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Abstract:  

Dempster’s rule of combination is commonly used to pool distinct/independent bodies of evidence in the evidential k-nearest neighbor (K-NN) 

classifier, which sometimes limits the performance of this classifier. To solve this problem, we propose a class of parametric conjunctive combination 

rules based on a new family of triangular norms with selectable functions and tunable parameters. We show that the performance of the evidential 

K-NN classifier can be enhanced via this class of so-called parametric conjunctive t-rules when appropriate functions and parameters are selected. 

Numerical simulations validate our conclusions.  
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1. Introduction 

The last four decades have seen the emergence and development of the theory of belief functions, which has 

gained increasing interest as a conceptual framework for modeling partial knowledge and reasoning under uncertainty, 

see [4-7, 26-27, 32-35, 38-39] for example, and the literature therein. Among the applications of this theory, the 

evidential K-NN classifier has been successfully used in a wide range of classification problems [5, 11, 16-20, 34-36, 

39].  

In the evidential K-NN classifier, Dempster’s rule is commonly used to pool bodies of evidence, due to its 

simplicity. This rule implicitly requires that the bodies of evidence to be combined are distinct [28-29]. In other words, 

the information sources should be independent. However, it is difficult to guarantee the independence of information 

sources in many practical applications. How to enhance the performances of the evidential K-NN classifier via 

optimizing a class of possibly parametric combination rules to account for dependence of the sources is still an open 

question. 

To relax the distinctness/independence assumption, some alternative combination rules have been proposed, see, 

for instance [1-3, 6, 9, 13 21-25, 29-30, 33]. (Note that we do not aim to review the literature on combination rules.) 

Among these alternatives, the cautious rule [6] is a conjunctive rule based on the least commitment principle (LCP) [30]. 

The LCP stipulates that one should never give more beliefs than justified by the available information; it thus promotes 

a cautious attitude. The cautious rule can be directly derived from the conjunctive weight function [31], an equivalent 

representation of a non-dogmatic belief function. After providing a new justification of conjunctive rule in [22], Pichon 

and Denoeux generalized it and proposed the triangular-norm (t-norm for short) based conjunctive rules, called 
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conjunctive t-rule [22-24]. They showed that the cautious rule can be seen as a particular conjunctive t-rule when 

choosing a particular t-norm defined on (0, +∞], whereas the conjunctive rule belongs to a family of rules defined by 

selecting a suitable uninorms on (0, +∞] having 1 as neutral element.  

As remarked in [8], having only one rule is “not very fortunate in the scope of Artificial Intelligent (AI), where one 

tries to simulate the human mind rather than force behavior rules issued from formal arguments”. Indeed, the 

descriptive nature of AI calls for more flexibility in the choice of combination rules, provided that those other rules 

satisfy at least a few basic and reasonable requirements. From this viewpoint, the conjunctive t-rules or any other 

alternatives should be investigated in depth so as to obtain some new combination rules. In fact, the conjunctive t-rules 

were formulated using a particular family of t-norms defined on (0, +∞]. Whereas the current conjunctive t-rules seem 

to have sufficient ability to account for the dependence of bodies of evidence, it will be shown in this paper that some 

more effort is needed so that these rules can be used to enhance the performance of the evidential K-NN classifier.  

Motivated by the above considerations, this paper aims to enhance the performance of the evidential K-NN 

classifier by optimizing a class of parametric combination rules including conjunctive t-rules, called parametric 

conjunctive t-rules (PCTR). More precisely, a scheme is first proposed to construct a t-norm with selectable functions 

and tunable parameters. With the help of this new t-norm, a class of parametric conjunctive t-rules is then proposed and 

applied to pool bodies of evidence in the evidential K-NN classifier. We will show that the proposed parametric 

conjunctive t-rules can enhance the performance of the evidential K-NN classifier if appropriate functions and 

parameters are selected.  

The rest of this paper is organized as follows. The theory of belief function is first briefly recalled in Section 2. The 

parametric conjunctive t-rules are proposed after constructing a class of t-norms in Section 3. In Section 4 we conduct 

some numerical experiments to study the performances of the proposed combination rules and the evidential K-NN 

classifier. The last section concludes the paper. 

2. Preliminaries: Background on belief functions 

In this section, we briefly recall some notions of the theory of belief functions [4, 26, 32] needed in the rest of the 

paper. Given a frame of discernment Ω = {ω1, ω2, ..., ωc}, a mass function or basic belief assignment (BBA) m is 

defined as a mapping from 2Ω to [0, 1] such that 

( ) 1
A

m A
⊆Ω

= ,          (1) 

where the subsets A of Ω such that m(A) > 0 are called the focal sets of m.  

