eiξη2

pg 1pνq ´ g 1p´νqqdνdη

“

ż 8

ν“0
pg 1pνq ´ g 1p´νqq

ż 8

η“ν
eiξη2

dηdν

“
1

a

ξ

ż 8

ν“0
pg 1pνq ´ g 1p´νqq

˜

ż 8

?
ξν

eiµ2
dµ

¸

dν

(with µ“
a

ξµ). We split the previous integral at b. As
ż 8

?
ξν

eiµ2
dµ“

?
π

2
eiπ{4 ` Op

a

ξνq,

there holds
ż b

0
pg 1pνq ´ g 1p´νqq

˜

ż 8

?
ξν

eiµ2
dµ

¸

dν“

ż b

0
pg 1pνq ´ g 1p´νqq

ˆ?
π

2
eiπ{4 ` Op

a

ξνq

˙

dν

9



“

?
π

2
eiπ{4pgpbq ´ gp´bqq ` O

ˆ

a

ξ

ż

|ν|ďb
|νg 1pνq|dν

˙

Also,
ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

η“
?

|ξ|ν
eiη2

dη

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

a

|ξ|ν
,

so that
ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

b
pg 1pνq ´ g 1p´νqq

ż 8

?
|ξ|ν

eiµ2
dµdν

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

a

|ξ|

ż

|ν|ěb
|g 1pνq|

dν
ν

.

The second estimate now follows from choosing b “ |ξ|´1{2. For the first estimate, it is
necessary to refine the estimate for νą b: in fact, since

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

η“
?

|ξ|ν
eiη2

dη´
1

2i
a

|ξ|ν

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

|ξ|3{2|ν|3
,

one has
ż 8

b
g 1pνq

ż 8

?
|ξ|ν

eiµ2
dµdν“

1

2i
a

|ξ|

ż 8

b

g 1pνq

ν
dν` O

ˆ
ż 8

b

|g 1pνq|

|ξ|3{2|ν|3
dν

˙

“ ´
1

2i
a

|ξ|

gpbq

b
`

1

2i
a

|ξ|

ż 8

b

gpνq

ν2
dν` O

ˆ

}g 1}8

|ξ|3{2 b2

˙

“ O
ˆ

}g}8

b|ξ|1{2
`

}g 1}8

|ξ|3{2 b2

˙

Thus
ˇ

ˇ

ˇ

ˇ

ż

eiξη2
gpηqdη´

c

π

|ξ|
ei π4 sgnpξq gp0q

ˇ

ˇ

ˇ

ˇ

À

ż

|ν|ďb
|g 1pνqν|dν`

}g}8

b|ξ|
`

}g 1}8

|ξ|2 b2

`
1

a

|ξ|
|gpbq ´ gp´bq|

À }g 1}8 b2 `
}g}8

b|ξ|
`

}g 1}8

|ξ|2 b2
`

}g}8
a

|ξ|
.

The claimed estimate now follows from choosing b “ |ξ|´1{2. □
The following four lemmas concern to the asymptotic behaviour of the parametric integral

Jp f , gqpξq “

ż

e´3iΦpξ,ηq f pηqgpη´ ξqdη.

Lemma 10. Fix k “ p1{2q`. If |ξ| ă 2,

(23) |Jp f , gqpξq| À }p1 ` |η|k`1q f }L8}g}L8

and

|Jp f , gqpξq| À

´

}p1 ` |η|1{2q f }L8 ` } f 1|η|3{2}L8pt|η|ą1uq

¯

ˆ

´

}g}L8 ` }g 1|η|}L8pt|η|ą1uq

¯

(24)
10



Proof. Proof of estimate (23). It is direct:
ˇ

ˇ

ˇ

ˇ

ż

e´3iΦpξ,ηq f pηqgpη´ ξqdη

ˇ

ˇ

ˇ

ˇ

ď

ż

|η|ă1
} f }L8pt|η|ă1uq}g}L8 dη

`

ż

|η|ą1
|η|´1´k} f |η|k`1}L8pt|η|ą1uq}g}L8 dη

Proof of estimate (24). We write
ż

e´3iΦpξ,ηq f pηqgpη´ ξqdη“

ż

|η|ď10
`

ż

|η|ě10
.

The first term can be bounded directly:
ˇ

ˇ

ˇ

ˇ

ż

|η|ď10
e´3iη3{4 f pηqgpη´ ξqdη

ˇ

ˇ

ˇ

ˇ

À } f }8}g}8

ż

|η|ă10
dη“ Op1q.

For |η| ě 10, there is no stationary points and we can do an integration by parts. Notice that
BηΦpξ,ηq ě cη2 where c is uniform in |ξ| ď 2; Denote

Gpξ,ηq “ e´3iΦpξ,ηq f pηqgpη´ ξq.

Then
ż

|η|ě10
Gpξ,ηqdη“

ż

|η|ě10
Gp0,ηqdη`

ż ξ

0

ż

|η|ě10
BζGpζ,ηqdηdζ.

Now for |ζ| ď |ξ| ď 2,
ż

|η|ě10
BζGpζ,ηqdη“

ż

|η|ě10
e´3iΦpζ,ηq f pηqipBζΦqgpη´ ζqdη

´

ż

|η|ě10
e´3iΦpζ,ηq f pηqg 1pη´ ζqdη

The second integral is bounded directly. For the first integral, we do an integration by parts:
ż

|η|ě10
e´3iΦpζ,ηq f pηqipBζΦqgpη´ ζqdη“

ż

|η|ě10
e´3iΦpζ,ηqBη

˜

BζΦ

BηΦ
f pηqgpη´ ζq

¸

dη.

Since

Bη

˜

BζΦ

BηΦ

¸

“
B2
ηζ
Φ

BηΦ
´

BζΦB2
ηηΦ

pBηΦq2
“ O

ˆ

η

η2

˙

` O
ˆ

η2η

η2¨2

˙

“ Op|η|´1q,

ˇ

ˇ

ˇ

ˇ

ˇ

BζΦ

BηΦ

ˇ

ˇ

ˇ

ˇ

ˇ

À 1

and

f pηq “ Op|η|´1{2q, f 1pηq “ Op|η|´3{2q, gpη´ ζq “ Op1q, g 1pη´ ζq “ Op|η|´1q,

we estimate
ż

|η|ě10
e´3iΦpζ,ηqBη

˜

BζΦ

BηΦ

¸

f pηqgpη´ ζqdη`

ż

|η|ě10
e´3iΦpζ,ηq

BζΦ

BηΦ
Bη p f pηqgpη´ ζqq dη

À Op1q `

ż

|η|ě10
p| f 1pηq||gpξ´ηq| ` | f pηq||g 1pξ´ηq|q dη

11



À Op1q `

ż

|η|ě10

1

|η|3{2
dη“ Op1q.

Hence we can expand
ż

|η|ě10
Gpξ,ηqdη“

ż

|η|ě10
e´3iη3{4 f pηqgpηqdη` Op|ξ|q

and the claimed estimate follows. □

We now focus on estimates for J in the case |ξ| ą 2. For this, we do not give a global result,
but rather we split between various regions, as it will be needed in Section 4.
First of all, let us remark that

Φpξ,ηq “ ξ3Ppη{ξq, PpX q :“ X ´ X 2 `
1
4

X 3.

The polynomial P has two non-degenerate critical points X “ 2{3 and X “ 2:

(25) Pp2q “ 0, P 1p2q “ 0, P2p2q “ 1,

(26) Pp2{3q “ 8{27, P 1p2{3q “ 0, P2p2{3q “ ´3{2.

Around these points, we will use a stationary phase argument (see Lemma 12) using the
estimates from Lemma 9. On the other hand, we want to handle functions f with singularities
at the origin, which means that one should tread lightly around X “ 0. For the remaining
regions, the integrand presents no singularity and the phase has no stationary points. Hence
we may use integration by parts to obtain strong decay estimates (see Lemma 11).
Let ϕ be a radial cut-off function such that ϕprq “ 1 for 0 ď r ď 1 and ϕprq “ 0 for r ě 7{6.
Let φprq “ ϕprq ´ ϕp2rq so that φprq “ 1 if 7{12 ď r ď 1 and φprq “ 0 if r ď 1{2 or
r ě 7{6.
Define

φ1prq “ ϕp8r{3q,

φ2prq “ φp4r{3q,

φ3prq “ φp2r{3q,(27)

φ4prq “ φpr{3q,

φ5prq “ 1 ´ϕpr{3q.

One checks that
φ1 `φ2 `φ3 `φ4 `φ5 “ 1,

andφ2prq “ 1 if 7{16 ď r ď 3{4 and 2{3 belongs to that interval;φ3prq “ 1 if 7{8 ď r ď 3{2
and 1 belongs to that interval; φ4prq “ 1 if 7{4 ď r ď 3 and 2 belongs to that interval.
Define

J jp f , gqpξq “

ż

e´3iΦpξ,ηq f pηqgpη´ ξqφ jpη{ξqdη

so that J “ J1 ` J2 ` J3 ` J4 ` J5.

Lemma 11 (Non-stationary regions). Fix k ą 1{2. For |ξ| ą 2 and j “ 3, 5, we have

|J jp f , gqpξq| À |ξ|´5{2 ln |ξ|

´

} f |η|1{2}L8pt|η|ą1uq ` } f 1|η|3{2}L8pt|η|ą1uq

¯

12



ˆ

´

}g}L8 ` }p1 ` |η|qg 1}L8pRzt0uq

¯

(28)

and

|J jp f , gqpξq| À |ξ|´k´1
´

} f |η|k`1}L8pt|η|ą1uq ` } f 1|η|k}L8pt|η|ą1uq

¯

ˆ

´

}g}L8 ` }p1 ` |η|qg 1}L8pRzt0uq

¯

(29)

Proof. Over the supports of φ3 and φ5, the phase Φ is not stationary: |η|2 À |BηΦ|. We then
integrate by parts:

J jp f , gq “

ż

e´3iΦpξ,ηqBη

˜

1
´3iBηΦpξ,ηq

f pηqgpη´ ξqφ jpη{ξq

¸

dη.

The claimed estimates now follow from applying the bounds of f ang g directly (notice that
a boundary term appears at η“ ξ because g may be discontinuous at 0; however, this term
poses no extra difficulty). □
Lemma 12 (Stationary regions). Fix k ą 1{2. For |ξ| ą 2,

J2p f , gqpξq ` J4p f , gqpξq

(30)

“

c

π

3|ξ|

ˆ

e´i sgnpξqπ{4 f p2ξqgpξq
?

2 ` ei sgnpξqπ{4 f p2ξ{3qgp´ξ{3qe´8iξ3{9 2
?

