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100 Rue des Mathématiques, 38610 Gières, France

alessandro.duca@univ-grenoble-alpes.fr

Abstract

A major application of the mathematical concept of graph in quantum mechanics is to model networks of
electrical wires or electromagnetic wave-guides. In this paper, we address the dynamics of a particle trapped
on such a network in presence of an external electromagnetic field. We study the controllability of the
motion when the intensity of the field changes over time and plays the role of control. From a mathematical
point of view, the dynamics of the particle is modeled by the so-called bilinear Schrödinger equation defined
on a graph representing the network. The main purpose of this work is to extend the existing theory for
bilinear quantum systems on bounded intervals to the framework of graphs. To this end, we introduce a
suitable mathematical setting where to address the controllability of the equation from a theoretical point
of view. More precisely, we determine assumptions on the network and on the potential field ensuring its
global exact controllability in suitable spaces. Finally, we discuss two applications of our results and their
practical implications to two specific problems involving a star-shaped network and a tadpole graph.

1 Introduction

During the last decades, graph type models (Figure 1) have been extensively studied in the literature for
the modeling of phenomena arising in science, social sciences and engineering. Applications to the quantum
mechanics include the study of the dynamics of free electrons in organic molecules starting from the seminal
work [Pau36] (see also [Kuh48, Pla49, RS53, Sla17, Wil67]), the superconductivity in granular and artificial
materials [Ale83], acoustic and electromagnetic wave-guides networks in [FJK87, ML71], etc.

Figure 1: A compact graph is a one-dimensional domain composed by finite vertices (points) connected by edges
(segments) of finite lengths.

The aim of this paper is to study the dynamics of a particle trapped on a network of wires, or wave-guides,
in presence of an electromagnetic external field. We assume that the particle is subjected to zero resistence
when it crosses the nodes of the network. The intensity of the external field is a function of the time and it plays
the role of control. The dynamics of the particle is modeled by the bilinear Schrödinger equation in L2(G ,C){

i∂tψ(t) = Aψ(t) + u(t)Bψ(t), t ∈ (0, T ),

ψ(0) = ψ0, T > 0.
(BSE)

The term u(t)B in the (BSE) represents the external field acting on the system. The bounded symmetric
operator B describes the action of the field and u ∈ L2((0, T ),R) its intensity. The operator A = −∆ is a
self-adjoint Laplacian equipped with suitable boundary conditions (see the next paragraphs for further details).

The mathematical analysis of self-adjoint operators was addressed in [RS53] by Ruedenber and Scherr (see
also [RB72]). There, they studied the dynamics of specific electrons in the conjugated double-bounds organic
molecules. In such a context, some electrons behave as if they were trapped on a network of wave-guides. The
graphs are obtained as the idealization of these structures in the limit where the diameter of their section is
much smaller than the length. A similar approach was developed by Saito in [Sai00, Sai01] where the graphs
are obtained as “shrinking” domains. For analogous ideas, we refer to the papers [RS01, Ola05].
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A natural question on the (BSE) of high relevance for the mentioned applications is whether it is possible
to control the motion of the particle through the network by varying the intensity of the external field. From a
mathematical point of view, we wonder if for any couple of quantum states ψ0 and ψ1, there exists a control u
so that the solution of the (BSE) with initial state ψ0 reaches, or at least approaches, ψ1.

A peculiarity of the bilinear quantum systems as (BSE) is that their exact controllability can not be ensured
in the Hilbert space where the dynamics is defined when B is a bounded operator. This is a consequence of the
results developed by Ball, Mardsen and Slemrod in the work on bilinear systems [BMS82].

For the bilinear Schrödinger equation (BSE) on the interval G = (0, 1), a successful strategy was developed by
Beauchard in [Bea05] which addresses the exact controllability in suitable subspaces of L2((0, 1),C). Beauchard
studied the equation with A the Dirichlet Laplacian −∆D on (0, 1) and proved the local exact controllability

in D(|∆D|
3
2 ). This method was later exploited in [BL10, Mor14, MN15, Duc19, Duc20].

Even though the global exact controllability of the bilinear Schrödinger equation (BSE) on G = (0, 1) is
well-established, the result on networks is still an open problem to the best of our knowledge.