A BBA is said to be categorical if it has only one focal set. In particular, the vacuous BBA verifies m(Ω) = 1: it 

corresponds to complete ignorance. A BBA is said to be non-dogmatic if Ω is a focal set. A BBA m is subnormal if the 

empty set φ is a focal set, and normal otherwise. A subnormal BBA m such that m(φ) < 1 can be transformed into a 

normal BBA m* by the normalization operation defined as: 
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According to Shafer [26], function m is said to be a simple BBA (SBBA) if it has the following form: m(A) = 1 ̶ w, 

m(Ω) = w for some A ⊂ Ω and some w ∈ [0, 1]. Smets [31] defined a generalized SBBA (GSBBA) as a function μ: 2Ω 

→ (0, +∞) such that 
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for some A ≠ Ω and w ∈ (0, +∞). A SBBA or GSBBA can be denoted by Aw for simplicity. Smets [31] showed that any 

non-dogmatic BBA m admits a canonical decomposition as the combination of GSBBAs Aw(A) focused on each of the 

strict subsets A of Ω with weights w(A). Function w: 2Ω \ {Ω} → (0, +∞) is called the conjunctive weight function 

associated to m. A BBA is said to be separable if it is canonically decomposed into SBBAs, i.e., if w(A) ≤ 1 for all A.  

There are other equivalent representations of a BBA such as the belief, plausibility, and commonality functions. In 

particular, the commonality function is defined as 

( ) ( ),A B
q A m B A

⊆
= ⊆ Ω .         (4) 

The weights w(A) in Eq. (3) can be obtained for every A ⊂ Ω according to 

( ) ( )( ) 11 B A

A B
w A q B

− +−

⊆
= ∏ .         (5) 

The combination of bodies of BBAs plays a critical role in the theory of belief functions. Let m1 and m2 be two 

BBAs. The conjunctive combination of m1 and m2, denoted by○∩ , results in a new BBA defined as 

m1○∩ 2(A) ( ) ( )1 2 , .B C A m B m C A∩ == ⊆ Ω        (6) 

The conjunctive rule allows some mass to be assigned to the empty set. Dempster’s rule, denoted by ⊕ , consists in 

the conjunctive rule followed by normalization (2). Both rules are commutative, associative and admit the vacuous BBA 

as a unique neutral element. The conjunctive rule can be expressed using conjunctive weight functions as 

m1○∩ 2(A) =○∩ ( ) ( )1 2w A w A
A A ×

⊂Ω ,        (7) 

where × denotes the product. By using the minimum, denoted by ∧, instead of the product, the cautious rule can be 

derived for two non-dogmatic BBAs as  

m1○∧ 2(A) =○∩ ( ) ( )1 2w A w A
A A ∧

⊂Ω .       (8) 

Pichon and Denoeux provided a new justification of the conjunctive and cautious combination rules in [24], and 

proposed the so-called conjunctive t-rules by replacing the minimum ∧ by another t-norm on (0, +∞] such as [22, 23] 
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for all x, y in (0, +∞], where ˅ denotes the maximum operator, and  and ′ are t-norms on [0, 1] [14].  

Finally, the pignistic transformation [32] can be used to transform a combined BBA into a probability measure in 

order to make decision. It is defined as 

{ }( ) ( )*

q
m q

A

m A
BetP

Aω
ω

∈ ⊆Ω
=  ,         (10) 

for all ω in Ω. 

3. Main results: Rules and Method 

After introducing a family of t-norms and construct methods, a class of parametric conjunctive t-rules will first be 

proposed from the conjunctive t-rules in Section 3.1. The evidential K-NN classifier based on parametric conjunctive 

t-rules will then be presented in Section 3.2. 

3.1 Parametric conjunctive t-rules. 

Definition 1 [23] A t-norm on (0, +∞] is a binary operation on (0, +∞] that is commutative, associative, monotonic, and 
admits +∞ as neutral element. 

Generalizing Eq. (9), the following proposition provides a scheme to construct a class of t-norm on (0, +∞] from 

t-norms on [0, 1] as well as some selectable functions. 

Proposition 1 Consider an increasing function ( )g x1 : [0, 1] → [0, 1] such that g1(0) = 0, g1(1) = 1, and a strictly 

decreasing function ( )g x2 : [1, +∞] → [0, 1] such that (1) 1g =2 , 2 2( ) lim ( ) 0xg g x→+∞+∞ = = . Let 1
2 ( )g x−  be the 

inverse function of g2(x). Then, the binary operation defined by the following equation is a t-norm on (0, +∞] 
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where and ′ are classical positive t-norms on [0, 1] such that x  y > 0, ∀ x > 0, y > 0, and N(x) is the negation 

operation on [0, 1] such that N(x) = 1- x.  

Proof: See in Appendix. 