3

˙

` Rpξq

where

(31) |Rpξq| À
ln |ξ|

|ξ|5{2

´

} f |ξ|1{2}8 ` } f 1|ξ|3{2}8

¯

p}g}8 ` }g 1|ξ|}8q

and

(32) |Rpξq| À
1

|ξ|k`1

`

} f |ξ|k`1}8 ` } f 1|ξ|k}8

˘

p}g}8 ` }g 1|ξ|}8q .

Proof. We first obtain the asymptotics for J4p f , gq with the error estimate (31). Recalling
(25), we may define ψ1 such that

Ppψ1pµqq “ µ2,

ψ1 is a diffeomorphism on r´c1, d1s (c1, d1 ą 0) to its image r3{2, 4s with ψ1
1 ě δ ą 0 and

ψp0q “ 2 and ψ1
1p0q “

?
2. We can also extend it to a diffeomorphism RÑ R. Define the

change of variable η“ψ1pµ{ξqξ for η P rξ, 3ξs,

Φpξ,ηq “ ξ3Ppη{ξq “ ξ3Ppψ1pµ{ξqq “ ξµ2.

Now
ż

e´3iΦpξ,ηq f pηqgpη´ ξqφ4pη{ξqdη

“

ż

e´3iξµ2
f pψ1pµ{ξqξqgppψ1pµ{ξq ´ 1qξqφ4pψ1pµ{ξqqψ1

1pµ{ξqdµ

“:
ż

e´3iξµ2
hpξ,µqdµ.

13



Notice that due to φ4, hpξ, ¨q has compact support inside tµ | 3{2 ď ψ1pµ{ξq ď 21{6u Ă

r´c1ξ, d1ξs. In particular, on the support of h, ψ1pµ{ξq ´ 1 ě 1{2 and we have, for any
µ P supp hpξ, ¨q,

|hpµ,ξq| ď | f pψ1pµ{ξqξq|}g}8}ϕ4}8}ψ1
1}L8p´c1,d1q ď

C} f |ξ|1{2}8

|ψ1pµ{ξqξ|1{2
ď

C
|ξ|1{2

,

and similarly

|Bµhpξ,µq| ď
C

|ψ1pµ{ξqξ|3{2
`

C
|ψ1pµ{ξqξ|1{2|pψ1pµ{ξq ´ 1qξ|

`
C

|ψ1pµ{ξqξ|1{2|ξ|
ď

C
|ξ|3{2

.

Hence, using the fundamental bound (22), we get that the error is Op|ξ|´5{2 ln |ξ|q and
ż

e´3iΦpξ,ηq f pηqgpη´ ξqφ4pη{ξqdη“

c

π

3|ξ|
e´iπ{4 sgnpξqhpξ, 0q ` Op|ξ|´5{2 ln |ξ|q

“

c

π

3|ξ|
e´iπ{4 sgnpξq f p2ξqgpξq

?
2 ` Op|ξ|´5{2 ln |ξ|q

Similarly, for φ2: as Pp2{3q “ 8{27, P 1p2{3q “ 0 and P2p2{3q “ ´3{2, we can consider the
diffeomorphism ψ2 : r´c2, d2s Ñ r1{3;5{6s such that

Ppψ2pµqq “ 8{27 ´µ2,

with ψ2p0q “ 2{3, ψ1
2p0q “ 2{

?
3. Then with η“ψ2pµ{ξqξ,

Φpξ,ηq “ ξ3Ppη{ξq “
8
27
ξ3 ´ ξµ2.

And we extend ψ2 into a diffeomorphism on R. Then the same computations show that
ż

e´3iΦpξ,ηq f pηqgpη´ ξqφ2pη{ξqdη

“

c

π

3|ξ|
eiπ{4 sgnpξq f p2ξ{3qgp´ξ{3qe´i8ξ3{9ψ1

2p0q ` Op|ξ|´5{2 ln |ξ|q

The asymptotics with the error estimate (32) follow from applying (21) instead of (22). □
Lemma 13 (Singular region). Fix k ą 1{2. For |ξ| ą 2,

(33) |J1p f , gqpξq| À
1

|ξ|k`1

´

} f |ξ|1{2}8 ` } f 1|ξ|3{2}8

¯

`

}g|ξ|k}8 ` }g 1|ξ|k`1}8

˘

and

(34) |J1p f , gqpξq| À
ln |ξ|

|ξ|2
p} f }8 ` } f 1|ξ|}8q p}g}8 ` }g 1|ξ|}8q

Proof. We write
ż

e´3iΦpξ,ηq f pηqgpη´ ξqφ1pη{ξqdη“ T1,1 ` T1,2 ` T1,3 with

T1,1 “

ż

ηě0
e´3iΦpξ,ηq f pηqgpη´ ξqϕp|ξ|2ηqdη

T1,2 “

ż

ηď0
e´3iΦpξ,ηq f pηqgpη´ ξqϕp|ξ|2ηqdη

14



T1,3 “

ż

e´3iΦpξ,ηq f pηqgpη´ ξqpφ1pη{ξq ´ϕp|ξ|2ηqqdη

Proof of estimate (33). We have

|T1,1| ` |T1,2| À

ż |ξ|´2

0
|η|´1{2|ξ|´kdη“ Op|ξ|´k´1q

and, for T1,3, we apply integration by parts: since
ˇ

ˇ

ˇ

ˇ

ˇ

1
BηΦpξ,ηq

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

|ξ|2
,

ˇ

ˇ

ˇ

ˇ

ˇ

BηηΦpξ,ηq

pBηΦpξ,ηqq2

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

|ξ|3
,

we obtain

T1,3 “

ż

e´3iΦpξ,ηqBη

˜

1
3BηΦpξ,ηq

f pηqgpη´ ξqpφ1pη{ξq ´ϕpξ2ηqq

¸

dη

“

ż |ξ|{2

|ξ|´2

1
ξ2

O
ˆ

1

|ξ|1`k|η|1{2
`

1

|η|3{2|ξ|k
`

1

|ξ|1`k|η|1{2
`

1

|ξ|1`k|η|1{2

˙

dη

`

ż 2|ξ|´2

|ξ|´2{2

1
ξ2`k

O
ˆ

|ξ|2

|η|1{2

˙

dη

“ O
`

|ξ|´k´1
˘

Proof of estimate (34). The bounds now write:

|T1,1| ` |T1,2| À

ż |ξ|´2

0
dη“ Op|ξ|´2q.

and

T1,3 “

ż

e´3iΦpξ,ηqBη

˜

1
3BηΦpξ,ηq

f pηqgpη´ ξqpφ1pη{ξq ´ϕpξ2ηqq

¸

dη

“

ż |ξ|{2

|ξ|´2

1
ξ2

O
ˆ

1
|ξ|

`
1

|η|

˙

dη`

ż 2|ξ|´2

|ξ|´2{2

1
ξ2

O
`

|ξ|2
˘

dη“ Op|ξ|´2 ln |ξ|q. □

4. ASYMPTOTICS FOR ΨpSq

We start with the asymptotics for KpS, Sq.

Lemma 14. There exists D P C, such that if |η| ď 10,
ˇ

ˇ

ˇ

ˇ

ˇ

KpS, Sqpηq ´ ei sgnpηqπ{4

c

4π
3

|A|2
a

|η|
´ D

ˇ

ˇ

ˇ

ˇ

ˇ

À |η|.(35)

If ηě 10,
ˇ

ˇ

ˇ

ˇ

ˇ

KpS, Sqpηq ´ eiπ{4

c

4π
3

A2 eia lnp|η|2{4q

a

|η|

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

|η|2
.(36)
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If ηď ´10,
ˇ

ˇ

ˇ

ˇ

ˇ

KpS, Sqpηq ´ e´iπ{4

c

4π
3

A
2 e´ia lnp|η|2{4q

a

|η|

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

|η|2
.(37)

For the derivative, if |η| ă 10,

ˇ

ˇ

ˇ

ˇ

ˇ

BηKpS, Sqpηq ´ ei sgnpηqπ{4

c

4π
3

|A|2

|η|1{2η

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

|η|
.(38)

If ηą 10, there exists a bounded function A` such that
ˇ

ˇ

ˇ

ˇ

BηKpS, Sqpηq ´
A`pηq

|η|3{2

ˇ

ˇ

ˇ

ˇ

À
ln |η|

|η|3
.(39)

If ηă ´10, there exists a bounded function A´ such that
ˇ

ˇ

ˇ

ˇ

BηKpS, Sqpηq ´
A´pηq

|η|3{2

ˇ

ˇ

ˇ

ˇ

À
ln |η|

|η|3
.(40)

Proof. Let

S̃pη,νq “ S
´η` ν

2

¯

S
´η´ ν

2

¯

.

Proof of (36). In this case, ηě 10. With µ“
a

|η|ν, we have

KpS, Sqpηq “
1

a

|η|

ż

e3iµ2{4S̃

˜

η,
µ

a

|η|

¸

dµ

b

|η|KpS, Sqpηq “

ż

|µ|ď|η|3{2{2
`

ż

|η|3{2{2ď|µ|

“ T2,1 ` T2,2.

We start with the estimate for T2,1. Then |µ| ď |η|3{2{2, so that |η˘µ{
a

|η|| ě |η|p1´1{2q ě

4 and in that region

S̃pη,µ{
?
ηq “ e´ia ln4eia ln |η2´µ2{η|

˜

A ` Be2ia ln |pη`µ{
?

|η|q{2| eiβpη`µ{
?
ηq3

pη`µ{
?
ηq3

¸

ˆ

˜

A ` Be2ia ln |pη´µ{
?

|η|q{2| eiβpη´µ{
?
ηq3

pη´µ{
?
ηq3

¸

The terms with at least one B are estimated directly: for example,
ˇ

ˇ

ˇ

ˇ

ˇ

ż

|µ|ď|η|3{2{2
e3iµ2{4eia lnpη2´µ2{ηqe2ia ln |pη`µ{

?
|η|q| eiβpη`µ{

?
ηq3

pη`µ{
?
ηq3

dµ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż |η|3{2{2

´|η|3{2{2

1
pη`µ{

?
ηq3

dµ“ Op|η|´3{2q.

We treat the term with A2: we have

eia lnpη2´µ2{|η|q “ eia ln |η|2 exp

ˆ

ia ln

ˆ

1 ´
µ2

|η|3

˙˙

“ eia ln |η|2
ˆ

1 `
µ2

|η|3
ϕ

ˆ

µ

|η|3{2

˙˙

,
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for some function ϕ which is smooth on r´1{2, 1{2s and such that }ϕ}W 1,8pr´1{2,1{2s ď C .
Hence (z “ µ{|η|3{2)

ż

e3iµ2{4eia ln |η2´µ2{η|dµ“ eia ln |η|2
ż

|µ|ď|η|3{2{2
e3iµ2{4

ˆ

1 `
µ2

|η|3
ϕ

ˆ

µ2

|η|3

˙˙

dµ

“ eia ln |η|2 |η|3{2
ż

|z|ď1{2
e3i|η|3z2{4

`

1 ` z2ϕpzq
˘

dz

Now,
ż

|z|ď1{2
e3i|η|3z2{4dz “

d

4π
3|η|3

eiπ{4 ` Op|η|´3q

ż

|z|ď1{2
e3i|η|3z2{4z2ϕ pzq dz “

2
3i|η|3

ż

|z|ď1{2

3i
2

|η|3ze3i|η|3z2{4zϕpzqdz

“
2

3i|η|3

ˆ

re3i|η|3z2{4zϕ pzqs
1{

?
2

´1{
?

