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INTRODUCTION

We consider the modified Korteweg-de Vries equation:

B t u `B3
x x x u `ϵB x pu 3 q " 0, u : t ˆ x Ñ . (mKdV)

The signum ϵ P t˘1u indicates wether the equation is focusing or defocusing. (mKdV) solutions enjoy a natural scaling: if u is a solution then u λ pt, xq :" λupλ 3 t, λxq is also a solution to (mKdV). We are interested in the self similar solutions of (mKdV), that is, solutions which preserve their shape under scaling: in other words, they are solutions of the form Upt, xq " t ´1{3 V pt ´1{3 xq for t ą 0, x P and where V : Ñ is the self-similar profile, so that U λ " U. After an integration we see that the profile V solves the Painlevé type equation

V 2 " 1 3 y V ´ϵV 3 `α. (1) 
A profile solution to (1) generates a self-similar solution U such that Uptq á cδ 0 `α v.p.

ˆ1 x ˙as t Ñ 0 `, where c " ż V p yqd y, [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] provided that the mean of V is well defined; we recall that this quantity is preserved by (mKdV), and is therefore very relevant.
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Self-similar solutions play important roles for the (mKdV) flow, for the long time description of solutions. Even for small and smooth initial data, the solutions display a modified scattering where self-similar solutions naturally appear: we refer to Hayashi and Naumkin [START_REF] Hayashi | Large time behavior of solutions for the modified Korteweg-de Vries equation[END_REF][START_REF] Hayashi | On the modified Korteweg-de Vries equation[END_REF], which was revisited by Germain, Pusateri and Rousset [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF] and Harrop-Griffiths [START_REF] Harrop-Griffiths | Long time behavior of solutions to the mKdV[END_REF]. Self-similar solutions and the (mKdV) flow are also relevant as a model for the behavior of vortex filament in fluid dynamics. More precisely, Goldstein and Petrich [START_REF] Goldstein | Solitons, Eulers equations, and vortex patch dynamics[END_REF] proposed the following geometric flow for the description of the evolution of the boundary of a vortex patch in the plane under the Euler equations: B t z " ´Bsss z `Bs zpB ss zq 2 , |B s z| 2 " 1, where z " zpt, sq is complex valued and parametrize by its arctlength s a plane curve which evolves in time t. A direct computation shows that its curvature solves the focusing (mKdV) (with ϵ " 1), and self-similar solutions with initial data (2) corresponds to logarithmic spirals making a corner: this kind of spirals are observed in a number of fluid dynamics phenomenons. We refer to [START_REF] Perelman | Self-similar planar curves related to modified Korteweg-de Vries equation[END_REF] and the reference therein for more details. Let us also mention that we were also motivated by the sequence of papers by Banica and Vega [START_REF] Banica | On the Dirac delta as initial condition for nonlinear Schrödinger equations[END_REF][START_REF] Banica | On the stability of a singular vortex dynamics[END_REF][START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF][START_REF] Banica | Stability of the self-similar dynamics of a vortex filament[END_REF] for related questions, modeled by non linear Schrödinger type equations.

In the defocusing case ϵ " ´1, equation (1) actually corresponds to the Painleve II equation, which has its own interest and was intensively studied. Very precise asymptotics where obtained for its solutions. For example, in the case ϵ " ´1, α " 0, for any κ P , there exist a unique self similar solution V κ defined for large enough y " 1 such that

V κ p yq " κ Aip yq `O ´y´1{4 e ´4 3 ? 3 y 3{2 ¯as y Ñ `8, (3) 
where Ai is the Airy function Aip yq :" 1 π ż `8 0 cos `ξ3 `yξ ˘dξ.

Also, any solution to (1) which tends to 0 as y Ñ `8 is one of the V κ . If furthermore κ P p´1, 1q, V κ is defined on and

V κ p yq " 2 ? ρ |3 y| 1{4 cos ˆ2 3 ? 3 | y| 3{2 ´3 2 ρ ln | y| `θ ˙`O ´| y| ´5{4 ln | y| ¯as y Ñ ´8 (4) 
where ρ " 1 2π ln ˆ1 1 ´κ2 ˙and θ " ´3ρ ˆln 2 `1 4 ln 3 ˙`ln Γ piρq `π 2 sgn κ ´π 4 .

(Γ denotes the Gamma function). Recall for comparison the asymptotics of the Airy function:

Aip yq " 1 ?

πp3 yq 1{4 e ´2 If |κ| " 1, V κ is still global but is no longer oscillatory as y Ñ ´8 (it is equivalent to a | y|{2 and has a full asymptotic expansion); when |κ| ą 1, V is no longer defined on (it has an infinite number of poles). We refer to the works by Hastings and McLeod [13] and Deift and Zhou [START_REF] Deift | Asymptotics for the Painlevé II equation[END_REF] and the reference therein for the above results, and more (see also [START_REF] Fokas | On the initial value problem of the second Painlevé transcendent[END_REF] and the book [START_REF] Fokas | Novokshenov. Painlevé transcendents[END_REF]). In the work of Perelman and Vega [START_REF] Perelman | Self-similar planar curves related to modified Korteweg-de Vries equation[END_REF], related results were obtained in the focusing case ϵ " 1, using only ODE techniques. Observe that (1) is rescaled with respect to the way is it presented in those works, and this accounts for the difference in the constants.

However, nothing is known on the Fourier side, even for small κ (or small c, α). The question of the asymptotics of V is natural and interesting by itself. It is also important for the description of solutions to (mKdV) for large times. Indeed, the Fourier space captures the dispersive effects of the (mKdV) flow (as it can be seen from the oscillatory behaviour of Ai or V κ as z Ñ ´8). This is a key obviously if one wants to study the stability properties of self-similar solutions.

Here we provide the asymptotics of V pξq at high and low frequencies ξ, for small pc, αq. We take our inspiration from PDE techniques, to the contrary of the above mentioned work which relied on ODE or complex analysis methods. One major input of our techniques is that they are amenable to perturbation: this work initiates the study of the (mKdV) flow around self-similar solutions, which will be continued in forthcoming papers. We work in weighted spaces based on L 8 : in fact it is convenient to introduce for k ě 0 the space defined Z k by Z k " ! z P L 8 p q : @ξ ą 0, zp´ξq " zpξq, }z} Z k ă `8) where ( 5)

}z} Z k :" }zpξqp1 `|ξ| k q} L 8 p q `}z 1 p1 `|ξ| k`1 q} L 8 p0,`8q `}z 1 p1 `|ξ| k`1 q} L 8 p´8,0q . (6) 
We emphasize that a finite } ¨}Z k norm allows for a jump at zero, but with finite limits at 0 (which are conjugate). Our main result is the following. Theorem 1. Given ϵ P t˘1u, k P `1 2 , 4 7 ˘and c, α P with c 2 `α2 ă ε 0 small enough, there exist A " Apc, αq and a real valued function V P 1 p q solution to (1) such that @ξ ą 0, e ´iξ 3 V pξq " χpξqe ia ln |ξ| ˜A `Be 2ia ln |ξ| e ´i 8 9 ξ 3 ξ 3 ¸`zpξq, [START_REF] Deift | Asymptotics for the Painlevé II equation[END_REF] where χ is a 8 cut-off function such that χpξq " 0 if ξ ă 1 and χpξq " 1 if ξ ą 2; the remainder z P Z k satisfies

}z} Z k À |A|, (8) zpξq Ñ c `3i 2π α as ξ Ñ 0 `, (9) 
and the constant a and B are related to A by

a " ´3 4π |A| 2 , B " ´3iϵ 16π ? 2 e ia ln 3 |A| 2 A. (10)
Finally, the map pc, αq Þ Ñ A is one-to-one onto an adequate neighbourhood of 0 P , bi-Lipschitz, and maps p0, 0q to 0.

Remark 2. The symmetry condition in the definition of Z k reflects the fact that we work with real valued functions (in physical space). For the same reason, the knowledge of V for positive frequencies ξ ą 0 gives a complete description: for ξ ă 0, V pξq " V p´ξq and zpξq " zp´ξq.

In particular, z is continuous if and only if α " 0, and otherwise has a jump discontinuity of size 3i π α at ξ " 0. Due to [START_REF] Fokas | Novokshenov. Painlevé transcendents[END_REF], the self-similar solution generated by V satisfies (2).

Remark 3. We emphasize that the description of V for large ξ has two terms. Although the second one has decay, its high oscillation means that it is also a leading order term for the derivative V 1 , with decay 1{ξ like the first one.

Let us also notice that the parameters A, B and a may vary, but the phase ´8ξ 3 {9 in the second term is completely constrained. A is related to c, α by an (explicit) integral expression -see Section 5.1): it would be nice to have a more computable link.

Remark 4. Performing (lengthy!) computations similar to that in the proofs, one should be able to obtain an asymptotic expansion at any order for high or low frequencies. We will not pursue this question here.

Remark 5. We are interested in real valued solutions to (1) as they are the most relevant for (mKdV). However our analysis could be extended to complex valued V (simply dropping the symmetry condition in the definition of Z k ). In that case the equation should read

(11) V 2 " 1 3 x V ´ϵ|V | 2 V `α,
which corresponds to self similar equation to the gauge invariant (mKdV), and the ansatz should look like c `3i 2π a sgnpξq near ξ " 0, for given pc, αq P 2 , and should be written with unrelated constants A `, A ´instead of A, Ā for the asymptotics as ξ Ñ `8 or ξ Ñ ´8; and the same for B and a. Remark 6. One natural question is the maximal size of a self-similar solution V defined on so that V P 1 p q. A conjecture is that, when α " 0 and the size is measured by the mean c, one has a threshold |c| ă π{2 (see [START_REF] De | Numerical study of a flow of regular planar curves that develop singularities at finite time[END_REF]). This is not within the scope of our method. Our proofs are done via a fixed point argument, which implies some smallness. We are also limited by our ansatz, with a cut-off function χ at scale 1. Maybe the result could be sharpened by the use of a cut-off on a scale depending on pc, αq.

As a consequence of the explicit Fourier expansion, we are able to link the profile constructed in Theorem 1, with the V κ constructed in physical space in [START_REF] Hastings | A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation[END_REF]. Proposition 7. Fix ϵ " ´1 and α " 0. Then the solution V constructed in Theorem 1 coincides with V κ defined in [START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF], where A and κ are related via the relation 

|A| 2 " 2 ln ˆ1 1 ´κ2 ˙,
´i 3 V 1 " ξ 2 V ´ϵ p|V | 2 V q `1 2π αδ ξ"0 .
(For convenience, we use the nonlinearity of [START_REF] Goldstein | Solitons, Eulers equations, and vortex patch dynamics[END_REF], which allows for complex valued V , without extra cost on the computations). Denote vpξq " e ´iξ 3 V pξq. Then

v 1 " e ´iξ 3 p V 1 ´3iξ 2 V q " ´3iϵe ´iξ 3 p|V | 2 V q `3i 2π αδ ξ"0 " ´3iϵ 4π 2 e ´iξ 3 ij η 1 `η2 `η3 "ξ e ipη 3 1 `η3 2 `η3 3 q vpη 1 qvpη 2 qvp´η 3 qdη 1 dη 2 `3i 2π αδ ξ"0 .
Let us first consider the trilinear operator I, which will be central in our analysis:

Ip f , g, hqpξq :" e ´iξ 3 ij η 1 `η2 `η3 "ξ e ipη 3 1 `η3 2 `η3 3 q f pη 1 qgpη 2 q hp´η 3 qdη 1 dη 2 . ( 13 
)
We can rewrite I in a more suitable form. Let ξ " η 1 `η2 `η3 , η " η 1 `η2 and ν " η 1 ´η2 so that η 3 " ξ ´η. We compute

η 3 1 `η3 2 `η3 3 ´pη 1 `η2 `η3 q 3 " η 3 1 `η3 2 `η3 3 ´pη 1 `η2 q 3 ´3pη 1 `η2 q 2 η 3 ´3pη 1 `η2 qη 2 3 ´η3 3 " ´3η 1 η 2 pη 1 `η2 q ´3pη 1 `η2 q 2 η 3 ´3pη 1 `η2 qη 2 3 " ´3 ˆ1 4 pη 2 ´ν2 qη `η2 pξ ´ηq `ηpξ ´ηq 2 " ´3 ˆηξ 2 ´ξη 2 `1 4 η 3 ˙`3 4 ην 2 .
Hence

Ip f , g, hqpξq " e ´iξ 3 ij η 1 `η2 `η3 "ξ e ipη 3 1 `η3 2 `η3 3 q f pη 1 qgpη 2 q hp´η 3 qdη 1 dη 2 " ij η 1 `η2 `η3 "ξ e ´3ipηξ 2 ´ξη 2 `1 4 η 3 q`3 i 4 ην 2 f ´η `ν 2 ¯g ´η ´ν 2 ¯hpη ´ξqdη 1 dη 2 " 1 2 
ż η e ´3ipηξ 2 ´ξη 2 `1 4 η 3 q hpη ´ξq ˆżν e 3i 4 ην 2 f ´η `ν 2 ¯g ´η ´ν 2 ¯dν ˙dη
We are thus led to define the operators Back to our problem, our goal is to find a solution to

v 1 " ´3iϵ 4π 2 Ipv, v, vq `3i 2π αδ ξ"0 .
Equivalently, given c, α P , we define

@ξ ą 0, Ψpvqpξq " c `3i 2π α ´3iϵ 4π 2 ż ξ 0 Ipv, v, vqpηqdη, (17) 
and for ξ ă 0, Ψpvqpξq " Ψpvqp´ξq. We are looking for a fixed point of Ψ (and vp0 `q " c `3i 2π α); we will consider it of the form v " S `z,

where S is our ansatz and z is small in some adequate functional space. We first have to find a good ansatz S for the self-similar solution v on the Fourier side, and we will prove the existence of such a solution V using a fixed-point argument.