� Firstly, it is not clear which is the “good” space where to consider the dynamics. When A is a self-adjoint
Laplacian on a compact graph, it is not easy to characterize how the boundary conditions defining the
domains D(|A| s2 ) are affected by the variation of the parameter s > 0.

� From a spectral point of view, even though A admits compact resolvent (see Remark 2.1), its ordered
eigenvalues (λk)k∈N∗ are not explicit up to very specific situations, unlike the Dirichlet Laplacian −∆D on
(0, 1) (we refer to Remark 3.8 for further details on the subject). In general, a more complicated structure
of the networks entails increased difficulties in determining the spectral behavior.

� Finally, the techniques developed in the works [Bea05, BL10, Duc20, Duc19, Mor14] can not be directly
applied for the (BSE) on compact graphs G . Indeed, the only sure fact on (λk)k∈N∗ is that the uniform
spectral gap infk∈N∗ |λk+1 − λk| > 0 can be only guaranteed when G = (0, 1). This hypothesis is crucial for
the techniques developed in the mentioned works.

The purpose of this work is threefold. First, we introduce a suitable mathematical framework where to
consider the dynamics of the (BSE) and we characterize the Sobolev’s spaces D(|A| s2 ) with s ≥ 0. Second, we
study the well-posedness of the (BSE) in such domains for very specific values of the parameter s. Third, we
develop a new technique leading to the global exact controllability of the (BSE) in these spaces.

Our main result yields the global exact contrability for bilinear quantum systems on network under fairly
general hypotheses on the spectrum A and on the potential B. We infer the validity of the mentioned spectral
assumptions for suitable networks shaped as: star graphs, double-ring graphs, tadpole graphs or two-tails
tadpole graphs (Figure 2). In the following paragraph, we provide an explicit potential field B acting on a
star-shaped network so that the controllability is guaranteed. In Section 3.3, we treat another specific problem
on a network modeled by a tadpole graph.

Figure 2: The figure respectively represents a star graph, a double-ring graph, a tadpole graph and a two-tails
tadpole graph.

Star-shaped network

Let us consider a network of 3 branches connected in one node. We can assume it is a structure of electrical
wires or a system of wave-guides representing the so-called “branching points” in the conjugated double-bounds
organic molecules (see [RS53] by Ruedenber and Scherr). We represent the network with a star-graph G
composed by 3 edges {e1, e2, e3}. We denote by v the internal vertex connecting all the edges of G . We
parametrize each ej with a coordinate going from 0 to its length Lj in v (see Figure 3).

e3

0L3

v

e2

e1

Figure 3: The figure shows the parametrization of a star graph with 3 edges.

We consider a particle trapped on such a network and we represent it by a quantum state ψ = (ψ1, ψ2, ψ3) ∈
L2(G ,C) :=

∏3
j=1 L

2(ej ,C), where each ψj : ej → C describes the probability of particle to be located in the
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edge ej . We assume that an external field acts on the network as a sufficiently regular potential field µ localized
on the branch represented by e1 and with time-dependent intensity. We model the field as u(t)B where

u ∈ L2((0, T ),R), B : ψ = (ψ1, ψ2, ψ3) ∈ L2(G ,C) 7−→
(
µ(x)ψ1, 0, 0

)
.(1)

The dynamics of the particle in the time (0, T ) is modeled by the bilinear Schrödinger equation in L2(G ,C)
i∂tψ

1(t, x) = −∂2xψ1(t, x) + u(t)µ(x)ψ1(t, x), t ∈ (0, T ), x ∈ (0, L1),

i∂tψ
2(t, x) = −∂2xψ2(t, x), t ∈ (0, T ), x ∈ (0, L2),

i∂tψ
3(t, x) = −∂2xψ3(t, x), t ∈ (0, T ), x ∈ (0, L3),

(2)

endowed with the following boundary conditions

ψ1(L1) = ψ2(L2) = ψ3(L3), ∂xψ
1(L1) + ∂xψ

2(L2) + ∂xψ
3(L3) = 0,

ψ1(0) = ψ2(0) = ψ3(0) = 0.
(3)

The identities appearing in the first line of (3) model the peculiarity of the central node of the network to
act zero resistence on the crossing particle (see [RS53, RB72]) and they are encoded by Neumann-Kirchhoff
boundary conditions. The last identities are the classical Dirichlet boundary conditions. Let

Hs :=

3∏
k=1

Hs(ek,C)

for s > 0. We denote by −∆ the Laplacian operator appearing in (2)-(3), i.e.

