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Abstract. We present a new deep learning approach for matching de-
formable shapes by using a model which jointly encodes 3D shapes and
correspondences. This is achieved by factoring the surface representa-
tion into (i) a template, that parameterizes the surface, and (ii) a learnt
feature vector that parameterizes the function which transforms the tem-
plate into the input surface. We show that our network can directly pre-
dict the feature vector and thus correspondences for a new input shape,
but also that correspondence quality can be significantly improved by
an additional regression step. This additional step improves the shape
feature vector by minimizing the Chamfer distance between the input
and parameterized shape. We show that this produces both a better
shape representation and better correspondences. We demonstrate that
our simple approach improves state of the art results on the difficult
FAUST inter challenge, with an average correspondence error of 2.88cm.
We also show results on the real scans from the SCAPE dataset and
the synthetically perturbed shapes from the TOSCA dataset, including
non-human shapes.

Keywords: 3D deep learning, computational geometry, shape matching

Fig. 1: Our approach predicts shape correspondences by learning a consistent
mesh parameterization with a shared template.
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1 Introduction

There is a growing demand for techniques that make use of the large amount
of 3D content generated by modern sensor technology. An essential task is to
establish reliable 3D shape correspondences between scans from raw sensor data,
or between scans and a template 3D shape. This process is challenging due to
low sensor resolution and high sensor noise, and is more challenging for artic-
ulated shapes, such as humans, that exhibit significant non-rigid deformations
and shape variations.

Traditional approaches to estimating shape correspondences for articulated
objects typically rely on intrinsic surface analysis either optimizing for an iso-
metric map or leveraging intrinsic point descriptors. To improve correspondence
quality, methods have been extended to take advantage of category-specific data
priors. Effective human-specific templates and registration techniques have been
developed over the last decade [1], but these methods require significant effort
and domain-specific knowledge to design the parametric deformable template,
create an objective function that ensures alignment of salient regions and is not
prone to being stuck in local minima, and develop an optimization strategy that
effectively combines global search for a good initial guess and a local refinement
procedure.

In this work we propose a comprehensive, all-in-one solution to template-
driven shape matching that relies on a deep encoder-decoder network. To train
our network we use a single template shape (a point cloud or a mesh) with some
example deformations [2,3]. Our encoder takes a deformed shape and maps it
to a latent space, computing a global shape descriptor. Our decoder takes a
point on the template and a global shape descriptor, and maps the template
point map to the deformed shape. Our decoder network is able to use this learnt
descriptor to deform the template to match the observed shape, while respecting
provided ground truth correspondences. Together, our encoded shape feature and
the decoder network define a deformation field from the template to the input
data. This learnt deformation can then be used to establish correspondences
between any two shape instances. At test time we encode two input shapes, and
then decode every point of the template to both shapes, obtaining deformed
templates that align with the inputs. While this step provides a good initial
alignment, the template and the output might not be in precise correspondence.
We use gradient descent through the decoder network to further improve the
alignment, optimizing for the latent code that minimizes the Chamfer distances
between the input shape and template reconstruction. The final map between
two surfaces is trivially obtained by mapping via the deformed templates.

In contrast to previous work our method does not require a manually de-
signed deformable template, instead the deformation parameters and degrees of
freedom are implicitly learned by the encoder. We simply use surface-to-surface
distance as our loss function during training and inference stages and do not
need to define hand-crafted regularization terms. The fine-tuning optimization
phase also naturally fits in this framework, where the initial guess is obtained
via a feed-forward pass through a network, and it is further improved with a
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gradient descent search in the latent space minimizing the distance between the
input shape and the template reconstruction. The latter does not require any
additional implementation effort, since neural network can be used to propa-
gate gradients to the latent space. We demonstrate that with sufficient training
data this simple approach achieves state-of-the-art results and outperforms tech-
niques that require complex multi-term objective functions instead of the simple
reconstructive loss used by our method.

2 Related work

Registration of non-rigid geometries with pose and shape variations is a long
standing problem with extensive prior work. We first provide a brief overview of
generic correspondence techniques. We then focus on category specific and tem-
plate matching methods developed for human bodies, which are more closely
related to our approach. Finally, we present an overview of deep learning ap-
proaches that have been developed for shape matching and more generally for
working with 3D data.

