
HAL Id: hal-01830739
https://hal.science/hal-01830739v1

Submitted on 5 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed-integer and constraint programming formulations
for a multi-skill project scheduling problem with partial

preemption
Oliver Polo Mejia, Marie-Christine Anselmet, Christian Artigues, Pierre Lopez

To cite this version:
Oliver Polo Mejia, Marie-Christine Anselmet, Christian Artigues, Pierre Lopez. Mixed-integer and
constraint programming formulations for a multi-skill project scheduling problem with partial pre-
emption. 12th International Conference on Modelling, Optimization and Simulation (MOSIM 2018),
Jun 2018, Toulouse, France. pp.367-374. �hal-01830739�

https://hal.science/hal-01830739v1
https://hal.archives-ouvertes.fr


Mixed-integer and constraint programming formulations for a
multi-skill project scheduling problem with partial preemption

Oliver POLO MEJIA, Marie-Christine ANSELMET Christian ARTIGUES, Pierre LOPEZ

CEA, DEN, DEC, SETC LAAS-CNRS, Université de Toulouse, CNRS

St Paul lez Durance, France Toulouse, France

oliver.polomejia@cea.fr, marie-christine.anselmet@cea.fr lopez@laas.fr, artigues@laas.fr

ABSTRACT: In this paper, we consider the weekly scheduling problem of activities within one of the research
facilities of the French Alternative Energies and Atomic Energy Commission (CEA in short for French). To
better represent this problem we propose a new variant of the multi-skill project scheduling problem (MSPSP)
involving partial preemption. We describe the new MSPSP variant and we present two formulations for the
problem: one using mixed-integer linear programming (MILP) and a second one using constraint programming
(CP). Computational experiments on realistic data are carried out and discussed.

KEYWORDS: RCPSP, MSPSP, Partial preemption, Scheduling, Nuclear laboratory.

1 INTRODUCTION

There are not much research works studying the ap-
plication of optimization techniques for scheduling
activities within research facilities. At operational
level, scheduling research activities becomes a very
complex problem and the literature on this subject
is almost non-existent. In this paper we work on
the weekly scheduling of the activities within one
of the research facilities of the French Alternative
Energies and Atomic Energy Commission (CEA in
short for French). After analyzing the operations and
characteristics of the studied laboratory, we conclude
that the problem under consideration amounts to a
new extension of the classical Resource-Constrained
Project Scheduling Problem (RCPSP).

The RCPSP is a classical scheduling problem that
allows the modeling of a broad spectrum of real-
life situations. The problem consists in scheduling
non-preemptive tasks on limited renewable resources.
These tasks are linked together by precedence rela-
tionships (task i cannot start until task l is finished).
Usually, the objective is to find a solution that min-
imizes the makespan of the project, while complying
both the precedence constraints and the resource con-
straints.

Formally, the RCPSP can be defined by a 7-tuple (I,
d, E, R, B, b, T ) where I is a set of activities, d is a
vector of activity durations, E is a set of precedence
relationships, R is a set of resources, B is a vector
of resource availability, b is a matrix of resource de-
mands or consumptions per activity, and T is the set
of scheduling periods (Artigues et al., 2013).

Even if the classical version of the RCPSP is very ex-

pressive, it cannot cover all the situations that hap-
pen in real-life problems. That is why researchers
have developed more general or extended versions
of the RCPSP using the classical version as starting
point. Surveys on this topic are proposed for exam-
ple by (Hartmann and Briskorn, 2010) and (Orji and
Wei, 2013). Among all these variants, we distinguish
one that is of great interest for the modeling of the
scheduling problem at hand: the Multi-Skill Project
Scheduling Problem (MSPSP).

The MSPSP, presented by the first time in (Néron,
2002), combines characteristics of both the classical
RCPSP for the project description, and the Multi-
Purpose Machine model with the addition of new re-
source constraints. In this variant a resource is there-
fore characterized by the set of skills it possesses; and
a task is now defined by the number of required re-
sources with a specific competence.