We consider a smooth cut-off function χ with χ " 0 for ξ ă 1 and χ " 1 for ξ ą 2. In order to obtain a real valued self-similar solution, we impose that Sp´ξq " Spξq, which means that we may focus on the region ξ ą 0. Then we consider the two term ansatz @ξ ą 0, Spξq " χpξqe ia ln |ξ| ˜A `Be 2ia ln |ξ| e iβξ 3 ξ 3 ¸, (18) with constants A, B P and β, a P to be adjusted. Observe that Sp0q " 0 (and so zp0 `q " c `3i 2π α). To see if S is a good approximation of the self-similar solution, we shall compute ΨpSq and then compare with S. The first term e ia ln |ξ| in the ansatz S comes from the following heuristics. It seems natural to look first at the Ψpq, because constants for v correspond to the Airy function for V , which is a solution to the linear part Ai 2 " 1 3 y Ai of the Painlevé equation [START_REF] Banica | On the Dirac delta as initial condition for nonlinear Schrödinger equations[END_REF]. In fact, the leading term Ψpq presents slow oscillations, of the form e ia ln |ξ| for large ξ (this can be seen by computing the leading term Ip, , q: this is not done here, but would follow, in a simplified way, from the computations done in Sections 3 and 4).

Then if we use this improved approximation, we are led to compute the leading term of Ψpe ia ln |ξ| q: at least formally and for a correct choice of a, it is e ia ln |ξ| itself! Now when doing a rigorous proof, it turns out that derivatives are absolutely needed to control the errors. But when we consider the derivatives B ξ IpS, S, Sq, we see another term at leading order, which is given by the second, highly oscillating, term e 3ia ln |ξ| e iβξ 3 ξ 3 in the ansatz. This second term can not be avoided, and requires that we do a distinct analysis for low and high frequencies. Fortunately, the introduction of this second term in the ansatz does not lead to a different asymptotic development for ΨpSq and we are able to complete the proof with the two terms ansatz (18). This procedure is actually quite analogous to the Picard iteration scheme: one starts with a suitable initial function and computes various iterates of Ψ. In our method, we start with and compute three iterates of Ψ. Thankfully, the error between the third iterate and the true solution can be controlled and a fixed point can be applied. One of the main difficulties in completing this program is to obtain a correct estimation of the remainder terms. In the integrals involved in ( 14)-( 15)-( 16), we see that the phases are quadratic (or cubic), which naturally leads to stationary phase estimates. This means a rather slow decay, and also the need to develop efficient bounds on the errors on the stationary phase. This should be done preferably in L 8 based spaces: indeed, we have pointwise estimates on the main order terms, and the problem is critical in some sense (the ansatz has no decay at infinity for example), so that we can not afford to lose information. This is in sharp contrast with the analogous problem for the nonlinear Schrödinger equation.

In that case, the phases appearing in the integrals are linear, and thus are never stationary: the analysis is much simpler.

When matching the behavior of S and ΨpSq at ξ " 0 and ξ " ˘8, the constants A, B, a, α and c are linked. On the other side, it turns out that β does not depend on any other constant, and is in fact universal:

β " ´8 9 .

However, to see how this phenomenon occurs, we will pursue the computations for arbitrary β. In several steps, the shape of the expansions obtained will depend on β. To avoid unnecessary computations, we will always assume that β P p´1, ´1{2q.

This allows to perform the computations without dichotomy in the expression of the expansion.

2.2. Organisation of the proofs and notations. Our analysis will be done in spaces based on weighted W 1,8 in v: this is coherent with the first term of the ansatz S, which has no decay at infinity. In our goal to construct a solution, we do not aim at dealing with rough data, it is sufficient for us to work with relatively strong norms. One major difficulty in the proofs is that we are not able to close an argument in a functional space that contains both S and z. The reason which we detail below, essentially comes from the fact that S (and self-similar solutions), although smooth, has poor decay properties at infinity.

More precisely, in the process of closing the fixed point argument, a very delicate game is to be played with the errors in stationary phase arguments. The control of the errors is technically challenging, in particular, we cannot allow the use of too many derivatives. On the one hand, we absolutely need to control at least one derivative on z, as weighted L 8 spaces are not sufficient to capture the dispersive effects (see for example Lemma 11,12 and 13).

But on the other hand, it turns out that S does not quite belong to the right weighted space, which is essentially given by [START_REF] Fokas | On the initial value problem of the second Painlevé transcendent[END_REF]. Indeed for S, we only have the decay

}S} L 8 À |A|, }p1 `|ξ|qS 1 } L 8 À |A| `|B|,
so that we miss a power k ą 1{2. So for terms in S only, we will involve the second derivative of S (essentially via integration by parts), to compensate the lack of decay of S. However, if we were to compute with second derivative of z, too, then again the decay of S 2 would not be sufficient. This is why, at many places in the following sections, we will prove two estimates on the same quantity, one meant to be used for the ansatz S and the other for the remainder z.

The multiplicity of the norms involved also has an impact on the exposition in the proof, in particular the Landau notation O. So as to keep the expression as simple as possible, we adopt the following convention: during the proof of an estimate, the implicit constant involved in O is allowed to depend multilinearly on the norms appearing in the factors of the right hand side of the final estimates. For example, in the course of proving the estimate

}Bp f , gq} N ď C} f } N 1 }g} N 2 ,
(where B is a bilinear map and N , N 1 and N 2 are norms), the bound Lpgqpξq " Opξq (where L is linear) means that there exist an absolute constant C such that

|Lpgqpξq| ď C|ξ|}g} N 2 ,
in the neighborhood in ξ considered. So as to avoid ambiguity, we will specify clearly what estimate is being proved at each step. The same convention holds for the symbol À. We will also write f " g for two complex valued functions f and g if | f {g| is bounded below and above by some strictly positive constants. We will use the notation sgn for the signum function, which can take values in t˘1u or in t˘u, depending on the context. Finally, we point out the remainder z in Theorem 1 may present a jump discontinuity at ξ " 0. This means that, in the estimates meant for z, an integration by parts will yield a boundary term at this point. Sometimes, for convenience of notation, we simply include this boundary term in the integral and interpret z 1 p0q as a Dirac delta distribution.

Section 3 is devoted to estimates on J. In Section 4 we compute the precise asymptotics for KpS, Sq and IpS, S, Sq. We prove Theorem 1 and Proposition 7 in Section 5. Then a crude triangular inequality yield the bound

PRELIMINARY ESTIMATES

1 4λ 3 `ż 8 λ dη 12η 4 " ˆ1 4 `1 36 ˙1 λ 3 ď 1 λ 3 .
For the estimate for small λ, we simply use |e iη ?

|ξ|ν e iη 2 dη ´1 2i a |ξ|ν ˇˇˇˇď C |ξ| 3{2 |ν| 3 , one has ż 8 b g 1 pνq ż 8 ? |ξ|ν e iµ 2 dµdν " 1 2i a |ξ| ż 8 b g 1 pνq ν dν `O ˆż 8 b |g 1 pνq| |ξ| 3{2 |ν| 3 dν " ´1 2i a |ξ| gpbq b `1 2i a |ξ| ż 8 b gpνq ν 2 dν `O ˆ}g 1 } 8 |ξ| 3{2 b 2 " O ˆ}g} 8 b|ξ| 1{2 `}g 1 } 8 |ξ| 3{2 b 2 Ṫhus ˇˇˇż e iξη 2 gpηqdη ´c π |ξ| e i π 4 sgnpξq gp0q ˇˇˇÀ ż |ν|ďb |g 1 pνqν|dν `}g} 8 b|ξ| `}g 1 } 8 |ξ| 2 b 2 `1 a |ξ| |gpbq ´gp´bq| À }g 1 } 8 b 2 `}g} 8 b|ξ| `}g 1 } 8 |ξ| 2 b 2 `}g} 8 a |ξ| .
The claimed estimate now follows from choosing b " |ξ| ´1{2 . □

The following four lemmas concern to the asymptotic behaviour of the parametric integral Jp f , gqpξq " ż e ´3iΦpξ,ηq f pηqgpη ´ξqdη.

Lemma 10. Fix k " p1{2q `. If |ξ| ă 2, ( 23 
) |Jp f , gqpξq| À }p1 `|η| k`1 q f } L 8 }g} L 8 and |Jp f , gqpξq| À ´}p1 `|η| 1{2 q f } L 8 `} f 1 |η| 3{2 } L 8 pt|η|ą1uq }g} L 8 `}g 1 |η|} L 8 pt|η|ą1uq (24)
Proof. Proof of estimate (23). It is direct:

ˇˇˇż e ´3iΦpξ,ηq f pηqgpη ´ξqdη ˇˇˇď ż |η|ă1 } f } L 8 pt|η|ă1uq }g} L 8 dη `ż|η|ą1 |η| ´1´k } f |η| k`1 } L 8 pt|η|ą1uq }g} L 8 dη
Proof of estimate (24). We write ż e ´3iΦpξ,ηq f pηqgpη ´ξqdη "

ż |η|ď10 `ż|η|ě10
.

The first term can be bounded directly:

ˇˇˇż |η|ď10 e ´3iη 3 {4 f pηqgpη ´ξqdη ˇˇˇÀ } f } 8 }g} 8 ż |η|ă10 dη " Op1q.
For |η| ě 10, there is no stationary points and we can do an integration by parts. Notice that B η Φpξ, ηq ě cη 2 where c is uniform in |ξ| ď 2; Denote Gpξ, ηq " e ´3iΦpξ,ηq f pηqgpη ´ξq.

Then

ż |η|ě10 Gpξ, ηqdη " ż |η|ě10 Gp0, ηqdη `ż ξ 0 ż |η|ě10 B ζ Gpζ, ηqdηdζ. Now for |ζ| ď |ξ| ď 2, ż |η|ě10 B ζ Gpζ, ηqdη " ż |η|ě10 e ´3iΦpζ,ηq f pηqipB ζ Φqgpη ´ζqdη ´ż|η|ě10 e ´3iΦpζ,ηq f pηqg 1 pη ´ζqdη
The second integral is bounded directly. For the first integral, we do an integration by parts:

ż |η|ě10 e ´3iΦpζ,ηq f pηqipB ζ Φqgpη ´ζqdη " ż |η|ě10 e ´3iΦpζ,ηq B η ˜Bζ Φ B η Φ f pηqgpη ´ζq ¸dη. Since B η ˜Bζ Φ B η Φ ¸" B 2 ηζ Φ B η Φ ´Bζ ΦB 2 ηη Φ pB η Φq 2 " O ˆη η 2 ˙`O ˆη2 η η 2¨2 ˙" Op|η| ´1q, ˇˇˇˇBζ Φ B η Φ ˇˇˇˇÀ 1
and f pηq " Op|η| ´1{2 q, f 1 pηq " Op|η| ´3{2 q, gpη ´ζq " Op1q, g 1 pη ´ζq " Op|η| ´1q, we estimate

ż |η|ě10 e ´3iΦpζ,ηq B η ˜Bζ Φ B η Φ ¸f pηqgpη ´ζqdη `ż|η|ě10 e ´3iΦpζ,ηq B ζ Φ B η Φ B η p f pηqgpη ´ζqq dη À Op1q `ż|η|ě10 p| f 1 pηq||gpξ ´ηq| `| f pηq||g 1 pξ ´ηq|q dη À Op1q `ż|η|ě10 1 |η| 3{2 dη " Op1q.
Hence we can expand ż We now focus on estimates for J in the case |ξ| ą 2. For this, we do not give a global result, but rather we split between various regions, as it will be needed in Section 4. First of all, let us remark that

Φpξ, ηq " ξ 3 Ppη{ξq, PpX q :" X ´X 2 `1 4 X 3 .
The polynomial P has two non-degenerate critical points X " 2{3 and X " 2:

(25) Pp2q " 0, P 1 p2q " 0, P 2 p2q " 1, (26) Pp2{3q " 8{27, P 1 p2{3q " 0, P 2 p2{3q " ´3{2.