Remark 1 Proposition 1 provides a scheme to construct t-norms on (0, +∞]. By choosing different functions gi(x) and 

t-norms  and ′ on [0, 1], infinite families of t-norms (0, +∞] can be obtained. The t-norms and ′ can be selected, 

e.g., as the minimum, product, Dubois-Prade, and Frank t-norms defined, respectively, as 

( ) ( ), min ,MT x y x y= , 

( ),PT x y xy= , 
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with λ >0 and λ ≠ 1. If  = ′  = ∧, then we recover the minimum. It is evident that Eq. (9) is a special case of the 

t-norms (11) with g1(x) = x and g2(x) = x-1. There are many choices of functions gi(x), i =1, 2. In this paper, we use the 

power function g1(x) = xβ with positive constant β, and exponential or power functions g2(x) such that g2(x) = eχ(1-x) or 

g2(x)=x –χ with positive constant χ. Fig. 1 shows the curves of gi(x) in some cases.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x

g 1(x
)

(a)

β=0.1

β=5

β=0.2

β=0.3

    
1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x

g 2(x
)

(b)

χ=0.1

χ=0.3

χ=0.5

χ=0.7

χ=5

   
Fig. 1 Curves of functions (a) g1(x) = xβ and (b) g2(x) = eχ(1-x) 

Remark 2 Note that, as will be seen, all BBAs to be combined in the evidential K-NN classification setting are 

obtained by discounting categorical BBAs and are, therefore, separable. Hence, the t-norm (11) can be simplified as 

follows 

x  
g1

 y = ( ) ( )1 1g x g y ,         (12) 

for all x, y in (0, 1], and t-norm on [0, 1].  

In what follows, we focus on special case (12), although some definitions and propositions are still introduced 

based on Proposition 1, which is interesting for its own sake. The following example illustrates some t-norms 

constructed using Eq. (12). 

Example 1  

Suppose g1(x) = xβ and = TDP. We can have the following t-norm: 

x  
g1

 y = ( ) [ ], , , 0,1DPT x y x yβ β ∈ , 

whose surfaces as well as contours are shown in Fig. 2. 



0
0.5

1

0
0.5

1

0

0.5

1

(λ, β) = (0, 0.5)

0
0.5

1 0
0.5

1

0

0.5

1

(λ, β) = (0.5, 1.0)

0
0.5

1
0

0.5
1

0

0.5

1

(λ, β) = (1.0, 1.5)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

 
Fig. 2 Surfaces (top) and contours (bottom) of t-norms in Example 1 

In the following, we will simplify the notation  
gi

′ and  
g1

 as   whenever there is no risk of confusion. 

With the help of Proposition 1, we are ready to present the parametric conjunctive t-rules. 

Proposition 2 Let  be the t-norm defined in Proposition 1, and let w1 and w2 be the conjunctive weight functions 

associated to any two non-dogmatic BBAs m1 and m2. Then, the weight function defined by 

w
 

1○ w2(A) ( ) ( )1 2 ,w A w A A= ∀ ⊂ Ω , 

is a conjunctive weight function associated to some non-dogmatic BBA m1○ w2. 

Proof: See in Appendix. 

Definition 2 (Parametric conjunctive t-rules, PCTR) Let be the t-norm in Proposition 1, and let w1 and w2 be the 

conjunctive weight functions associated to any two non-dogmatic BBAs m1 and m2. The parametric conjunctive 

combination of m1 and m2 can be calculated according to 

m
 

1○ w2(A) = m1○   
, ,ig ′ 

w m2(A) =○∩ ( ) ( )1 2w A w A
A A⊂Ω

 .       (13) 

Remark 3 The t-norm based combination rules in Definition 2 are called parametric conjunctive t-rules. They 

generalize the conventional conjunctive t-rules by introducing selectable functions gi(x) with tunable parameters. When 

g1(x) = x and g2(x) = x-1, the parametric conjunctive t-rules degenerate to the conventional conjunctive t-rules. As will be 

seen in Section 4, the selectable functions gi(x) provide more flexibly to deal with non-distinct bodies of evidence. 

Remark 4 The parametric conjunctive t-rules have two limitations. First, they do not have the vacuous BBA as neutral 

element. Second, the BBAs to be combined need to be non-dogmatic as only non-dogmatic BBAs have a unique 

conjunctive canonical decomposition. In practice, however, it may be argued that most states of belief, being based on 

imperfect and not entirely conclusive evidence, should be represented by non-dogmatic BBAs even if the mass assigned 

to Ω is very small.  



3.2. Evidential K-NN classifier via PCTR 

We consider the problem of classifying patterns into c classes. The set of classes is denoted by Ω = {ω1,ω2,…, ωc}. 