This problem consists in determining a feasible sched-
ule, respecting the precedence constraints between
activities and the resource constraints: a resource
cannot execute a skill it does not master, cannot be
assigned to more than one competence requirement
at a given time, and must be assigned to the corre-
sponding activity during its whole processing time.
The aim is to minimize the total duration of the
project (Bellenguez-Morineau, 2008). Activities in
the MSPSP are supposed to be non-preemptive, that
means, once started an activity must run continu-
ously until its completeness. The main characteristics
of the MSPSP are showed in Figure 1.

With the MSPSP as starting point, adapting some of
its characteristics and relaxing the non-preemption
constraint, we have developed a new variant that



Figure 1 – Characteristics of the MSPSP

should better represent the real-life problem we are
trying to solve: an MSPSP with partial preemption.

The remainder of the paper is as follows. In the next
section, we describe the problem under consideration.
In Section 3, we present the mixed-integer linear pro-
gramming model representing the partially preemp-
tive MSPSP. As a modeling alternative, a Constraint
Programming model is also presented in Section 4. In
Section 5, we discuss the computational experiments
carried out. Finally, in Section 6 we conclude and
discuss future research.

2 PROBLEM DESCRIPTION

When scheduling research or engineering activities, it
may be interesting to allow the preemption, in or-
der to reduce the makespan of the project, especially
when resource availability is very limited. In our
case, due to some safety and operational constraints,
proper to nuclear regulation, we can only allow the
preemption of a subset of activities. In (Polo Mejia
et al., 2017), we proposed several MILP formulations,
for a first model of the considered nuclear research fa-
cility, where some activities are non-preemptive while
some other activities are fully preemptive (but with
a penalty every time the activity was preempted).
This model only fulfilled partially the operational re-
quirements. Indeed, when working with preemptive
scheduling problem, commonly we assume that all re-
sources are released during the preemption periods.
However, for some research activities, we are inter-
ested in avoiding the release of some equipment or
resource having an important setup time.

That is why we propose in this paper to work with a
variant allowing the partial release (partial preemp-
tion) of resources according to the characteristics of
the activities. We must indicate for each activity
what resource can be released during the preemption
periods. Preemption is now handled in three levels
according to the activities characteristics: 1) Non-
preemption, for activities where none of the resources
can be preempted; 2) Partial preemption, for activ-
ities where a subset of resources can be preempted;

Figure 2 – Characteristics of the MSPSP-PP

and 3) Full preemption, for activities where all re-
sources can be preempted.

In order to have a better representation of reality, we
need to do some changes over the technicians behav-
ior. Unlike the traditional MSPSP, in our practical
case, technicians may respond to more than one skill
requirement per activity. Also, due to operational
and safety reasons, we need to guarantee a minimum
number of technicians present during the execution of
the activity. Finally, due to the durations of some ac-
tivities (larger than technicians’ work shifts), we need
to relax the constraint stating that the same techni-
cian must execute the totality of the activity.

Additionally, we must include some other character-
istics to our problem concerning the time windows
for scheduling. In the laboratory, the regulatory test
must be executed before a restrictive date (deadline).
Moreover, some of the activities are in collaboration
with other nuclear facilities, such activities are then
restricted by a release date fixed by external part-
ners. A recap of our MSPSP with partial preemption
(MSPSP-PP) is presented in Figure 2.

The complexity of the MSPSP with partial preemp-
tion can be established using the classical RCPSP
as starting point. For each instance of the RCPSP
we can match an instance of the MSPSP with par-
tial preemption, where all resources are mono-skilled
and none of the resources can be preempted. Thus,
we can define the RCPSP as a particular case of the
MSPSP with partial preemption. Since the RCPSP
has been proved to be strongly NP-hard (Blazewicz
et al., 1983) we can therefore infer that the MSPSP
with partial preemption is also strongly NP-hard.

Once defined the characteristics and the complexity
of the proposed problem, we proceed to formalize the
problem using the two more common approaches in
the literature: Mixed-Integer Linear Programming
(MILP) and Constraint Programming (CP). These
models are presented in the following sections.