Around these points, we will use a stationary phase argument (see Lemma 12) using the estimates from Lemma 9. On the other hand, we want to handle functions f with singularities at the origin, which means that one should tread lightly around X " 0. For the remaining regions, the integrand presents no singularity and the phase has no stationary points. Hence we may use integration by parts to obtain strong decay estimates (see Lemma 11).

Let ϕ be a radial cut-off function such that ϕprq " 1 for 0 ď r ď 1 and ϕprq " 0 for r ě 7{6.

Let φprq " ϕprq ´ϕp2rq so that φprq " 1 if 7{12 ď r ď 1 and φprq " 0 if r ď 1{2 or r ě 7{6. Define φ 1 prq " ϕp8r{3q, φ 2 prq " φp4r{3q, φ 3 prq " φp2r{3q, (27) φ 4 prq " φpr{3q, φ 5 prq " 1 ´ϕpr{3q.

One checks that

φ 1 `φ2 `φ3 `φ4 `φ5 " 1, and φ 2 prq " 1 if 7{16 ď r ď 3{4 and 2{3 belongs to that interval; φ 3 prq " 1 if 7{8 ď r ď 3{2 and 1 belongs to that interval; φ 4 prq " 1 if 7{4 ď r ď 3 and 2 belongs to that interval. Define

J j p f , gqpξq " ż e ´3iΦpξ,ηq f pηqgpη ´ξqφ j pη{ξqdη so that J " J 1 `J2 `J3 `J4 `J5 .
Lemma 11 (Non-stationary regions). Fix k ą 1{2. For |ξ| ą 2 and j " 3, 5, we have

|J j p f , gqpξq| À |ξ| ´5{2 ln |ξ| ´} f |η| 1{2 } L 8 pt|η|ą1uq `} f 1 |η| 3{2 } L 8 pt|η|ą1uq ˆ´}g} L 8 `}p1 `|η|qg 1 } L 8 p zt0uq (28)
and

|J j p f , gqpξq| À |ξ| ´k´1 ´} f |η| k`1 } L 8 pt|η|ą1uq `} f 1 |η| k } L 8 pt|η|ą1uq }g} L 8 `}p1 `|η|qg 1 } L 8 p zt0uq (29)
Proof. Over the supports of φ 3 and φ 5 , the phase Φ is not stationary: |η| 2 À |B η Φ|. We then integrate by parts:

J j p f , gq " ż e ´3iΦpξ,ηq B η ˜1 ´3iB η Φpξ, ηq f pηqgpη ´ξqφ j pη{ξq ¸dη.
The claimed estimates now follow from applying the bounds of f ang g directly (notice that a boundary term appears at η " ξ because g may be discontinuous at 0; however, this term poses no extra difficulty). □ Lemma 12 (Stationary regions). Fix k ą 1{2. For |ξ| ą 2,

J 2 p f , gqpξq `J4 p f , gqpξq (30) 
" c π 3|ξ| ˆe´i sgnpξqπ{4 f p2ξqgpξq ? 2 `ei sgnpξqπ{4 f p2ξ{3qgp´ξ{3qe ´8iξ 3 {9 2 ? 3 ˙`Rpξq where (31) |Rpξq| À ln |ξ| |ξ| 5{2 ´} f |ξ| 1{2 } 8 `} f 1 |ξ| 3{2 } 8 ¯p}g} 8 `}g 1 |ξ|} 8 q and (32) |Rpξq| À 1 |ξ| k`1 `} f |ξ| k`1 } 8 `} f 1 |ξ| k } 8 ˘p}g} 8 `}g 1 |ξ|} 8 q .
Proof. We first obtain the asymptotics for J 4 p f , gq with the error estimate (31). Recalling (25), we may define ψ 1 such that Ppψ 1 pµqq " µ 2 , ψ 1 is a diffeomorphism on r´c 1 , d 1 s (c 1 , d 1 ą 0) to its image r3{2, 4s with ψ 1 1 ě δ ą 0 and ψp0q " 2 and ψ 1 1 p0q " ? 2. We can also extend it to a diffeomorphism Ñ . Define the change of variable η " ψ 1 pµ{ξqξ for η P rξ, 3ξs, Φpξ, ηq " ξ 3 Ppη{ξq " ξ 3 

|J 1 p f , gqpξq| À 1 |ξ| k`1 ´} f |ξ| 1{2 } 8 `} f 1 |ξ| 3{2 } 8 ¯`}g|ξ| k } 8 `}g 1 |ξ| k`1 } 8 ȃnd (34) |J 1 p f , gqpξq| À ln |ξ| |ξ| 2 p} f } 8 `} f 1 |ξ|} 8 q p}g} 8 `}g 1 |ξ|} 8 q
Proof. We write ż e ´3iΦpξ,ηq f pηqgpη ´ξqφ 1 pη{ξqdη " T 1,1 `T1,2 `T1,3 with

T 1,1 " ż ηě0 e ´3iΦpξ,ηq f pηqgpη ´ξqϕp|ξ| 2 ηqdη T 1,2 " ż ηď0 e ´3iΦpξ,ηq f pηqgpη ´ξqϕp|ξ| 2 ηqdη T 1,3 " ż e ´3iΦpξ,ηq f pηqgpη ´ξqpφ 1 pη{ξq ´ϕp|ξ| 2 ηqqdη
Proof of estimate (33). We have

|T 1,1 | `|T 1,2 | À ż |ξ| ´2 0 |η| ´1{2 |ξ| ´k dη " Op|ξ| ´k´1 q
and, for T 1,3 , we apply integration by parts: since

ˇˇˇˇ1 B η Φpξ, ηq ˇˇˇˇÀ 1 |ξ| 2 ,
ˇˇˇˇBηη Φpξ, ηq

pB η Φpξ, ηqq 2 ˇˇˇˇÀ 1 |ξ| 3 ,
we obtain

T 1,3 " ż e ´3iΦpξ,ηq B η ˜1 3B η Φpξ, ηq f pηqgpη ´ξqpφ 1 pη{ξq ´ϕpξ 2 ηqq ¸dη " ż |ξ|{2 |ξ| ´2 1 ξ 2 O ˆ1 |ξ| 1`k |η| 1{2 `1 |η| 3{2 |ξ| k `1 |ξ| 1`k |η| 1{2 `1 |ξ| 1`k |η| 1{2 ˙dη `ż 2|ξ| ´2 |ξ| ´2{2 1 ξ 2`k O ˆ|ξ| 2 |η| 1{2 ˙dη " O `|ξ| ´k´1
Proof of estimate (34). The bounds now write:

|T 1,1 | `|T 1,2 | À ż |ξ| ´2 0 dη " Op|ξ| ´2q.
and 

T
d 4π 3|η| 3 e iπ{4 `Op|η| ´3q ż |z|ď1{2 e 3i|η| 3 z 2 {4 z 2 ϕ pzq dz " 2 3i|η| 3 ż |z|ď1{2 3i 2 |η| 3 ze 3i|η| 3 z 2 {4 zϕpzqdz " 2 3i|η| 3 ˆre 3i|η| 3 z 2 {4 zϕ pzqs 1{ ? 2 
´1{ ? 2 ´ż|z|ď1{2 e 3i|η| 3 z 2 {4 pzϕ pzqq 1 dz ˙" O ˆ1 |η| 3 Ṡo that T 2,1 " A 2 c 4π 3
e iπ{4 e ia lnp|η| 2 {4q `Op|η| ´3{2 q.

We estimate T 2,2 : here, it is important to decompose S as Spξq " S 1 pξq `S2 pξq, S 1 pξq " Ae ia ln |ξ| χpξq `Ae ´ia ln |ξ| χp´ξq.

Notice that, for all ξ P ,

|S 1 pξq| À |A|, |S 1 1 pξq| À |A| 1 `|ξ| , |S 2 1 pξq| À |A| 1 `|ξ| 2 , |S 2 pξq| À |B| 1 `|ξ| 3 . Writing S1 pη, νq " S 1 ´η `ν 2 ¯S1 ´η ´ν 2 ¯,
we have

T 2,2 " ż |µ|ą|η| 3{2 {2 e 3iµ 2 {4 S1 ˆη, µ ? η ˙dµ `O ¨ż ż |µ|ą|η| 3{2 {2 |η˘µ{ ? η|ą2 1 1 `|η `µ{ ? η| 3 `1 1 `|η ´µ{ ? η| 3 dµ ' " ż µě|η| 3{2 {2 µe 3iµ 2 {4 1 µ S1 ˆη, µ ? η ˙dµ `Op|η| ´3{2 q " ż µě|η| 3{2 {2 µe 3iµ 2 {4 1 µ S1 ˆη, µ ? η ˙dµ `Op|η| ´3{2 q " " 2 3i e 3iµ 2 {4 1 µ S1 ˆη, µ ? η ˙ȷ|η| 3{2 {2 ´|η| 3{2 {2 ´2 3i ż µě|η| 3{2 {2 e 3iµ 2 4 ˆ´1 µ 2 S1 ˆη, µ ? η ˙`1 µ ? η B ν S1 ˆη, µ ? η ˙˙dµ `Op|η| ´3{2 q " 2 3i ? η ż µě|η| 3{2 {2 e 3iµ 2 4 1 µ B ν S1 ˆη, µ ? η ˙dµ `Op|η| ´3{2 q
With another integration by parts,

ż µě|η| 3{2 {2 e 3iµ 2 4 1 µ B ν S1 ˆη, µ ? η ˙dµ " 2 3i " e 3iµ 2 4 1 µ 2 B ν S1 ˆη, µ ? η ˙ȷ|η| 3{2 {2 ´|η| 3{2 {2 ´2 3i ż µě|η| 3{2 {2 e 3iµ 2 4 ˆ´2 µ 3 B ν S1 ˆη, µ ? η ˙`1 µ 2 ? η B 2 νν S1 ˆη, µ ? η ˙˙dµ " Op|η| ´2q
This concludes the proof of estimate (36). The proof for (37) is similar.

Proof of (35). We now turn to the case when |η| ď 10. We split the integral KpS, Sq at |ν| " 20. For |ν| ď 20, everything is smooth, so that as 

η Þ Ñ ż |ν|ď20 e iην 2 Spη

Op1q

where we used the fact that, over this region,

B ν Θ " ν 2 , B 2 νν Θ " ν, B 3 ννν Θ " 1.
The second term is also handled with an integration by parts: `z e ia lnp1´z 2 q dz `Op|η| ´2q

ż |ν|ą20 e iΘpη,
" A 2 |η|e ia lnpη 2 {4q
ż |z|ă1{2 e 3iη 3 z 2 {4 p1 `zϕpzqq dz.

We then proceed as in the non-derivative case and obtain

T 4,1 " iaA 2 d 4π 3|η|
e iπ{4 e ia lnpη 2 {4q `Op|η| ´2q.

The term T 4,2 is handled as T 2,2 , using integration by parts and the generic bounds on S:

T 4,2 " Op|η| ´2q.
Finally, we consider T 4,3 " T 4,4 `T4,5 , where Notice that χ 1 has compact support. Hence the term K 5 can be handled by successive integrations by parts, using the fact that the integrand is C 8 c p q. We then focus on K 4 . Define QpX q " 3 4 X 2 `β 8 p1 `X q 3 so that Θpη, νq " η 3 Qpν{ηq.