Generic shape matching. To estimate correspondence between articulated
objects, it is common to assume that their intrinsic structure (e.g., geodesic dis-
tances) remains relatively consistent across all poses [4]. Finding point-to-point
correspondences that minimize metric distortion is a non-convex optimization
problem, referred to as generalized multi-dimensional scaling [5]. This optimiza-
tion is typically sensitive to an initial guess [6], and thus existing techniques
rely on local feature point descriptors such as HKS [7] and WKS [8], and use
hierarchical optimization strategies [9,10]. Some relaxations of this problem have
been proposed such as: formulating it as Markov random field and using linear
programming relaxation [11], optimizing for soft correspondence [12,13,14], re-
stricting correspondence space to conformal maps [15,16], heat kernel maps [17],
and aligning functional bases [18].

While these techniques are powerful generic tools, some common categories,
such as humans, can benefit from a plethora of existing data [2] to leverage
stronger class-specific priors.

Template-based shape matching. A natural way to leverage class-specific
knowledge is through the explicit use of a shape model. While such template-
based techniques provide the best correspondence results they require a careful
parameterization of the template, which took more than a decade of research to
reach the current level of maturity [19,20,21,22,1]. For all of these techniques,
fitting this representation to an input 3D shape requires also designing an objec-
tive function that is typically non-convex and involves multiple terms to guide
the optimization to the right global minima. In contrast, our method only re-
lies on a single template 3D mesh and surface reconstruction loss. It leverages a
neural network to learn how to parameterize the human body while optimizing



4 ECCV-18 submission ID 1804

for the best reconstruction. The forward pass through this network provides a
good initial guess for template fitting, and a simple back-propagation is used to
refine the fitting parameters, replacing complex multi-term objective functions
used in traditional optimization frameworks.

Deep learning for shape matching. Another way to leverage priors and
training data is to learn better point-wise shape descriptors using human models
with ground truth correspondence. Several neural network based methods have
recently been developed to this end to analyze meshes [23,24,25,26] or depth
maps [27]. One can further improve these results by leveraging global context,
for example, by estimating an inter-surface functional map [28]. These meth-
ods still rely on hand-crafted point-wise descriptors [29] as input and use neural
networks to improve results. The resulting functional maps only align basis func-
tions and additional optimization is required to extract consistent point-to-point
correspondences [18]. One would also need to optimize for template deformation
to use these matching techniques for surface reconstruction. In contrast our
method does not rely on hand-crafted features (it only takes point coordinates
as input) and implicitly learns a human body representation. It also directly
outputs a template deformation and the correspondences are directly estimated
by projecting to the template.

Deep Learning for 3D data. Following the success of deep learning ap-
proaches for image analysis, many techniques have been developed for process-
ing 3D data, going beyond local descriptor learning to improve classification,
segmentation, and reconstruction tasks. Existing networks operate on various
shape representations, such as volumetric grids [30,31], point clouds [32,33,34],
geometry images [35,36], seamlessly parameterized surfaces [37], by aligning a
shape to a grid via distance-preserving maps [38], or by predicting chart repre-
sentations [39]. We build on these works in several ways. First, we process the
point clouds representing the input shapes using an architecture similar to [32].
Second, similar to [36], we learn a surface representation. However, we do not
explicitly encode correspondences in the output of a convolution network, but
implicitly learn them by optimizing for parameters of the generation network as
we optimize for reconstruction losss.

3 Method

Our goal is, given a reference shape Sr and a target shape St, to return a set
of point correspondences C between the shapes. We do so using two key ideas.
First, we learn to predict a transformation between the shapes instead of directly
learning the correspondences. This transformation, from 3D to 3D can indeed be
represented by a neural network much more easily than the association between
variable and large number of points. The second idea is to learn transformations
only from one template A to any shape. Indeed, the large variety of possible
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(a) Initial reconstruction

(b) Refined reconstruction

(c) Correspondences

Fig. 2: Method overview. (a) A feed-forward pass in our autoencoder encodes
input point cloud Sr to latent code Eφ (Sr) and reconstruct Sr using Eφ (Sr)
to deform the template A. (b) We refine the reconstruction S̄r by performing a
regression step over the latent variable Eφ (Sr), minimizing the Chamfer distance
between S̄r and Sr. (c) Finally to match a point qr on Sr to a point qt on St, we
look for the nearest neighbor pr of qr in S̄r, which is by design in correspondence
with pt; and look for the nearest neighbor qt of pt on St.

poses of humans makes considering all pairs of possible poses intractable during
training. We instead decouple the correspondence problem into finding two sets
of correspondences to a common template shape. We can then form our final
correspondences between the input shapes via indexing through the template
shape. An added benefit is during training we simply need to vary the pose for
a single shape and use the known correspondences to the template shape as the
supervisory signal.