D(−∆) =
{
ψ = (ψ1, ψ2, ψ3) ∈ H2 : ψ verifies the boundary conditions (3)

}
.

Definition 1.1. LetN ∈ N∗. We denote byAL(N) the set of elements {Lj}j≤N ∈ (R+)N so that
{

1, L1, ..., LN
}

are linearly independent over Q and all the ratios Lk/Lj are algebraic irrational numbers.

The set AL(N) with N ∈ N∗ contains the uncountable set of {Lj}j≤N ∈ (R+)N such that each Lj can be

written in the form tL̃j where all the ratios L̃j/L̃k are algebraic irrational numbers and t is a transcendental
number. For instance, {π

√
2, π
√

3} belongs to AL(2), while {π, π
√

2, π
√

3} to AL(3).

Theorem 1.2. Let µ : x ∈ (0, L1) 7−→ (x − L1)4. There exists C ⊂ (R+)3 countable such that, for every
{L1, L2, L3} ∈ AL(3) \ C, the dynamics of the system (2)-(3) is globally exactly controllable in

H4+ε ∩D(|∆|2), ε > 0.

In other words, let ΓuT be the unitary propagator associated to the dynamics of (2)-(3) in the time interval (0, T )
with control u ∈ L2((0, T ),R). For every ψ1, ψ2 ∈ H4+ε ∩D(|∆|2) such that ‖ψ1‖L2(G ,C) = ‖ψ2‖L2(G ,C),

∃T > 0, u ∈ L2
(
(0, T ),R

)
: ΓuTψ

1 = ψ2.

Theorem 1.2 is proved in Section 3.2 and it is a consequence of the abstract result of Theorem 3.2. There,
the statement is guaranteed when specific hypotheses on the spectral behaviour of A and on the field B are
satisfied.

Theorem 1.2 yields that the controllability of (2)-(3) holds even though the external field only acts on the
edge e1. When the particle, represented by a state ψ0, is (mostly) localized in e3, it is still possible to move it
to any other edge of the network by controlling the intensity of the field (Figure 4).

u(t)(x− L1)
4

e3

e2

e1

 0

u(t)(x− L1)
4

e3

e2

e1

 1

Figure 4: The figure represents an interesting application of Theorem 1.2: it is possible to steer any state ψ0,
localized in e3, to any other state ψ1, localized in e2, by means of the dynamics of the bilinear Schrödinger
equation (2)-(3), even though the potential field u(t)µ(x) = u(t)(x− L1)4 only acts on the edge e1.

This peculiarity follows from the choice of {L1, L2, L3} ∈ AL(3). In this case, each bounded state of i∂tψ = −∆ψ
is supported by the whole network (see Remark 3.6) and then, it is affected by the field acting on e1. As a
consequence, when we see ψ0 as a superposition of bounded states, we realize that the control field “see” the
particle even though it is localized on a different edge from e1.
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Remark 1.3. If L2/L3 is rational, then there exist eigenfunctions of −∆ vanishing in e1. When L1/L3 is also
rational, the spectrum of −∆ presents multiple eigenvalues (see Remark 3.6). These are obvious obstructions to
the controllability of (2)-(3) since the potential only acts on e1. As a consequence, when we change the lengths
of the branches of the network, it may happen that the controllability of (2)-(3) is lost, even though the set of
the ”uncontrollable” lengths is countable.

Scheme of the work

In Section 2, we present the mathematical framework and the notations adopted in the work. In Section 3, we
state with Theorem 3.2 our abstract global exact controllability result which we use to prove Theorem 1.2. In
the final part of this section, we also deal with a specific problem involving a tadpole graph. In Section 4, we
present some interpolation properties for the domains D(|A| s2 ) with s > 0 and we ensure the well-posedness of
the (BSE). In Section 5, we prove the abstract result of Theorem 3.2 by extending a local exact controllability.
In Appendix A, we ensure some spectral proprieties adopted in the manuscript. In Appendix B, we provide a
new technique leading to the solvability of the so-called moment problem appearing in the proof of the local
exact controllability. In Appendix C, we develop some perturbation theory techniques.