We consider the case where the polynomial Q 1 has two distinct zeros r ˘(that is, when

β ą ´1). Set Q ˘" QpX ˘q and Q 2 ˘" Q 2 pX ˘q.
For a fixed ε small, we take smooth cutoff functions θ ˘such that θ ˘" 1 on pr ˘´ε, r ˘`εq, θ ˘" 0 on z `r˘´2 ε, r ˘`2ε ˘. For the stationary regions (for example, close to r ´), one considers a bijection λ ´: I Ñ rr ´´2ε, r ´`2εs such that 

Write

Qpλ ´pµqq " Q ´`Q 2 2 µ 2 , λ ´p0q " r ´, λ 1 ´p0q " 1,
| f pξq| " Op|ξ| ´1{2 q, | f 1 pξq| " Op|ξ| ´3{2 q.
It then follows from Lemma 10 that for |ξ| ă 10, IpS, S, Sqpξq " Op1q, which proves (42).

The estimate (44) can be derived from (43) by symmetry as IpS, S, Sqpξq " IpS, S, Sqp´ξq.

Hence it suffices to prove the latter. Proof of (43). If ξ ě 10, we have from Lemmas 11 and 12,

IpS, S, Sqpξq " c π 3|ξ| ˆe´i sgnpξqπ{4 f p2ξqgpξq ? 2 2 `ei sgnpξqπ{4 f p2ξ{3qgp´ξ{3qe ´8iξ 3 {9 1 ? 3 1 2 J 1 pKpS, Sq, Sq `Op|ξ| ´5{2 ln |ξ|q.
We focus on the term J 1 pKpS, Sq, Sq, which cannot be estimated using Lemma 13.

If η{ξ is in the support of φ 1 , |η| ď 3{8¨7{6|ξ| " 7{16|ξ|. As |ξ| ě 10, |η´ξ| ě 9|ξ|{16 ě 5 and Spη ´ξq " e ia ln |η´ξ| ˜A `B e iβpη´ξq 3 pη ´ξq 3 ¸.

As Pp0q " 0 and P 1 does not vanish on p´1{2, 1{2q (P 1 p0q " 1), there exists a diffeomorphism ψ 3 : p´c 3 , d 3 q Ñ p´1{2, 1{2q to its image, and such that @ν P p´c 3 , d 3 q , Ppψ 3 pνqq " ν.

(ψ 1 p0q " 1, c 3 " ´Pp´1{2q ă 3{4, d 3 " Pp1{2q ă 1{2). We extend ψ 3 to a diffeomorphism Ñ such that for all |ν| ě 10, ψ 3 pνq " ν. In particular, for some constant C 3 ą 0, @ν P , 0 ă 1{C 3 ď ψ 1 3 pνq ď C 3 . Also let C 3 be such that

@ν P r´10, 10s, |ψ 3 pνq ´ν| ď C 3 ν 2 , |ψ 1 3 pνq ´1| ď C 3 ν.
Hence for all |η| ď ξ{2, there holds, with η " ψ 3 pµ{ξqξq Φpξ, ηq " ξ 3 Ppµ{ξq " ξ 2 µ.

We now decompose in three terms: ż e ´3iΦpξ,ηq KpS, Sqpηq Spη ´ξqφ 1 pη{ξqdη " T 5,1 `T5,2 `T5,3 with 

ż 2{|ξ| γ 0 e ´3iΦpξ,ηq ϕp|ξ| γ ηqdη " ż 2{|ξ| γ 0 e ´3iηξ 2 ϕp|ξ| γ ηq `e´3iηξ 2 ´e3iξη 2 ´3iη 3 {4 ´1¯ϕ p|ξ| γ ηqdη " Op|ξ| ´2q `O ˜ż |ξ| ´γ 0 |η| 2 |ξ|dη ¸" Op|ξ| 1´3γ q
The second term is brutally bounded by

ż |ξ| ´γ 0 |ξ| ´3|η| ´1{2 dη " Op|ξ| ´3`γ{2 q
For the first term, Performing the change of variables η " ϕ 3 pη{ξ 3 qξ,

ż ηě0 e ´3iΦpξ,ηq 1 a |η| ϕp|ξ| γ ηqdη " ż µě0 e 3iξ 2 µ 1 a |ψ 3 pµ{ξqξ| ϕp|ξ| γ ξψ 3 pµ{ξqqψ 1 3 pµ{ξqdµ " 1 |ξ| ż νě0 e ´3iν 1 a |ψ 3 pν{ξ 3 qξ 3 | ϕp|ξ| 1`γ ψ 3 pν{ξ 3 qqψ 1 3 pν{ξ 3 qdν
Now the integrated term vanishes as soon as |ξ| 1`γ ψ 3 pν{ξ 3 q ě 7{6. But if |ν| ě 7K{6¨|ξ| 2´γ , ψ 3 pν{ξ 3 q ě 7|ξ| ´1´γ {6 and ψ 3 pν{ξ 3 q|ξ| 3 q " 0. Hence we can assume ν P r0, 7|ξ| 2´γ {6s, so that

|ν{ξ 3 | ď 2|ξ| ´1´γ ď 1{10. Thus ˇˇˇˇ1 a |ψ 3 pν{ξ 3 qξ 3 | ´1 a |ν| ˇˇˇˇď K a |ν| |ξ| 3 .
and so

ż ηě0 e ´3iΦpξ,ηq 1 a |η| ϕp|ξ| γ ηqdη " 1 |ξ| ż νě0 e ´3iν 1 a |ν| ϕp|ξ| 1`γ ψ 3 pν{ξ 3 qqψ 1 3 pν{ξ 3 qdν `O ˜1 |ξ| ż 2K|ξ| 2´γ 0 a |ν|dν |ξ| 3 " 1 |ξ| ż νě0 e ´3iν 1 a |ν| dν `1 |ξ| ż νě0 e ´3iν 1 a |ν| `ϕp|ξ| 1`γ ψ 3 pν{ξ 3 qqψ 1 3 pν{ξ 3 q ´1˘d ν `Op|ξ| ´1´3γ{2 q Observe that ϕp|ξ| 1`γ ψ 3 pν{ξ 3 qqψ 1 3 pν{ξ 3 q ´1 " ϕp|ξ| 1`γ ψ 3 pν{ξ 3 qq ´1 `ϕp|ξ| 1`γ ψ 3 pν{ξ 3 qqpψ 1 3 pν{ξ 3 q ´1q " O ´|ν|"|ξ| 2´γ ¯`O ´ν{ξ 3 |ν|ď|ξ| 2´γ ¯, B ν `ϕp|ξ| 1`γ ψ 3 pν{ξ 3 qqψ 1 3 pν{ξ 3 q ´1˘" O ´|ξ| ´p2´γq |ν|"|ξ| 2´γ ¯`O ´|ξ| ´3 |ν|ď|ξ| 2´γ ¯.
Hence, with the phase e 3iν , 1 |ξ|

ż νě0 e ´3iν e ´ia ln |ν| a |ν| `ϕp|ξ| 1`γ ψ 3 pν{ξ 3 qqψ 1 3 pν{ξ 3 q ´1˘d ν " 1 |ξ| ˜ż 10|ξ| 2´γ |ξ| 2´γ {10 O ´|ν| ´3{2 ¯dν `ż 10|ξ| 2´γ 0 O ´|ν| ´1{2 {|ξ| 3 ¯dν `ż 10|ξ| 2´γ |ξ| 2´γ {10 O ´|ν| ´1{2 |ξ| ´p2´γq ¯dν `ż 10|ξ| 2´γ 0 O ´|ξ| ´3|ν| ´1{2 ¯dν " Op|ξ| ´2`γ{2 q
where the main contribution comes from the first and third terms. Thus we arrive at

T 5,1 " e iπ{4 c 4π 3 A|A| 2 e ia ln |ξ| |ξ| ż νą0 e ´3iν 1 a |ν| dν `Op|ξ| ´2γ q `Op|ξ| 1´3γ q `Op|ξ| ´2`γ{2 q " 2π 3 
A|A| 2 e ia ln |ξ| |ξ| `Op|ξ| ´2`γ{2 q (recall that 6{7 ă γ ă 1). Analogously, one may prove that

T 5,2 " 2π 3 A|A| 2 e ia ln |ξ| |ξ| `Op|ξ| ´2`γ{2 q.
Finally, we look at T 5,3 : performing an integration by parts, we have

T 5,3 " ż e ´3iΦpξ,ηq B η ˜1 3B η Φpξ, ηq KpS, Sqpηq Spη ´ξqpφ 1 pη{ξq ´ϕpξ γ ηqq ¸dη " ż |ξ|{2 |ξ| ´γ 1 ξ 2 O ˆ1 |ξ||η| 1{2 ˙dη `ż 2|ξ| ´γ |ξ| ´γ{2 1 ξ 2 O ˆ|ξ| γ |η| 1{2 ˙dη `ż e ´3iΦpξ,ηq 1 3B η Φpξ, ηq B η KpS, Sqpηq Spη ´ξqpφ 1 pη{ξq ´ϕpξ γ ηqqdη.
The first term gives Op|ξ| ´5{2 q, the second Op|ξ| ´2`γ{2 q. For the last term, one must use the asymptotics for B η KpS, Sq. Due to (38), ( 39) and (40), B η KpS, Sqpηq " Op|η| ´3{2 q uniformly on η P ˚, so that

ż e ´3iΦpξ,ηq 1 3B η Φpξ, ηq B η KpS, Sqpηq Spη ´ξqpφ 1 pη{ξq ´ϕpξ γ ηqqdη " ż 2ξ ξ ´γ{2 O ˆ1 ξ 2 |η| 3{2 ˙" Op|ξ| ´2`γ{2 q.
The conclusion is that, for ξ ą 2,

IpS, S, Sqpξq " c π 3ξ ˆe´i π 4 KpS, Sqp2ξqSpξq ? 2 2 `ei π 4 KpS, Sqp2ξ{3qSp´ξ{3qe ´8iξ 3 {9 1 ? 3 2π 3 A|A| 2 e ia lnpξq |ξ| `Op|ξ| ´2`γ{2 q " e ia ln |ξ| |ξ| ´E `Fe 2ia ln |ξ| e ´8iξ 3 {9 ¯`Op|ξ| ´2`γ{2 q
where E and F are given by (45). □ Moreover, we also match the two oscillating terms of B ξ S and B ξ ΨpSq " ´p3iϵ{4π 2 qIpS, S, Sq, for ξ " 1: this gives (48) β " ´8{9, 4π 2 iaA " ´3iEϵ, 3iβ B " ´3iϵ 4π 2 F. The last condition defines B and the second one is already guaranteed. In fact, the conditions on the derivative are truly the structural ones, while the remaining conditions on the function itself relate to constants of integration. Remark 16. The above relation between a and A is also present in the work of Hayashi and Naumkin [START_REF] Hayashi | Large time behavior of solutions for the modified Korteweg-de Vries equation[END_REF]. Indeed, we can infer from their computations that, up to a specific phase correction (depending only on the modulus of the solution), the self-similar profile converges, as t Ñ 8, to a fixed function. This implies that the phase correction, in our case, is given by e ia ln |ξ| . Since we assumed that the self-similar solution has, asymptotically, modulus equal to |A|, one may use the formula of Hayashi and Naumkin to deduce the relation a "

CONSTRUCTION OF

3 4π |A| 2 .
Summing up, our ansatz S now only depend on A, and we will denote it S A : it is given for ξ ě 0 by S A pξq :" χpξqe ia ln ξ ˜A `Be 

@ξ P , ˇˇˇ´3 iϵ 4π 2 ĨpS A qpξq ´S1 A pξq ˇˇˇÀ minp1, |ξ| ´2`γ{2 q. (51)
Matching the constants is more delicate, because the fixed point is of the form S`z: although the small remainder z will not affect the oscillating terms, it does affect the constants c and α. More precisely, given c, α P , our goal is to find A P and a function z such that S A `z is a fixed point of Ψ " Ψ c,α (the map Ψ is defined in (17) in terms of c, α; it is convenient in this Section to make this dependence explicit). Matching the constants in the asymptotic for S A `z (which is 0) and for ΨpS A `zq yields c `3i 2π α ´ϵ 4π 2 p3i pA, zq ´Aq " 0 where pA, zq :" In the remainder of this section, we will complete the proof of Theorem 1 by solving the fixed point equation, and the implicit system (53). We proceed in the following way. First, we assume A P is given, and we construct a fixed point for the function

ż 1 0 ĨpS A `zqpηqdη `ż 8 1 ˆĨpS A `
z Þ Ñ Ψ cpA,zq,αpA,zq pS A `zq ´SA (54)
where Ψ c,α is defined in (17) and cpA, zq and αpA, zq are defined by (53). We denote this fixed point z A . Second, we prove that the map A Þ Ñ pcpA, z A q, αpA, z A qq is bijective locally around 0 (heuristically, it is because pA, zq is cubic in A, z). Given c and α, its inverse provides the amplitude A to define the ansatz, and thus desired self-similar profile.