Our approach has three main steps which are visualized figure 2. First, a
feed-forward pass through out encoder network generates an initial global shape
descriptor (Section 3.1). Second, we use gradient descent through our decoder
network to refine this shape descriptor to improve the reconstruction quality
(Section 3.2). We can then use the template to correspond points between any
two input shapes (Section 3.3).
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3.1 Learning 3D shape reconstruction by template deformation

To put an input shape S in correspondence with a template A, our first goal is
to design a neural network that will take S as input and predict transformation
parameters. We do so by training an encoder-decoder architecture. The encoder
Eφ defined by its parameters φ takes as input 3D points, and is a simplified
version of the network presented in [32]. It applies to each input 3D point co-
ordinate a multi-layer perceptron with hidden feature size of 64, 128 and 1024,
then maxpooling over the resulting features over all points followed by a linear
layer, leading to feature of size 1024 Eφ (S). This feature, together with the 3D
coordinates of a point on the template p ∈ A is taken as input to the decoder Dθ
with parameters θ, which is trained to predict the position q of the corresponding
point in the input shape. This decoder is a multi-layer perceptron with hidden
layers of size 1024, 512, 254 and 128, followed by a hyperbolic tangent. This
architecture maps any points from the template domain to the reconstructed
surface. By sampling the template more or less densely, we can generate an arbi-
trary number of output points by sequentially applying the decoder over sampled
template points.

This encoder-decoder architecture is trained end-to-end. We assume that we
are given as input a training set of N shapes {Si}Ni=1 with each shape having

a set of P vertices {qj}Pj=1. For each point qj on a training shape, we assume
that we know the correspondence pj ↔ qj to a point pj ∈ A on the template
A. Given these training correspondences, we learn the encoder Eφ and decoder
Dθ by optimizing the following reconstruction loss,

L′(θ, φ) =

N∑
i=1

P∑
j=1

|Dθ (pj ; Eφ (Si))− qi,j |2. (1)

We optimize this loss using the Adam solver, with a learning rate of 10−3 for
25 epochs then 10−4 for 2 epochs, batches of 32 shapes using 6890 points per
shape.

One interesting aspect of this step is that it learns jointly a parametrization
of the input shapes via the decoder and to perdict the parameters Eφ (S) for
this parametrization via the encoder. However, the predicted parameters Eφ (S)
for an input shape S are not necessarily optimal, because of the limited power
of the encoder. Optimizing these parameters turns out to be important for the
final results, and is the focus of the second step of our pipeline.

3.2 Optimizing shape reconstruction

We now assume that we are given a shape S as well as learned weights for
the encoder Eφ and decoder Dθ networks. To find correspondences between the
template shape and the input shape, we will use a nearest neighbor search to
find correspondences between that input shape and its reconstruction. For this
step to work, we need the reconstruction to be very accurate. The reconstruction
given by the parameters Eφ (S) is only approximate and can be improved. Since
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Algorithm 1: Algorithm for finding 3D shape correspondences

Input : Reference shape Sr and target shape St
Output: Set of 3D point correspondences C

1 #Regression steps over latent code to find best reconstruction of Sr and St
2 xr ← arg minx L (x;Sr)
3 xt ← arg minx L (x;St)
4 C ← ∅
5 # Matching of qr ∈ Sr to qt ∈ St
6 foreach qr ∈ Sr do
7 p← arg minp′∈A |Dθ (p′; xr)− qr|2

8 qt ← arg minq′∈St
|Dθ (p; xt)− q′|2

9 C ← C ∪ {(qr,qt)}
10 end
11 return C

we do not know correspondences between the input and the generated shape, we
cannot minimize the loss given in equation 1, which requires correspondences.
Instead, we minimize with respect to the feature x the Chamfer distance between
the reconstructed shape and the input:

L(x;S) =
∑
p∈A

min
q∈S
|Dθ (p; x)− q|2 +

∑
q∈S

min
p∈A
|Dθ (p; x)− q|2 . (2)

Starting from the parameters predicted by our first step x = Eφ (S), we
optimize this loss using the Adam solver for 3,000 iterations with learning rate
5 ∗ 10−4. Note that the good initialization given by our first step is key since
Equation 2 corresponds to a highly non-convex problem.

