
HAL Id: hal-01830856
https://hal.science/hal-01830856

Submitted on 27 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forty Years of Suffix Trees
Alberto Apostolico, Maxime Crochemore, Martín Farach-Colton, Zvi Galil, S.

Muthukrishnan

To cite this version:
Alberto Apostolico, Maxime Crochemore, Martín Farach-Colton, Zvi Galil, S. Muthukrishnan. Forty
Years of Suffix Trees. Communications of the ACM, 2016, 59 (4), pp.66-73. �10.1145/2810036�. �hal-
01830856�

https://hal.science/hal-01830856
https://hal.archives-ouvertes.fr

Forty Years of Suffix Trees

Alberto Apostolico
College of Computing

Georgia Institute of
Technology

801 Atlantic Drive
Atlanta, GA 30332-0280, USA

axa@cc.gatech.edu

Maxime Crochemore
King’s College London

London WC2R 2LS, UK
and Université Paris-Est,

France
maxime.crochemore@kcl.ac.uk

Martin Farach-Colton
Department of Computer

Science
Rutgers University

Piscataway, NJ 08854, USA
farach@cs.rutgers.edu

Zvi Galil
College of Computing

Georgia Institute of
Technology

801 Atlantic Drive
Atlanta, GA 30332-0280, USA

galil@cc.gatech.edu

S. Muthukrishnan
Department of Computer

Science
Rutgers University

Piscataway, NJ 08854, USA
muthu@cs.rutgers.edu

ABSTRACT
This paper reviews the first 40 years in the life of suffix
trees, their many incarnations, and their applications. The
paper is non-technical but assumes some familiarity with the
structures and constructions discussed. It is not meant to be
exhaustive. It is meant to be a tribute to a ubiquitous tool
of string matching — the suffix tree and its variants — and
one of the most persistent subjects of study in the theory of
algorithms.
Keywords: pattern matching, string searching, bi-tree, suf-
fix tree, dawg, suffix automaton, factor automaton, suffix
array, FM-index, wavelet tree.

1. PROLOG
When William Legrand finally decrypted the string:

53‡‡†305))6*,48264‡.)4‡);806”,48†8P60))85;1‡
(;:‡*8†83(88)5*†,46(;88*96*?;8)*‡(;485);5*†2:*‡
(;4956*2(5*Ñ4)8P8*;4069285);)6‡8)4‡‡;1(‡9;48081;8:
8‡1;4885;4)485†528806*81(ddag9;48;(88;4(‡?34;
48)4‡;161;:188;‡?;

it did not seem to make much more sense than it did before.
The decoded message read: “A good glass in the bishop’s
hostel in the devil’s seat forty-one degrees and thirteen min-
utes northeast and by north main branch seventh limb east
side shoot from the left eye of the death’s-head a bee line
from the tree through the shot fifty feet out.” But at least it
did sound more like natural language, and eventually guided
the main character of Edgar Allan Poe’s“The Gold Bug”[36]
to discover the treasure he had been after. Legrand solved a
substitution cipher using symbol frequencies. He first looked
for the most frequent symbol and changed it into the most
frequent letter of English, then similarly inferred the most
frequent word, then punctuation marks, and so on.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

Both before and after 1843, the natural impulse when
faced with some mysterious message has been to count fre-
quencies of individual tokens or subassemblies in search of a
clue. Perhaps one of the most intense and fascinating sub-
jects for this kind of scrutiny have been bio-sequences. As
soon as some such sequences became available, statistical
analysts tried to link characters or blocks of characters to
relevant biological functions. With the early examples of
whole genomes emerging in the mid 1990’s, it seemed nat-
ural to count the occurrences of all blocks of size 1, 2, etc.,
up to any desired length, looking for statistical characteri-
zations of coding regions, promoter regions, etc.

This review is not about cryptography. It is about a data
structure and its variants, and the many surprising and use-
ful features it carries. Among these is the fact that, to set
up a statistical table of occurrences for all substrings (also
called factors), of any length, of a text string of n charac-
ters, it only takes time and space linear in the length of the
text string. While nobody would be so foolish as to solve
the problem by first generating all exponentially many pos-
sible strings and then counting their occurrences one by one,
a text string may still contain Θ(n2) distinct substrings, so
that tabulating all of them in linear space, never mind linear
time, already seems puzzling.

Over the years, such structures have held center stage
in text searching, indexing, statistics, and compression as
well as in the assembly, alignment and comparison of biose-
quences. Their range of scope extends to areas as diverse
as detecting plagiarism, finding surprising substrings in a
text, testing the unique decipherability of a code, and more.
Their impact on Computer Science and IT at large cannot
be overstated. Text searching and Bioinformatics would not
be the same without them. In 2013, the Combinatorial Pat-
tern Matching symposium celebrated the 40th anniversary
of the appearance of Weiner’s paper [41] with a special ses-
sion entirely dedicated to that event.