We now define the functional spaces for z and some multilinear estimates in the following Section 5.2, before completing these two steps in Section 5.3. 5.2. Functional spaces for the fixed point. Thus we are left with the fixed point equation, and the implicit system (53) relating c, α on one side and A on the other side. With the choice of ansatz (49)-(50) above, we try to set up a fixed point argument. We take a remainder z such that (55)

$ & % zpηq " c `3i 2π α `Op|η|q, z 1 pηq " Op1q, for 0 ă η ă 1,
zpηq " Op|η| ´kq, z 1 pηq " Op|η| ´k´1 q for η ą 1.

We want to choose k in such a way that the remainder in the matching between S A and ΨpS A q satisfies the above properties. It will turn out that k " 1 ´γ{2 P p1{2, 4{7q works. The analysis will be carried out in the space Z k ; we will also use a slightly different quantity, which handles low frequencies more precisely:

|z| k,c`3 i 2π α :" }pz ´c ´3i 2π αq|η| ´1} L 8 p0,1q `}z|η| k } L 8 p1,8q `}p1 `|η| k`1 qz 1 } L 8 p `q.
We then look for a fixed point of (54) over the set tz P Z k : |z| k,c`3 i 2π α ă εu, for some small ε ą 0. First of all, writing Ip f , g, hqpξq "

1 2 which is easily seen in the variables η 1 , η 2 and η 3 . Hence all we need to estimate are the:

ż η e ´3iΦpξ,
(1) Linear term: Ipz, S A , S A q;

(2) Quadratic term: IpS A , z, wq;

(3) Cubic term: Ipz, w, uq;

We choose these arrangements so that no term of the form KpS A , zq appears and put different remainders keeping in mind that we will need to prove that Ψ is a contraction. " Op|η| ´3{2 q `Op|η| ´3{2´k q `Op|η| ´1{2´k q Hence |Kpz, wq| " Op|η| ´1´k q, |η| ą 1.

Proof of (56) for Kpz, wq. Now we consider the case |η| ă 10. We split the integral K at |ν| " 20. For |ν| ă 20, everything is bounded and so ż |ν|ă20 e 3iην 2 {4 z ´η `ν 2 ¯w ´η ´ν 2 ¯dν " Op1q.

In the region |ν| ą 20, we use the decay of z and w to obtain ˇˇˇż |ν|ą20 ˇˇˇÀ ż |ν|ą20 |ν| ´2k dν " Op1q.

(Here we used k ą 1{2 but this part could be dealt with for k smaller). This completes the estimates for Kpz, wq.

We now turn to the derivative estimates B η Kpz, wq. We compute for η ą 0: Here we really need k ą 1{2 to ensure convergence. When ν has the same sign as η, the decays are stronger. Thus, with the prefactor 

B η Kpz, wq " ´1 2η 
p ĨpS A `zqpξq ´ĨpS A `wqpξqqdξ ˇˇÀ p|A| 2 `}z} 2 Z k `}w} 2 Z k q}z ´w} Z k . □
The next result constructs the fixed point of the map ΨA : z Þ Ñ Ψ cpA,zq,αpA,zq pS A `zq ´SA (59) for any given A P small. (In the next results, do not confuse the small parameters ε or ε 1 with the signum ϵ). Theorem 20. Fix k P p1{2, 4{7q. For A P , |A| ă ε 1 sufficiently small, the map ΨA admits a (unique) fixed point which we denote z A P Z k , and such that |z A | k,cpA,z A q`3 i 2π αpA,z A q ă 3|A|. In other words the function v :" S A `zA satisfies for ξ ą 0 vpξq " cpA, z A q `3i 2π αpA, z A q ´3iϵ 4π 2 ż ξ 0 Ĩpvqpηqdη and vp´ξq " vpξq.

Proof. In this proof only, the implicit constants in the O are absolute. Fix M ą 0 and define Combining the above and using the cancellation due to the definition (58), we get ΨA pzqpξq " p}z} e ´8iξ 3 {9 ˆF pA 1 q e 3iapA 1 q ln |ξ| ξ ´F pA 2 q e 3iapA 1 q ln |ξ| ξ ˙dξ ˇˇŤ he first two terms are Opε 2 |A 2 ´A1 |q (using Lemma 21 for the second). The last term is explicit, by performing an integration by parts, we see that, as in (63), it is bounded by ż `8 1 ˇˇˇF pA 1 q e 3iapA 1 q ln |ξ| ξ 4 ´F pA 2 q e 3iapA 1 q ln |ξ| ξ

4 ˇˇˇd ξ À ε 2 |A 1 ´A2 | ż `8 1 lnp2 `|ξ|q ξ 4 dξ À ε 2 |A 1 ´A2 |.
Proof of estimate (65). Recall that z 1 A " ´3iϵ 4π 2 ĨpS A `zA q. By Lemmas 18 and 21, we infer that for k ´δ ą 1{2, (actually one can choose Cpδq " 1{δ). This is the derivative estimate. For the function estimate, it suffices to integrate (66), using the fact that z A 1 pξq, z A 2 pξq Ñ 0 as ξ Ñ `8. This gives, for ξ ą 0 Therefore, using the existence and uniqueness of decaying self-similar solutions (see [13, Theorem 1]), we conclude that our solution coincides with the solution V κ built in [START_REF] Hastings | A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation[END_REF], for some κ. To see the precise relation between A and κ, let us compute briefly the leading order term of V when y Ñ ´8. Since the second term in the anstatz and the remainder z are in L 2 , we have

|z
V p yq " 1 π Re ż 8 0
Ae i yξ`ξ 3 e ia ln ξ χpξqdξ `L2 -remainder.

A standard stationary phase argument shows that the main asymptotics are given by the contribution of the point ξ 0 " a | y|{3. At this point, the phase Rpξq " yξ `ξ3 is stationary and Rpξ 0 q " ´2| y{3| 3{2 , R 2 pξ 0 q " 2 b 3| y|.

We then obtain, for y Ñ ´8, Finally, it also follows from [START_REF] Hastings | A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation[END_REF] that κ is positive if and only if V κ has a positive average (meaning that c ą 0). Since c and Re A have the same sign, the claimed result follows. □

V

|η|ě10Gpξ, ηqdη " ż |η|ě10 e ´3iη 3

 3 {4 f pηqgpηqdη `Op|ξ|q and the claimed estimate follows.□

T 5 ee

 5 ´3iΦpξ,ηq KpS, Sqpηq Spη ´ξqϕp|ξ| γ ηqdη T 5,2 " ż ηď0 e ´3iΦpξ,ηq KpS, Sqpηq Spη ´ξqϕp|ξ| γ ηqdη T 5,3 " ż e ´3iΦpξ,ηq KpS, Sqpηq Spη ´ξqpφ 1 pη{ξq ´ϕp|ξ| γ ηqqdη Then, for ξ ą 0, ´3iΦpξ,ηq 1 a |η| e ia ln |η´ξ| ˜A `Be 2ia ln |pη´ξq{2| e ´iβpη´ξq 3 pη ´ξq 3 ¸ϕp|ξ| γ ηqdη `D ż 2{|ξ| γ 0 e ´3iΦpξ,ηq ϕp|ξ| γ ηqdη `O ˜ż 2|ξ| ´γ 0 |η|dη Ţhe last term gives Op|ξ| ´2γ q. The penultimate term:

ż ηě0 e ´3iΦpξ,ηq e ´ia ln |η| a |η| e ia lnpξ´ηq ϕp|ξ| γ ηqdη " e ia ln |ξ| ż ηě0 e ´3iΦpξ,ηq e ´ia ln |η| a |η| p1 `Opη{ξqqϕp|ξ| γ ηqdη " e ia ln |ξ| ż ηě0 e

 ηě0 ´3iΦpξ,ηq e ´ia ln |η| a |η| ϕp|ξ| γ ηqdη `Op|ξ| ´1´3γ{2 q

|z A 1

 1 pξq ´zA 2 pξq| À ε 2 |z A 1 ´zA 2 | k´δ Opminp1, |ξ| ´k`δ qq `ε2 |A 1 ´A2 | ln 3 p2 `|ξ|qOpminp1, |ξ| ´kqq.

  and Re A and κ have same sign. Fixed point and ansatz. In Fourier space, equation (1) takes the form

	2. OUTLOOK OF THE PROOF
	2.1.
	(12)

  Proof. For estimate for large λ, we do two integrations by parts:

	(20)		ˇˇˇż λ 8	e iη 2	dη	´?π 2	e iπ{4 ˇˇˇď λ.
	ż 8 λ	e iη 2	dη "	ż 8 λ	2iη 2iη	e iη 2	dη "	1 2iλ	`ż 8 λ	e iη 2 2iη 2 dη
			"	1 2iλ ´1 4λ 3	´ż 8 λ	e iη 2 12η 4 dη.
	(19)							8 λ	e iη 2	dη	´1 2iλ	ˇˇˇď 1 λ 3 ,

Lemma 8. Let λ ą 0. Then ˇˇˇż

  The second estimate now follows from choosing b " |ξ| ´1{2 . For the first estimate, it is necessary to refine the estimate for ν ą b: in fact, since ˇˇˇˇż

		"	? 2 π	e iπ{4 pgpbq ´gp´bqq	`O ˆaξ	ż	|ν|ďb	|νg 1 pνq|dν Ȧlso,
															ˇˇˇˇż η" 8	?	|ξ|ν	e iη 2	dη	ˇˇˇˇď C |ξ|ν a	,
		so that					ˇˇˇˇż	8 b	pg 1 pνq ´g1 p´νqq	ż 8 ? |ξ|ν	e iµ 2	dµdν ˇˇˇˇď 1 a |ξ|	ż |ν|ěb	|g 1 pνq|	dν ν	.
															8
															η"	2	| ď 1 and
		ż 8 λ	e iη 2	dη	´?π 2	e iπ{4 "	λ ż 8	e iη 2	dη	0 ´ż 8	e iη 2	dη "	0 ´ż λ	e iη 2	dη.
				ż	e iξη 2	gpηqdη	´c π ξ	e i π 4 gp0q "	ż	e iξη 2	pgpηq ´gp0qqdη
				"		ż 8	ż η		e iξη 2	pg 1 pνq ´g1 p´νqqdνdη
							η"0	ν"0		
				"		ż 8	pg 1 pνq ´g1 p´νqq	ż 8	e iξη 2	dηdν
							ν"0						η"ν
				"		1 a ξ	ż 8 ν"0	pg 1 pνq ´g1 p´νqq	˜ż 8 ?
										ż 8 ? ξν	e iµ 2	dµ "	? π 2	e iπ{4 `Op	a ξνq,
	there holds												
	ż b 0	pg 1 pνq ´g1 p´νqq	˜ż 8 ? ξν	e iµ 2	dµ ¸dν "	ż b 0	pg 1 pνq ´g1 p´νqq	ˆ?π 2	e iπ{4 `Op a ξνq ˙dν

□ Lemma 9 (Fundamental bounds). For any ξ ‰ 0, ˇˇˇż e iξη 2 gpηqdη ´c π |ξ| e i π 4 sgnpξq gp0q ˇˇˇÀ }g} 8 a |ξ| `}g 1 } 8 |ξ| (21) Furthermore, if there exists R ą 0 such that Supp g Ă r´ξR, ξRs, then (22) ˇˇˇż e iξη 2 gpηqdη ´c π |ξ| e i π 4 sgnpξq gp0q ˇˇˇď C ln |ξ| |ξ| }g 1 } 8 , C " CpRq. Proof. We assume ξ ą 0, the other case is similar. ξν e iµ 2 dµ ¸dν (with µ " a ξµ). We split the previous integral at b. As

  Ppψ 1 pµ{ξqq " ξµ2 .Notice that due to φ 4 , hpξ, ¨q has compact support inside tµ | 3{2 ď ψ 1 pµ{ξq ď 21{6u Ă r´c 1 ξ, d 1 ξs. In particular, on the support of h, ψ 1 pµ{ξq ´1 ě 1{2 and we have, for any µ P supp hpξ, ¨q,|hpµ, ξq| ď | f pψ 1 pµ{ξqξq|}g} 8 }ϕ 4 } 8 }ψ 1 1 } L 8 p´c 1 ,d 1 q ď |ψ 1 pµ{ξqξ| 3{2 `C |ψ 1 pµ{ξqξ| 1{2 |pψ 1 pµ{ξq ´1qξ| `C |ψ 1 pµ{ξqξ| 1{2 |ξ| ď C

					C} f |ξ| 1{2 } 8 |ψ 1 pµ{ξqξ| 1{2 ď	C |ξ| 1{2 ,
	and similarly
	|B µ hpξ, µq| ď	C	|ξ| 3{2 .
	Hence, using the fundamental bound (22), we get that the error is Op|ξ| ´5{2 ln |ξ|q and
	ż	e ´3iΦpξ,ηq f pηqgpη ´ξqφ 4 pη{ξqdη "	c π 3|ξ|	e ´iπ{4 sgnpξq hpξ, 0q `Op|ξ| ´5{2 ln |ξ|q
					"	c π 3|ξ|	e ´iπ{4 sgnpξq f p2ξqgpξq ?	2 `Op|ξ| ´5{2 ln |ξ|q
	Similarly, for φ
	Now			
	ż	e ´3iΦpξ,ηq f pηqgpη ´ξqφ 4 pη{ξqdη
		"	ż	e ´3iξµ 2	f pψ 1 pµ{ξqξqgppψ 1 pµ{ξq ´1qξqφ 4 pψ 1 pµ{ξqqψ 1 1 pµ{ξqdµ
		":	ż	e ´3iξµ 2	hpξ, µqdµ.