2
´

ż

|z|ď1{2
e3i|η|3z2{4pzϕ pzqq1dz

˙

“ O
ˆ

1
|η|3

˙

So that

T2,1 “ A2

c

4π
3

eiπ{4eia lnp|η|2{4q ` Op|η|´3{2q.

We estimate T2,2: here, it is important to decompose S as

Spξq “ S1pξq ` S2pξq, S1pξq “ Aeia ln |ξ|χpξq ` Ae´ia ln |ξ|χp´ξq.

Notice that, for all ξ P R,

|S1pξq| À |A|, |S1
1pξq| À

|A|

1 ` |ξ|
, |S2

1pξq| À
|A|

1 ` |ξ|2
, |S2pξq| À

|B|

1 ` |ξ|3
.

Writing

S̃1pη,νq “ S1

´η` ν

2

¯

S1

´η´ ν

2

¯

,

we have

T2,2 “

ż

|µ|ą|η|3{2{2
e3iµ2{4S̃1

ˆ

η,
µ

?
η

˙

dµ

` O

¨

˝

ż ż

|µ|ą|η|3{2{2
|η˘µ{

?
η|ą2

1
1 ` |η`µ{

?
η|3

`
1

1 ` |η´µ{
?
η|3

dµ

˛

‚

“

ż

µě|η|3{2{2
µe3iµ2{4 1

µ
S̃1

ˆ

η,
µ

?
η

˙

dµ` Op|η|´3{2q

“

ż

µě|η|3{2{2
µe3iµ2{4 1

µ
S̃1

ˆ

η,
µ

?
η

˙

dµ` Op|η|´3{2q

“

„

2
3i

e3iµ2{4 1
µ

S̃1

ˆ

η,
µ

?
η

˙ȷ|η|3{2{2

´|η|3{2{2

´
2
3i

ż

µě|η|3{2{2
e

3iµ2

4

ˆ

´
1
µ2

S̃1

ˆ

η,
µ

?
η

˙

`
1
µ

?
η

BνS̃1

ˆ

η,
µ

?
η

˙˙

dµ` Op|η|´3{2q

17



“
2

3i
?
η

ż

µě|η|3{2{2
e

3iµ2

4
1
µ

BνS̃1

ˆ

η,
µ

?
η

˙

dµ` Op|η|´3{2q

With another integration by parts,
ż

µě|η|3{2{2
e

3iµ2

4
1
µ

BνS̃1

ˆ

η,
µ

?
η

˙

dµ“
2
3i

„

e
3iµ2

4
1
µ2

BνS̃1

ˆ

η,
µ

?
η

˙ȷ|η|3{2{2

´|η|3{2{2

´
2
3i

ż

µě|η|3{2{2
e

3iµ2

4

ˆ

´
2
µ3

BνS̃1

ˆ

η,
µ

?
η

˙

`
1

µ2?
η

B2
ννS̃1

ˆ

η,
µ

?
η

˙˙

dµ“ Op|η|´2q

This concludes the proof of estimate (36). The proof for (37) is similar.

Proof of (35). We now turn to the case when |η| ď 10. We split the integral KpS, Sq at
|ν| “ 20. For |ν| ď 20, everything is smooth, so that as

η ÞÑ

ż

|ν|ď20
eiην2

S̃pη,νqdν P C8.

In particular,
ż

|ν|ď20
e

3i
4 ην

2
S̃pη,νqdν“

ż

|ν|ď20
Spν{2q2dν` Op|η|q.

For |ν| ą 20,

S̃pη,νq “ eia ln| η`ν
η´ν |

˜

A ` 8Be2ia ln |pη`ν{2| eiβpη`νq3{8

pη` νq3

¸ ˜

A ´ 8Be´2ia ln |pη´νq{2| eiβpη´νq3{8

pη´ νq3

¸

Since

eia ln |
η`ν
η´ν |

“ eia ln |1`η{ν|e´ia ln |1´η{ν| “

´

1 ` ia
η

ν
` Opη2{ν2q

¯ ´

1 ` ia
η

ν
` Opη2{ν2q

¯

“ 1 ` 2ia
η

ν
` Opη2{ν2q,(41)

one develops the pure term in A as
ż

|ν|ą20
e3iην2{4`ia ln |

η`ν
η´ν |dν“

1
a

|η|

ż

|µ|ą20
?

|η|

e3iµ2{4

˜

1 ` 2ia
|η|1{2η

µ
` Op|η|5{2{µ2q

¸

dµ

“
1

a

|η|

ż

|µ|ą20
?

|η|

e3iµ2{4dµ` Op|η|q “
1

a

|η|

ż

e3iµ2{4dµ`
1

a

|η|

ż

|µ|ă20
?

|η|

e3iµ2{4dµ` Op|η|q

“
1

a

|η|

ż

e3iµ2{4dµ`

ż

|ν|ă20
e3iην2{4dν` Op|η|q “

1
a

|η|

ż

e3iµ2{4dµ` 40 ` Op|η|q.

Now we exemplify how to estimate the remaining terms: we write
ż

|ν|ą20
e3iην2{4eia ln |

η`ν
η´ν |e2ia ln |pη`νq{2| eiβpη`νq3{8

pη` νq3
dν“

ż

|ν|ą20
eiΘpη,νqe2ia ln |pη`νq{2| eia ln |

η`ν
η´ν |

pη` νq3
dν

where Θpη,νq “ 3ην2{4 ` βpη` νq3{8. Notice that, since |ν| ą 20 and |η| ă 10,

BνΘ „ ν2, B2
ννΘ „ ν, BηΘ „ ν2, B2

νηΘ „ ν.
18



Setting

m1pη,νq :“ e2ia ln |pη`νq{2| eia ln |
η`ν
η´ν |

pη` νq3
,

by integration by parts,
ż

|ν|ą20
eiΘpη,νqm1pη,νqdν

“

„

eiΘpη,νq

iBνΘpη,νq
m1pη,νq

ȷ20

´20
`

ż

|ν|ą20

eiΘpη,νq

iBνΘpη,νq

˜

B2
ννΘpη,νq

BνΘpη,νq
m1pη,νq ` Bνm1pη,νq

¸

dν

“

„

eiΘpη,νq

iBνΘpη,νq
m1pη,νq

ȷ20

´20
`

ż

|ν|ą20

eiΘp0,νq

iBνΘp0,νq

˜

B2
ννΘp0,νq

BνΘp0,νq

e2ia ln |ν{2|

ν3
` Bνm1p0,νq

¸

dν

`

ż

|ν|ą20

ż η

0
Bζ

«

eiΘpζ,νq

iBνΘpζ,νq

˜

B2
ννΘpζ,νq

BνΘpζ,νq
m1pζ,νq ` Bνm1pζ,νq

¸ff

dζdν

“ constant ` Op|η|q,

This concludes the proof of (35), and completes the estimates for KpS, Sq.

We now turn to the estimates of BηKpS, Sq. For ηą 0, writing

KpS, Sqpηq “
1

a

|η|

ż

e3iµ2{4S̃pη,µ{

b

|η|qdµ,

one computes

BηKpS, Sqpηq “ ´
1

2η
KpS, Sqpηq `

1
a

|η|

ż

e3iµ2{4
ˆ

BηS̃pη,µ{

b

|η|q ´ BνS̃pη,µ{

b

|η|q
µ

|η|1{2η

˙

dµ

“ ´
1

2η
KpS, Sqpηq `

1
η

ż

e3iην2{4
´

η´
ν

2

¯

S1
´η` ν

2

¯

S
´η´ ν

2

¯

dν

Denote

S̆pη,νq “

´

η´
ν

2

¯

S1
´η` ν

2

¯

S
´η´ ν

2

¯

.

The claimed estimates for BηKpS, Sq will follow applying to the second integral computations
similar to those made for KpS, Sq.

Proof of (38). We split the integration at |ν| “ 20. If |ν| ă 20, the integrand is smooth and
so

ż

e3iην2{4
´

η´
ν

2

¯

S1
´η` ν

2

¯

S
´η´ ν

2

¯

dν“ Op1q.

In the region |ν| ą 20, we write
ż

|ν|ą20
e3iην2{4

´

η´
ν

2

¯

S1
´η` ν

2

¯

S
´η´ ν

2

¯

dν“
ÿ

i, j“1,2

T3,i j

where T3,i j :“
ż

|ν|ą20
e3iην2{4

´

η´
ν

2

¯

S1
i

´η` ν

2

¯

S j

´η´ ν

2

¯

dν.

19



The terms T3,12 and T3,22 are brutally estimated:

|T3,12| ` |T3,22| À

ż

|ν|ą20
|ν|´3dν“ Op1q.

For T3,11, using (41),
ż

|ν|ą20
e3iην2{4

´

η´
ν

2

¯ 2ia
η` ν

eia ln |
η`ν
η´ν |dν

“
1

a

|η|

ż

|µ|ą20
?

|η|

e3iµ2{4

˜

|η|1{2η{µ´ 1{2

1 ` |η|1{2η{µ

¸ ˜

1 ` 2ia
|η|1{2η

µ
` Op|η|3{|µ|2q

¸

dµ

“
1

a

|η|

ż

|µ|ą20
?

|η|

e3iµ2{4

˜

´
1
2

`

ˆ

3
2

´ ia
˙

|η|1{2η

µ
` Op|η|3{|µ|2q

¸

dµ

“ ´
1

2
a

|η|

ż

e3iµ2{4dµ`
1

2
a

|η|

ż

|µ|ă20
?

|η|

e3iµ2{4dµ` Op1q

“ ´
1

2
a

|η|

ż

e3iµ2{4dµ` Op1q.