3.3 Finding 3D shape correspondences

To recover correspondences between two 3D shapes Sr and St, we first compute
the parameters to deform the template to these shapes, xr and xt, using our
first two steps. Next, given a 3D point qr on the reference shape Sr, we first find
the point p on the template A such that its transformation with parameters xr,
Dθ (p; xr) is closest to qr. Finally we find the 3D point qt on the target shape St
that is the closest tp the transformation of p with parameters xt, Dθ (p; xt).Our
algorithm is summarized in Algorithm 1 and illustrated in Figure 2.

4 Results

In this section we show qualitative and quantitative results for our approach and
compare against baselines.

4.1 Data

We describe the datasets used in our study.
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(a) SURREAL (b) Bent shapes

(c) FAUST

Fig. 3: Examples of the different datasets used in the paper.

Synthetic training data. To train our algorithm, we require a large set of
shapes with ground-truth correspondences. Since these ground-truth correspon-
dences are time consuming to obtain, we rely on synthetic data for training
our model. More precisely, we use SMPL [2], a state-of-the-art generative model
for synthetic humans. To obtain realistic human body shape and poses from
the SMPL model, we use the pose parameters from the SURREAL dataset [3]
where they inferred 4 · 106 pose parameters from 2000 video sequences and 1700
body shape parameters. We randomly sampled among these pose and shape
parameters to generate 105 synthetic males and 105 synthetic females.

One limitation of the SURREAL dataset is it does not include any humans
bent over. Our algorithm generalized poorly to these poses. To overcome this lim-
itation, we generated an extension of the dataset. We first manually estimated 7
key-joint parameters (among 23 joints in the SMPL skeletons) to generate bent
humans. We then sampled the 7 parameters around these values, and used ran-
dom parameters from the SURREAL dataset for the other pose and body shape
parameters. Note that not all meshes generated with this strategy are realistic
as shown in figure 3. They however allow us to better cover the space of possible
poses, and we added 3 · 104 shapes generated with this method to our dataset.
Our final dataset thus has 2.3 ·105 human meshes with a large variety of realistic
poses and body shapes, each having 6890 vertices in correspondence.

Real testing data. We evaluate our algorithm on the FAUST dataset [2]. The
FAUST dataset is separated into 100 training shapes, for which correspondences
are available, and 200 testing shapes. In this paper, we never used the training
set, except for a single baseline experiment, and we focus on the (more challeng-
ing) test set. The test set consists of scans with approximately 170,000 vertices.
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The scans include some noise and may have holes in them, typically missing part
of the feet. Given a pair of meshes, the task is to associate to each vertex of the
first shape a vertex of the second shape. Two challenges are available, focusing
on intra- and inter-subject correspondences. We focused on the more challenging
inter-subject correspondence task. The error is the average Euclidean distance
between the estimated projection and the ground-truth projection. We evaluated
our method through the publicly available online server and are the best public
results at the time of submission1.

Shape normalization. To be processed and reconstructed by our network, the
training and testing shapes must be normalized in a similar way. Since the verti-
cal direction is respected in the FAUST dataset, we used synthetic shapes with
approximately the same vertical axis. We also kept a fixed orientation around
this vertical axis, and at test time tested for each of 50 different orientations
and selected the one which leads to the smaller reconstruction error in term of
Chamfer distance. We thus get invariance to the orientation at testing time, but
we believe a strategy which learns to reconstruct shapes in all orientations and
would thus be invariant to orientation from the training data would also succeed.
Finally, we centered all meshes according to the center of their bounding box
and, for the training data only, added a random translation in each direction
sampled uniformly between -3cm and 3cm to increase robustness.

(a) “FAUST” template (b) “Zero” template (c) “Separated” template

Fig. 4: Shapes for template study. We evaluate three different template
shapes used in our model.