2 Preliminaries

2.1 Mathematical framework and notations

Let G be a compact graph composed by N ∈ N∗ edges {ej}j≤N of lengths {Lj}j≤N and M ∈ N∗ vertices
{vj}j≤M . For every vertex v, we denote

N(v) :=
{
l ∈ {1, ..., N} | v ∈ el

}
, n(v) := |N(v)|.(4)

We call Ve and Vi the external and the internal vertices of the graph G (see Figure 5).

Internal vertices External vertices

Figure 5: Internal and external vertices in a compact graph.

We study graphs equipped with a metric, which parametrizes each edge ej with a coordinate going from 0 to
its length Lj . A graph is compact when it is composed by a finite number of vertices and edges of finite lengths.
We consider functions f := (f1, ..., fN ) : G → C with domain a compact metric graph G so that f j : ej → C
for every j ≤ N . We denote

L2(G ,C) =
∏
j≤N

L2(ej ,C).

The Hilbert space L2(G ,C) is equipped with the norm ‖ · ‖L2 induced by the scalar product

〈ψ,ϕ〉L2 :=
∑
j≤N

〈ψj , ϕj〉L2(ej ,C) =
∑
j≤N

∫
ej

ψj(x)ϕj(x)dx, ∀ψ,ϕ ∈ L2(G ,C).

For s > 0, we define the spaces

Hs = Hs(G ,C) :=

N∏
j=1

Hs(ej ,C), hs =
{

(xj)j∈N∗ ⊂ C
∣∣ ∞∑
j=1

|jsxj |2 <∞
}
.

We equip hs with the norm
∥∥(xj)j∈N∗

∥∥
(s)

=
(∑∞

j=1 |jsxj |2
) 1

2 for every (xj)j∈N∗ ∈ hs. Let f ∈ H1 and v be a

vertex of G connected once to an edge ej with j ≤ N . When the coordinate parametrizing ej in the vertex v is
equal to 0 (resp. Lj), we denote

∂xf
j(v) = ∂xf

j(0),
(
resp. ∂xf

j(v) = −∂xf j(Lj)
)
.(5)

When ej is a loop and it is connected to v in both of its extremes, we use the notation

∂xf
j(v) = ∂xf

j(0)− ∂xf j(Lj).(6)

When v is an external vertex and then ej is the only edge connected to v, we call ∂xf(v) = ∂xf
j(v).

In the bilinear Schrödinger equation (BSE), we consider the Laplacian A being self-adjoint and we denote
G as quantum graph. From now on, when we introduce a quantum graph G , we implicitly define on G a
self-adjoint Laplacian A. Formally, D(A) is characterized by the following boundary conditions.
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Vertex boundary conditions. Let G be a compact quantum graph.

(D) A vertex v ∈ Ve is equipped with Dirichlet boundary conditions when f(v) = 0 for every f ∈ D(A).

(N ) A vertex v ∈ Ve is equipped with Neumann boundary conditions when ∂xf(v) = 0 for every f ∈ D(A).

(NK) A vertex v ∈ Vi is equipped with Neumann-Kirchhoff boundary conditions when every f ∈ D(A) is
continuous in v and

∑
j∈N(v) ∂xf

j(v) = 0 (according to the notations (5) and (6)).

Graph boundary conditions. Let G be a compact quantum graph.

� The graph G is said to be equipped with (D) when the Laplacian A = −∆ in L2(G ,C) is such that

D(A) = {ψ ∈ H2 : ψ satisfies (NK) in every v ∈ Vi and (D) in each v ∈ Ve}.

� The graph G is said to be equipped with (N ) when the Laplacian A = −∆ in L2(G ,C) is such that

D(A) = {ψ ∈ H2 : ψ satisfies (NK) in every v ∈ Vi and (N ) in each v ∈ Ve}.