3 MILP MODEL

Usually, the variants of the RCPSP and the
MSPSP can be modeled using different approaches
such as: continuous time-based models based on
flows, discrete-time mixed integer linear program-
ming (MILP) formulations, or event-based MILP for-
mulations. An analysis of these approaches allows
us to identify the so-called on/off formulation as the
most suitable for the preemptive case we are working
on. This time-indexed formulation uses binary vari-
ables Yi,t, where Yi,t = 1 if activity i is in progress at
time t and Yi,t = 0 otherwise.

Using the on/off formulation as basis, we tested two
models having as only difference the way in which we
modeled the preemption periods. After preliminary
computational experiments, one of the models showed
significantly better results, and it is presented below:

3.1 Variables

• Yi,t ∈ {0, 1}, Yi,t = 1 ⇐⇒ activity i is in
progress at time t

• Oj,i,t ∈ {0, 1}, Oj,i,t = 1 ⇐⇒ technician j is
allocated to activity i at time t

• Zi,t ∈ {0, 1}, Zi,t = 1 ⇐⇒ activity i starts at
time t or before

• Wi,t ∈ {0, 1}, Wi,t = 1 ⇐⇒ activity i ends at
time t or after

• Ppi,t ∈ {0, 1}, Ppi,t = 1 ⇐⇒ activity i is pre-
empted at time t

• Endi ∈ Z+ : Completion time of activity i

• Cmax ∈ Z+ : Project makespan

3.2 Objective function

The most common objective function found in the lit-
erature for the RCPSP and the MSPSP is to minimize
the project makespan:

min(Cmax) (1)

However, as we are working in a research facility, we
have the interest to assure that all activities are com-
pleted as soon as possible. We can translate this as
the minimization of the average completion time for
all activities:

min
∑
i∈I

Endi (2)

Using an aggregate objective function may have a
negative impact on the solving time of the problem.
That is why, we decide to test both objective func-
tions and evaluate the impact of this change.

3.3 Constraints∑
i

Oj,i,t ≤ DOj,t ∀j,∀t (3)

∑
i

((Yi,t+PRi,k ∗Ppi,t)∗Bri,k) ≤ DRi,k ∀t, ∀k (4)

(Yi,t + Pci ∗ Ppi,t) ∗Bci,c ≤
∑
j

(Oj,i,t ∗ COj,c)

∀i,∀t, ∀c
(5)

∑
j

Oj,i,t ≥ (Yi,t + Pci ∗ Ppi,t) ∗Nti ∀t,∀i (6)

∑
t

Yi,t ≥ Di ∀i (7)

Dl ∗ (1− Yi,t) ≥
T∑

t′=t

Yl,t′ ∀(i, l) ∈ E,∀t (8)

T∑
t=dli+1

Yi,t ≤ 0 ∀i (9)

ri−1∑
t=1

Yi,t ≤ 0 ∀i (10)

Ppi,t = Zi,t + Wi,t − Yi,t − 1 ∀i,∀t (11)

Zi,t ≥ Yi,t′ ∀i,∀t,∀t′ ≤ t (12)

Wi,t ≥ Yi,t′ ∀i,∀t,∀t′ ≥ t (13)

Zi,t ≤
t∑

t′=1

Yi,t′ ∀t (14)

Wi,t ≤
T∑

t′=t

Yi,t′ ∀t (15)

Endi ≥ t ∗ Yi,t ∀t,∀i (16)

Cmax ≥ Endi ∀i (17)

Equations (3) ensure that operator’s capacities
(DOj,t) are satisfied. In equations (4), we ensure
that all resource requirements (Bri,k ) are satisfied re-
specting the resource capacities (DRk,t). Parameter
PRi,k indicates whether the resource k can be pre-
empted (PRi,k=0) or not (PRi,k=1). Equations (5)
ensure the respect of skill requirements (Bci,c) taking
into account the set of skills of technicians (COj,c;
COj,c = 1 if technician j has the competence c, 0
otherwise). Parameter Pci indicates whether tech-
nicians can be preempted (Pci=0) or not (Pci=1).
The constraints given in (6) and (7) ensure the re-
spect of the minimum number of technicians (Nti)
and duration of activities (Di), respectively. Prece-
dence constraints are given in (8). Inequalities (9)
and (10) are the constraints for deadlines (dli) and
release dates (ri). Equations (11) determine whether
an activity is preempted or not. Inequalities (12) to
(15) are constraints for getting the values of variables