4.2 Experiments

The method presented above leads to the best results to date on the FAUST-
inter dataset: 2.878 cm : an improvement of 8% over state of the art,
3.12cm for [1] and 4.82cm for [28]. In this part, we analyze the key components
of our pipeline and their contribution in the final quality of our results.

1 http://faust.is.tue.mpg.de/challenge/Inter-subject_challenge

http://faust.is.tue.mpg.de/challenge/Inter-subject_challenge
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template 0 Faust error (cm)

“FAUST” template 3.255
“Zero” template 3.385
“Separated” template 3.314

Table 1: Comparison of different template shapes. We compare differ-
ent choices for the template shape shown in Figure 4. Notice that the neutral
“FAUST” template performs best out of the three tested shapes.

Choice of template. The template is a critical element for our method. We
experimented with three different templates: (i) a “FAUST” template associated
with SMPL parameters fitted to a body in a neutral pose in the FAUST training
set, (ii) a “zero” template corresponding to the “zero” shape of SMPL, and (iii) a
“separated” template in which this “zero” shape is modified to have the legs bet-
ter separated and the arms higher. Figure 4 shows the different templates, while
table 1 shows quantitative results using the different templates. Interestingly,
the best results were obtained with the more “natural” template, selected in the
“FAUST” training dataset, rather than with the templates from simple SMPL
parameters, where points from different body parts seem easier to separate.

training data Faust error (cm)

FAUST training set 18.219
non-augmented synthetic dataset 5.625
augmented synthetic data 3.255

Table 2: Results of our method, trained on different datasets. The dif-
ference in performance between the basic synthetic dataset and its augmented
version is mostly due to failure on specific poses, such as the one in Figure 3.

Training data. By default, we report the results of our model trained on the
augmented synthetic dataset, including poses from SURREAL and additional
bent human poses. The FAUST training set is indeed too small to train our
network to generalize, which includes only 10 different poses and body shapes.
Training on synthetic data with a large variety of poses helps overcome this gen-
eralization problem. However, if the synthetic dataset does not include certain
human poses (such as bent-over humans), the method will fail on these poses.
The quantitative results corresponding to these three experiments: training on
FAUST, training on SURREAL shapes, and training on SURREAL shapes aug-
mented with bent shapes, are reported in table 2. A qualitative example is given
figure 5.

Necessary amount of training data and supervision. We trained our method with
1 000 and 10 000 training shapes. As expected, this decreases the performance,



ECCV-18 submission ID 1804 11

respectively to 5.76cm and 4.70cm average error for the FAUST-inter, but still
yields competitive results. Not augmenting the dataset with bent shapes makes
the method fail on 4 pairs of shapes (out of 40).

(a) Input (b) FAUST training data (c) Augm. synth. training data

Fig. 5: Dependence on the training data.
For a given target shape (a) reconstructed shapes when the network is trained on

FAUST training set (b) and on our augmented synthetic training set (c), before (left)
and after (right) the optimization step.

Reconstruction optimization. The second step of our pipeline, which finds
the optimal features for reconstruction is crucial to obtain high quality results.
This is because the nearest neighbors used in the matching step are sensitive to
small errors in alignment. The regression step compensates for the lack of robust-
ness of nearest neighbors by matching, as closely as possible, the reconstruction
with the original mesh. This also results in qualitatively better reconstructions.
This optimization however converges to a good optimum only if it is initialized
with a reasonable reconstruction, as visualized in Figure 6. Since we optimize us-
ing Chamfer distance, and not correspondences, we also rely on the fact that the
network was trained to generate humans in correspondence. As a consequence,
we expect that as we explore the latent space during the parameter opimiza-
tion, the correspondences between generated shapes and the template will still
be meaningful.

We ran an ablation study, removing this optimization completely, or optimiz-
ing only an asymmetric version of the Chamfer distance. The results are reported
in Table 3 and Figure 7. The quantitative results highlight the importance of
the optimization step, and show that the best approach is to optimize the recon-
struction using the full Chamfer distance. Figure 7 illustrates that optimizing an
asymmetric Chamfer distance can in some cases, especially when the 3D scans
have holes, produce qualitatively better results.

We show that using a high density template (∼200k vertices) for the near-
est neighbor step, and sampling points regularly on the surface during training
(instead of taking a random subset of the irregularly sampled synthetic shapes)
leads to our best result, 2.878 cm, an improvement of 8% over state of the
art.