2. HISTORY BITS AND PIECES
At the dawn of “stringology,” Don Knuth conjectured that

the problem of finding the longest substring common to two

long text sequences of total length n required Ω(n logn)
time. An O(n logn)-time had been provided by Karp, Miller
and Rosenberg [26]. That construction was destined to play
a role in parallel pattern matching, but Knuth’s conjecture
was short lived: in 1973, Peter Weiner showed that the prob-
lem admitted an elegant linear-time solution [41], as long as
the alphabet of the string was fixed. Such a solution was
actually a byproduct of a construction he had originally set
up for a different purpose, i.e., identifying any substring of a
text file without specifying all of them. In doing so, Weiner
introduced the notion of a textual inverted index that would
elicit refinements, analyses and applications for forty years
and counting, a feature hardly shared by any other data
structure.

Weiner’s original construction processed the text file from
right to left. As each new character was read in, the struc-
ture, which he called a“bi-tree”, would be updated to accom-
modate longer and longer suffixes of the text file. Thus this
was an inherently off-line construction, since the text had to
be known in its entirety before the construction could begin.
Alternatively, one could say that the algorithm would build
the structure for the reverse of the text on-line. About three
years later, Ed McCreight provided a left-to-right algorithm
and changed the name of the structure to “suffix tree,” a
name that would stick [32].

Let x be a string of n − 1 symbols over some alphabet
Σ and $ an extra character not in Σ. The expanded suffix
tree Tx associated with x is a digital search tree collecting
all suffixes of x$. Specifically, Tx is defined as follows.

1. Tx has n leaves, labeled from 1 to n.

2. Each arc is labeled with a symbol of Σ ∪ {$}. For any
i, 1 ≤ i ≤ n, the concatenation of the labels on the
path from the root of Tx to leaf i is precisely the suffix
sufi = xixi+1...xn−1$.

3. For any two suffixes sufi and sufj of x$, if wij is
the longest common prefix that sufi and sufj have
in common, then the path in Tx relative to wij is the
same for sufi and sufj .

An example of expanded suffix tree is given in Figure 1.
The tree can be interpreted as the state transition dia-

gram of a deterministic finite automaton where all nodes
and leaves are final states, the root is the initial state, and
the labeled arcs, which are assumed to point downwards,
represent part of the state-transition function. The state
transitions not specified in the diagram lead to a unique
non-final sink state. Our automaton recognizes the (finite)
language consisting of all substrings of string x. This obser-
vation also clarifies how the tree can be used in an on-line
search: letting y be the pattern, we follow the downward
path in the tree in response to consecutive symbols of y, one
symbol at a time. Clearly, y occurs in x if and only if this
process leads to a final state. In terms of Tx, we say that
the locus of a string y is the node α, if it exists, such that
the path from the root of Tx to α is labeled y.

An algorithm for the direct construction of the expanded
Tx (often called suffix trie) is readily derived (see Figure 2).
We start with an empty tree and add to it the suffixes of x$
one at a time. This procedure takes time Θ(n2) and O(n2)
space, however, it is easy to reduce space to O(n) thereby
producing a suffix tree in compact form (Figure 3). Once

a	 a	

a	

$	

4
3	 a	

a	

a	

a	

b	

b	

b	

b	

b	

b	

b	

1	

b	

c	

c	

2	

c	

c	

c	

c	 $	

$	

$	

$	

$	

$	

$	

$	
5

7
6

10	

8

a	

a	

a	

a	

a	

a	 a	

a	

	 9	

$	

Figure 1: The expanded suffix tree of the string x =
abcabcaba

this is done, it becomes possible to aim for an expectedly
non-trivial O(n) time construction.

At the CPM Conference of 2013, McCreight revealed that
his O(n) time construction was not born as an alternative
to Weiner’s: he had developed it in an effort to understand
Weiner’s paper, but when he showed it to Weiner asking him
to confirm that he had understood that paper the answer
was ”No, but you have come up with an entirely different
and elegant construction!” In unpublished lecture notes of
1975, Vaughan Pratt displayed the duality of this structure
and Weiner’s “repetition finder” [37]. McCreight’s algo-
rithm was still inherently off-line, and it immediately trig-
gered a search for an on-line version. Some partial attempts
at an on-line algorithm were made, but such a variant had
to wait almost two decades for Esko Ukkonen’s paper in
1995 [39]. In all these linear-time constructions, linearity
was based on the assumption of a finite alphabet and took
Θ(n logn) time without that assumption. In 1997, Martin
Farach introduced an algorithm that abandoned the one-
suffix-at-time approach prevalent until then; this algorithm
gives a linear-time reduction from suffix-tree construction to
character sorting, and thus is optimal for all alphabets [17].
In particular, it runs in linear time for a larger class of al-
phabets, for example, when the alphabet size is polynomial
in input length.