The available information is assumed to consist of a training set TR = {(xi, mi) | i =1, 2, …, n } with d-dimensional 

patterns xi and their corresponding class labels represented by mass functions mi({ωq}) = 1.  

Let x be a new vector to be classified on the basis of the information contained in TR. Each pair (xi, mi) constitutes 

a distinct body of evidence regarding the class membership of x. If x is “close” to xi, according to the relevant metric 

d(., .) (e.g., the Euclidean metric), we will be inclined to believe that both vectors belong to the same class. On the 

contrary, if d(x, xi) is very large, the consideration of xi will leave us in a situation of almost complete ignorance 

concerning the class of x. Consequently, this body of evidence may be postulated to induce a BBA m[x|xi](•) over Ω 

defined by  

( )
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      (14) 

where α is a parameter such that 0< α <1, and φq is a decreasing function verifying 

( )0 1qφ = , and ( )lim 0
i

q id
dφ

→∞
= .        (15) 

A popular choice for decreasing function φq is [5] 

( ) ( )2expq i q id dφ γ= − ,         (16) 

where γq is a positive parameter associated to class ωq.  

As a result of considering each training pattern in turn, we obtain n BBAs that can be combined by using the 

parametric conjunctive t-rules to synthesize our final belief regarding the class of x.  

m TR  x  = 1x xm   ○   
, ,ig ′ 

w ○   
, ,ig ′ 

w x xnm    .    (17) 

Since training patterns situated far from x actually provide very little information, it is sufficient to consider the 

k-nearest neighbors of x in TR. Furthermore, when m[x|xi] is simple, we may obtain the following simple expression for 

m[x|xi]: 

{ } ( )( )1 ,x x
x x q i id

i qm
αφ

ω
−

  =          (18) 

Accordingly, (17) becomes to 

Km S  x =○∩ 1
c
q=  { }qω

 ( ){ } ( )( )( )1 1 ,x x xq i ii SK
g dαφ∈ −

 
,     (19) 

where SK(x) contains the indexes of the k-nearest neighbors of x in TR.  

Finally, the predicted label of pattern x can be obtained as 

( ) { }( )
1

arg max xx qm S
q c K

BetPω ω  ≤ ≤
= .       (20) 

Remark 5 Due to the inequality g1(1-αφq(di(x,xi))) ≤ 1, BBAs m[x|xi] are separable. Hence, the parametric conjunctive 



t-rules depend neither on the t-norm ′ nor on function g2(x) in the classification setting, as stated in Remark 2. In the 

performance analysis of evidential K-NN classifier, we will focus on the application of (12) to optimize parameters in 

function g1(x) and the t-norm. In this case, only parameter in the t-norm needs to be optimized to enhance the 

performance of the evidential K-NN classifier when using the conventional conjunctive t-rule (i.e., PCTR with g1(x) = x, 

see PCTR-λ in Table 3). This is the main difference between our parametric conjunctive t-rules and the conventional 

conjunctive t-rules. 

4. Simulations 

This section consists of two parts. In Section 4.1, a numerical example is used to show that the true parametric 

conjunctive t-rule can be recovered by minimizing a distance function. In Section 4.2, we assess the performance of the 

evidential K-NN classifier with the parametric conjunctive t-rules. 

4.1 Approximation of a combination rule by a parametric conjunctive t-rule 

This example shows how to find an optimal parametric conjunctive t-rule when combining two BBAs. Assume that the 

BBAs m1 and m2 have been provided by two sensors. (Note that m1 and m2 are not assumed to be independent, because 

we know nothing about the dependence of the two sensors.) Expert knowledge regarding the true value of the variable 

of interest is represented by BBA me, as shown in Table 1. The BBA me was artificially constructed by combining m1 

and m2 using the parametric conjunctive t-rule in which Frank t-norm with parameter λ = 0.5 is used and both g1(x) = 

x0.8 and g1(x) =ex(x - 1) are considered. 

Table 1 Artificial BBAs defined on Ω = {a, b, c} with different selectable functions 

A m1(A) m2(A) me(A) with different selectable function g1(x)
g1(x) = x0.8 g1(x) =ex(x - 1) 

φ  0 0 0 0 
{a} 0 0 0 0 
{b} 0.3 0.4 0.4858 0.7708 

{a, b} 0 0 0 0 
{c} 0 0 0 0 

{a, c} 0 0 0 0 
{b, c} 0.4 0.4 0.3950 0.2176 

Ω 0.3 0.2 0.1192 0.0116 

We wish to find an optimal combination rule with Frank t-norm TF(λ) and selectable function g1(x) = xβ such that 

the combination of m1 and m2 approaches as close as possible to me. Parameter λ varies from 0 to 1 with step size 0.1. 