For T3,21,
ż

|ν|ą20
e3iην2{4

´

η´
ν

2

¯ 3iβ
η` ν

e2ia ln |pη`νq{2|eiβpη`νq3{8eia ln |
η`ν
η´ν |dν

“
3iβ
2

ż

|ν|ą20
eiΘpη,νq 2η´ ν

η` ν
e2ia ln |pη`νq{2|eia ln |

η`ν
η´ν |dν

“
3iβ
2

ż

|ν|ą20
eiΘpη,νq ´1 ` 2η{ν

1 `η{ν
e2ia ln |ν{2|

´

1 ` 2ia
η

ν

¯ ´

1 ` 2ia
η

ν
` Op|η|2{|ν|2q

¯

dν

“
3iβ
2

ż

|ν|ą20
eiΘpη,νqe2ia ln |ν{2|

´

´1 ` p4 ´ 2iaq
η

ν
` Op|η|2{|ν|2q

¯

dν

“
3iβ
2

ż

|ν|ą20
eiΘpη,νqe2ia ln |ν{2|

´

´1 ` p4 ´ 2iaq
η

ν

¯

dν` Op1q

The first term is bounded:
ż

|ν|ą20
eiΘpη,νqe2ia ln |ν{2|dν

“ ´

„

eiΘpη,νqe2ia ln |ν{2|

iBνΘpη,νq

ȷ20

´20
`

ż

|ν|ą20

eiΘpη,νq

iBνΘpη,νq

˜

B2
ννΘpη,νq

BνΘpη,νq
e2ia ln |ν{2| `

2iae2ia ln |ν{2|

ν

¸

dν

“ Op1q ´

«

eiΘpη,νq

pBνΘpη,νqq2

˜

B2
ννΘpη,νq

BνΘpη,νq
e2ia ln |ν{2| `

2iae2ia ln |ν{2|

ν

¸ff20

´20

´

ż

|ν|ą20
eiΘpη,νqBν

˜

1
pBνΘpη,νqq2

˜

B2
ννΘpη,νq

BνΘpη,νq
e2ia ln |ν{2| `

2iae2ia ln |ν{2|

ν

¸¸

“ Op1q

20



where we used the fact that, over this region,

BνΘ „ ν2, B2
ννΘ „ ν, B3

νννΘ „ 1.

The second term is also handled with an integration by parts:
ż

|ν|ą20
eiΘpη,νqe2ia ln |ν{2|η

ν
dν“ ´

«

eiΘpη,νqe2ia ln |ν{2|η

iνBνΘpη,νq

ff20

´20

´

ż

|ν|ą20
eiΘ

˜

B2
ννΘ

pBνΘq2
e2ia ln |ν{2|η

ν
´

1
BνΘ

e2ia ln |ν{2|

ˆ

η

ν2
`

2iaη
ν2

˙

¸

dν

“ Opηq ` O
ˆ

ż

|ν|ą20

η

ν3
dν

˙

“ Opηq

Proof of (39). Now we consider the case ηą 10. We write
ż

e3iην2{4
´

η´
ν

2

¯

S1
´η` ν

2

¯

S
´η´ ν

2

¯

dν“ T4,1 ` T4,2 ` T4,3 where

T4,1 “

ż

|ν|ă|η|{2
e3iην2{4

´

η´
ν

2

¯

S1
1

´η` ν

2

¯

S
´η´ ν

2

¯

dν

T4,2 “

ż

|ν|ą|η|{2
e3iην2{4

´

η´
ν

2

¯

S1
1

´η` ν

2

¯

S
´η´ ν

2

¯

dν

T4,3 “

ż

e3iην2{4
´

η´
ν

2

¯

S1
2

´η` ν

2

¯

S
´η´ ν

2

¯

dν.

For T4,1, we have, for some function ϕ with }ϕ}W 1,8p´1{2,1{2q ă 8,

T4,1 “ A
ż

|ν|ă|η|{2
e3iην2{4 2η´ ν

η` ν
eia ln |pη2´ν2q{4|

˜

A ` 8Be´2ia ln |pη´νq{2| eiβpη´νq3{8

pη´ νq3

¸

dν

“
A
2

ż

|ν|ă|η|{2
e3iην2{4 2η´ ν

η` ν
eia ln |pη2´ν2q{4| ` Op|η|´2q

“ A2|η|eia lnpη2{4q

ż

|z|ă1{2
e3iη3z2{4 2 ´ z

1 ` z
eia lnp1´z2qdz ` Op|η|´2q

“ A2|η|eia lnpη2{4q

ż

|z|ă1{2
e3iη3z2{4 p1 ` zϕpzqq dz.

We then proceed as in the non-derivative case and obtain

T4,1 “ iaA2

d

4π
3|η|

eiπ{4eia lnpη2{4q ` Op|η|´2q.

The term T4,2 is handled as T2,2, using integration by parts and the generic bounds on S:

T4,2 “ Op|η|´2q.

Finally, we consider T4,3 “ T4,4 ` T4,5, where

T4,4 “ B
ż

eiΘpη,νqη´ 2ν
η` ν

˜

e2ia ln |pη`νq{2|

ˆ

1 `
2ia

pη` νq3

˙

χ
´η` ν

2

¯
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` e´2ia ln |pη`νq{2|

ˆ

1 ´
2ia

pη` νq3

˙

χ
´

´
η` ν

2

¯

¸

S
´η´ ν

2

¯

dν

and

T4,5 “ 8B
ż

e3iην2
´

η´
ν

2

¯ eiβpη`νq3{8

pη` νq3

˜

e2ia ln |pη`νq{2|χ 1
´η` ν

2

¯

´ e´2ia ln |pη`νq{2|χ 1
´

´
η` ν

2

¯

¸

S
´η´ ν

2

¯

dν.

Notice that χ 1 has compact support. Hence the term K5 can be handled by successive inte-
grations by parts, using the fact that the integrand is C8

c pRq. We then focus on K4. Define

QpX q “
3
4

X 2 `
β

8
p1 ` X q3 so that Θpη,νq “ η3Qpν{ηq.

We consider the case where the polynomial Q1 has two distinct zeros r˘ (that is, when
β ą ´1). Set Q˘ “ QpX˘q and Q2

˘
“ Q2pX˘q. For a fixed ε small, we take smooth cut-

off functions θ˘ such that

θ˘ ” 1 on pr˘ ´ ε, r˘ ` εq, θ˘ ” 0 on Rz
`

r˘ ´ 2ε, r˘ ` 2ε
˘

.

Write

m2pη,νq “
η´ 2ν
η` ν

e2ia ln |pη`νq{2|

ˆ

1 `
2ia

pη` νq3

˙

χ
´η` ν

2

¯

S
´η´ ν

2

¯

`
η´ 2ν
η` ν

e´2ia ln |pη`νq{2|

ˆ

1 ´
2ia

pη` νq3

˙

χ
´

´
η` ν

2

¯

S
´η´ ν

2

¯

and split T4,4 as

T4,4 “
ÿ

jPt˘u

B
ż

eiΘpη,νqm2pη,νqθ jpν{ηqdν

` B
ż

eiΘpη,νqm2pη,νqp1 ´ θ` ´ θ´qpν{ηqdν.

Writing m3pη,νq “ m2pη,νqp1 ´ θ` ´ θ´qpν{ηq, some direct computations yield

m3pη,νq “ Op1q, Bνm3pη,νq “ Op|ν|´1q, B2
ννm3pη,νq “ Op|ν|´2q, |ν| ą 2|η|

and, because of the term pη´ 2νq{pη` νq for η` ν close to 1,

m3pη,νq “ Op|η|q, Bνm3pη,νq “ Op|η|q, B2
ννm3pη,νq “ Op|η|q, |ν| ă 2|η|

We treat the last integral with a stationary phase argument:
ˇ

ˇ

ˇ

ˇ

ż

eiΘpη,νqm3pη,νqdν

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

eiΘpη,νq

iBνΘpη,νq

˜

B2
ννΘpη,νq

BνΘpη,νq
m3pη,νq ` Bνm3pη,νq

¸

dν

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

eiΘBν

˜

´
B2
ννΘpη,νq

pBνΘpη,νqq3
m3pη,νq ´

Bνm3pη,νq

pBνΘpη,νqq2

¸

dν

ˇ

ˇ

ˇ

ˇ

ˇ
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À

ż

|ν|ą2|η|

1
ν6

dν`

ż

|ν|ă2|η|

1
η3

dν“ Op|η|´2q.

For the stationary regions (for example, close to r´), one considers a bijection λ´ : I Ñ

rr´ ´ 2ε, r´ ` 2εs such that

Qpλ´pµqq “ Q´ `
Q2

´

2
µ2, λ´p0q “ r´, λ1

´
p0q “ 1, |λ1

´
| ą 1{2.

and the change of variables ν“ λ´pµ{ηqη:
ż

eiΘpη,νqη´ 2ν
η` ν

S
´η´ ν

2

¯

m2pη,νqθ´pν{ηqdν

“ eiη3Q´

ż

eiQ2
´ηµ

2{2S
ˆ

ηp1 ´λ´pµ{ηqq

2

˙

1 ´ 2λ´pµ{ηq

1 `λ´pµ{ηq
m2pη,λ´pµ{ηqηqθ´pλ´pµ{ηqqλ1

´
pµ{ηqdµ

“: eiη3Q´

ż

eiQ2
´ηµ

2{2hpµ,ηqdµ

Since

|hpµ,ηq| ă 1, |Bηhpµ,ηq| ď
1

|η|
,

the application of (22) yields

eiη3Q´

ż

eiQ2
´ηµ

2{2hpµ,ηqdµ

“ eiQ´η
3

d

2π
|Q2

´||η|
ei π4 sgnpQ2

´ηqm2pη, r´ηq ` Op|η|´2 ln |η|q

Therefore, for η large,

T4,4 “
ÿ

jPt˘u

B
ż

eiΘpη,νqm2pη,νqθ jpν{ηqdν` Op|η|´2 ln |η|q

“ eiQ´η
3

d

2π
|Q2

´||η|
ei π4 sgnpQ2

´ηq
1 ´ 2r´

1 ` r´

´

e2ia ln |p1`r´qη{2| ` e´2ia ln |p1`r´qη{2|
¯

Aeia ln |p1`r´qη{2|

` eiQ`η
3

d

2π
|Q2

`||η|
ei π4 sgnpQ2

`ηq
1 ´ 2r`

1 ` r`

´

e2ia ln |p1`r`qη{2| ` e´2ia ln |p1`r`qη{2|
¯

Aeia ln |p1`r`qη{2|

` Op|η|´2 ln |η|q

“:
A`pηq
a

|η|
` Op|η|´2 ln |η|q

where A` is a bounded function. Gathering the estimates for T4,1, T4,2 and T4,3, one arrives
at the claimed result.
This concludes the proof of estimate (39). The proof of (40) is completely analogous. □

Lemma 15. Fix 6{7 ă γă 1. Then for |ξ| ď 10,

IpS, S, Sqpξq “ Op1q.(42)
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Also, for ξě 10,

IpS, S, Sqpξq “
eia ln |ξ|

|ξ|

´

E ` Fe2ia ln |ξ|e´8iξ3{9
¯

` Op|ξ|´2`γ{2q(43)

and for ξď ´10,

IpS, S, Sqpξq “
e´ia ln |ξ|

|ξ|

´

Ē ` F̄e´2ia ln |ξ|e8iξ3{9
¯

` Op|ξ|´2`γ{2q(44)

where the constants E, F P C are defined by

E “ π|A|2A, and F “ i

?
2π
3

eia ln3|A|2A.(45)

Proof. Set
f pξq “ KpS, Sqpξq, gpξq “ S̄pξq.