Around 1984, Anselm Blumer et al. [9] and Maxime Crochemore
[14] exposed the surprising result that the smallest finite au-
tomaton recognizing all and only the suffixes of a string of n
characters has only O(n) states and edges. Initially coined
a directed acyclic word graph (DAWG), it can even be fur-
ther reduced if all states are terminal states [14]. It then
accepts all substrings of the string and is called the fac-
tor/substring automaton. There is a nice relation between
the index data structures when the string has no end-marker
and its suffixes are marked with terminal states in the trie.

a	 a	

a	

$	

4
3	

a	

a	

a	

a	

b	

b	

b	

b	

b	

b	

b	

1	

b	

c	

c	

2	

c	

c	

c	

c	

$	

$	

$	

a	

a	
a	

a	

Figure 2: Building an expanded suffix tree by in-
sertion of consecutive suffixes (showing here the
insertion of abcaba$). The insertion of suffix sufi
(i = 1, 2, ..., n) consists of two phases. In the first
phase, we search for sufi in Ti−1. Note that the pres-
ence of $ guarantees that every suffix will end in a
distinct leaf. Therefore, this search will end with
failure sooner or later. At that point, we will have
identified the longest prefix of sufi that has a locus
(i.e., a terminal node) in Ti−1. Let headi (abcab in the
example) be this prefix and α the locus of headi. We
can write sufi = headi · taili with taili (a$ in the ex-
ample) nonempty. In the second phase, we need to
add to Ti−1 a path leaving node α and labeled taili.
This achieves the transformation of Ti−1 into Ti.

Then, the suffix tree is the edge-compacted version of the
trie and its number of nodes can be minimized like with any
automaton thereby providing the compact DAWG of the
string. Permuting the two operations, compaction and min-
imization, leads to the same structure. Apparently Anatoli
Slissenko (see Appendix) ended up with a similar structure
for his work on the detection of repetitions in strings. These
automata provide another more efficient counterexample to
Knuth’s conjecture when they are used, against the grain,
as pattern matching machines (see Figure 4).

The appearance of suffix trees dovetailed with some inter-
esting and independent developments in information theory.
In his famous approach to the notion of information, Kol-
mogorov equated the information or structure in a string to
the length of the shortest program that would be needed to
produce that string by a Universal Turing Machine. The un-
fortunate thing is that this measure is not computable and
even if it were, most long strings are incompressible (i.e.,
lack a short program producing them), since there are in-
creasingly many long strings and comparatively much fewer
short programs (themselves strings).

The regularities exploited by Kolmogorov’s universal and

a	 a	

a	

$	

4
3	

a	

a	

a	

a	

b	

b	

b	

b	

b	

b	

b	

1	

b	

c	

c	

2	

c	

c	

c	

c	
$	

$	

$	

$	

$	

$	

$	

$	
5

7
6

10	

8

9	
a	

$	

a	

a	
a	

a	

a	 a	

a	

Figure 3: A suffix tree in compact form. This is
obtained by first collapsing every chain formed by
nodes with only one child into a single arc. The re-
sulting compact version of Tx has at most n internal
nodes, since there are n + 1 leaves in total and ev-
ery internal node is branching. The labels of the
generic arc are now a substring, rather than a sym-
bol of x$. However, arc labels can be expressed by
suitable pairs of pointers to a common copy of x$
thus achieving O(n) space bound overall.

omniscient machine could be of any conceivable kind, but
what if one limited them to the syntactic redundancies af-
fecting a text in the form of repeated substrings? If a string
is repeated many times one could profitably encode all oc-
currences by a pointer to a common copy. This copy could
be internal or external to the text. In the former case one
could have pointers going in both directions or only in one
direction, allow or forbid nesting of pointers, etc. In his
doctoral thesis, Jim Storer showed that virtually all such
“macro schemes” are intractable, except one. Not long be-
fore that, in a landmark paper entitled “On the Complex-
ity of Finite Sequences” [30], Abraham Lempel and Jacob
Ziv had proposed a variable-to-block encoding, based on a
simple parsing of the text with the feature that the com-
pression achieved would match, in the limit, that produced
by a compressor tailored to the source probabilities. Thus,
by a remarkable alignment of stars, the compression method
brought about by Lempel and Ziv was not only optimal in
the information theoretic sense, but it found an optimal,
linear-time implementation by the suffix tree, as was de-
tailed immediately by Michael Rodeh, Vaugham Pratt and
Shimon Even [38].

In his original paper, Weiner listed a few applications of
his “bi-tree” including most notably off-line string search-
ing: preprocessing a text file to support queries that re-
turn the occurrences of a given pattern in time linear in the
length of the pattern. And of course, the “bi-tree” addressed

a	

a	

a	

$	

3	

a	

a	

a	

a	

n	 b	

n	

a	

1	

2	

n	

$	

$	

$	

$	

$	

$	

4

5

7

6

n	

n	
n	

Figure 4: The compact suffix tree (top) and the
suffix automaton (bottom) of the string “bananas”.
Failure links are represented by the dashed arrows.
Despite the fact that it is an index on the string, the
same automaton can be used as a pattern-matching
machine to locate substrings of “bananas” in another
text or to compute their longest common substring.
The process runs on-line on the second string. As-
sume for example“bana”has just been scanned from
the second string and the current state of the au-
tomaton is state 4. If the next letter is “n”, the
common substring is “banan” of length 5 and the
new state is 5. If the next letter is “s”, the fail-
ure link is used and from state 3’ corresponding to a
common substring “ana” of length 3 we get the com-
mon substring “anas” with the new state 7. If the
next letter is “b”, iterating the failure link leads to
state 0 and we get the common substring “b” with
the new state 1. Finally, any other next letter will
produce the empty common substring and state 0.