The distance between me and combination m12 is measured by Jousselme’s evidential distance [12] defined by 

( ) ( ) ( )12 12 12
1,
2

T
e e ed m m m m D m m= − − ,       (21) 

where superscript T denotes matrix transposition and matrix D is defined by 

( )
1,

,
, .

A B
A BD A B

otherwise
A B
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 ∩= 
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Fig. 3 Evidential distance between me and combined BBA m12 using PCTR. (a): true combination rule with selectable 

function g1(x) = xβ ; (b): true combination rule with selectable function g1(x) =ex(x - 1). 

Fig. 3 shows the evidential distance between the artificial BBA and the combination of m1 and m2 using PCTR 

with power function as selectable function. Fig. 3(a) shows that the optimal rule can be exactly found if the selectable 

function g1(x) = xβ belongs to the same parametric family as the function used to construct the artificial BBA. 

Alternatively, it can be seen from Fig. 3(b) that the combination using PCTR with appropriate parameter (i.e., λ = 0.5, β 

= 1.81) can get very close to the artificial BBA even when expert knowledge is unknown a priori (i.e., a completely 

unknown selectable function ex(x-1) is used when constructing the artificial BBA). These results show that an optimal 

rule can be found or approximated through designing selectable functions gi(x) with appropriate parameters, even when 

nothing about the true combination rule is known in advance. Note that similar results can be obtained for non-separable 

BBAs. 

4.2 Performance Evaluation 

The objective of this section is to show that the performance of the evidential K-NN classifier can be enhanced by 

using the parametric conjunctive t-rules. In this section, the function g1(x) = xβ and parametric t-norm  = TDP(λ) are 

considered. Note that function g2(x) and t-norm ′ cannot play any role in this classification setting, as already remarked 

in Section 3.2. 

To implement the evidential K-NN classifier, practical issues need to be addressed. In particular, parameters k, α, γq 

(q = 1, 2, ..., c), β and TDP(λ) need to be preset in advance. There is some literature [34-36, 39] focused on optimizing 

the parameters k, α and γq (q = 1, 2, ..., c). However, the results that will be presented in this section are based on the 

following simple heuristic method [5]: α = 0.95, and γq equal to the inverse of the mean Euclidean distance between 

training patterns belonging to class ωq. The parameter k was set to 7. Hence, we focus on optimizing parameters λ and β. 

For convenience, assume that parameter λ takes values in {0, 0.1, 0.2, ..., 1.0}, whereas parameter β varies from 0.5 to 2 

by step size 0.1. The optimal parameters λ and β are to maximize the classification accuracy P(λ, β) defined by 

( ) ( )( )
1

1, x
n

i i
i

P I u
n

λ β ω
=

= − ,         (22) 



where ui is the true class label of object xi, and I(.) is an indicator function defined by I(0) = 1, and I(x) = 0 if x ≠ 0. 

Table 2 Data description 

No. Datasets Abbreviation Samples Continuous attributes Classes 
1 Balance-scale Balance 626 4 3 
2 Breast cancer Wisconsin Breastw 699 9 2 
3 Diabetes Diabetes 768 8 2 
4 Ionosphere Iono 355 34 2 
5 Iris Iris 153 4 3 
6 Sonar  Sonar  208 60 2 
7 Vehicle  Vehicle  848 18 4 
8 Wine  Wine  178 13 3 

In the experiments reported in this section, eight UCI datasets with continuous attributes were selected, as shown 

in Table 2, given the fact that the distance measure di(., .) in the evidential K-NN classifier is sensitive to discrete 

attributes. The precise class labels in these eight UCI datasets were encoded as categorical BBAs mi, i.e., mi({ωq}) = 1 if 

pattern xi belongs to class ωq, otherwise 0. 

4.2.1 Experiment 1: Approximate accuracy 

This experiment aims to study the performance of the evidential K-NN when parameters (λ, β) take different values. 

In the experiment, all eight UCI datasets in Table 2 are considered. For each dataset, the Leave-One-Out (LOO) 

classification accuracy was computed. More precisely, we left each sample out and used the remaining samples to 

predict the possible label of this sample with a given pair (λ, β); this procedure was repeated until we had tested all 

samples. The LOO classification accuracy for each pair (λ, β) can be calculated as the ratio of correctly labeled samples 

to the total number of samples. The conjunctive, cautious and conjunctive t-rules (i.e., PCTR-λ in Table 3) were also 

implemented under the same conditions.  
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Fig. 4 LOO classification accuracy varying with parameters λ and β  

Fig. 4 shows the surfaces of LOO classification accuracy as a function of parameters λ and β. The optimal LOO 

classification accuracies are presented in Table 3, in which the best results are shown in bold.  