Zi,t and Wi,t. Equations (16) allows to calculate the
completion time of each activity. Finally, inequalities
(16) calculate the makespan of the project. Note that
it is not necessary to declare variables Yi,t, Zi,t, Endi
and Cmax as integer variables since an integer opti-
mal solution for the other variables enforces integrity
on these variables. However, the modern branch-and-
bound procedures inside MILP solvers may be able to
exploit the knowledge of the integrity of these vari-
ables via cuts and preprocessing techniques to con-
verge faster.

4 CP MODEL

In the last decades constraint programming has at-
tracted high attention among experts from many ar-
eas of computer science due to its potential for solving
hard real life problems. The main idea of constraint
programming is to solve problems by stating con-
straints (requirements) about the problem area and,
consequently, finding solutions satisfying all the con-
straints. The increasing interest for this technique
leaded us to use it and evaluate its performance over
the studied problem. Our first CP model for the
MSPSP with partial preemption is presented below;
further research needs to be done in order to im-
prove its performance. We use the IBM CP Optimizer
(CPO) as software to model and solve this problem.
The presented model refers to the concept of interval
variables, a constrained object tailored to scheduling
problem, and also to other specific scheduling con-
straints in CPO.

4.1 Variables

• itvsi: Interval variable between the start and the
end of activity i

• pari,p: Optional 1 interval variable indicating the
start and the end of every possible part p, p ∈
{1, 2, . . . , Di}, of activity i

• InTechj,i,p: Optional interval variable indicating
the periods when technician j is working in the
part p of activity i

4.2 Objective function

As mentioned before, we want to study the impact
of using an aggregate objective function. In our CP
model the objective functions are calculated as fol-
lows:

Minimize the project makespan:

min(max
∀i∈I

itvsi.end) (18)

1Optional interval variables may or may not be present in
the solution, so as to satisfy the constraints.

Minimize the average completion time of activities:

min
∑
i∈I

itvsi.end (19)

4.3 Constraints

Span(a, {b1, .., bn}) constraint : states that the in-
terval variable a (if present) spans over all present
interval variables from the set {b1, .., bn}. In other
words, interval variable a starts together with the
first present interval from {b1, .., bn} and ends to-
gether with the last present interval (Laborie, 2009).
We use this kind of constraint to span the pari,p and
InTechj,i,p variable within the itvsi variables.

Span all the parts p of the activity i within the exe-
cution interval of variable i:

span(itvsi, pari,p : ∀p) ∀i (20)

Span allocation intervals of technicians (InTechj,i,p)
within the variables itvsi . With constraints (20) this
will allow only the necessary technician assignment
interval variables to be present in the solution. These
constraints stand over the hypotheses that every ac-
tivity requires at least 1 technician for its processing:

span(itvsi, InTechj,i,p : ∀j,∀p) ∀i (21)

noOverlap({b1, .., bn}) constraint : states that none
of the interval variables within the set {b1, .., bn} over-
lap over the time. We use this variable to ensure a
disjunctive constraint over the technicians:

noOverlap(InTechj,i,p : ∀i,∀p) ∀j (22)

Ensure the activity duration: the sizeOf expression
is used to access the size (duration) of an interval
variable:

Di =
∑
p

sizeOf(pari,p) ∀i (23)

Respect the deadlines and release dates:

dli ≥ itvsi.end (24)

ri ≤ itvsi.start (25)

Precedence relationships:

itvsi.end < itvsl.start ∀(i, l) ∈ E (26)

Let us define rUsagek as a cumulative function in-
dicating the usage of resource k over the time. Also
let pulse(F, h) be an elementary pulse function tak-
ing the value of h over interval F . We can state the
resource constraint as follows:

rUsagek =
∑

i∈I:PRi,k=0

∑
p

pulse(parp,i, Bri,k) +

∑
i∈I:PRi,k=1

pulse(itvsi, Bri,k) ∀k



rUsagek <= DRk ∀k (27)

For ensuring the skill requirements, we define SkAlli,c
as a cumulative function indicating the allocation of
skill c for the activity i over the time.