� The graph G is said to be equipped with (D/N ) when the Laplacian A = −∆ in L2(G ,C) is such that

D(A) = {ψ ∈ H2 : ψ satisfies (NK) in every v ∈ Vi and each v ∈ Ve verifies (D) or (N )}.

Remark 2.1. When the boundary conditions described above are satisfied, the Laplacian A is self-adjoint (see
[Kuc04, Theorem 3]), it admits compact resolvent and then purely discrete spectrum (see [Kuc04, Theorem 18]).

We denote by (λk)k∈N∗ the ordered sequence of eigenvalues of A and (φk)k∈N∗ is a Hilbert basis of L2(G ,C)
composed by corresponding eigenfunctions. Let [r] be the entire part of a number r ∈ R. For s > 0, we denote

Hs
NK :=

{
ψ ∈ Hs(G ,C)

∣∣∣ ∂2nx ψ is continuous in v, ∀n ∈ N, n <
[
(s+ 1)/2

]
, ∀v ∈ Vi;∑

j∈N(v)

∂2n+1
x ψj(v) = 0, ∀n ∈ N, n <

[
s/2
]
, ∀v ∈ Vi

}
,

Hs
G := D(As/2), ‖ · ‖(s) := ‖ · ‖HsG =

( ∑
k∈N∗

∣∣ks〈·, φk〉L2

∣∣2) 1
2

.

2.2 Spectral properties

The following proposition rephrases the results of [BK13, Theorem 3.1.8] and [BK13, Theorem 3.1.10]. There,

we denote by
(
λĜ
k

)
k∈N∗ the ordered sequence of eigenvalues of A on a compact quantum graph Ĝ .

Proposition 2.2. [BK13, Theorem 3.1.8] & [BK13, Theorem 3.1.10] Let G be a compact quantum graph.

1) Let w be a vertex of G . If GDis the graph obtained by changing the boundary conditions in w with (D), then

λG
k ≤ λGD

k ≤ λG
k+1, k ∈ N∗.

2) Let w and v be two vertices of G equipped with (NK) or (N ). If G ′ is the graph obtained by merging the
vertices w and v of G in one unique vertex equipped with (NK), then

λG
k ≤ λG ′

k ≤ λG
k+1, ∀k ∈ N∗.

Let G a be compact graphs composed by N ∈ N∗ edges. We define GD the quantum graph obtained by
imposing (D) in each vertex of G : GD consists in N disjoint intervals equipped with (D). Let GN be constructed
from G by disconnecting each edge and by imposing (N ) in each vertex: GN consists in N disjoint intervals
equipped with (N ). From Proposition 2.2,

λGN

k−2N ≤ λG
k ≤ λGD

k+M , ∀k > 2N.(7)

The sequences λGN

k and λGD

k are respectively obtained by reordering
{
k2π2

L2
l

}
k∈N∗
l≤N

and
{ (k−1)2π2

L2
i

}
k∈N∗
i≤N

. Now,

λGN

l−2N ≥
(l − 2N − 1)2π2

N2m̃
≥ l2π2

22(2N+1)N2m̃
, λGD

l+M ≤
(l +M)2π2

m̂
≤ l222Mπ2

m̂

for m̃ = maxj≤N L
2
j and m̂ = minj≤N L

2
j . Finally, the last two relations and (7) lead to the following lemma.
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Lemma 2.3. Let (λk)k∈N∗ be the eigenvalues of a self-adjoint Laplacian A defined on a compact quantum graph
equipped with (D), (N ) or (D/N ). There exist C1, C2 > 0 such that

C1k
2 ≤ λk ≤ C2k

2, ∀k ≥ 2.

When a compact quantum graph G is not equipped with (N ), we have 0 6∈ σ(A) (the spectrum of A) and,
from Lemma 2.3, there holds ‖ · ‖(s) � ‖|A|

s
2 · ‖L2 , i.e.

∃C1, C2 > 0 : C1‖ · ‖(s) ≤ ‖|A|
s
2 · ‖L2 ≤ C2‖ · ‖(s).

When G is equipped with (N ) , we have 0 ∈ σ(A) and λ1 = 0. There exists c ∈ R such that 0 6∈ σ(A+ c) and

‖ · ‖(s) � ‖|A+ c| s2 · ‖L2 .