Then, using Lemma 14, we have

| f pξq| “ Op|ξ|´1{2q, | f 1pξq| “ Op|ξ|´3{2q.

It then follows from Lemma 10 that for |ξ| ă 10,

IpS, S, Sqpξq “ Op1q,

which proves (42).

The estimate (44) can be derived from (43) by symmetry as

IpS, S, Sqpξq “ IpS, S, Sqp´ξq.

Hence it suffices to prove the latter.
Proof of (43). If ξě 10, we have from Lemmas 11 and 12,

IpS, S, Sqpξq “

c

π

3|ξ|

ˆ

e´i sgnpξqπ{4 f p2ξqgpξq

?
2

2
` ei sgnpξqπ{4 f p2ξ{3qgp´ξ{3qe´8iξ3{9 1

?
3

˙

`
1
2

J1pKpS, Sq, S̄q ` Op|ξ|´5{2 ln |ξ|q.

We focus on the term J1pKpS, Sq, S̄q, which cannot be estimated using Lemma 13.
If η{ξ is in the support of φ1, |η| ď 3{8 ¨7{6|ξ| “ 7{16|ξ|. As |ξ| ě 10, |η´ξ| ě 9|ξ|{16 ě 5
and

Spη´ ξq “ eia ln |η´ξ|

˜

A ` B
eiβpη´ξq3

pη´ ξq3

¸

.

As Pp0q “ 0 and P 1 does not vanish on p´1{2, 1{2q (P 1p0q “ 1), there exists a diffeomorphism
ψ3 : p´c3, d3q Ñ p´1{2, 1{2q to its image, and such that

@ν P p´c3, d3q , Ppψ3pνqq “ ν.

(ψ1p0q “ 1, c3 “ ´Pp´1{2q ă 3{4, d3 “ Pp1{2q ă 1{2). We extend ψ3 to a diffeomorphism
RÑ R such that for all |ν| ě 10, ψ3pνq “ ν. In particular, for some constant C3 ą 0,

@ν P R, 0 ă 1{C3 ďψ1
3pνq ď C3.

Also let C3 be such that

@ν P r´10, 10s, |ψ3pνq ´ ν| ď C3ν
2, |ψ1

3pνq ´ 1| ď C3ν.
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Hence for all |η| ď ξ{2, there holds, with η“ψ3pµ{ξqξq

Φpξ,ηq “ ξ3Ppµ{ξq “ ξ2µ.

We now decompose in three terms:
ż

e´3iΦpξ,ηqKpS, SqpηqS̄pη´ ξqφ1pη{ξqdη“ T5,1 ` T5,2 ` T5,3 with

T5,1 “

ż

ηě0
e´3iΦpξ,ηqKpS, SqpηqS̄pη´ ξqϕp|ξ|γηqdη

T5,2 “

ż

ηď0
e´3iΦpξ,ηqKpS, SqpηqS̄pη´ ξqϕp|ξ|γηqdη

T5,3 “

ż

e´3iΦpξ,ηqKpS, SqpηqS̄pη´ ξqpφ1pη{ξq ´ϕp|ξ|γηqqdη

Then, for ξą 0,

T5,1 “ eiπ{4

c

4π
3

|A|2
ż

ηě0
e´3iΦpξ,ηq 1

a

|η|
eia ln |η´ξ|

˜

A ` Be2ia ln |pη´ξq{2| e´iβpη´ξq3

pη´ ξq3

¸

ϕp|ξ|γηqdη

` D
ż 2{|ξ|γ

0
e´3iΦpξ,ηqϕp|ξ|γηqdη` O

˜

ż 2|ξ|´γ

0
|η|dη

¸

The last term gives Op|ξ|´2γq. The penultimate term:
ż 2{|ξ|γ

0
e´3iΦpξ,ηqϕp|ξ|γηqdη“

ż 2{|ξ|γ

0
e´3iηξ2

ϕp|ξ|γηq ` e´3iηξ2
´

e3iξη2´3iη3{4 ´ 1
¯

ϕp|ξ|γηqdη

“ Op|ξ|´2q ` O

˜

ż |ξ|´γ

0
|η|2|ξ|dη

¸

“ Op|ξ|1´3γq

The second term is brutally bounded by
ż |ξ|´γ

0
|ξ|´3|η|´1{2dη“ Op|ξ|´3`γ{2q

For the first term,
ż

ηě0
e´3iΦpξ,ηq e´ia ln |η|

a

|η|
eia lnpξ´ηqϕp|ξ|γηqdη

“ eia ln |ξ|

ż

ηě0
e´3iΦpξ,ηq e´ia ln |η|

a

|η|
p1 ` Opη{ξqqϕp|ξ|γηqdη

“ eia ln |ξ|

ż

ηě0
e´3iΦpξ,ηq e´ia ln |η|

a

|η|
ϕp|ξ|γηqdη` Op|ξ|´1´3γ{2q

Performing the change of variables η“ ϕ3pη{ξ3qξ,
ż

ηě0
e´3iΦpξ,ηq 1

a

|η|
ϕp|ξ|γηqdη“

ż

µě0
e3iξ2µ 1

a

|ψ3pµ{ξqξ|
ϕp|ξ|γξψ3pµ{ξqqψ1

3pµ{ξqdµ
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“
1

|ξ|

ż

νě0
e´3iν 1

a

|ψ3pν{ξ3qξ3|
ϕp|ξ|1`γψ3pν{ξ3qqψ1

3pν{ξ3qdν

Now the integrated term vanishes as soon as |ξ|1`γψ3pν{ξ3q ě 7{6. But if |ν| ě 7K{6¨|ξ|2´γ,
ψ3pν{ξ3q ě 7|ξ|´1´γ{6 andψ3pν{ξ3q|ξ|3q “ 0. Hence we can assume ν P r0, 7|ξ|2´γ{6s, so
that |ν{ξ3| ď 2|ξ|´1´γ ď 1{10. Thus

ˇ

ˇ

ˇ

ˇ

ˇ

1
a

|ψ3pν{ξ3qξ3|
´

1
a

|ν|

ˇ

ˇ

ˇ

ˇ

ˇ

ď K

a

|ν|

|ξ|3
.

and so
ż

ηě0
e´3iΦpξ,ηq 1

a

|η|
ϕp|ξ|γηqdη“

1
|ξ|

ż

νě0
e´3iν 1

a

|ν|
ϕp|ξ|1`γψ3pν{ξ3qqψ1

3pν{ξ3qdν

` O

˜

1
|ξ|

ż 2K|ξ|2´γ

0

a

|ν|dν

|ξ|3

¸

“
1

|ξ|

ż

νě0
e´3iν 1

a

|ν|
dν

`
1

|ξ|

ż

νě0
e´3iν 1

a

|ν|

`

ϕp|ξ|1`γψ3pν{ξ3qqψ1
3pν{ξ3q ´ 1

˘

dν` Op|ξ|´1´3γ{2q

Observe that

ϕp|ξ|1`γψ3pν{ξ3qqψ1
3pν{ξ3q ´ 1 “ ϕp|ξ|1`γψ3pν{ξ3qq ´ 1 `ϕp|ξ|1`γψ3pν{ξ3qqpψ1

3pν{ξ3q ´ 1q

“ O
´

1|ν|„|ξ|2´γ

¯

` O
´

ν{ξ3
1|ν|ď|ξ|2´γ

¯

,

Bν
`

ϕp|ξ|1`γψ3pν{ξ3qqψ1
3pν{ξ3q ´ 1

˘

“ O
´

|ξ|´p2´γq
1|ν|„|ξ|2´γ

¯

` O
´

|ξ|´3
1|ν|ď|ξ|2´γ

¯

.

Hence, with the phase e3iν,

1
|ξ|

ż

νě0
e´3iν e´ia ln |ν|

a

|ν|

`

ϕp|ξ|1`γψ3pν{ξ3qqψ1
3pν{ξ3q ´ 1

˘

dν

“
1

|ξ|

˜

ż 10|ξ|2´γ

|ξ|2´γ{10
O

´

|ν|´3{2
¯

dν`

ż 10|ξ|2´γ

0
O

´

|ν|´1{2{|ξ|3
¯

dν

`

ż 10|ξ|2´γ

|ξ|2´γ{10
O

´

|ν|´1{2|ξ|´p2´γq
¯

dν`

ż 10|ξ|2´γ

0
O

´

|ξ|´3|ν|´1{2
¯

dν

¸

“ Op|ξ|´2`γ{2q

where the main contribution comes from the first and third terms. Thus we arrive at

T5,1 “ eiπ{4

c

4π
3

A|A|2
eia ln |ξ|

|ξ|

ż

νą0
e´3iν 1

a

|ν|
dν` Op|ξ|´2γq ` Op|ξ|1´3γq ` Op|ξ|´2`γ{2q

“
2π
3

A|A|2
eia ln |ξ|

|ξ|
` Op|ξ|´2`γ{2q
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(recall that 6{7 ă γă 1). Analogously, one may prove that

T5,2 “
2π
3

A|A|2
eia ln |ξ|

|ξ|
` Op|ξ|´2`γ{2q.

Finally, we look at T5,3: performing an integration by parts, we have

T5,3 “

ż

e´3iΦpξ,ηqBη

˜

1
3BηΦpξ,ηq

KpS, SqpηqS̄pη´ ξqpφ1pη{ξq ´ϕpξγηqq

¸

dη

“

ż |ξ|{2

|ξ|´γ

1
ξ2

O
ˆ

1

|ξ||η|1{2

˙

dη`

ż 2|ξ|´γ

|ξ|´γ{2

1
ξ2

O
ˆ

|ξ|γ

|η|1{2

˙

dη

`

ż

e´3iΦpξ,ηq 1
3BηΦpξ,ηq

BηKpS, SqpηqS̄pη´ ξqpφ1pη{ξq ´ϕpξγηqqdη.

The first term gives Op|ξ|´5{2q, the second Op|ξ|´2`γ{2q. For the last term, one must use the
asymptotics for BηKpS, Sq. Due to (38), (39) and (40),

BηKpS, Sqpηq “ Op|η|´3{2q

uniformly on η P R˚, so that

ż

e´3iΦpξ,ηq 1
3BηΦpξ,ηq

BηKpS, SqpηqS̄pη´ ξqpφ1pη{ξq ´ϕpξγηqqdη

“

ż 2ξ

ξ´γ{2
O

ˆ

1

ξ2|η|3{2

˙

“ Op|ξ|´2`γ{2q.