Knuth’s conjecture, by showing how to find the longest sub-
string common to two files in linear time for a finite al-
phabet. There followed unpublished notes by Pratt entitled
“Improvements and Applications for the Weiner Repetition
Finder” [37]. A decade later, Alberto Apostolico would list

more applications in a paper entitled “The Myriad Virtues
of Suffix Trees” [2], and two decades later suffix trees and
companion structures with their applications gave rise to
several chapters in reference books by Crochemore and Ryt-
ter, Dan Gusfield, and Crochemore, Hancart and Lecroq (see
Appendix).

The space required by suffix trees has been a nuisance
in applications where they were needed the most. With
genomes on the order of gigabytes, for instance, the space
difference between 20 times larger than the source versus,
say, only 11 times larger, can be substantial. For a few
lustra, Stefan Kurtz and his co-workers devoted their effort
to cleverly allocating the tree and some of its companion
structures [28]. In 2001 David R. Clark and J. Ian Munro
proposed one of the best space-saving methods on secondary
storage [13]. Clark and Munro’s “succinct suffix tree” sought
to preserve as much of the structure of the suffix tree as pos-
sible. Udi Manber and Eugene W. Myers took a different
approach, however. In 1990, they introduced the “suffix ar-
ray” [31], which eliminated most of the structure of the suffix
tree, but was still able to implement many of the same oper-
ations, requiring space equal to 2 integers per text character
and searching in time O(|P | + logn) (reducible to 1 by ac-
cepting search time O(|P | logn)). The suffix array stores the
suffixes of the input in lexicographic order and can be seen as
the sequence of leaves’ labels as found in the suffix tree by a
preorder traversal that would expand each node according to
the lexicographic order. Although the suffix array seemed at
first to be a different data structure than the suffix tree, the
distinction has receded. For example, Manber and Myers’s
original construction of the suffix array took O(n logn) time
for any alphabet, but the suffix array could be constructed
in linear time from the suffix tree for any alphabet. In 2001,
Toru Kasai et al. [27] showed that the suffix tree could be
constructed in linear time from the suffix array. Therefore
the suffix array was shown to be a succinct representation
of the suffix tree. In 2003, three groups (see Appendix) pre-
sented three different modifications of Farach’s algorithm
for suffix tree construction to give the first linear-time algo-
rithms for directly constructing the suffix array; that is, the
first linear-time algorithms for computing suffix arrays that
did not first compute the full suffix tree. Since then, there
have been many algorithms for fast construction of suffix ar-
rays, notably by Nong, Zhang and Chan [35], which is linear
time and fast in practice. With fast construction algorithms
and small space required, the suffix array is the suffix-tree
variant that has gained the most widespread adoption in
software systems. A more recent succinct suffix tree and
array, which take O(n) bits to represent for a binary alpha-
bet (O(n log σ) bits otherwise), was presented by Grossi and
Vitter [21].

Actually, the histories of suffix trees and compression are
tightly intertwined. This should not come as a surprise,
since the redundancies that pattern discovery tries to un-
earth are ideal candidates to be removed for purposes of
compression. In 1994, M. Burrows and D. J. Wheeler pro-
posed a breakthrough compression method based on suf-
fix sorting [11]. Circa 1995, Amihood Amir, Gary Benson
and Martin Farach posed the problem of searching in com-
pressed texts [1]. In 2000, Paolo Ferragina and Giovanni
Manzini introduced the FM-index, a compressed suffix array
based on the Burrows-Wheeler transform [19]. This struc-
ture, which may be smaller than the source file, supports

searching without decompression. This was extended to
compressed tree indexing problems in [18] using a modifi-
cation of the Burrows-Wheeler transform.

3. FALLOUT, EXTENSIONS AND
CHALLENGES

As highlighted in our prolog, there has been hardly any
application of text processing that did not need these in-
dexes at one point or another. A prominent case has been
searching with errors, a problem first efficiently tackled in
1985 by Gad Landau in his PhD thesis [29]. In this kind
of search, one looks for substrings of the text that differ
from the pattern in a limited number of errors such as a
single character deletion, insertion or substitution. To ef-
ficiently solve this problem, Landau combined Suffix Trees
with a clever solution to the so-called lowest common an-
cestor (LCA) problem. The LCA problem assumes that a
rooted tree is given and then it seeks, for any pair of nodes,
the lowest node in the tree that is an ancestor of both [23]. It
is seen that following a linear-time preprocessing of the tree
any LCA query can be answered in constant time. Landau
used LCA queries on Suffix Trees to perform constant-time
jumps over segments of the text that would be guaranteed
to match the pattern. When k errors are allowed, the search
for an occurrence at any given position can be abandoned
after k such jumps. This leads to an algorithm that searches
for a pattern with k errors in a text of n characters in O(nk)
steps.