2 : as Pp2{3q " 8{27, P 1 p2{3q " 0 and P 2 p2{3q " ´3{2, we can consider the diffeomorphism ψ 2 : r´c 2 , d 2 s Ñ r1{3; 5{6s such that

Ppψ 2 pµqq " 8{27 ´µ2 , with ψ 2 p0q " 2{3, ψ 1 2 p0q " 2{ ? 3. Then with η " ψ 2 pµ{ξqξ, Φpξ, ηq " ξ 3 Ppη{ξq " 8 27 ξ 3 ´ξµ 2 .

And we extend ψ 2 into a diffeomorphism on . Then the same computations show that ż e ´3iΦpξ,ηq f pηqgpη ´ξqφ 2 pη{ξqdη " c π 3|ξ| e iπ{4 sgnpξq f p2ξ{3qgp´ξ{3qe ´i8ξ 3 {9 ψ 1 2 p0q `Op|ξ| ´5{2 ln |ξ|q The asymptotics with the error estimate (32) follow from applying (21) instead of (22). □ Lemma 13 (Singular region). Fix k ą 1{2. For |ξ| ą 2, (33)

  {4 e ia lnpη 2 ´µ2 {ηq e 2ia ln |pη`µ{ for some function ϕ which is smooth on r´1{2, 1{2s and such that }ϕ} W 1,8 pr´1{2,1{2s ď C. Hence (z " µ{|η| 3{2 ) ż e 3iµ 2 {4 e ia ln |η 2 ´µ2 {η| dµ " e ia ln |η| 2

		If η ď ´10,			
	Now,	ˇˇˇˇK pS, Sqpηq ´e´iπ{4 ż |µ|ď|η| 3{2 {2 c 4π 3 e 3iµ 2 {4 ˆ1 A 2 e ´ia lnp|η| 2 {4q a |η| `µ2 |η| 3 ϕ ˇˇˇˇÀ 1 |η| 2 . ˆµ2 |η| 3 ˙˙dµ For the derivative, if |η| ă 10, (37) ˇˇˇˇB η KpS, Sqpηq ´ei sgnpηqπ{4 c 4π 3 |A| 2 |η| 1{2 η " e ia ln |η| 2 |η| 3{2 ż |z|ď1{2 e 3i|η| 3 z 2 {4 `1 `z2 ϕpzq ˘dz ˇˇˇˇÀ 1 |η| . (38)
		If η ą 10, there exists a bounded function A `such that ż e 3i|η| 3 z 2 {4 dz "
		(39)	|z|ď1{2	ˇˇˇB η KpS, Sqpηq	´A`p ηq |η| 3{2	|η| 3 . ˇˇˇÀ ln |η|
		If η ă ´10, there exists a bounded function A ´such that
		(40)			ˇˇˇB η KpS, Sqpηq	´A´p ηq |η| 3{2	ˇˇˇÀ ln |η| |η| 3 .
		Proof. Let			
					Spη, νq " S	´η	`ν 2	¯S ´η	´ν 2	¯.
					KpS, Sqpηq "	1 a |η|	ż	e 3iµ 2 {4 S ˜η,	|η| µ a	¸dµ
				b		ż
				|η|KpS, Sqpηq "	|µ|ď|η| 3{2 {2 `ż|η| 3{2 {2ď|µ|
		"	ż |ξ|{2 |ξ| ´2 1 ξ 2 O	ˆ1 |ξ| `1 |η| `Be 2ia ln |pη´µ{ ˙dη `ż 2|ξ|	? |η|q{2| e iβpη`µ{ ? ηq 3 pη `µ{ ? ηq 3 |η|q{2| e iβpη´µ{ ? ηq 3 ? pη ´µ{ ? ηq 3	A
	ˇˇˇˇK pS, Sqpηq ´ei sgnpηqπ{4 |µ|ď|η| 3{2 {2 e 3iµ 2 ? c 4π 3 |η|q| e iβpη`µ{ ? ηq 3 pη `µ{ ? ηq 3 dµ |A| 2 a |η| ´DˇˇˇˇˇÀ |η|. ż |η| 3{2 {2 ´|η| 3{2 {2 1 pη `µ{ ? ηq 3 dµ " Op|η| ´3{2 q. ˇˇˇˇK pS, Sqpηq ´eiπ{4 c 4π 3 A 2 e ia lnp|η| 2 {4q a |η| We treat the term with A 2 : we have If η ě 10, (35) ˇˇˇˇÀ 1 |η| 2 . (36) e ia lnpη 2 ´µ2 {|η|q " e ia ln |η| 2 exp ˆia ln ˆ1 ´µ2 |η| 3 ˙˙" e ia ln |η| 2 ˆ1 `µ2 |η| 3 ϕ ˆµ |η| 3{2 ˙˙, ˇˇˇď

1,3 " ż e ´3iΦpξ,ηq B η ˜1 3B η Φpξ, ηq f pηqgpη ´ξqpφ 1 pη{ξq ´ϕpξ 2 ηqq ¸dη ´2 |ξ| ´2{2 1 ξ 2 O `|ξ| 2 ˘dη " Op|ξ| ´2 ln |ξ|q. □ 4. ASYMPTOTICS FOR ΨpSq We start with the asymptotics for KpS, Sq. Lemma 14. There exists D P , such that if |η| ď 10, Proof of (36). In this case, η ě 10. With µ " a |η|ν, we have " T 2,1 `T2,2 . We start with the estimate for T 2,1 . Then |µ| ď |η| 3{2 {2, so that |η˘µ{ a |η|| ě |η|p1´1{2q ě 4 and in that region Spη, µ{ ? ηq " e ´ia ln 4 e ia ln |η 2 ´µ2 {η| ˜A `Be 2ia ln |pη`µ{ Ţhe terms with at least one B are estimated directly: for example, ˇˇˇˇż

  , νqdν P C 8 .

	Setting	The terms T 3,12 and T 3,22 are brutally estimated:
			m 1 pη, νq :" e 2ia ln |pη`νq{2| e ia ln | η`ν η´ν | |ν|ą20 pη `νq 3 , |T 3,12 | `|T 3,22 | À ż |ν| ´3dν " Op1q.
	by integration by parts, For T 3,11 , using (41),
	In particular, e iΘpη,νq m 1 pη, νqdν " e iΘpη,νq iB ν Θpη, νq m 1 pη, νq ż |ν|ď20 ȷ 20 ´20 `ż|ν|ą20 e 3i 4 ην 2 Spη, νqdν " e iΘpη,νq iB ν Θpη, νq ż ż |ν|ą20 e 3iην 2 {4 ´η ´ν 2 ¯2ia η η´ν | dν `ν e ia ln | η`ν " e iΘpη,νq iB ν Θpη, νq m 1 pη, νq ȷ 20 ´20 `ż|ν|ą20 e iΘp0,νq iB ν Θp0, νq " 1 a ż |µ|ą20 ? |η| e 3iµ 2 {4 ˜|η| 1{2 η{µ ´1{2 ˜B2 νν Θpη, νq B ν Θpη, νq ˜B2 νν Θp0, νq B ν Θp0, νq 1 `|η| 1{2 η{µ ¸˜1 `2ia m 1 pη, νq `Bν m 1 pη, νq ¸dν e 2ia ln |ν{2| ν 3 |η| 1{2 η µ `Op|η| 3 {|µ| 2 q ¸dµ |η| `Bν m 1 p0, νq ¸dν `ż|ν|ą20 ż η 0 B ζ « e iΘpζ,νq iB ν Θpζ, νq " 1 a ż |µ|ą20 ? |η| e 3iµ 2 {4 ˜´1 2 `ˆ3 2 ´ia ˙|η| 1{2 η µ `Op|η| 3 {|µ| 2 q ¸dµ |η| ˜B2 νν Θpζ, νq " ´1 2 a |η| ż e 3iµ 2 {4 dµ `1 2 a |η| ż |µ|ă20 ? |η| e 3iµ 2 {4 dµ `Op1q " ´1 2 a |η| ż e 3iµ 2 {4 dµ `Op1q. For T 3,21 , B KpS, Sqpηq " 1 a ż e 3iµ 2 {4 Spη, µ{ b ż |ν|ą20 e 3iην 2 {4 ´η ´ν 2 ¯3iβ η η´ν | dν `ν e 2ia ln |pη`νq{2| e iβpη`νq 3 {8 e ia ln | η`ν |η|qdµ, |η| one computes ż |ν|ą20 " " " 3iβ 2 ż |ν|ą20 e iΘpη,νq 2η ´ν η `ν e 2ia ln |pη`νq{2| e ia ln | η`ν η´ν | dν
	B η KpS, Sqpηq " " (41) " "	η ν ˆBη Spη, µ{ `Opη 2 {ν 2 q ¯´1 `ia b |η|q ´Bν Spη, µ{ b η |η|q `Opη 2 {ν 2 q " µ |η| 1{2 η ˙dµ e 2ia ln |ν{2| ´1 `2ia e 3iµ 2 {4 e iΘpη,νq ´1 `2η{ν KpS, Sqpηq `1 a |η| ż ż ´1 2η 3iβ 2 |ν|ą20 1 `η{ν η ν ¯´1 `2ia η `Op|η| 2 {|ν| 2 q ¯dν ν ν 1 `2ia η ν `Opη 2 {ν 2 q, ´1 2η KpS, Sqpηq `1 η ż e 3iην 2 {4 ´η ´ν 2 ¯S1 ´η `ν 2 ¯S ´η ´ν 2 ¯dν 3iβ 2 ż |ν|ą20 e iΘpη,νq e 2ia ln |ν{2| ´´1 `p4 ´2iaq η ν `Op|η| 2 {|ν| 2 q ¯dν
	Denote	one develops the pure term in A as ż |ν|ą20 e 3iην 2 {4`ia ln | η`ν η´ν | dν " 1 a |η| Spη, νq " ´η ´ν 2 ¯S1 ´η ż |µ|ą20 ? `ν 2 |η| ¯S ´η e 3iµ 2 {4 ˜1 `2ia ´ν 2 ¯. " 3iβ 2 ż |ν|ą20 e iΘpη,νq e 2ia ln |ν{2| ´´1 `p4 ´2iaq η ν ¯dν `Op1q |η| 1{2 η µ The first term is bounded:	`Op|η| 5{2 {µ 2 q ¸dµ
	" ż " Now we exemplify how to estimate the remaining terms: we write 1 a |η| ż |µ|ą20 ? |η| e 3iµ 2 {4 dµ `Op|η|q " 1 a |η| ż e 3iµ 2 {4 dµ `1 a |η| e iΘpη,νq e 2ia ln |ν{2| dν 1 a |η| ż e 3iµ 2 {4 dµ `ż|ν|ă20 e 3iην 2 {4 dν `Op|η|q " 1 a |η| ż e 3iµ 2 {4 dµ `40 `Op|η|q. ż |µ|ă20 e 3iµ 2 {4 dµ `Op|η|q ? |η| ż |ν|ą20 e 3iην 2 {4 e ia ln | η`ν η´ν | e 2ia ln |pη`νq{2| e iβpη`νq 3 {8 pη `νq 3 dν " ż |ν|ą20 e iΘpη,νq e 2ia ln |pη`νq{2| e ia ln | η`ν η´ν | pη `νq 3 dν where Θpη, νq " 3ην 2 {4 `βpη `νq 3 {8. Notice that, since |ν| ą 20 and |η| ă 10, B ν Θ " ν 2 , B 2 νν Θ " ν, B η Θ " ν 2 , B 2 νη Θ " ν. |ν|ą20 smooth and ż e 3iην 2 {4 ´η ´ν 2 ¯S1 ´η `ν 2 ¯S ´η ¯dν " Op1q. " ´" e iΘpη,νq e 2ia ln |ν{2| iB ν Θpη, νq ȷ 20 ´20 `ż|ν|ą20 e iΘpη,νq iB ν Θpη, νq ˜B2 νν Θpη, νq B ν Θpη, νq ¸dν e 2ia ln |ν{2| `2iae 2ia ln |ν{2| ν ´ν 2 In the region |ν| ą 20, we write so ż |ν|ą20 e 3iην 2 {4 ´η ´ν 2 ¯S1 ´η `ν 2 ¯S ´η ´ν 2 ¯dν " ÿ i, j"1,2 " Op1q ´« e iΘpη,νq pB ν Θpη, νqq 2 ˜B2 νν Θpη, νq B ν Θpη, νq ¸ff20 e 2ia ln |ν{2| `2iae 2ia ln |ν{2| ν ´20 T 3,i j where T 3,i j :" ż |ν|ą20 e 3iην 2 {4 ´η ´ν 2 ¯S1 i ´η `ν 2 ¯Sj ´η ´ν 2 ¯dν. ´ż|ν|ą20 e iΘpη,νq B ν ˜1 pB ν Θpη, νqq 2 ˜B2 νν Θpη, νq B ν Θpη, νq ν e 2ia ln |ν{2| `2iae 2ia ln |ν{2| ¸"