Now, from [DZ06, P roposition 6.2], there exist M ∈ N∗ and δ′ > 0 such that infk∈N∗ |
√
λk+M −

√
λk| > δ′M

and

inf
k∈N∗

|λk+M − λk| ≥
√
λM+1 inf

k∈N∗
|
√
λk+M −

√
λk| ≥ δM(8)

for δ =
√
λM+1δ

′. The relation (8) yields the following lemma.

Lemma 2.4. Let (λk)k∈N∗ be the eigenvalues of a self-adjoint Laplacian A defined on a compact quantum graph
equipped with (D), (N ) or (D/N ). There exist δ > 0 and M∈ N∗ such that

inf
k∈N∗

|λk+M − λk| ≥ δM.

In the next proposition, we use Proposition 2.2 in order to characterize the asymptotic behaviour of (λk)k∈N∗

when G is one of the graphs represented in Figure 2.

Proposition 2.5. Let G be either a tadpole, a two-tails tadpole, a double-rings graph or a star graph with
N ≤ 4 edges. Let G be equipped with (D/N ). If {Lj}j≤N ∈ AL(N), then, for every ε > 0, there exists C > 0
such that

|λk+1 − λk| ≥ Ck−ε, ∀k ∈ N∗

Before providing the proof of Proposition 2.5, we introduce the following auxiliary result.

Lemma 2.6. Let {Ll}l≤N1 , {L̃i}i≤N2 ⊂ R with N1, N2 ∈ N∗. Let
(
λ1k
)
k∈N∗ and

(
λ2k
)
k∈N∗ be the two sequences

of numbers obtained by reordering
{
k2π2

L2
l

}
k,l∈N∗
l≤N1

and
{
k2π2

L̃2
i

}
k,i∈N∗
i≤N2

respectively. When all the ratios L̃i/Ll are

algebraic irrational numbers, for every ε > 0, there exists C > 0 such that

|λ1k+1 − λ2k| ≥ Ck−ε, ∀k ∈ N∗.

Proof. See Appendix A.

Proof of Proposition 2.5. Let G be a tadpole graph equipped with (D). We construct from G two quantum
graphs GN and GD as follows (see the first line of Figure 6 for further details). Let GN be the graph obtained
by disconnecting the edge e1, representing the “head” of the tadpole, on one side. We impose (N ) on the new
external vertex of e1 created by this procedure. Let GD be obtained from G by imposing (D) on its internal

vertex v ∈ Vi. We respectively denote by
(
λGD

k

)
k∈N∗ and

(
λGN

k

)
k∈N∗ the ordered sequences of eigenvalues in

GD and GN which are obtained by reordering
{
k2π2

L2
j

}
k∈N∗
j∈{1,2}

and
{ (2k−1)2π2

4(L1+L2)2

}
k∈N∗ . From Proposition 2.2,

(9) λG
k ≤ λGD

k ≤ λG
k+1, λG

k ≤ λGN

k+1 ≤ λG
k+1, ∀k ∈ N∗.

If {L1, L2} ∈ AL(2), then the ratios between the elements in {L1, L2, L1 +L2} are algebraic irrational numbers.
Lemma 2.6 ensures the existence of C > 0 such that, for every ε > 0, there holds

|λG
k+1 − λG

k | ≥ |λGN

k+1 − λGD

k | ≥ Ck−ε, ∀k ∈ N∗.

The claim is guaranteed when G is a tadpole graph. The same techniques are also valid when G is a tadpole
graph equipped with (N ), when G is a two-tails tadpole graph, a double-rings graph or a star graph with N ≤ 4
edges. In every framework, we impose that {Lk}k≤N ∈ AL(N). In Figure 6, we represent how to define GN

and GD from the corresponding G .
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G G N G D

Boundaries: Neumann-Kirchhoff, Neumann, Dirichlet, Dirichlet/Neumann.

Figure 6: The figure represents the graphs described in the proof of Proposition 2.5. The first column shows the
graphs G considered: tadpole, two-tails tadpole, double-rings graph, star graph with N = 3 and star graph with
N = 4. The second and the third columns respectively provide the corresponding graphs GN and GD.