Among the basic primitives supported by suffix trees and
arrays, one finds of course the already mentioned search for
a pattern in a text in time proportional to the length of
the pattern rather than the text. In fact, it is even possi-
ble to enumerate occurrences in time proportional to their
number and, with trivial preprocessing of the tree, tell the
total number of occurrences for any query pattern in time
proportional to the pattern size. The problem of finding
the longest substring appearing twice in a text or shared be-
tween two files has been already mentioned: this is probably
where it all started. A germane problem is that of detect-
ing squares, repetitions and maximal periodicities in a text,
a problem rooted in work by Axel Thue dated more than
a century ago with multiple contemporary applications in
compression and DNA analysis. A square is a pattern con-
sisting of two consecutive occurrences of the same string.
Suffix trees have been used to detect in optimal O(n logn)
time all squares (or repetitions) in a text, each with its set of
starting positions [5], and later to find and store all distinct
square substrings in a text in linear time. Squares play a
role in an augmentation of the suffix tree suitable to report,
for any query pattern, the number of its non-overlapping
occurrences [6, 10].

There are multiple uses of suffix trees in setting up some
kind of signature for text strings, as well as measures of sim-
ilarity or difference. Among the latter, there is the problem
of computing the forbidden or absent words of a text, which
are minimal strings that do not appear in the text (while
all their proper substrings do) [8, 15]. Such words lead to,
among other things, an original approach to text compres-
sion [16]. Once regarded as the succinct representation of the
“bag-of-words” of a text, suffix trees can be used to assess
the similarity of two text files, thereby supporting cluster-
ing, document classification and even phylogeny [4, 12, 40].

Intuitively, this is done by assessing how much the trees for
the two input sequences have in common. Suitably enriched
with the probability of the substring ending at each node,
a tree can be used to detect surprisingly over-represented
substrings of any length [3], e.g., in the quest of promoter
regions in biosequences.

The suffix tree of the concatenation of say, k ≥ 2 text
files, supports efficient solutions to problems arising in do-
mains ranging from plagiarism detection to motif discovery
in biosequences. The need for k distinct end-markers poses
some subtleties in maintaining linear time, for which the
reader is referred to [22]. In its original form, the problem
of indexing multiple texts was called the “color problem”
and seeks to report, for any given query string and in time
linear in the query, how many documents out of the total
of k contain at least one occurrence of the query. A sim-
ple and elegant solution was given in 1992 by Lucas C. K.
Hui [25]. Recently, the combined suffix trees of many strings
(also known as the generalized suffix tree) was used to solve
a variety of document listing problems. Here, a set of text
documents are preprocessed as a combined suffix tree. The
problem is to return the list of all documents that contain
a query pattern in time proportional to the number of such
documents, not to the total number of occurrences (occ)
which can be significantly larger. This problem was solved
in [33] by reducing it to Range Minimum Queries. This basic
document listing problem has since been extended to many
other problems including listing the top-k in various string
and information distances. For example, in [24], the struc-
ture of generalized suffix tree is crucially used to design a
linear machine-word data structure to return the top-k most
frequent documents containing a pattern p in time nearly
linear in pattern size.

One surprising variant of the suffix tree was introduced
by Brenda Baker for purposes of detection of plagiarism in
student reports as well as optimization in software develop-
ment [7]. This variant of pattern matching, called “param-
eterized matching”, enables one to find program segments
that are identical up to a systematic change of parameters,
or substrings that are identical up to a systematic relabeling
or permutation of the characters in the alphabet.

One obvious extension of the notion of a suffix tree is to
more than one dimension, albeit the mechanics of the ex-
tension itself are far from obvious [34]. Among more distant
relatives, one finds “wavelet trees”. Originally proposed as a
representation of compressed suffix arrays [20], wavelet trees
enable one to perform on general alphabets the ranking and
selection primitives previously limited to bit vectors, and
more.

The list could go on and on, but the scope of this paper
was not meant to be exhaustive. Actually, after forty years
of unrelenting developments, it is fair to assume that the
list will continue to grow. Open problems also abound. For
instance, many of the observed sequences are expressed in
numbers rather than characters, and in both cases are af-
fected by various types of errors. While the outcome of a
two character comparison is just one bit, two numbers can
be more or less close, depending on their difference or some
other metric. Likewise, two text strings can be more or less
similar, depending on the number of elementary steps neces-
sary to change one in the other. The most disruptive aspect
of this framework is the loss of the transitivity property that
leads to the most efficient exact string matching solutions.

And yet indexes capable of supporting fast and elegant ap-
proximate pattern queries of the kind just highlighted would
be immensely useful. Hopefully, they will come up soon and,
in time, have their own 40th anniversary celebration.

Acknowledgements: We are grateful to Ed McCreight,
Ronnie Martin, Vaughan Pratt, Peter Weiner, and Jacob Ziv
for discussions and help. We are indebted to the Referees
for their careful scrutiny of an earlier version of the paper,
which led to many improvements.

4. REFERENCES
[1] A. Amir, G. Benson, and M. Farach. Let sleeping files

lie: Pattern matching in Z-compressed files. In
Proceedings of the 5th ACM-SIAM Annual Symposium
on Discrete Algorithms, pages 705–714, Arlington, VA,
1994.