From Table 3, it can be seen that the parametric conjunctive t-rules outperform the cautious and conjunctive rules 



in most cases. This observation suggests that parametric conjunctive t-rules can improve the performance of the 

evidential K-NN classifier when optimizing the parameters λ and β simultaneously. From Fig. 4, we can see that there is 

more than one optimal solution in most cases, and optimal LOO classification accuracy can be achieved when 

parameter β ≠ 1, which indicates that function g1(x) has a critical influence on the performance of PCTR. 

Table 3 Optimal LOO classification accuracies of the evidential K-NN classifier *1 

Datasets Cautious rule conjunctive rule PCTR-λ PCTR-(λ, β) 
Balance 0.6272 0.8767 0.8768 0.8848 
Breastw 0.9678 0.9707 0.9707 0.9736 
Diabetes 0.6680 0.7474 0.7487 0.7539 
Iono 0.9117 0.8917 0.9345 0.9345 
Iris 0.9400 0.9600 0.9600 0.9800 
Sonar  0.8462 0.8269 0.8510 0.8798 
Vehicle 0.6489 0.7222 0.7234 0.7234 
Wine  0.9831 0.9775 0.9888 0.9888 

*1. PCTR-λ means that only parameter λ in TDP is optimized when g1(x)=xβ with β = 1. In this case, PCTR-λ is equivalent to conjunctive t-rule. 

4.2.2 Experiment 2: Testing accuracy 

This second experiment intends to assess the testing/predictive accuracy of the evidential K-NN classifier. In this 

experiment, we still considered the eight datasets in Table 2. However, a double cross-validation loop strategy [10] was 

implemented on each dataset in order to avoid bias in the selection procedure. The procedure is summarized in Fig. 5. 

Input: Arbitrary dataset S and the ranges of (λ, β) = [0, 0.1, …, 1.0]×[0.5, 0.6, …, 2.0] ∈R11×16. 

Repetition Loop: For p = 1 to nREP  % nREP is the number of repetition 

Randomly split S in k1 non-overlapping folds S(1), …, S(k1) with possible equal size; 

Outer Loop: For i = 1 to k1 

1. Take S(i) as TEST set, and merge the remaining (k1-1) folds into S(-i) = S – S(i) as CALIBRATION set; 

2. Randomly split the calibration set in k2 non-overlapping folds C(1), …, C(k2) with possible equal size; 

3. Inner Loop: For j = 1 to k2 

1) Take C(j) as VALIDATION set and the remaining (k2-1) folds C(-j) = C – C(j) as TRAINING set; 

2) Calculate P(j)( λ, β) ∈R11×16 according to (22) for validation set C(j) based on training set C(-j); 

3) Select (λ*, β*) according to the following standard error-like rule [37] 

( ) ( ){ } ( )( ) ( )*, * max , , ,P P std P Pλ β λ β λ β λ β> − ,                 (23)

where P(λ, β) is a column vector by straightening matrix ( ) ( )21
2 1 ,k j

jP k P λ β−
==  ; |.| is cardinality of P. 

4. Evaluate the classification accuracy P(i)(λ*, β*) on the test set S(i); 

5. Average the k1 test accuracies P(i)(λ*, β*); 

Output: A group of nREP double cross-validation classification accuracies. 

Fig. 5 Double cross-validation algorithm 



To implement the double cross-validation algorithm, we set nREP = 10, k1 = 10 and k2 = 5, and we obtained a group 

of cross-validation classification accuracies for each dataset; the mean accuracies with standard deviations std. are 

presented in Table 4. Note that there is sometimes more than one optimal selection according to criterion (23). In this 

case, the best performance among these optimal selections is considered. Furthermore, the surfaces of classification 

accuracies varying with λ and β on these datasets are similar as those in Fig. 4; therefore, they are omitted due to space 

constraints. 

From Table 4, it can be seen that the parametric conjunctive t-rules outperform the conjunctive and cautious rules 

in most cases. For the diabetes and iono datasets, the mean classification accuracy obtained by PCTR-(λ, β) is a little 

lower than that obtained using PCTR-λ. When we look into the details, we find that the training accuracy using PCTR- 

(λ, β) is higher than that by using PCTR-λ, which indicates that there may be over-fitting when learning PCTR- (λ, β).  