We also evaluated our method on the FAUST intra challenge, and al-
though our method cannot take advantage of the fact that two meshes represent
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(a) Input (b) Random init. (c) Wrong init. (d) Valid init.

Fig. 6: Reconstruction optimization. The quality of the initialization (i.e. the
output of the first step of our algorithm) is crucial for the result of the deforma-
tion optimization step. This figure visualize for a given target shape (a) and for
different initializations (left of (a), (b) and (c) ) the result of the optimization.
If the deformation is initialized with random (b) or bad (c) parameters, the op-
timization converges to bad local minima. If it is initialized with a reasonable
transformation (d) it converges to a shape very close to the target ( (d), right).

the same person (because correspondences are established through the generic
human template), our method is the second best performing (average error of
1.99 cm)

Method Faust error (cm)

Without regression 6.29

With regression, Chamfer asym (R attracts T) 4.023
With regression, Chamfer asym (T attracts R) 3.336
With regression, Chamfer sym 3.255
With regression, Chamfer sym + Regular Sampling 3.048
With regression, Chamfer sym + Regular Sampling + High-Res template 2.878

Table 3: Importance of the reconstruction optimization step. Performing
a search in the latent space by backpropagation to get the best reconstruction
is key to the success of the nearest neighbors step.

Correspondences between non-human shapes High-quality parametric
models of animals are now available; SMAL [40] provides the SMPL equivalent
for several animals. Recent papers estimate model parameters from images, but
no large-scale parameter set is yet available. For training we thus generated mod-
els of horses from SMAL with random parameters (drawn from a Gaussian dis-
tribution of ad-hoc variance 0.2) and evaluated successfully on the qualitatively
different horse models from TOSCA dataset (shown in Fig 8c) demonstrating the
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(a) target T (b) Result R (c) R attracts T (d) T attracts R (e) Both ways

Fig. 7: Asymmetric Chamfer loss in reconstruction optimization. Given
an input scan, with holes (a), our network outputs a reconstruction result (b),
that can be improved by an optimization step. When the scan has holes, it is bet-
ter to only consider a loss where the scan attracts the reconstruction (d), rather
than using a loss where reconstruction attracts the scan (c), or the Chamfer
distance where they attract each other (e).

generality of our method. The same procedure can be applied to a large group
of animals, whose shapes are successfully encoded by SMAL [40]. 5 categories
are available in SMAL, and SMALR [41] introduces a method to generalize to
new categories from an image dataset alone. In total 17 additional categories are
available. Note that if the templates for two animal are in correspondences (as
is the case for SMAL), our method can be used to get inter-category correspon-
dences for animals. We qualitatively demonstrate this on hippopotame/horses
in the appendix [42].

Partial data / robustness to perturbations - SCAPE/TOSCA. The
SCAPE dataset provides meshes aligned to real scans and includes poses differ-
ent from our training dataset. When applying a network trained directly on our
SMPL data, we obtain satisfying performance, namely 3.14cm average Euclidean
error. Quantitative comparison of correspondence quality in term of geodesic er-
ror are given in Fig 9. We perform better than most methods but Deep Functional
Maps. SCAPE also allows evaluation on real partial scans. Quantitatively, the
error on these partial meshes was 4.04cm, similar to the performance on the full
meshes. Qualitative results are given Fig 8a. The TOSCA dataset provides sev-
eral versions of the same synthetic human with different perturbations. We found
that our method, still trained only on SMPL and SMAL data, is robust to all per-
turbations (isometry, noise, shotnoise, holes, micro-holes, topology changes, and
sampling), except scale, which can be trivially fixed by normalizing all meshes
to have consistent surface area. Examples of representative qualitative results
are shown Fig 8b and quantitative results are reported in appendix [42].