[2] A. Apostolico. The myriad virtues of suffix trees. In
A. Apostolico and Z. Galil, editors, Combinatorial
Algorithms on Words, volume 12 of NATO Advanced
Science Institutes, Series F, pages 85–96.
Springer-Verlag, Berlin, 1985.

[3] A. Apostolico, M. E. Bock, and S. Lonardi. Monotony
of surprise and large-scale quest for unusual words.
Journal of Computational Biology, 10(3/4):283–311,
2003.

[4] A. Apostolico, O. Denas, and A. Dress. Efficient tools
for comparative substring analysis. Journal of
Biotechnology, 149(3):120–126, 2010.

[5] A. Apostolico and F. P. Preparata. Optimal off-line
detection of repetitions in a string. Theor. Comput.
Sci., 22(3):297–315, 1983.

[6] A. Apostolico and F. P. Preparata. Data structures
and algorithms for the strings statistics problem.
Algorithmica, 15(5):481–494, May 1996.

[7] B. S. Baker. Parameterized duplication in strings:
Algorithms and an application to software
maintenance. SIAM J. Comput., 26(5):1343–1362,
1997.

[8] M.-P. Béal, F. Mignosi, and A. Restivo. Minimal
forbidden words and symbolic dynamics. In STACS
96, 13th Annual Symposium on Theoretical Aspects of
Computer Science, Grenoble, France, February 22-24,
1996, Proceedings, volume 1046 of Lecture Notes in
Computer Science, pages 555–566. Springer, 1996.

[9] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler,
M. T. Chen, and J. Seiferas. The smallest automaton
recognizing the subwords of a text. Theor. Comput.
Sci., 40(1):31–55, 1985.

[10] G. S. Brodal, R. B. Lyngsø, A. Östlin, and C. N. S.
Pedersen. Solving the string statistics problem in time
O(n logn). In Automata, Languages and
Programming, 29th International Colloquium, ICALP
2002, Malaga, Spain, July 8-13, 2002, Proceedings,
volume 2380 of Lecture Notes in Computer Science,
pages 728–739. Springer, 2002.

[11] M. Burrows and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical Report
124, Digital Equipments Corporation, May 1994.

[12] S. Chairungsee and M. Crochemore. Using minimal
absent words to build phylogeny. Theoretical
Computer Science, 450(1):109–116, 2012.

[13] D. R. Clark and J. I. Munro. Efficient suffix trees on
secondary storage. In Proceedings of the 7th
ACM-SIAM Annual Symposium on Discrete
Algorithms, pages 383–391, Atlanta, Georgia, 1996.

[14] M. Crochemore. Transducers and repetitions. Theor.
Comput. Sci., 45(1):63–86, 1986.

[15] M. Crochemore, F. Mignosi, and A. Restivo.
Automata and forbidden words. Information
Processing Letters, 67(3):111–117, 1998.

[16] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi.
Data compression using antidictonaries. Proceedings of
the IEEE., 88(11):1756–1768, 2000. Special issue
Lossless data compression edited by J. Storer.

[17] M. Farach. Optimal suffix tree construction with large
alphabets. In Proceedings of the 38th IEEE Annual
Symposium on Foundations of Computer Science,
pages 137–143, Miami Beach, FL, 1997.

[18] P. Ferragina, F. Luccio, G. Manzini, and
S. Muthukrishnan. Compressing and indexing labeled
trees, with applications. J. ACM, 57(1), 2009.

[19] P. Ferragina and G. Manzini. Opportunistic data
structures with applications. In FOCS, pages 390–398,
2000.

[20] R. Grossi, A. Gupta, and J. S. Vitter. High-order
entropy-compressed text indexes. In SODA, pages
841–850, 2003.

[21] R. Grossi and J. S. Vitter. Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching. In Proceedings ACM Symposium on
the Theory of Computing, pages 397–406, Portland,
Oregon, 2000. ACM Press.

[22] D. Gusfield. Algorithms on strings, trees and
sequences: computer science and computational
biology. Cambridge University Press, Cambridge, 1997.

[23] D. Harel and R. E. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM J. Comput.,
13(2):338–355, 1984.

[24] W.-K. Hon, R. Shah, and J. S. Vitter. Space-efficient
framework for top-k string retrieval problems. In
FOCS, pages 713–722. IEEE Computer Society, 2009.

[25] L. C. K. Hui. Color set size problem with applications
to string matching. In A. Apostolico, M. Crochemore,
Z. Galil, and U. Manber, editors, Proceedings of the
3rd Annual Symposium on Combinatorial Pattern
Matching, number 644 in Lecture Notes in Computer
Science, pages 230–243, Tucson, AZ, 1992.
Springer-Verlag, Berlin.

[26] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid
identification of repeated patterns in strings, trees and
arrays. In Proceedings of the 4th ACM Symposium on
the Theory of Computing, pages 125–136, Denver, CO,
1972. ACM Press.

[27] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and
K. Park. Linear-time longest-common-prefix
computation in suffix arrays and its applications. In
CPM, pages 181–192. Springer-Verlag, 2001.

[28] S. Kurtz. Reducing the space requirements of suffix
trees. Softw. Pract. Exp., 29(13):1149–1171, 1999.