The conclusion is that, for ξą 2,

IpS, S, Sqpξq “

c

π

3ξ

ˆ

e´i π4 KpS, Sqp2ξqSpξq

?
2

2
` ei π4 KpS, Sqp2ξ{3qSp´ξ{3qe´8iξ3{9 1

?
3

˙

`
2π
3

A|A|2
eia lnpξq

|ξ|
` Op|ξ|´2`γ{2q

“
eia ln |ξ|

|ξ|

´

E ` Fe2ia ln |ξ|e´8iξ3{9
¯

` Op|ξ|´2`γ{2q

where E and F are given by (45). □

5. CONSTRUCTION OF A SELF-SIMILAR SOLUTION

5.1. Matching the asymptotics. Using the computations of the previous section, we now
adjust the constants A, B, a,β , c,α to obtain the final ansatz around which a fixed point ar-
gument is likely to run.
We recall that E and F are defined explicitly in A in (45). Define for simplicity of notation

Ĩpvq :“ Ipv, v, vq.
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As the integral of ĨpSq ´ E eia ln |ξ|

|ξ|
is convergent on r1, `8q (due to (43)) and that

ż ξ

1

eia ln |η|

|η|
dη“

1
ia

peia ln |ξ| ´ 1q,

the asymptotic expression (43) of ĨpSq, tells us that for ξ" 1,

ΨpSqpξq “ c `
3i
2π
α´

3iϵ
4π2

ż ξ

0
ĨpSqpηqdη

“ c `
3i
2π
α´

ϵ

4π2

ˆ

3iI pSq ´ 3
E
a

` 3
E
a

eia ln |ξ|

˙

` Op|ξ|´1`γ{2q,

with

I “

ż 1

0
ĨpSqpηqdη`

ż 8

1

ˆ

ĨpSqpηq ´ E
eia ln |η|

|η|

˙

dη.(46)

Now we match the asymptotics of S and ΨpSq at infinity, for the oscillating eia ln |ξ| term:

(47) ´
3Eϵ

4π2a
“ A ðñ a “ ´

3ϵ
4π

|A|2.

Moreover, we also match the two oscillating terms of BξS and BξΨpSq “ ´p3iϵ{4π2qIpS, S, Sq,
for ξ" 1: this gives

(48) β “ ´8{9, 4π2iaA “ ´3iEϵ, 3iβB “ ´
3iϵ
4π2

F.

The last condition defines B and the second one is already guaranteed. In fact, the conditions
on the derivative are truly the structural ones, while the remaining conditions on the function
itself relate to constants of integration.

Remark 16. The above relation between a and A is also present in the work of Hayashi and
Naumkin [15]. Indeed, we can infer from their computations that, up to a specific phase cor-
rection (depending only on the modulus of the solution), the self-similar profile converges,
as t Ñ 8, to a fixed function. This implies that the phase correction, in our case, is given by
eia ln |ξ|. Since we assumed that the self-similar solution has, asymptotically, modulus equal

to |A|, one may use the formula of Hayashi and Naumkin to deduce the relation a “
3

4π
|A|2.

Summing up, our ansatz S now only depend on A, and we will denote it SA: it is given for
ξě 0 by

SApξq :“ χpξqeia lnξ

˜

A ` Be2ia ln |ξ| e´i 8
9ξ

3

ξ3

¸

, SAp´ξq “ SApξq,(49)

where

a “ apAq :“ ´
3ϵ
4π

|A|2, B “ BpAq :“
3

16π
?

2
eia ln3|A|2A.(50)

With these definitions, observe that we can reformulate Lemma 15 as

@ξ P R,

ˇ

ˇ

ˇ

ˇ

´
3iϵ
4π2

ĨpSAqpξq ´ S1
Apξq

ˇ

ˇ

ˇ

ˇ

À minp1, |ξ|´2`γ{2q.(51)
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Matching the constants is more delicate, because the fixed point is of the form S`z: although
the small remainder z will not affect the oscillating terms, it does affect the constants c and
α.
More precisely, given c,α P R, our goal is to find A P C and a function z such that SA ` z is
a fixed point of Ψ “ Ψc,α (the map Ψ is defined in (17) in terms of c,α; it is convenient in
this Section to make this dependence explicit). Matching the constants in the asymptotic for
SA ` z (which is 0) and for ΨpSA ` zq yields

c `
3i
2π
α´

ϵ

4π2
p3iI pA, zq ´ Aq “ 0 where

I pA, zq :“
ż 1

0
ĨpSA ` zqpηqdη`

ż 8

1

ˆ

ĨpSA ` zqpηq ´π|A|2A
eia ln |η|

|η|

˙

dη.(52)

Taking real and imaginary part in the above relation, we want to solve the system

(53) c “ ´ϵRe A ´
3ϵ

4π2
ImI pA, zq and α“ ´

2πϵ
3

Im A `
ϵ

2π
ReI pA, zq,

(and Ψc,αpSA ` zq “ SA ` z).

In the remainder of this section, we will complete the proof of Theorem 1 by solving the
fixed point equation, and the implicit system (53). We proceed in the following way.
First, we assume A P C is given, and we construct a fixed point for the function

z ÞÑ ΨcpA,zq,αpA,zqpSA ` zq ´ SA(54)

where Ψc,α is defined in (17) and cpA, zq and αpA, zq are defined by (53). We denote this fixed
point zA.
Second, we prove that the map A ÞÑ pcpA, zAq,αpA, zAqq is bijective locally around 0 (heuristi-
cally, it is because I pA, zq is cubic in A, z). Given c and α, its inverse provides the amplitude
A to define the ansatz, and thus desired self-similar profile.

We now define the functional spaces for z and some multilinear estimates in the following
Section 5.2, before completing these two steps in Section 5.3.

5.2. Functional spaces for the fixed point. Thus we are left with the fixed point equation,
and the implicit system (53) relating c,α on one side and A on the other side.
With the choice of ansatz (49)-(50) above, we try to set up a fixed point argument. We take
a remainder z such that

(55)

$

&

%

zpηq “ c `
3i
2π
α` Op|η|q, z1pηq “ Op1q, for 0 ă ηă 1,

zpηq “ Op|η|´kq, z1pηq “ Op|η|´k´1q for ηą 1.

We want to choose k in such a way that the remainder in the matching between SA and ΨpSAq

satisfies the above properties. It will turn out that k “ 1 ´ γ{2 P p1{2, 4{7q works.
The analysis will be carried out in the space Zk; we will also use a slightly different quantity,
which handles low frequencies more precisely:

|z|k,c` 3i
2πα

:“ }pz ´ c ´
3i
2π
αq|η|´1}L8p0,1q ` }z|η|k}L8p1,8q ` }p1 ` |η|k`1qz1}L8pR`q.
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We then look for a fixed point of (54) over the set tz P Zk : |z|k,c` 3i
2πα

ă εu, for some small
εą 0.
First of all, writing

Ip f , g, hqpξq “
1
2

ż

η
e´3iΦpξ,ηqh̄pη´ ξq

ˆ
ż

ν
e

3i
4 ην

2
f

´η` ν

2

¯

g
´η´ ν

2

¯

dν
˙

dη

where Φpξ,ηq “ ηξ2 ´ ξη2 `
1
4
η3,

one has
Ip f , g, h̄q “ Ipg, f , h̄q “ Iph, g, f̄ q,

which is easily seen in the variables η1,η2 and η3. Hence all we need to estimate are the:

(1) Linear term: Ipz, SA, SAq;
(2) Quadratic term: IpSA, z, wq;
(3) Cubic term: Ipz, w, uq;

We choose these arrangements so that no term of the form KpSA, zq appears and put different
remainders keeping in mind that we will need to prove that Ψ is a contraction.

Lemma 17. Let z, w P Zk. Then

(56) |Kpz, wqpηq| À }z}Zk }w}Zk , |BηKpz, wq| À
}z}Zk }w}Zk

|η|
, for |η| ă 1,

and

(57) |Kpz, wqpηq| À
}z}Zk }w}Zk

|η|k`1
, |BηKpz, wq| À

}z}Zk }w}Zk

|η|k
, for |η| ą 1,

Proof. Proof of (57) for Kpz, wq. We start with |η| ą 10. Then

?
ηKpz, wqpηq “

ż

|µ|ď|η|3{2{2
e3iµ2{4z

ˆ

η`
µ

?
η

˙

w
ˆ

η´
µ

?
η

˙

dµ

`

ż

|µ|ď|η|3{2{2
e3iµ2{4z

ˆ

η`
µ

?
η

˙

w
ˆ

η´
µ

?
η

˙

dµ.

In the region |µ| ď |η|3{2{2, we write
ż

|µ|ď|η|3{2{2
e3iµ2{4z

ˆ

η`
µ

?
η

˙

w
ˆ

η´
µ

?
η

˙

“ |η|3{2
ż

|ν|ă1{2
e3iη3ν2{4zpηp1`νqqwpηp1´νqqdν

and split the integral at ν“ ℓ:
ˇ

ˇ

ˇ

ˇ

ż

|ν|ăℓ

ˇ

ˇ

ˇ

ˇ

À

ż

|ν|ăℓ
|η|´2kdν“ a|η|´2k,

ż

ℓăνă1{2
À

ż

|ν|ă1{2

η3ν

η3ν
e3iη3ν2{4zpηp1 ` νqqwpηp1 ´ νqqdν

“ Op|η|´3´2kℓ´1q ´

ż 1{2

ℓ
e3iη3ν2{4

˜

´
1
η3ν2

zpηp1 ` νqqwpηp1 ´ νqq
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`
1
η2ν

pz1pηp1 ` νqqwpηp1 ´ νqq ` zpηp1 ` νqqw1pηp1 ´ νqqq

¸

dν

“ Op|η|´3´2kℓ´1q ` Op|η|´3´2k lnℓq.

We now choose ℓ“ |η|´3{2, which implies that the contribution of the region t|µ| ď |η|3{2u

is Op|η|´2kq.
For the region |µ| ě |η|3{2,

ż

|µ|ě|η|3{2{2
e3iµ2{4µ

1
µ

z
ˆ

η`
µ

?
η

˙

w
ˆ

η´
µ

?
η

˙

dµ

“ Op|η|´3{2q `

ż

|µ|ě|η|3{2{2
e3iµ2{4

˜

´
1
µ2

z
ˆ

η`
µ

?
η

˙

w
ˆ

η´
µ

?
η

˙

`
1
µ

?
η

z1

ˆ

η`
µ

?
η

˙

w
ˆ

η´
µ

?
η

˙

´
1
µ

?
η

z
ˆ

η`
µ

?
η

˙

w1

ˆ

η´
µ

?
η

˙

¸

dµ

Without loss of generality, we look at the region where µ has the same sign as η, so that the
contribution is bounded by

Op|η|´3{2q `

ż

|µ|ą|η|3{2{2

1
µ

?
η

|µ{
?
η|´k´1 `

1
µ

?
η

|µ{
?
η|´kdµ`

ˆ

1
µ

ˇ

ˇ

ˇ

ˇ

z
ˆ

η`
µ

?
η

˙ˇ

ˇ

ˇ

ˇ

˙

ˇ

ˇ

ˇ

ˇ

ˇ

µ“|η|3{2

“ Op|η|´3{2q ` Op|η|´3{2´kq ` Op|η|´1{2´kq

Hence
|Kpz, wq| “ Op|η|´1´kq, |η| ą 1.