Unsupervised correspondences. A natural question is whether our method
could be trained without correspondence supervision, i.e. simply using a recon-
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(a) SCAPE (b) TOSCA (c) TOSCA animals

Fig. 8: Other datasets. Left images show the input, right images the recon-
struction with color giving a sense of correspondences. Our method works with
real incomplete scans, strong synthetic perturbations, and on non-human shapes.
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Fig. 9: Comparison with learning-based shape matching approaches on the
SCAPE dataset. Our method is trained on synthetic data, FMNet was trained
on FAUST data, and all other methods on SCAPE.
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struction loss similar to the one described in Equation 2. One could indeed
expect that an optimal way to deform the template into training shapes would
respect correspondences. We thus trained a network only for reconstruction qual-
ity, without using correspondences, but we found that network did not respect
correspondences between the template and the input shape, as visualized figure
10. However, these results improve with adequate regularization such as a cost
encouraging regularity of the mapping between the template and the reconstruc-
tion (e.g. a Laplacian regularization, similar to Kanazawa et. al. [46], and/or a
cost enforcing the ratio of face edges in the template or reconstruction to be
close to one). We trained such a network with the same data as in the paper
but without any correspondence supervision and obtained a 4.88cm of
error on the FAUST-inter (similar to Deep Functional Map which had an error
of 4.83 cm), i.e. close to the second best performance. This demonstrate that
our method can be efficient even without correspondence supervision. Further
details on regularization losses are in the appendix [42].

Loss Faust error (cm)

Chamfer distance (unsupervised) 8.727
Chamfer distance (unsupervised) + Regularization 4.835
Correspondences, eq. 1 (supervised) 2.878

Table 4: Results with and without supervised correspondences

Rotation invariance We handled rotation invariance by rotating the shape
and selecting the orientation for which the reconstruction is optimal. As an
alternative, we tried to learn a network directly invariant to rotations around
the vertical axis. It turned out the performances were slightly worse on FAUST-
inter (3.10cm), but still better than the state of the art. We believe this is due to
the limited capacity of the network and should be tried with a larger network.
However, interestingly, this rotation invariant network seems to have increased
robustness and provided slightly better results on SCAPE.

5 Conclusion

We have demonstrated an encoder-decoder deep network architecture that can
generate human shape correspondences competitive with state-of-the-art ap-
proaches and that uses only simple reconstruction and correspondence losses.
Our key insight is to factor the problem into an encoder network that produces
a global shape descriptor, and a decoder network that uses this encoded de-
scriptor to map points on a template domain back to the original geometry. A
straightforward regression step uses gradient descent through the decoder net-
work to significantly improve the final correspondence quality.
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(a) Input P.C.
(FAUST)

(b) P.C. after
optim.

(c) Mesh after
optim.

(d) P.C. after
optim + Regul

(e) Mesh after
optim + Regul

Fig. 10: Unsupervised correspondences There is a clear distortion between
the reconstructed shapes and the template, the left foot of the template be-
ing matched to left hand of the reconstruction, but this distortion is consistent
for different poses. We visualize for different inputs (a), the point clouds pre-
dicted by our algorithm after our optimization step (b,d) and the corresponding
meshes (c,e). Note that without regularization, because of the strong distortion,
the meshes appear to barely match to the input, while the point clouds are
reasonable. On the other hand surface regularization creates reasonable meshes.

Our method currently assumes a fixed template, and another promising area
for future research is to look into techniques that can combine multiple templates
to deal with a wider range of underlying topologies. We believe that our encoder-
decoder template-based approach to modeling correspondences will prove an
effective basis for these future explorations in this area.
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6 Supplementary

6.1 Quantitative results for perturbations on TOSCA

We evaluate quantitatively the robustness of our method to perturbation on the
TOSCA dataset. It consists of one horse shape with different added perturba-
tions, namely noise, shotnoise, sampling, scale, local scale, topology, holes, mi-
croholes, and isometry. We report in 5, quantitative results for each perturbation
(with a gradual strength from 1 to 5) and show qualitative reconstruction with
correspondences suggested by colors for each category with maximum strength
in 11. Surprisingly, adding noise can enhance the quantitative error.

Table 5: Quantitative results for perturbations on TOSCA for the horse category
Perturbation Error (cm) Perturbation Error (cm) Perturbation Error (cm)

Noise

1 4.58

Scale

1 4.73

Holes

1 4.71
2 3.87 2 4.78 2 4.71
3 3.93 3 4.66 3 4.72
4 3.67 4 4.62 4 4.69
5 3.91 5 4.67 5 4.84

ShotNoise

1 4.66

Local scale

1 4.18

Microholes

1 4.71
2 2.64 2 3.65 2 4.72
3 3.03 3 3.62 3 4.82
4 2.72 4 3.75 4 4.69
5 3.00 5 3.56 5 3.53

Sampling

1 4.82

Topology

1 3.99

Isometry

1 4.72
2 4.78 2 4.38 2 4.69
3 4.61 3 4.37 3 4.79
4 3.72 4 4.31 4 4.85
5 9.93 5 7.53 5 4.74

6.2 Cross-category correspondances on animals

SMAL synthetic are in correspondences across categories. Hence the template for
two different categories are in correspondences and our approach can be trivially
extended to get correspondences for animals from different species. Qualitative
evidence of this is show in Figure 12.