3 Main results

3.1 Abstract controllability result

Let η > 0 and a ≥ 0. We denote by I the subset of (N∗)2 such that I := {(j, k) ∈ (N∗)2 : j < k}.
Assumptions I (η). The bounded symmetric operator B satisfies the following conditions.

1. There exists C > 0 such that |〈φj , Bφ1〉L2 | ≥ C
j2+η for every j ∈ N∗.

2. For (j, k), (l,m) ∈ I such that (j, k) 6= (l,m) and such that λj − λk = λl − λm, we have

〈φj , Bφj〉L2 − 〈φk, Bφk〉L2 6= 〈φl, Bφl〉L2 − 〈φm, Bφm〉L2 .

The first condition of Assumptions I quantifies how much B mixes the eigenspaces associated to the eigen-
functions (φk)k∈N∗ . This assumption is crucial for the controllability. Indeed, when B stabilizes such spaces,
also ΓuT , the unitary propagator associated to the (BSE), does the same and we can not expect to obtain con-
trollability results. The second hypothesis is used to decouple some eigenvalues resonances appearing in the
proof of the approximate controllability that we use in order to prove our main results.

Assumptions II (η, a). Let Ran(B|H2
G

) ⊆ H2
G and one of the following assumptions be satisfied.

1. When G is equipped with (D/N ) and a + η ∈ (0, 3/2), there exists d ∈ [max{a + η, 1}, 3/2) such that
Ran(B|H2+d

G
) ⊆ H2+d ∩H2

G .

2. When G is equipped with (N ) and a+ η ∈ (0, 7/2), there exist d ∈ [max{a+ η, 2}, 7/2) and d1 ∈ (d, 7/2)
such that Ran(B|H2+d

G
) ⊆ H2+d ∩H1+d

NK ∩H2
G and Ran(B|

H
d1
NK

) ⊆ Hd1
NK.

3. When G is equipped with (D) and a + η ∈ (0, 5/2), there exists d ∈ [max{a + η, 1}, 5/2) such that
Ran(B|H2+d

G
) ⊆ H2+d∩H1+d

NK ∩H2
G . If d ≥ 2, then there exists d1 ∈ (d, 5/2) such that Ran(B|Hd1 ) ⊆ Hd1 .

Assumptions II calibrate the regularity of the control potential B according to the choice of the boundary
conditions defining D(A) which affects the definition of the spaces Hs

G = D(|A| s2 ) with s > 0.
We are finally ready to present our main abstract controllability result for the (BSE) on general networks.

Definition 3.1. Let ΓuT be the unitary propagator associated to (BSE) with T > 0 and u ∈ L2((0, T ),R). The
(BSE) is said to be globally exactly controllable in Hs

G with s > 0 when, for every ψ1, ψ2 ∈ Hs
G such that

‖ψ1‖L2 = ‖ψ2‖L2 , there exist T > 0 and u ∈ L2((0, T ),R) such that ΓuTψ
1 = ψ2.

Theorem 3.2. Let G be a compact quantum graph. Let M ∈ N∗ be defined in Lemma 2.4. Let exist C > 0
and d̃ ≥ 0 such that

(10) |λk+1 − λk| ≥ Ck−
d̃
M−1 , ∀k ∈ N∗.

If the couple (A,B) satisfies Assumptions I(η) and Assumptions II(η, d̃) for some η > 0, then the (BSE) is
globally exactly controllable in Hs

G for s = 2 + d and d from Assumptions II.

Proof. See Section 5.
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In the next proposition, we state an abstract global exact controllability result valid when G is one of the
graphs represented in Figure 2. This result leads to Theorem 1.2.

Proposition 3.3. Let {Lj}j≤N ∈ AL(N). Let G be either a tadpole, a two-tails tadpole, a double-rings graph
or a star graph with N ≤ 4 edges. Let G be equipped with (D/N ). If the couple (A,B) satisfies Assumptions I(η)
and Assumptions II(η, ε) for some η, ε > 0, then the (BSE) is globally exactly controllable in Hs

G for s = 2 + d
and d from Assumptions II.