Proof of (56) for Kpz, wq. Now we consider the case |η| ă 10. We split the integral K at
|ν| “ 20. For |ν| ă 20, everything is bounded and so

ż

|ν|ă20
e3iην2{4z

´η` ν

2

¯

w
´η´ ν

2

¯

dν“ Op1q.

In the region |ν| ą 20, we use the decay of z and w to obtain
ˇ

ˇ

ˇ

ˇ

ż

|ν|ą20

ˇ

ˇ

ˇ

ˇ

À

ż

|ν|ą20
|ν|´2kdν“ Op1q.

(Here we used k ą 1{2 but this part could be dealt with for k smaller). This completes the
estimates for Kpz, wq.

We now turn to the derivative estimates BηKpz, wq. We compute for ηą 0:

BηKpz, wq “ ´
1

2η
Kpz, wq

`
1

2η

ż

e3iην2{4
´

η´
ν

2

¯ ´

z1
´η` ν

2

¯

w
´η´ ν

2

¯

` z
´η` ν

2

¯

w1
´η´ ν

2

¯¯

dν

It is enough to treat the integral term with derivative in z.
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Proof of (57) for BηKpz, wq. We start with ηą 10. The jump term occurs at ν“ ´η and is

e3iη3{4η

2
3i
2π
αwpηq “ Op|η|1´kq.

In the region |ν| ă |η|{2, we simply estimate
ˇ

ˇ

ˇ

ˇ

ż

|ν|ď|η|{2

ˇ

ˇ

ˇ

ˇ

À

ż

|ν|ď|η|{2
|2η´ ν||η|´2k´1dν“ Op|η|1´2kq.

In the region |ν| ą |η|{2, if ν has the opposite sign as η (hence negative),
ż

|ν|ą|η|{2
“

ż ´2η

´8

`

ż ´η´1

´2η
`

ż ´η

´η´1
`

´

e3iην2{4
´

η´
ν

2

¯

w
´η´ ν

2

¯¯

ˇ

ˇ

ˇ

ˇ

ˇ

ν“η

`

ż ´η`1

´η
`

ż ´η{2

´η`1

À

ż ´2η

´8

|η|1´k|η` ν|´k´1dν`

ż ´η´1

´2η
|η|1´k|η` ν|´k´1dν`

ż ´η

´η´1
|η|1´kdν

` Op|η|1´kq `

ż ´η`1

´η
|η|1´kdν`

ż ´η{2

´η`1
|η|1´k|η` ν|´k´1dν

À

ż ´2η

´8

|ν|´2kdν` |η|1´k
ż ´1

´η
|ν|´1´kdν` Op|η|1´kq ` |η|1´k

ż η{2

1
|ν|´1´kdν

À Op|η|1´kq.

Here we really need k ą 1{2 to ensure convergence. When ν has the same sign as η, the
decays are stronger. Thus, with the prefactor 1

2η

|BηKpz, wq| “ Op|η|´kq, |η| ą 1.

Proof of (56) for BηKpz, wq. For |η| ă 10, we split the integral at |ν| “ 20. For |ν| ă 20, we
bound directly and obtain Op1q. For |ν| ą 20,

ˇ

ˇ

ˇ

ˇ

ż

|ν|ą20

ˇ

ˇ

ˇ

ˇ

À

ż

|ν|ą20
|ν||ν|´2k´1dν“ Op1q.

(We used again k ą 1{2, even though it might be dealt with in some other way). Hence for
|η| ď 1,

|BηKpz, wq| “ Op|η|´1q. □

Lemma 18. Let z, w, u P Zk and A P C, |A| ă 1. Then

(1) (Linear estimate)

|Ipz, SA, SAqpξq| À |A|2}z}Zk mint1, |ξ|´k´1u

(2) (Quadratic estimate)

|IpSA, z, wqpξq| À |A|}z}Zk }w}Zk mint1, |ξ|´k´1u

(3) (Cubic estimate)

|Ipz, w, uqpξq| À }z}Zk |}w}Zk }u}Zk mint1, |ξ|´k´1u
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Proof. First, notice that, because of the definition of B in terms of A, all bounds on SA are
linear in A and all bounds on KpSA, SAq are quadratic in A. Since

Ipz, SA, SAq “ JpKpSA, SAq, zq, IpSA, z, wq “ JpKpz, wq, SAq,

Ipz, w, uq “ JpKpw, uq, zq,

the claimed estimates follow from direct application of Lemmas 10 to 13, using the estimates
of Lemmas 14 and 17. □

5.3. Proofs of the main results. We define the maps c,α : Cˆ Zk Ñ R (as explained in
Section 5.1) by

cpA, zq “ ´ϵRe A ´
3ϵ

4π2
ImI pA, zq and αpA, zq “ ´

2πϵ
3

Im A `
ϵ

2π
ReI pA, zq,(58)

where I pA, zq is defined in (52).

Lemma 19. For all pA, zq P Cˆ Zk, |A| ă 1, we have

|cpA, zq ´ cpA, wq| ` |αpA, zq ´αpA, wq| À p|A|2 ` }z}2
Zk ` }w}2

Zk q}z ´ w}Zk .

Proof. Observe that the term I pA, zq is cubic in z and A, as expressed in Lemma 18. Hence

|cpA, zq ´ cpA, wq| ` |αpA, zq ´αpA, wq| À |I pA, zq ´I pA, wq|

À

ˇ

ˇ

ˇ

ˇ

ż 8

0
p ĨpSA ` zqpξq ´ ĨpSA ` wqpξqqdξ

ˇ

ˇ

ˇ

ˇ

À p|A|2 ` }z}2
Zk ` }w}2

Zk q}z ´ w}Zk . □
The next result constructs the fixed point of the map

Ψ̃A : z ÞÑ ΨcpA,zq,αpA,zqpSA ` zq ´ SA(59)

for any given A P C small. (In the next results, do not confuse the small parameters ε or ε1
with the signum ϵ).

Theorem 20. Fix k P p1{2, 4{7q. For A P C, |A| ă ε1 sufficiently small, the map Ψ̃A admits a
(unique) fixed point which we denote zA P Zk, and such that

|zA|k,cpA,zAq` 3i
2παpA,zAq ă 3|A|.

In other words the function v :“ SA ` zA satisfies for ξą 0

vpξq “ cpA, zAq `
3i
2π
αpA, zAq ´

3iϵ
4π2

ż ξ

0
Ĩpvqpηqdη

and vp´ξq “ vpξq.

Proof. In this proof only, the implicit constants in the O are absolute. Fix M ą 0 and define

E “ tz P Zk : }z}Zk ď Mu

endowed with the distance dpz, wq “ }z ´ w}Zk . It is trivial to check that pE, dq is a complete
metric space. From the definition (59) and (17), for z P Zk and ξą 0

Ψ̃Apzqpξq “ cpA, zq `
3i
2π
αpA, zq ´

3iϵ
4π2

ż ξ

0
ĨpSA ` zqpηqdη´ SApξq.
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Then the matching asymptotics of ΨpSq and S and the estimates of Lemma 18 imply that,
for 0 ă ξă 1,

Ψ̃Apzqpξq “ cpA, zq `
3i
2π
αpA, zq ` p}z}3

Zk ` |A|3 ` |A|qOp|ξ|q

Ψ̃pzq1pξq “ ´
3iϵ
4π2

ĨpSA ` zqpξq ´ S1
Apξq “ p}z}3

Zk ` |A|3 ` |A|qOp1q.

For ξą 1,

Ψ̃Apzqpξq “ cpA, zq `
3i
2π
αpA, zq ´

3iϵ
4π2

ż ξ

0
ĨpSA ` zqpηqdη´ Spξq

“ cpA, zq `
3i
2π
αpA, zq ´

3iϵ
4π2
I pA, zq `

3iϵ
4π2

ż 8

ξ

ˆ

ĨpSA ` zqpηq ´ E
eia ln |η|

η

˙

dη

´
3iϵ
4π2

ż ξ

1
E

eia ln |η|

|η|
dη´ SApξq.

Now, from Lemma 18,

| ĨpSA ` zqpηq ´ ĨpSAqpηq| “ p|A|2}z}Zk ` }z}3
Zk qOp|ξ|´k´1q,

so that
ż `8

ξ
p ĨpSA ` zqpηq ´ ĨpSAqpηqqdη“ p|A|2}z}Zk ` }z}3

Zk qOp|ξ|´kq.

When integrating (43), the second, highly oscillating term is negligeable so that
ż `8

ξ

ˆ

ĨpSAqpηq ´ E
eia ln |η|

η

˙

dη“ |A|3Op|ξ|´1`γ{2q “ |A|3Op|ξ|´kq.

Also,

´
3iϵ
4π2

ż ξ

1
E

eia ln |η|

|η|
dη“ ´A ` Aeia ln |ξ|,

SApξq “ Aeia ln |ξ| ` AOp|ξ|´1q.

Combining the above and using the cancellation due to the definition (58), we get

Ψ̃Apzqpξq “ p}z}3
Zk ` |A|3 ` |A|qOp|ξ|´kq.(60)

Similarly,

(61) Ψ̃Apzq1pξq “
3i

4π2
ĨpSA ` zqpξq ´ S1pξq “ p}z}3

Zk ` |A|3 ` |A|qOp|ξ|´k´1q.

We now turn to difference estimates. As A is fixed, using the estimates of Lemmas 19 and 18,
one easily shows that

|Ψ̃Apzqpξq ´ Ψ̃Apwqpξq| ď p}z}2
Zk ` }w}2

Zk ` |A|2q}z ´ w}Zk Opmint1, |ξ|´kuq

|Ψ̃Apzq1pξq ´ Ψ̃Apwq1pξq| ď p}z}2
Zk ` }w}2

Zk ` |A|2q}z ´ w}Zk Opmint1, |ξ|´k´1uq

Hence, for any z, w P E,

|Ψ̃Apzq|k À |A| ` |A|3 ` }z}3
Zk À |A| ` M3
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and
dpΨ̃Apzq, Ψ̃Apwqq À p}z}2

Zk ` }w}2
Zk ` |A|2qdpz, wq À p|A|2 ` M2qdpz, wq.

Therefore, for M “ 2|A| and |A| ă ε1 sufficiently small, Ψ̃A : E ÞÑ E is a strict contraction. By
Banach’s fixed point theorem, there exists a unique zA P E such that

v :“ SA ` zA “ SA ` Ψ̃Apzq “ SA `ΨApS ` zq ´ SA “ ΨApvq.