[29] G. M. Landau. String matching in erroneus input. Ph.
D. Thesis, Department of Computer Science, Tel-Aviv
University, 1986.

[30] A. Lempel and J. Ziv. On the complexity of finite
sequences. IEEE Trans. Inf. Theory, 22:75–81, 1976.

[31] U. Manber and G. Myers. Suffix arrays: a new method
for on-line string searches. In Proceedings of the 1st
ACM-SIAM Annual Symposium on Discrete
Algorithms, pages 319–327, San Francisco, CA, 1990.

[32] E. M. McCreight. A space-economical suffix tree
construction algorithm. J. Algorithms, 23(2):262–272,
1976.

[33] S. Muthukrishnan. Efficient algorithms for document
listing problems. In Proceedings of the 13th
ACM-SIAM Annual Symposium on Discrete
Algorithms, pages 657–666, 2002.

[34] J. C. Na, P. Ferragina, R. Giancarlo, and K. Park.
Two-dimensional pattern indexing. In Encyclopedia of
Algorithms. 2008.

[35] G. Nong, S. Zhang, and W. H. Chan. Two efficient
algorithms for linear time suffix array construction.
IEEE Trans. Comput., 60(10):1471–1484, 2011.

[36] E. A. Poe. The Gold-Bug and Other Tales. Dover
Thrift Editions Series. Dover, 1991.

[37] V. Pratt. Improvements and applications for the
Weiner repetition finder. Manuscript, 1975.

[38] M. Rodeh, V. Pratt, and S. Even. Linear algorithm for
data compression via string matching. J. Assoc.
Comput. Mach., 28(1):16–24, 1981.

[39] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249–260, 1995.

[40] I. Ulitsky, D. Burstein, T. Tuller, and B. Chor. The
average common substring approach to phylogenomic
reconstruction. Journal of Computational Biology,
13(2):336–350, 2006.

[41] P. Weiner. Linear pattern matching algorithms. In
Proceedings of the 14th Annual IEEE Symposium on
Switching and Automata Theory, pages 1–11,
Washington, DC, 1973.

5. APPENDIX: TO KNOW MORE
A preliminary version of this article associated with the

special session celebrating the 40th anniversary of the ap-
pearance of Weiner’s paper appeared as: A. Apostolico, M.
Crochemore, M. Farach-Colton, Z. Galil, and S. Muthukr-
ishnan: Forty years of text indexing. In J. Fischer and
P. Sanders, editors, Combinatorial Pattern Matching, num-
ber 7922 in LNCS, pages 1–10. Springer, 2013. The story
of William Legrand is from: E. A. Poe: The Gold-Bug and
Other Tales. Dover Thrift Editions Series. Dover, 1991.
Weiner’s cited publication was also motivated by file com-
pression, see P. Weiner and R. W. Tuttle: The file trans-
mission problem, Research Report TR016, Computer Sci-
ence, Yale University, 1973. Books on string algorithms in-
clude: M. Crochemore and W. Rytter: Text algorithms.
Oxford University Press, 1994; D. Gusfield: Algorithms on
strings, trees and sequences: computer science and compu-
tational biology. Cambridge University Press, Cambridge,
1997; M. Crochemore, C. Hancart, and T. Lecroq.: Al-
gorithms on Strings. Cambridge University Press, Cam-
bridge, 2007. Statistical characterizations of coding and
promoter regions abound in the post-genome, starting with