6.3 Regularization for the unsupervised case

We observe some distortion when the network is trained using the Chamfer dis-
tance alone. For example the left foot is propagated on left hand in Figure 10.
Even if this distortion is consistent across shapes, we hope that by regularizing
the generator, the learned deformation on the template would respect the con-
nectivity of the points of the templates. To achieve this, we tried two methods.
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(a) Noise (b) Shotnoise (c) Holes

(d) Microholes (e) Sampling (f) Topology

(g) Isometry (h) Scale (i) Local scale

Fig. 11: Robustness to perturbations on TOSCA for the horse category.
Correspondences are suggested by color. Notice the overall robustness to all
perturbations, with small errors on the ears, tail or legs.

Ratio preservation Let (V,E) be the graph of the template and V g the re-
constructed vertices.

Eratio(V
g) =

1

#E
·
∑
i∼j
‖
V gi − V

g
j

Vi − Vj
− 1‖

This enforces edges to keep the same length in the template and the generated
mesh. We use λratio = 0.005. For instance, if the length of an edge doubles
the contribution to the loss is λratio · 1 = 0.005 which is equivalent (in terms
of contribution to the loss function) to a error of placement of 7.1cm. In other
words, in terms on loss for the network, it is equivalent to double an edge’s
length or to misplace a point by 3.2cm.
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Fig. 12: Inter-class correspondences on animals. Correspondences are sug-
gested by color.

Laplacian regularization Similar to Kanazawa et. al. [46], we use the Lapla-
cian regularization. The Laplacian matrix L is defined as :

Li,j =

di if i = j
−1 if (i, j) ∈ E
0 otherwize

LVi =
∑
i∼j

Vi − Vj

LVi = di · (Vi −
∑
i∼j Vj

di
)

This is an approximation of the following integral as explained in [47].

lim
γ−→0

1

| γ |

∫
v∈γ

(vi − v)dl(v) = −H(vi) · ni

where:

– H(vi) is the mean curvature
– ni is the surface normal

We follow [48] and use cotangent weights in the Laplacian to have better geo-
metric discretization property.

LcVi =
1

Ωi

∑
i∼j

1

2
(cotαij + cotβij)(Vi − Vj)

where :
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– Ωi is the size of the Voronoi cell of i
– αij and βij denote the two angles opposite of edge (i, j)

Our Laplacian loss is thus written :

Elaplace(V
g) = 1t · Lc · (V template − V g)

We use λlaplace = 0.005. In practice we notice that using Laplacian regularization
constrain the network to keep sound surfaces. It may still suffer from error in
symmetry and can still invert right and left, and front and back.

6.4 Failure cases

Figure 13 shows the two main sources of error our algorithm faces. It can be
an error in the nearest neighbor step in overlapping regions; here, a point is
matched with the closest point in Euclidean distance but the match is very far
in geodesic distance. This could be addressed by enforcing matches between the
input mesh and its reconstruction in a way that takes into account the regularity
of the matching. We leave this to future work.

The other source of error comes from failures in reconstruction: in such cases,
the initial guess of the autoencoder is just too far away from the input, and the
regression step fails.
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(a) Input (b) Rec. 1 (c) Rec. 2. (d) Error.

Fig. 13: Error visualization Given the input mesh (a), our autoencoder makes
an initial reconstruction (b), optimized by a regression step (c). The average
in centimeters over each vertex of (a), of the Euclidean distance between its
projection and the ground truth, is reported (d). We use the jet colormap. Red
vertices have an error higher than 10, blue ones lower than 2cm. The largest
error are observed in places where the Euclidean distance is small, while the
geodesic distance is high, such as touching skin (zoom in on the leg). In such
region, the nearest neighbors step is match a vertex in mesh A in a distant (in
terms of geodesic distance) vertex in mesh A’s reconstruction. High error can
also come from bad reconstruction. See the head of the second example.
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