It remains to see that |z|k,cpA,zq` 3i
2παpA,zq ă 3|A|. We already know that }z}Zk ď 2|A|; the rest

follows from the fact that, for 0 ă ξă 1,

zApξq “ cpA, zAq `
3i
2π
αpA, zAq ´

3iϵ
4π2

ż ξ

0
ĨpS ` zqpηqdη

“ cpA, zAq `
3i
2π
αpA, zAq ` p}z}3

Zk ` |A|3qOp|ξ|q. □

We now complete the proof of Theorem 1, by reverting the roles of pc,αq and A. Fix k P p
1
2 , 4

7q

until the end of this section. We first prove some Lipschitz continuity of the maps A ÞÑ ĨpA, zq

and A ÞÑ zA.
Introduce for convenience of notation the remainder term in ĨpSA ` zq:

RpA, zqpξq :“ ´
3iϵ
4π2

ĨpSA ` zq ´ S1
Apξq.(62)

The estimate (51) gives decay on RpA, 0q, and in the next lemma we claim a difference
estimate.

Lemma 21. Let ε ą 0 small enough, and A1, A2 P C such that |A1|, |A2| ď ε, and z P Zk such
that }z}Zk ď 3ε. Then for all ξ P R,

|RpA1, zqpξq ´ RpA2, zqpξq| À ε2|A1 ´ A2| ln3p2 ` |ξ|qOpminp1, |ξ|´1´kq.

Sketch of the proof. RpA, zqpξq is given by a sum of integrals which, after the appropriate
integration by parts, can all be estimated directly with absolute values on the integrand. Re-
garding the dependence on A for these integrals, when it appears in the amplitude constants,
we can directly estimate the difference and obtain a |A1 ´ A2| factor together with the same
decay (by the same computations, done in Sections 3 and 4). The “worst” dependence on A
is when it occurs in the phases; observe that this only happens through apAq “ p3{4πq|A|2 in
the oscillating term eia ln |ξ| (the key is that in the highly oscillating terms with phase e´i8{9ξ3

,
there is no dependence on A: β is independent of A!). This leads to terms of the form

ˇ

ˇ

ˇeiapA1q ln |η| ´ eiapA2q ln |η|
ˇ

ˇ

ˇ À |apA1q ´ apA2q| ln |η| À |A1 ´ A2| lnp2 ` |η|q.(63)

As a consequence we obtain the claimed estimate. □
So there is a logarithmic loss when performing difference estimates. However, this can be
compensated by decreasing slightly the parameter k, which controls the decay rate in Zk,
and so we recover Lipschitz continuity for the maps we are interested in.

Lemma 22. For any ε,δ ą 0 sufficiently small, the following holds true. Let A1, A2 P C with
|A1|, |A2| ă ε, and z, w P Zk such that }z}Zk , }w}Zk ď 3ε then

|I pA1, zq ´I pA2, wq| ď Cε2p|A1 ´ A2| ` }z ´ w}Zk q,(64)
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}zA1
´ zA2

}Zk´δ ď Cpδqε2|A1 ´ A2|,(65)

where I is as in (52) and Cpδq only depends on δ.

Proof. Proof of estimate (64). Using lemma 18, we have

|I pA2, zq ´I pA2, wq| ď

ż `8

0
| ĨpSA2

` zqpηq ´ ĨpSA2
` wqpηq|dη

À p|A2|2 ` }z}2
Zk ` }w}2

Zk q}z ´ w}Zk ,

which gives Lipschitz continuity of I with respect to the z variable. For the A variable, we
have by definition,

I pA, zq “

ż 1

0
S1

Apξqdξ`

ż `8

0
RpA, zqpξqqdξ`

ż `8

1
F

e3ia ln |ξ|e´8iξ3{9

ξ
dξ

and the three integrals are convergent. Hence

|I pA1, zq ´I pA2, zq| ď

ż 1

0
|S1

A1
pξq ´ S1

A2
pξq|dξ`

ż `8

0
|RpA1, zqpξq ´ RpA2, zqpξq|dξ

`

ˇ

ˇ

ˇ

ˇ

ż `8

1
e´8iξ3{9

ˆ

FpA1q
e3iapA1q ln |ξ|

ξ
´ FpA2q

e3iapA1q ln |ξ|

ξ

˙

dξ

ˇ

ˇ

ˇ

ˇ

The first two terms are Opε2|A2 ´ A1|q (using Lemma 21 for the second). The last term is
explicit, by performing an integration by parts, we see that, as in (63), it is bounded by

ż `8

1

ˇ

ˇ

ˇ

ˇ

FpA1q
e3iapA1q ln |ξ|

ξ4
´ FpA2q

e3iapA1q ln |ξ|

ξ4

ˇ

ˇ

ˇ

ˇ

dξÀ ε2|A1 ´ A2|

ż `8

1

lnp2 ` |ξ|q

ξ4
dξ

À ε2|A1 ´ A2|.

Proof of estimate (65). Recall that

z1
A “ ´

3iϵ
4π2

ĨpSA ` zAq.

By Lemmas 18 and 21, we infer that for k ´δ ą 1{2,

|z1
A1

pξq ´ z1
A2

pξq| ď
3

4π2

`

| ĨpSA1
` zA1

qpξq ´ ĨpSA1
` zA2

qpξq|

`| ĨpSA1
` zA2

qpξq ´ ĨpSA2
` zA2

qpξq|
˘

À ε2|zA1
´ zA2

|k´δOpminp1, |ξ|´1´k`δqq

` ε2|A1 ´ A2| ln3p2 ` |ξ|qOpminp1, |ξ|´1´kqq(66)

Hence

}p1 ` |η|k´δ`1qpzA1
´ zA2

qpηq}L8 ď ε2|zA1
´ zA2

|k´δ ` Cpδqε2|A1 ´ A2|.

(actually one can choose Cpδq „ 1{δ). This is the derivative estimate. For the function
estimate, it suffices to integrate (66), using the fact that zA1

pξq, zA2
pξq Ñ 0 as ξÑ `8. This

gives, for ξą 0

|zA1
pξq ´ zA2

pξq| À ε2|zA1
´ zA2

|k´δOpminp1, |ξ|´k`δqq

` ε2|A1 ´ A2| ln3p2 ` |ξ|qOpminp1, |ξ|´kqq.

36



By symmetry, this inequality also holds for ξă 0, and hence

}p1 ` |η|k´δqpzA1
´ zA2

qpηq}L8 À ε2}zA1
´ zA2

}Zk´δ ` Cpδq|A1 ´ A2|.

Summing up, we get for some constant C independent of A1, A2,δ,

}zA1
´ zA2

}Zk´δ ď Cε2}zA1
´ zA2

}Zk´δ ` Cpδq|A1 ´ A2|.

Choosing ε so small that Cε2 ď 1{2, we get

}zA1
´ zA2

}Zk´δ ď Cpδq|A1 ´ A2|. □
We can now complete the proof the Theorem 1.

Proof of Theorem 1. We consider the map

f : CÑ R2

A ÞÑ f pAq “ pcpA, zAq,αpA, zAqq

“

ˆ

´ϵRe A ´
3ϵ

4π2
ReI pA, zAq, ´

2πϵ
3

Im A `
ϵ

2π
ReI pA, zAq

˙

.

We claim that there exists ε0 ą 0 and a neighborhood V of 0 P C2 such that f : V Ñ B is
bijective and bi-Lipschitz, where B is the open ball centered at p0, 0q of radius ε0 of R2.
Observe that this means that given pc,αq such that c2 `α2 ă ε0, there exist a unique A P V
such that the compatibility condition (53) are fulfilled with z “ zA, and so zA is the sought
for remainder.
If f was C 1, we would merely apply the inverse function theorem, but our estimates do
not quite reach this regularity. Actually, f is a Lipschitz perturbation of the invertible R-

linear map L PL pC,R2q associated to the matrix

ˆ

1 0
0 2π

3

˙

(we identified C and R2). More

precisely, fix k P p
1
2 , 4

7q and δ ą 0 so small that k ´ δ ą
1
2 , then Lemma 22 shows that the

map A ÞÑ I pA, zAq has Lipschitz constant Cpδqε2
0 on B. Hence the same is true for g :“ f ´ L,

that is, for all A1, A2 P B,

}gpA1q ´ gpA2q} ď Cpδqε2
0|A1 ´ A2|.

We use the following weakened version of the inverse function theorem.

Claim 23. Let pE, } ¨ }Eq, pF, } ¨ }F q be two Banach spaces and L P L pE, Fq a (bi-) continuous
invertible linear map. Consider f “ L ` g where g is a c-Lipschitz map defined on a neighbour-
hood of 0 P E, with values in F and such that gp0q “ 0.
If c ă }L´1}

´1
FÑE , then there exists two open sets (containing 0) V of E, and W of F (W can be

chosen to be a ball centered at 0), such that f is bijective V Ñ W and bi-Lipschitz, and f ´1 has
Lipschitz constant less than

1

}L´1}
´1
FÑE ´ c

.

We apply this claim to f and this concludes the proof of Theorem 1. □
Proof of Proposition 7. Either using a refined version of [14, Lemma 2.1] or applying directly
some stationary phase arguments, one may show that the solution built in Theorem 1 satisfies
in physical space

V pyq Ñ 0 as y Ñ `8.
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Therefore, using the existence and uniqueness of decaying self-similar solutions (see [13,
Theorem 1]), we conclude that our solution coincides with the solution Vκ built in [13], for
some κ. To see the precise relation between A and κ, let us compute briefly the leading order
term of V when y Ñ ´8. Since the second term in the anstatz and the remainder z are in
L2, we have

V pyq “
1
π

Re
ż 8

0
Aei yξ`ξ3

eia lnξχpξqdξ ` L2-remainder.

A standard stationary phase argument shows that the main asymptotics are given by the
contribution of the point ξ0 “

a

|y|{3. At this point, the phase Rpξq “ yξ`ξ3 is stationary
and

Rpξ0q “ ´2|y{3|3{2, R2pξ0q “ 2
b

3|y|.

We then obtain, for y Ñ ´8,

V pyq “
1
π

ReAeiRpξ0q

d

2π
R2pξ0q

eia lnξ0 ` L2-remainder

“
|A|

?
π|3y|1{4

cos

ˆ

´
2

3
?

3
|y|3{2 `

a
2

ln |y| ` θ0

˙

` L2-remainder,

for some θ P R, and so

|A|2 “ 2 ln

ˆ

1
1 ´κ2

˙

, a “
3|A|2

4π
“

3
2π

ln

ˆ

1
1 ´κ2

˙

.

Finally, it also follows from [13] that κ is positive if and only if Vκ has a positive average
(meaning that c ą 0). Since c and ReA have the same sign, the claimed result follows. □
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