Table 4 Classification accuracies estimated by double cross-validation 
Datasets Cautious rule Conjunctive rule PCTR-λ PCTR-(λ, β) 
Balance 0.6313 ± 0.0050 0.8747 ± 0.0048 0.8750 ± 0.0050 0.8851 ± 0.0050 
Breastw 0.9682 ± 0.0007 0.9712 ± 0.0013 0.9712 ± 0.0012 0.9712 ± 0.0022 
Diabetes 0.6692 ± 0.0082 0.7377 ± 0.0057 0.7464 ± 0.0061 0.7441 ± 0.0064 
Iono 0.9084 ± 0.0053 0.8904 ± 0.0038 0.9380 ± 0.0044 0.9352 ± 0.0052 
Iris 0.9413 ± 0.0028 0.9520 ± 0.0069 0.9527 ± 0.0080 0.9700 ± 0.0085 
Sonar  0.8403 ± 0.0089 0.8067 ± 0.0142 0.8388 ± 0.0118 0.8748 ± 0.0107 
Vehicle 0.6488 ± 0.0087 0.7123 ± 0.0058 0.7170 ± 0.0058 0.7316 ± 0.0059 
Wine  0.9675 ± 0.0099 0.9771 ± 0.0041 0.9804 ± 0.0071 0.9821 ± 0.0058 

To further investigate the performance of the PCTR-based classifier, we compared it with the popular 

Evidence-Theoretic k-nearest neighbor classifier with parameter Optimization (ETO) [39], in which the conjunctive rule 

is used and parameters k and γq are optimized rather than fixed. We used the same double cross-validation algorithm as 

above. As shown in Fig. 6, the PCTR-(λ, β)-base classifier outperforms, or at least is comparable with ETO in most 

cases even though parameters k and γq are fixed. 
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Fig. 6 Comparisons between PCTR-(λ, β) and ETO 



Remark 6 When g1(x) = x, the PCTR rule can degenerate to the cautious rule, the conjunctive rule or the conventional 

conjunctive t-rules. Consequently, the PCTR can be at least as good as these rules. However, we can see that, for 

instance on the datasets diabetes and iono, the PCTR-λ rule has the best performance. This means that there is some 

over-fitting, even though a standard error-like method (23) has been adopted. Furthermore, the proposed PCTR may not 

be able to enhance the performance of the evidential K-NN classifier for all datasets. When the conjunctive (t-)rule is 

not outperformed by PCTR, it may be possible to find other parametric families of rules that perform better, as 

mentioned in [22]. 

5. Conclusions 

In this paper, we first introduced a scheme to construct a new family of t-norms with selectable functions satisfying 

some conditions. Using this family of t-norms, a class of parametric conjunctive t-rules for combining belief functions 

has been proposed. The parametric conjunctive t-rules, which encompass the cautious and conjunctive rules, can be 

used to enhance the performance of the evidential K-NN classifier when appropriate selectable functions and tunable 

parameters are selected. 

The performance of the PCTR-based K-NN classifier depends on the choice of the number k of neighbors and on 

scale parameters γq. Hence, optimizing parameters k and γq could bring further classification accuracy improvements. 

Furthermore, we used the power function for g1(x), but different forms of selectable functions could be investigated as 

well. Finally, in this paper we optimized parameters (λ, β) using a greedy search procedure, but this strategy is 

suboptimal. Through global optimization of all parameters in the PCTR rule, it might be possible to further enhance the 

performance of the evidential K-NN classifier. This research direction is left for future work. 
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Appendix 

Proof of Proposition 1 

With x, y ∈ [1, +∞], we have g2(x), g2 (y) ∈ (0, 1]. In a similar way, g1(x), g1 (y) ∈ [0, 1] can be guaranteed if x, y ∈ [0, 

1]. By employing the dual operation ⊥′ of ′ and negation operation N, we have x ⊥′ y = N(N(x) ′ N(y)). Thus, formula 

(11) can be rewritten as 

x  
gi

 ⊥′ y =

( ) ( )
( ) ( )( )

11
1

2 2 2

, 1,

, 1,
, ,

g x g y x y

g g x g y x y

x y otherwise

−

∨ ≤
 ′ ∧ >
 ∧



⊥       (24) 

Similar as before, the symbol  
gi

 ⊥′ is shorten as  if no confusions occur in the following proof. 

 Commutativity 
As can be seen from formula (24), the binary operation  is defined by using classical norms , ⊥′ and ∧. Because 

of the commutativity of , ⊥′ and ∧, operation  is also commutative. 



 Neutral element 

If x ≤ 1, x  +∞ = x ∧ +∞ = x; 

If x ≥ 1, x  +∞ = g2
-1(g2( x) ⊥′ g2(+∞))= g2

-1(g2 ( x) ⊥′ 0)= g2
-1(g2 ( x)) = x. 

From the commutativity of , we have +∞  x = x  +∞ = x. 

 Monotonicity 
Without loss of generality, suppose w ≥ y, x ≥ z. 
− Suppose w  x = g1(w)g1(x), then y  z = g1(y)g1(z) because of 1 ≥ w ≥ y, 1 ≥ x ≥ z. By the monotonicity of 

and g1(.), we have w  x ≥ y  z. 