|ν|ď20 Spν{2q 2 dν `Op|η|q. For |ν| ą 20, Spη, νq " e ia ln| η`ν η´ν | ˜A `8Be 2ia ln |pη`ν{2| e iβpη`νq 3 {8 pη `νq 3 ¸˜A ´8Be ´2ia ln |pη´νq{2| e iβpη´νq 3 {8 pη ´νq 3 Şince e ia ln | η`ν η´ν | " e ia ln |1`η{ν| e ´ia ln |1´η{ν| " ´1 `ia ν Θpζ, νq m 1 pζ, νq `Bν m 1 pζ, νq ¸ff dζdν " constant `Op|η|q,

This concludes the proof of (35), and completes the estimates for KpS, Sq.

We now turn to the estimates of B η KpS, Sq. For η ą 0, writing

The claimed estimates for B η KpS, Sq will follow applying to the second integral computations similar to those made for KpS, Sq.

Proof of (38). We split the integration at |ν| " 20. If |ν| ă 20, the integrand is

  Op|ν| ´2q, |ν| ą 2|η| and, because of the term pη ´2νq{pη `νq for η `ν close to 1,m 3 pη, νq " Op|η|q, B ν m 3 pη, νq " Op|η|q, B 2νν m 3 pη, νq " Op|η|q, |ν| ă 2|η| We treat the last integral with a stationary phase argument: ˇˇˇż e iΘpη,νq m 3 pη, νqdν ˇˇˇ" ˇˇˇˇż e iΘpη,νq

	À	ż |ν|ą2|η|	1 ν 6 dν	`ż|ν|ă2|η|	1 η 3 dν " Op|η| ´2q.
		m 2 pη, νq "	η ´2ν η `ν e 2ia ln |pη`νq{2| ˆ1	`2ia pη `νq 3	˙χ ´η	`ν 2	¯S ´η	´ν 2	η
						´2ν η `ν e ´2ia ln |pη`νq{2| ˆ1	´2ia pη `νq 3	˙χ ´´η	`ν 2	¯S ´η	´ν 2	ānd
	split T 4,4 as					
						T 4,4 "	ÿ
								iB ν Θpη, νq	˜B2 νν Θpη, νq B ν Θpη, νq	m 3 pη, νq `Bν m 3 pη, νq ¸dν ˇˇˇ"
			ˇˇˇˇż e iΘ B ν	˜´B 2 νν Θpη, νq pB ν Θpη, νqq 3 m 3 pη, νq	´Bν m 3 pη, νq pB ν Θpη, νqq 2 ¸dν ˇˇˇ2

jPt˘u B ż e iΘpη,νq m 2 pη, νqθ j pν{ηqdν `B ż e iΘpη,νq m 2 pη, νqp1 ´θ`´θ´q pν{ηqdν.

Writing m 3 pη, νq " m 2 pη, νqp1 ´θ`´θ´q pν{ηq, some direct computations yield m 3 pη, νq " Op1q, B ν m 3 pη, νq " Op|ν| ´1q, B 2 νν m 3 pη, νq "

  Now we match the asymptotics of S and ΨpSq at infinity, for the oscillating e ia ln |ξ| term:

	As the integral of ĨpSq ´E e ia ln |ξ| |ξ| is convergent on r1, `8q (due to (43)) and that
					ż ξ 1	e ia ln |η| |η|	dη "	1 ia	pe ia ln |ξ| ´1q,
	the asymptotic expression (43) of ĨpSq, tells us that for ξ " 1,
	ΨpSqpξq " c	`3i 2π	α	´3iϵ 4π 2	0 ż ξ	ĨpSqpηqdη
	" c	`3i 2π	α	´ϵ 4π 2 ˆ3i pSq	´3 E a	`3 E a	e ia ln |ξ| ˙`Op|ξ| ´1`γ{2 q,
	with							
	(46)	"	ż 1 0	ĨpSqpηqdη	`ż 8 1	ˆĨpSqpηq	´E e ia ln |η| |η|	˙dη.
	(47)				´3Eϵ 4π 2 a	" A ðñ a "	´3ϵ 4π	|A| 2 .
							A SELF-SIMILAR SOLUTION
	5.1. Matching the asymptotics. Using the computations of the previous section, we now
	adjust the constants A, B, a, β, c, α to obtain the final ansatz around which a fixed point ar-
	gument is likely to run.							
	We recall that E and F are defined explicitly in A in (45). Define for simplicity of notation
					Ĩpvq :" Ipv, v, vq.

  2ia ln |ξ| e

	(49)			´i 8 9 ξ 3 ξ 3 ¸, S A p´ξq " S A pξq,
	where					
	(50)	a " apAq :"	´3ϵ 4π	|A| 2 , B " BpAq :"	3 16π ? 2	e ia ln 3 |A| 2 A.
	With these definitions, observe that we can reformulate Lemma 15 as

  (and Ψ c,α pS A `zq " S A `z).

	(52)			zqpηq ´π|A| 2 A	e ia ln |η| |η|	˙dη.
	Taking real and imaginary part in the above relation, we want to solve the system
	(53)	c " ´ϵ Re A	´3ϵ 4π 2 Im pA, zq and α "	´2πϵ 3	Im A	`ϵ 2π	Re pA, zq,

  ηq hpη ´ξq

	ˆżν	e	3i 4 ην 2	f	´η	`ν 2	¯g ´η	´ν 2	¯dν ˙dη
	where Φpξ, ηq " ηξ 2 ´ξη 2 `1 4	η 3 ,		
	one has								
	Ip f , g, hq " Ipg, f , hq " Iph, g, f q,		

  Op|η| ´3´2k ℓ ´1q `Op|η| ´3´2k ln ℓq.We now choose ℓ " |η| ´3{2 , which implies that the contribution of the region t|µ| ď |η| 3{2 u is Op|η| ´2k q.Without loss of generality, we look at the region where µ has the same sign as η, so that the contribution is bounded by

						`1 η 2 ν	pz 1 pηp1 `νqqwpηp1 ´νqq `zpηp1 `νqqw 1 pηp1 ´νqqq ¸dν
	" For the region |µ| ě |η| 3{2 ,
	ż |µ|ě|η| 3{2 {2	e 3iµ 2 {4 µ	1 µ	z ˆη `µ ? η	˙w ˆη ´µ ? η	˙dµ
	" Op|η| ´3{2 q	`ż|µ|ě|η| 3{2 {2	e 3iµ 2 {4 ˜´1 µ 2 z ˆη `µ ? η	˙w ˆη ´µ ? η	1
			µ	? η	z 1 ˆη `µ ? η	˙w ˆη ´µ ? η	˙´1 µ ? η	z ˆη `µ ? η	˙w1 ˆη ´µ ? η	˙¸dµ
	Op|η| ´3{2 q	`ż|µ|ą|η| 3{2 {2	1 ? η µ	|µ{ ? η| ´k´1 `1 µ ? η	|µ{ ? η| ´k dµ	`ˆ1 µ	ˇˇˇz ˆη `µ ? η	˙ˇˇˇ˙ˇˇˇˇˇµ	"|η| 3{2
										|µ|ď|η| 3{2 {2	e 3iµ 2 {4 z ˆη `µ ? η	˙w ˆη ´µ ? η	˙dµ
										`ż|µ|ď|η| 3{2 {2	e 3iµ 2 {4 z ˆη `µ ? η	η ˙w ˆη ´µ ?	˙dµ.
	In the region |µ| ď |η| 3{2 {2, we write
	ż |µ|ď|η| 3{2 {2	e 3iµ 2 {4 z ˆη `µ ? η	˙w ˆη ´µ ? η	˙" |η| 3{2	ż	|ν|ă1{2	e 3iη 3 ν 2 {4 zpηp1`νqqwpηp1´νqqdν
	and split the integral at ν " ℓ:
			ˇˇˇż				ˇˇˇÀ	ż	|η| ´2k dν " a|η| ´2k ,
				|ν|ăℓ			|ν|ăℓ
			ż ℓăνă1{2	À	ż |ν|ă1{2	η 3 ν η 3 ν	e 3iη 3 ν 2 {4 zpηp1 `νqqwpηp1 ´νqqdν
									" Op|η| ´3´2k ℓ ´1q	´ż 1{2 ℓ	e 3iη 3 ν 2 {4 ˜´1 η 3 ν 2 zpηp1 `νqqwpηp1 ´νqq

Lemma 17. Let z, w P Z k . Then

(56) |Kpz, wqpηq| À }z} Z k }w} Z k , |B η Kpz, wq| À }z} Z k }w} Z k |η| , for |η| ă 1,

and

(57) |Kpz, wqpηq| À }z} Z k }w} Z k |η| k`1 , |B η Kpz, wq| À }z} Z k }w} Z k |η| k , for |η| ą 1,

Proof. Proof of (57) for Kpz, wq. We start with |η| ą 10. Then ? ηKpz, wqpηq " ż

  It is enough to treat the integral term with derivative in z.Proof of (57) for B η Kpz, wq. We start with η ą 10. The jump term occurs at ν " ´η and is

									e 3iη 3 {4 η 2	3i 2π	αwpηq " Op|η| 1´k q.
	In the region |ν| ă |η|{2, we simply estimate
						ˇˇˇż		ˇˇˇÀ	ż			|2η ´ν||η| ´2k´1 dν " Op|η| 1´2k q.
						|ν|ď|η|{2		|ν|ď|η|{2	
	In the region |ν| ą |η|{2, if ν has the opposite sign as η (hence negative),
	ż |ν|ą|η|{2	"	ż ´2η ´8	`ż ´η´1 ´2η	`ż ´η´1 ´η	`´e 3iην 2 {4 ´η	´ν 2	¯w ´η	´ν 2	¯¯ˇˇˇˇˇν "η	`ż ´η`1 ´η	`ż ´η{2 ´η`1
		À	ż ´2η ´8 |η| 1´k |η `ν| ´k´1 dν	´2η `ż ´η´1	|η| 1´k |η `ν| ´k´1 dν	´η´1 ´η `ż	|η| 1´k dν
					`Op|η| 1´k q	`ż ´η`1	|η| 1´k dν	`ż ´η{2	|η| 1´k |η `ν| ´k´1 dν
									´η					´η`1
		À	ż ´2η ´8 |ν| ´2k dν `|η| 1´k	ż ´1 ´η |ν| ´1´k dν `Op|η| 1´k q `|η| 1´k	1 ż η{2	|ν| ´1´k dν
			Kpz, wq								
	`1 2η	ż	e 3iην 2 {4 ´η	´ν 2	¯´z 1 ´η	`ν 2	¯w ´η	´ν 2	¯`z	´η	`ν 2	¯w1 ´η	´ν 2	¯¯dν

À Op|η| 1´k q.