SkAlli,c =
∑
j

∑
p

pulse(InTechj,i,p, COj,c) ∀i,∀c

The alwaysIn(F,B,min,max) constraint is used to
confine the values of a cumulative function F during
an interval B inside interval [min,max]. We can then
define the skill constraints for preemptive technicians
as follows:

alwaysIn(SkAlli,c, pari,p, Bci,c,∞) ∀i : Pci = 0,∀c,∀p
(28)

If technicians are declared as non-preemptive the con-
straint is applied to the interval variable of the activ-
ity rather than on its parts:

alwaysIn(SkAlli,c, itvsi, Bci,c,∞) ∀i : Pci = 1,∀c
(29)

We must add the constraints on the minimum num-
ber of technicians required for executing an activity.
In order to do that, we use a cumulative function
AllTechi indicating the number of technicians allo-
cated for an activity over the time. This function is
calculated as follows:

AllTechi =
∑
j

∑
p

pulse(InTechj,i,p, 1) ∀i

The constraints are then defined for preemptive tech-
nicians as follows:

alwaysIn(AllTechi, pari,p, Nti,∞) ∀i : Pci = 0,∀p
(30)

For non-preemptive technicians we have:

alwaysIn(AllTechi, itvsi, Nti,∞) ∀i : Pci = 0 (31)

We also need to ensure that there is not overlapping
of every activities part variable. However, in order to
improve our model we decided not to use the noOver-
lap expression we presented before and state these
constraints as follows, so as to break symmetries:

pari,p.end < pari,s.start ∀i,∀p,∀s ∈ Parts : s > p

(32)

presenceOf(pari,p) =⇒ presenceOf(pari,s)

∀i,∀p,∀s ∈ Parts : s > p
(33)

presenceOf() is a boolean constraint, which is true
when the interval variable is present. Together with
Constraints (20) and (23), these constraints ensure

that only the necessary part interval variables are
present.

Technicians cannot be assigned during their absence
periods. To model these constraints, we define a
step function describing the present and absent pe-
riods of each technician (PreTechj). We must also
use the predefined constraint forbidExtent(a, F) that
states that whenever the interval variable a is present,
it cannot overlap a point t where the step function
F (t) = 0. We can define these constraints as follows:

forbidExtent(InTechj,i,p, P reTechj)∀j,∀i,∀p (34)

Finally, in order to improve the model we added a
synchronization constraint between the InTechj,i,p

and the pari,p variables for all the activities where
technicians can be preempted. The constraint
synchronize(a, {b1, ..., bn}) makes intervals {b1, ..., bn}
start and end together with interval variable a (if a
is present).

synchronize(pari,p, InTechj,i,p : ∀j) ∀i : Pci = 0,∀p
(35)

5 EXPERIMENTAL RESULTS AND DIS-
CUSSION

Computational tests have been carried out using the
solver CPLEX 12.7 for the MILP model and CP Opti-
mizer 12.7 for the CP model. We generated our sets of
instances using a basic instance generation algorithm
that allows the control of certain aspects such as: pro-
portions of preemption type, percentage of activities
with deadline and release date, number of precedence
relationships, skill number per technicians, etc.

The proposed MILP model requires that the user in-
dicates the initial scheduling horizon (an estimation
of project makespan, T ) in order to initialize the de-
cision variables. Since we are using a “time-indexed”
formulation, this estimation may have an important
role in the performance of the model. That is why,
the first thing to want to analyze is the behavior of
the solving time when the makespan estimation (T )
change. We tested the MILP model using the objec-
tive function (1) (MILP1). A small set of 7 dummy
instances have been generated with a makespan lower
than 30 time units (this instance have 20 activities
with duration between 1 and 5 time units, 4 prece-
dence relationship, 13 skills, all other characteristics
are random).