− Suppose w  x = w ∧ x, then there exist 1 ≥ w or 1 ≥ x, correspondingly, there also exist 1 ≥ y or 1 ≥ z. 

⎯  If y  z = y ∧ z, we have w  x = w ∧ x ≥ y ∧ z = y  z because of the monotonicity of ∧; 

⎯  If y  z = g1(y)  g1(z), we have g1(y)  g1(z) ≤g1(y) ∧ g1(z) because the minimum ∧ is the maximum 

t-norm on (0, +∞]. Without loss of generality, suppose w ∧ x = x. We have 
⎯  If y ≤ z, then y ∧ z = y. Because x ≥ z, we can obtain x ≥ y ∧ z. Thus, g1(w)∧ g1(x) ≥g1(y) ∧ g1(z) 

≥g1(y)g1(z). 

⎯  If y > z, then y ∧ z = z. and y ∧ z = z ≥ y  z. Because x ≥z, one has x ≥ y ∧ z. Thus, g1(w)∧ g1(x) 

≥g1(y) g1(z) 

− Suppose w  x = g2
-1(g2(w) ⊥′ g2(x)), then we have w ∧ x ≥ 1 and w  x ≥ 1. 

⎯ If y  z = g2
-1(g2(y) ⊥′ g2(z)), then w x ≥ y  z due to the monotonicity of ⊥′ and function g2; 

⎯  If y  z = y ∧ z, then w x ≥ 1 ≥ y ∧ z = y  z; 

⎯ If y  z = g1(y)  g1(z), together with y ∨ z ≤ 1, then g1(y) g1(z) ≤ 1. Thus, w  x ≥ 1 ≥ g1(y)  g1(z). 

Thus, we have w  x ≥ y  z.  

 Associativity 

Without loss of generality, suppose x ≥ y ≥z. 

− If x ≤ 1, y ≤ 1, z ≤ 1, then (x  y)  z = (g1(x)  g1(y))  g1(z) = g1(x)  (g1(y)  g1(z))  = x  (y  z). 

− If x > 1, y > 1, z > 1, we have 

(x  y)  z  = g2
-1(g2(x) ⊥′ g2(y))  g2(z) = g2

-1(g2(g2
-1(g2(x) ⊥′ g2(y))) ⊥′ g2(z)) = g2

-1(g2(x) ⊥′ g2(y) ⊥′ g2(z)), 

x  ( y  z)  = x  g2
-1(g2(y) ⊥′ g2(z)) = g2

-1(g2(x) ⊥′ g2(g2
-1(g2(y) ⊥′ g2(z)))) = g2

-1(g2(x) ⊥′ g2(y) ⊥′ g2(z)). 

Thus, we have (x  y)  z = x  ( y  z). 

− If x > 1 > y ≥ z, then we have 

x  (y  z ) = x  (g1(y)  g1(z)) = x ∧ (g1(y)  g1(z)) = g1(y)  g1(z), and (x  y)  z = (x ∧ y)  z = y  z = 

g1(y)  g1(z). Thus,  (x  y)  z = x  ( y  z). 

− If x ≥ y > 1 > z, then we have 

x  (y  z) = x  (y ∧ z) = x  z = x ∧ z = z, and (x  y) z = g2
-1(g2(x) ⊥′g2(y)) ∧ z = z. 

Thus, (x  y)  z = x  ( y z)。 

− If x = 1 or y=1 or z = 1，suppose x = 1, then we have 



x  (y  z) = 1  (y  z)= y  z, and (x  y)  z = (1  y)  z = y  z. 

Thus, (x  y)  z = x  (y  z)。 

Finally, it is evident that x  y > 0 because of x, y∈(0, +∞]. ▄ 

Proof of Proposition 2 

The proof is similar as that of Proposition 4.3 in [22]. It is given here for completeness. 
Firstly, we validate the premise that the minimum on (0, +∞] is the largest . This is evident because any t-norm  

on (0, +∞] has +∞ as neutral element and is monotonic. Hence, we have x  y ≤ x  +∞ = x and x  y ≤ +∞  y = y for 
all x, y ∈(0, +∞]. So, it results in x  y ≤ x ∧ y. Thus, we have 

w
 

1○ w2(A) ≤ w
 

1○∧ w2(A), A∀ ⊂ Ω . 

From Lemma 1 in [6], if m is a non-dogmatic BBA with conjunctive weight function w, and if w′ is a mapping 

from { } ( )2 \ 0,Ω Ω → +∞  such that ( ) ( )w A w A′ ≤ for all A ⊂ Ω , then w′ is the conjunctive weight function of some 

non-dogmatic BBA m′ .  

Consequently, w1○ w2 is a conjunctive weight function since w1○∧ w2 is a conjunctive weight function. ▄ 
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