  S A , S A qpξq| À |A| 2 }z} Z k mint1, |ξ| ´k´1 u |Ipz, w, uqpξq| À }z} Z k |}w} Z k }u} Z k mint1, |ξ| ´k´1 uProof. First, notice that, because of the definition of B in terms of A, all bounds on S A are linear in A and all bounds on KpS A , S A q are quadratic in A. Since Ipz, S A , S A q " JpKpS A , S A q, zq, IpS A , z, wq " JpKpz, wq, S A q, For all pA, zq P ˆZ k , |A| ă 1, we have |cpA, zq ´cpA, wq| `|αpA, zq ´αpA, wq| À p|A| 2 `}z} 2 Z k `}w} 2 Z k q}z ´w} Z k . Proof. Observe that the term pA, zq is cubic in z and A, as expressed in Lemma 18. Hence |cpA, zq ´cpA, wq| `|αpA, zq ´αpA, wq| À | pA, zq ´ pA, wq|

				Ipz, w, uq " JpKpw, uq, zq,			
	the claimed estimates follow from direct application of Lemmas 10 to 13, using the estimates
	of Lemmas 14 and 17.						□
	5.3. Proofs of the main results. We define the maps c, α : ˆZ k Ñ (as explained in
	Section 5.1) by					
	(58)	cpA, zq " ´ϵ Re A	´3ϵ 4π 2 Im pA, zq and αpA, zq "	´2πϵ 3	Im A	`ϵ 2π	Re pA, zq,
	where pA, zq is defined in (52).			
	Lemma 19. À ˇˇˇż	8			
			0			
		(2) (Quadratic estimate)			
				|IpS A , z, wqpξq| À |A|}z} Z k }w} Z k mint1, |ξ| ´k´1 u
		(3) (Cubic estimate)			

1 2η |B η Kpz, wq| " Op|η| ´kq, |η| ą 1. Proof of (56) for B η Kpz, wq. For |η| ă 10, we split the integral at |ν| " 20. For |ν| ă 20, we bound directly and obtain Op1q. For |ν| ą 20, ˇˇˇż |ν|ą20 ˇˇˇÀ ż |ν|ą20 |ν||ν| ´2k´1 dν " Op1q. (We used again k ą 1{2, even though it might be dealt with in some other way). Hence for |η| ď 1, |B η Kpz, wq| " Op|η| ´1q. □ Lemma 18. Let z, w, u P Z k and A P , |A| ă 1. Then (1) (Linear estimate) |Ipz,

  E " tz P Z k : }z} Z k ď M u endowed with the distance dpz, wq " }z ´w} Z k . It is trivial to check that pE, dq is a complete metric space. From the definition (59) and (17), for z P Z k and ξ ą 0 Then the matching asymptotics of ΨpSq and S and the estimates of Lemma 18 imply that, for 0 ă ξ ă 1,| ĨpS A `zqpηq ´ĨpS A qpηq| " p|A| 2 }z} Z k `}z} 3 Z k qOp|ξ| ´k´1 q, so that ż `8 ξ p ĨpS A `zqpηq ´ĨpS A qpηqqdη " p|A| 2 }z} Z k `}z} 3 Z k qOp|ξ| ´kq.Op|ξ| ´1`γ{2 q " |A| 3 Op|ξ| ´kq.

	ΨA pzqpξq " cpA, zq	`3i 2π	αpA, zq `p}z} 3 Z k `|A| 3 `|A|qOp|ξ|q
	Ψpzq 1 pξq "	´3iϵ 4π 2 ĨpS A `zqpξq ´S1 A pξq " p}z} 3 Z k `|A| 3 `|A|qOp1q.
	For ξ ą 1,								
	ΨA pzqpξq " cpA, zq	`3i 2π	αpA, zq	´3iϵ 4π 2	0 ż ξ	ĨpS A `zqpηqdη ´Spξq
	" cpA, zq	`3i 2π	αpA, zq	´3iϵ 4π 2 pA, zq	`3iϵ 4π 2	ż 8 ξ	ˆĨpS A `zqpηq	η ´E e ia ln |η|	˙dη
	´3iϵ 4π 2	ż ξ 1	E	e ia ln |η| |η|	dη ´SA pξq.
	Now, from Lemma 18,							
	Also,								
			´3iϵ 4π 2	1 ż ξ	E	e ia ln |η|
	ΨA pzqpξq " cpA, zq	`3i 2π	αpA, zq	´3iϵ 4π 2	0 ż ξ	ĨpS A `zqpηqdη ´SA pξq.

When integrating (43), the second, highly oscillating term is negligeable so that ż `8 ξ ˆĨpS A qpηq ´E e ia ln |η| η ˙dη " |A| 3 |η| dη " ´A `Ae ia ln |ξ| , S A pξq " Ae ia ln |ξ| `AOp|ξ| ´1q.

|

  3 Z k `|A| 3 `|A|qOp|ξ| ´kq. ĨpS A `zqpξq ´S1 pξq " p}z}3 Z k `|A| 3 `|A|qOp|ξ| ´k´1 q.We now turn to difference estimates. As A is fixed, using the estimates of Lemmas 19 and 18, one easily shows that| ΨA pzqpξq ´Ψ A pwqpξq| ď p}z} 2 Z k `}w} 2 Z k `|A| 2 q}z ´w} Z k Opmint1, |ξ| ´kuq | ΨA pzq 1 pξq ´Ψ A pwq 1 pξq| ď p}z} 2 Z k `}w} 2 Z k `|A| 2 q}z ´w} Z k Opmint1, |ξ| ´k´1 uq Hence, for any z, w P E, | ΨA pzq| k À |A| `|A| 3 `}z} 3 Z k À |A| `M3 }z A 1 ´zA 2 } Z k´δ ď Cpδqε 2 |A 1 ´A2 |, (65)where is as in (52) and Cpδq only depends on δ.Proof. Proof of estimate (64). Using lemma 18, we have| pA 2 , zq ´ pA 2 , wq| ď ĨpS A 2 `zqpηq ´ĨpS A 2 `wqpηq|dη À p|A 2 | 2 `}z} 2 Z k `}w}2 Z k q}z ´w} Z k , which gives Lipschitz continuity of with respect to the z variable. For the A variable, we have by definition,

	(60) Similarly, (61) and the three integrals are convergent. Hence ΨA pzq 1 pξq " 3i 0 pA, zq " ż 1 0 S 1 A pξqdξ `ż `8 0 RpA, zqpξqqdξ | pA 1 , zq ´ pA 2 , zq| ď ż 1 0 |S 1 A 1 pξq ´S1 A 2 pξq|dξ `ż 0 `ż `8 |RpA 1 , zqpξq ´RpA 2 , zqpξq|dξ `8 1 F e 3ia ln |ξ| e ´8iξ 3 {9 ξ dξ `ˇˇˇż `8 4π 2 ż `8 1

  `|Ĩ pS A 1 `zA 1 qpξq ´ĨpS A 1 `zA 2 qpξq| `|Ĩ pS A 1 `zA 2 qpξq ´ĨpS A 2 `zA 2 qpξq| À ε 2 |z A 1 ´zA 2 | k´δ Opminp1, |ξ| ´1´k`δ qq `ε2 |A 1 ´A2 | ln 3 p2 `|ξ|qOpminp1, |ξ| ´1´k qq (66) Hence }p1 `|η| k´δ`1 qpz A 1 ´zA 2 qpηq} L 8 ď ε 2 |z A 1 ´zA 2 | k´δ `Cpδqε 2 |A 1 ´A2 |.

	1 A 1 pξq ´z1 A 2 pξq| ď	3 4π 2

and dp ΨA pzq, ΨA pwqq À p}z} 2 Z k `}w} 2 Z k `|A| 2 qdpz, wq À p|A| 2 `M2 qdpz, wq. Therefore, for M " 2|A| and |A| ă ε 1 sufficiently small, ΨA : E Þ Ñ E is a strict contraction. By Banach's fixed point theorem, there exists a unique z A P E such that v :" S A `zA " S A `Ψ A pzq " S A `ΨA pS `zq ´SA " Ψ A pvq.

It remains to see that |z| k,cpA,zq`3 i 2π αpA,zq ă 3|A|. We already know that }z} Z k ď 2|A|; the rest follows from the fact that, for 0 ă ξ ă 1,

We now complete the proof of Theorem 1, by reverting the roles of pc, αq and A. Fix k P p 1 2 , 4 7 q until the end of this section. We first prove some Lipschitz continuity of the maps A Þ Ñ ĨpA, zq and A Þ Ñ z A . Introduce for convenience of notation the remainder term in ĨpS A `zq:

The estimate (51) gives decay on RpA, 0q, and in the next lemma we claim a difference estimate.

Lemma 21. Let ε ą 0 small enough, and A 1 ,

Sketch of the proof. RpA, zqpξq is given by a sum of integrals which, after the appropriate integration by parts, can all be estimated directly with absolute values on the integrand. Regarding the dependence on A for these integrals, when it appears in the amplitude constants, we can directly estimate the difference and obtain a |A 1 ´A2 | factor together with the same decay (by the same computations, done in Sections 3 and 4). The "worst" dependence on A is when it occurs in the phases; observe that this only happens through apAq " p3{4πq|A| 2 in the oscillating term e ia ln |ξ| (the key is that in the highly oscillating terms with phase e ´i8{9ξ 3 , there is no dependence on A: β is independent of A!). This leads to terms of the form

As a consequence we obtain the claimed estimate. □ So there is a logarithmic loss when performing difference estimates. However, this can be compensated by decreasing slightly the parameter k, which controls the decay rate in Z k , and so we recover Lipschitz continuity for the maps we are interested in.

Lemma 22. For any ε, δ ą 0 sufficiently small, the following holds true. Let A 1 ,

By symmetry, this inequality also holds for ξ ă 0, and hence

Summing up, we get for some constant C independent of A 1 , A 2 , δ,

Choosing ε so small that Cε 2 ď 1{2, we get

We can now complete the proof the Theorem 1.

Proof of Theorem 1. We consider the map

We claim that there exists ε 0 ą 0 and a neighborhood of 0 P 2 such that f : Ñ B is bijective and bi-Lipschitz, where B is the open ball centered at p0, 0q of radius ε 0 of 2 .

Observe that this means that given pc, αq such that c 2 `α2 ă ε 0 , there exist a unique A P such that the compatibility condition (53) are fulfilled with z " z A , and so z A is the sought for remainder.

If f was 1 , we would merely apply the inverse function theorem, but our estimates do not quite reach this regularity. Actually, f is a Lipschitz perturbation of the invertiblelinear map L P p , 2 q associated to the matrix ˆ1 0 0 2π 3 ˙(we identified and 2 ). More precisely, fix k P p 1 2 , 4 7 q and δ ą 0 so small that k ´δ ą 1 2 , then Lemma 22 shows that the map A Þ Ñ pA, z A q has Lipschitz constant Cpδqε 2 0 on B. Hence the same is true for g :" f ´L, that is, for all A 1 , A 2 P B, }gpA 1 q ´gpA 2 q} ď Cpδqε 2 0 |A 1 ´A2 |. We use the following weakened version of the inverse function theorem.

Claim 23. Let pE, } ¨}E q, pF, } ¨}F q be two Banach spaces and L P pE, F q a (bi-) continuous invertible linear map. Consider f " L `g where g is a c-Lipschitz map defined on a neighbourhood of 0 P E, with values in F and such that gp0q " 0. If c ă }L ´1} ´1 F ÑE , then there exists two open sets (containing 0) V of E, and W of F (W can be chosen to be a ball centered at 0), such that f is bijective V Ñ W and bi-Lipschitz, and f ´1 has Lipschitz constant less than 1

We apply this claim to f and this concludes the proof of Theorem 1. □ Proof of Proposition 7. Either using a refined version of [14, Lemma 2.1] or applying directly some stationary phase arguments, one may show that the solution built in Theorem 1 satisfies in physical space V p yq Ñ 0 as y Ñ `8.