As shown in Table 1, when the initial estimation gets
far from the real value, the time needed to solve the
problem increases significantly. This can be explained
by the fact that when T increases, the MILP model
will need to handle more decision variables to solve
to optimality the same instance.



MILP1
T=30

MILP1
T=50

Instance 1 15.05 sec 60.77 sec
Instance 2 2.05 sec 36.59 sec
Instance 3 15.23 sec 69.93 sec
Instance 4 23.07 sec 138.61 sec
Instance 5 27.23 sec 105.32 sec
Instance 6 36.71 sec 171.65 sec
Instance 7 1403.31 sec 228.98 sec

Table 1 – Time to solve to optimality

MILP2
T=30

MILP2
T=50

Instance 1 15.00% 36.00%
Instance 2 13.35% 25.68%
Instance 3 13.93% 55.96%
Instance 4 17.85% 58.39%
Instance 5 11.00% 51.42%
Instance 6 13.56% 33.38%
Instance 7 13.84% 50.35%

Table 2 – Gap after 30 min of computation

We did the same test using the objective function
(2) (MILP2). Results are shown in Table 2. Since
the time required to get the optimal solution is big-
ger than the fixed time limit, we present the final
gap (percentage of deviation between the best feasi-
ble found solution and the optimal solution) after 30
minutes of computing. As it can be seen from Table
2, this gap increases with T . This shows us the im-
portance of having a good estimation of the project
makespan in order to improve the performance of the
proposed MILP model. In the following of this re-
search project, we must develop heuristic methods
allowing us to have a good estimation of the project
makespan in order to reduce the required time to solve
to optimality the instances.

Another observation we can do from the results in
Table 1 and Table 2, is that the use of an aggregate
objective function has a negative impact in the com-
putation time needed to solve the instances. This
may be due to the fact that they can exist a big num-
ber of feasible solutions having different values for the
aggregate function but with the same makespan. So,
when branching the solver cannot cut these branches
as fast as it would do it for a makespan optimization.
Another possible reason is the quality of upper/lower
bounds we can get for an aggregate objective func-
tion.

In order to compare the performance of the CP model
against the MILP model, we generate a bigger set
of 95 heterogeneous instances (15 activities, duration

between 1 to 10 time units, 15 skills, 8 resources,
20% of activities with release date and deadline, all
other characteristics are random). We solved these
instances for the two configurations of the MILP and
CP models (CP1 for objective function (18), CP2 for
objective function (19)).

Solved to
opt.

Solved not
opt.

No able to
find a first

solution
M
I
L
P
1

Number 58 32 5

Mean GAP - 45.86% -

Standard
deviation

- 28.93% -

C
P
1

Number 1 61 33

Mean GAP - 18.63% -

Standard
deviation

- 23.41% -

Table 3 – Results configuration 1 (Time lim: 15 min)

Results in Table 3 show that the proposed MILP
model outperforms the CP model for configuration
1 (minimization of makespan). The MILP1 was able
to solve to optimality a large number of instances (58
out of 95) within the limited time while the CP1 only
was able to demonstrate the optimality of 1 instance.
Additionally, the number of not solved instances is
bigger for the CP. In the following of the project, we
must try to improve the performance of the CP model
adding or modifying some constraints to break sym-
metries and reduce the search space.

Solved
to opt.

Solved
not opt.

Better
value

No first
solution

Number
(MILP2)

0 78 40 17

Number
(CP2)

0 59 19 36

Table 4 – Results configuration 2 (Time lim:15 min)

Table 4 presents the obtained results for configura-
tion 2 (minimization of end times). These results al-
low us to confirm what we said before, the use of an
aggregate objective function has a negative impact in
the computation time required to solve the problem
(a lower number of optimally solved instances within
the limit time). The MILP2 seems to outperform the
CP2 being able to get values for a bigger number of
instances within the limited time and a lower num-
ber of not solved instances. Additionally, MILP2 gets
more better solution than the CP2 for the solved in-
stances. Again, we must remember that the proposed
CP model is our first version and it should require



some improvements.