J. van Helden, B. André, and J. Collado-Vides: Extract-
ing regulatory sites from the upstream region of the yeast
genes by computational analysis of oligonucleotides. J. Mol.
Biol., 281:827-842, 1998. For parallel constructions based
on Karp-Miller-Rozenberg paradigm see: Z. Galil: Opti-
mal parallel algorithms for string matching. In Proceedings
of the 16th ACM Symposium on the Theory of Comput-
ing, pages 240-248, Washington, D.C., 1984. ACM Press.
Z. Galil: Optimal parallel algorithms for string matching.
Inf. Control, 67(1-3):144-157, 1985. A. Apostolico, C. Il-
iopoulos, G. M. Landau, B. Schieber, and U. Vishkin. Par-
allel construction of a suffix tree with applications. Algo-
rithmica, 3:347-365, 1988. M. Crochemore and W. Rytter:
Usefulness of the Karp-Miller-Rosenberg algorithm in par-
allel computations on strings and arrays. Theor. Comput.
Sci., 88(1):59-82, 1991. Partial attempts at online ST con-
struction were contributed by M. Kempf, R. Bayer, and U.
Güntzer: Time optimal left to right construction of position
trees. Acta Inform., 24(4):461-474, 1987 and M. E. Majster
and A. Ryser: Efficient on-line construction and correction
of position trees. SIAM J. Comput., 9(4):785-807, 1980.
Further relationships among suffix trees and DAWGs are
described by M. Crochemore in Reducing space for index im-
plementation. Theor. Comput. Sci., 292(1):185-197, 2003.
And by S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda,
S. Arikawa, G. Mauri, and G. Pavesi. On-line construction
of compact directed acyclic word graphs, Discrete Applied
Mathematics, 146(2):156-179, 2005. For Slissenko’s work on
string matching see A. O. Slisenko: Determination in real
time of all the periodicities in a word. Sov. Math. Dokl.,
21:392-295, 1980. and A. O. Slisenko: Detection of peri-
odicities and string matching in real time. J. Sov. Math.,
22:1316-1386, 1983. Kolmogorov’s seminal paper appeared
in English as A. N. Kolmogorov: Three approaches to the
quantitative definition of information. Problems of Infor-
mation Transmission, 1(1):1-7, 1965. Additional references
on macro schemes can be found in J. A. Storer and T. G.
Szymanski: The macro model for data compression. In Pro-
ceedings of the 10th ACM Symposium on the Theory of
Computing, pages 30-39, San Diego, CA, 1978. ACM Press.
J. A. Storer and T. G. Szymanski: Data compression via
textual substitution. J. Assoc. Comput. Mach., 29(4):928-
951, 1982. An important step towards construction in sec-
ondary memory was achieved by P. Ferragina, R. Grossi:
The String B-tree: a new data structure for string search in
external memory and its applications, Journal of the ACM,
46(2): 236-280, 1999. The journal version of Suffix arrays
appeared as U. Manber and G. Myers: Suffix arrays: a
new method for on-line string searches. SIAM J. Com-
put., 22(5):935-948, 1993. The modifications to Farach’s
algorithm were proposed in J. Karkkainen and P. Sanders:
Simple linear-work suffix array construction. In J. C. M.
Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, ed-
itors, Automata, Languages and Programming, 30th Inter-
national Colloquium, ICALP 2003, Eindhoven, The Nether-
lands, June 30 - July 4, 2003. Proceedings, volume 2719
of Lecture Notes in Computer Science, pages 943-955, 2003.
Suffix arrays in linear time are in D. K. Kim, J. S. Sim, H.
Park, and K. Park: Constructing suffix arrays in linear time.
J. Discrete Algorithms, 3(2-4):126-142, 2005. See also P.
Ko and S. Aluru: Space-efficient linear-time construction of
suffix arrays. J. Discrete Algorithms, 3(2-4):143-156, 2005.
Searching with errors was published in G. M. Landau and U.

Vishkin, Fast parallel and serial approximate string match-
ing, Journal of Algorithms, 10, 2, 157–169 (1989). Early
work on approximate indexed searches includes E. Ukko-
nen: Approximate String-Matching over Suffix Trees. CPM
1993: 228-242, A. Cobbs: Fast approximate matching using
suffix trees. In Proc. 6th Ann. Symp. on Combinato-
rial Pattern Matching (CPM’95), LNCS 807, pages 41-54,
1995. The constant-time LCA solution was due to D. Harel
and R. E. Tarjan: Fast algorithms for finding nearest com-
mon ancestors. SIAM J. Comput., 13(2):338-355, 1984. A
simpler implementation was proposed in M. A. Bender and
M. Farach-Colton: The LCA problem revisited. In LATIN
2000: Theoretical Informatics, 4th Latin American Sympo-
sium, Punta del Este, Uruguay, April 10-14, 2000, Proceed-
ings, volume 1776 of Lecture Notes in Computer Science,
pages 88-94. Springer, 2000. Axel Thue’s landmark pa-
per on square-free morphism is A. Thue: Uber die gegen-
seitige lage gleicher teile gewisser zeichenreichen. Nor. Vi-
densk. Selsk. Skr. Mat. Nat. Kl., 1:1-67, 1912. See also
D. Gusfield and J. Stoye: Linear-time algorithms for find-
ing and representing all the tandem repeats in a string. J.
Comput. Syst. Sci., 69(4):525-546, 2004. For orthogonal
range queries see M. Lewenstein: Orthogonal range search-
ing for text indexing. In A. Brodnik, A. Lopez-Ortiz, V. Ra-
man, and A. Viola, editors, Space-Efficient Data Structures,
Streams, and Algorithms, volume 8066 of LNCS, pages 267-
302. Springer, 2013. For 2D suffix trees see J. C. Na,
R. Giancarlo, and K. Park: On-line construction of two-
dimensional suffix trees in O(n2 logn) time. Algorithmica,
48(2):173-186, 2007. For applications of wavelet trees see
P. Ferragina, R. Giancarlo, and G. Manzini: The myriad
virtues of wavelet trees. Inf. Comput., 207(8):849-866,
2009. Suffix trees and their derivatives find countless ap-
plications in bioinformatics, more recently for the search of
short strings produced by sequencing into massive genomes.
For a couple of examples, see H. Li and R. Durbin: Fast and
accurate long read alignment with Burrows-Wheeler Trans-
form. Bioinformatics, 26:589-595, 2010; B. Langmead, C.
Trapnell, M. Pop and S. L Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human
genome. Nat Biotechnol. 27(5): 455-457, 2009. One more
notable problem of computational biology is string barcod-
ing, that finds use in the classification of organisms and
virus identification. For this, see, e.g. S. Rash and D. Gus-
field. Uncovering Optimal Virus Signatures. Proceedings of
the Annual International Conference on on Computational
Molecular Biology (RECOMB) ACM press, 254-261, 2002.