A deep analysis of individual results of this test sug-
gested us a difference of performance of the models
when the portion of preemptive, semi-preemptive and
non-preemptive activities changes. In order to cor-
roborate this, we have generated 4 sets (A, B, C and
D) of 40 instances. For each instance in a set, there
is a similar instance in the others having as only dif-
ference the distribution of the preemption type of ac-
tivities (this distribution its presented in Table 5).
These instances have 15 activities with duration be-
tween 1 to 10 time units, 15 skills, 8 resources, 20%
of activities with release date and deadline, all other
characteristics are random.

A B C D
Non-preemptive 10% 10% 80% 33.3%

Partially preemptive 10% 80% 10% 33.3%
Preemptive 80% 10% 10% 33.3%

Table 5 – Distribution of preemption type

We solved the 4 sets of instances to optimality using
the configuration 1 of the MILP model. Using a t-
test for two paired samples with significance level of
0.05 (Derrick et al., 2017), we try to identify if there
is enough statistical evidence to claim a difference of
performance (time to solve) according to the distribu-
tion of the preemption type. The test results, showed
in Table 6, led us to conclude that the MILP model
give faster answer when the fraction of preemptive ac-
tivities increases. For the other kind of preemption,
we do not evidence any special impact.

B C D

A

time A
<

time B
p.val= 0.0017

time A
<

time C
p.val=0.0002

Statistically
equal

p.val=0.0595

B -
Statistically

equal
p.val=0.1636

Statistically
equal

p.val=0.1491

C - -

time C
>

time D
p.val=0.0073

Table 6 – T-test for difference in solving time - MILP1

In order to test the impact of the type of preemption
over the CP model, we try to solve the same sets of
instances using the CP1 configuration. However, the
CP1 model was not able to solve to optimality any of
the instance within the time limit (30 min). It was
not even able to found initial solutions for a large
number of instances. This fact made impossible for

us to do an analysis similar to the one done for the
MILP1. However, we decided to analyze the number
of instances for which the model CP1 was able to
found at least an initial solution. Results in Table
7 may confirm the same behavior observed for the
MILP1: the CP1 model goes faster when it works
over highly preemptive instances.

A B C D
Number

of
Instances

40 21 7 26

Table 7 – Solved instances per preemption type - CP1

One of the bigger advantages of the MSPSP-PP is
the possibility of better handle the partial preemption
we can find in real-life problems. When using a tra-
ditional preemptive/non-preemptive approach, semi-
preemptive activities are usually modeled as non-
preemptive. In order to prove the convenience of us-
ing a partial preemption approach for reducing the
makespan, we decide to analyze the optimal values
obtained for the 4 sets of instances.

As expected, the set with most of preemptive ac-
tivities (set A) allows us to get lower optimal val-
ues than the other sets. When comparing the
set having a big portion of non-preemptive activ-
ities (C) against the one having a big portion of
semi-preemptive activities (B), we appreciate that
for set B we get lower values than for set C. This
confirms the fact that using a semi-preemptive ap-
proach may reduce the makespan of the project.
With these results we can establish the follow-
ing relation for makespan value: Preemptive≤Semi-
preemptive≤Non-preemptive. This simple relation
may help us to calculate the lower/upper bounds we
need to develop exact solving algorithms.

The main objective of this project is to schedule the
weekly activities of the nuclear laboratory. The first
approach is to generate scheduling using the hour as
time unit. In a normal week the number of working
hours is 108, what give us an idea of the expected
makespan. Usually, we must schedule between 40
and 50 activities with a duration between 4 and 20
hours. There is at least 20 technicians, more than
25 resources and at least 20 skills. When trying to
solve instances having these characteristics, the mod-
els were not able to find optimal solutions after 2
hours of computation, getting an optimality gap go-
ing from 20% to 50% for the MILP1. These results
lead us to start the development of heuristics methods
for solving large instances in reasonable times.



6 CONCLUSIONS

The literature about scheduling research activities is
very sparse. That is why, in this paper we presented
a new variant of the Multi-skill Project Scheduling
Problem (MSPSP) developed to schedule the research
activities in a nuclear laboratory: MSPSP with par-
tial preemption. The proposed problem can be easily
adapted to a huge number of real-life situations for
scheduling activities within very restrictive environ-
ments. After describing all the characteristics of the
proposed problem, we modeled it using two different
techniques: Integer Linear Programming and Con-
straint Programming.

The first experimental results showed the importance
of the initial estimation of the project makespan for
the MILP model performance. We also evidenced
that using aggregate objective functions has a nega-
tive impact on the computation time required to solve
the MILP and CP models. Finally, we observed that
the MILP model outperformed the CP model for al-
most all instances and all model configurations, at
least for our current CP modeling, which could cer-
tainly be improved.

We can conclude that the use of a partially-
preemptive approach may lead to reduction of the
makespan of the project when compared again a tra-
ditional preemptive/non-preemptive approach. Addi-
tionally, the proportion of different kinds of preemp-
tions seems to have an impact in the performance
of the MILP and CP models. Indeed, the models
are faster when the portion of preemptive activities
is high.

In practice, the MSPSP with partial preemption may
be easily adapted to many real-life situations, espe-
cially for scheduling activities within very controlled
environments such as pharmaceutical, chemical and
aeronautical. For the studied laboratory, the appli-
cation of the proposed model gives to the engineers
the ability to have a more performant schedule in a
matter of minutes, at the same time that it eliminates
the risk of forgetting constraints, which can happen
easily in the manual scheduling process.

As future work, we must study the ways of improve-
ments of the proposed CP model such as adding or
modifying some constraints to break symmetries and
reduce the search space. We also need to develop
heuristics allowing us to have good solutions in rea-
sonable times. The solving times obtained in the
experimental tests lead us to develop dedicated al-
gorithms for exact solving. In order to do that we
will need to study different approaches for calculat-
ing good lower bounds.

REFERENCES

Artigues C., Demassey S. and Néron E., 2013. The
Resource-Constrained Project Scheduling Prob-
lem. Resource-constrained project scheduling:
models, algorithms, extensions and applications,
John Wiley & Sons.

Bellenguez-Morineau O., 2008. Methods to solve
multi-skill project scheduling problem. 4OR,
6(1), pp. 85-88.

Blazewicz J., Lenstra J.K. and Rinnooy Kan A.H.G.,
1983. Scheduling projects subject to resource
constraints: classification and complexity. Dis-
crete Applied Mathematics, 5, pp. 11-24.

Derrick B.,Toher D and White P., 2017. How to
compare the means of two samples that include
paired observations and independent observa-
tions. Tutorials in Quantitative Methods for
Psychology, Vol 13, Iss 2, Pp 120-126 (2017),
13(2), pp. 120-126.

Hartmann S. and Briskorn D., 2010. A sur-
vey of variants and extensions of the resource-
constrained project scheduling problem. Euro-
pean Journal of Operational Research, 207(1),
pp. 1-14.

Laborie P., 2009. IBM ILOG CP Optimizer for
detailed scheduling illustrated on three prob-
lems. Integration of AI and OR Techniques
in Constraint Programming for Combinatorial
Optimization Problems, Springer, Berlin, Heidel-
berg, pp. 148-162.

Montoya C., Bellenguez-Morineau O., Pinson E. and
Rivreau D., 2015. Integrated column genera-
tion and lagrangian relaxation approach for the
multi-skill project scheduling problem. Hand-
book on Project Management and Scheduling,
Springer International, pp. 565-586.

Néron E., 2002. Lower bounds for the multi-skill
project scheduling problem. Proceedings of the
Eighth International Workshop on Project Man-
agement and Scheduling, pp. 274-277, Valencia,
Spain.

Orji I. M. J. and Wei S., 2013. Project scheduling
under resource constraints: A recent survey. In-
ternational Journal of Engineering Research and
Technology, 2(2), pp. 1-20.

Polo Mejia O., Anselmet M.-C., Artigues C. and
Lopez P., 2017. A new RCPSP variant for
scheduling research activities in a nuclear labora-
tory. 47th International Conference on Comput-
ers & Industrial Engineering (CIE47), Lisbon,
Portugal.