Proof. The claim follows by the validity of the spectral hypothesis of Theorem 3.2 due to Proposition 2.5.

Remark 3.4. Let {Lj}j≤2 ∈ AL(2). Proposition 2.5 and then Proposition 3.3 are also valid when G is a
two-tails tadpole with tails of length L2 and head L1. The same is true when G is a star graph with 3 (or 4)
edges such that two edges are long L1 and the remaining one (resp. ones) L2.

The size of the time in Theorem 3.2 depends on the initial and the final states of the dynamics. This is due
to the global approximate controllability result adopted in the proof of Theorem 3.2. Nevertheless, the local
exact controllability (presented in Proposition 5.2), is valid for any T > 0 (see Remark 5.3 for further details).

3.2 Proof of Theorem 1.2

Proof. Let G be a star graph with 3 edges of lengths {Lj}j≤3 equipped (D). The (D) conditions on the external
vertices imply that each eigenfunction φj with j ∈ N∗ satisfies φlj(0) = 0 for every l ≤ 3. Then,

φj(x) =
(
a1j sin(x

√
λj), a

2
j sin(x

√
λj), a

3
j sin(x

√
λj)
)

with {alj}l≤3 ⊂ C such that (φj)j∈N∗ forms a Hilbert basis of L2(G ,C), i.e.

∑
l≤3

∫ Ll

0

|alj |2 sin2(x
√
λj)dx =

∑
l≤3

|alj |2
(Ll

2
+

cos(Ll
√
λj) sin(Ll

√
λj)

2
√
λj

)
= 1.(11)

For every j ∈ N∗, the (NK) condition in Vi yields

a1j sin(
√
λjL1) = ... = a3j sin(

√
λjL3),

∑
l≤3

alj cos(
√
λjLl) = 0,

∑
l≤3

cot(
√
λjLl) = 0,

∑
l≤3

|alj |2sin(Ll
√
λj) cos(Ll

√
λj) = 0.

(12)

Now, (11) and (12) ensure 1 =
∑3
l=1 |alj |2Ll/2. The continuity implies alj = a1j

sin(
√
λjL1)

sin(
√
λjLl)

for l 6= 1 and

|a1j |2
(
L1 +

3∑
l=2

Ll
sin2(

√
λjL1)

sin2(
√
λjLl)

)
= 2, =⇒ |a1j |2 =

2
∏
m 6=1 sin2(

√
λjLm)∑3

k=1 Lk
∏
m 6=k sin2(

√
λjLm)

.(13)

From (12) and (13), we have
∑3
l=1 cos(

√
λkLl)

∏
m6=l sin(

√
λkLm) = 0. The validity of [DZ06, P roposition A.11]

and Lemma 2.3 ensure that, for every ε > 0, there exist C1, C2 > 0 such that, for every j ∈ N∗,

|a1j | =
√

2∑3
l=1 Ll sin

−2(
√
λjLl)

≥
√

2∑3
l=1 LlC

−2
1 λ1+εj

≥ C2

j1+ε
.(14)

1) Validation of Assumptions I.1 . We notice 〈φlk, (Bφj)l〉L2(ej ,C) = 0 for l 6= 1 and k, j ∈ N∗. Let

aj(x) :=
2
∏
m6=1 sin2(

√
λjLm)∑4

k=2 Lk sin2(
√
λjx)

∏
m 6=k,1 sin2(

√
λjLm) + x

∏
m 6=1 sin2(

√
λjLm)

,

B1(x) :=
−30
√
λ1x+ 20

√
λ1

3
x3 + 4

√
λ1

5
x5 + 15 sin(2

√
λ1x)

40
√
λ1

5 ,

Bj(x) := 2
−6(
√
λ1 −

√
λj)x+ (

√
λ1 −

√
λj)

3x3 + 6 sin((
√
λ1 −

√
λj)x)

(
√
λ1 −

√
λj)5

− 2
−6(
√
λ1 +

√
λj)x+ (

√
λ1 +

√
λj)

3x3 + 6 sin((
√
λ1 +

√
λj)x)

(
√
λ1 +

√
λj)5
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with j ∈ N∗. Each function B̃j(·) :=
√
a1(·)

√
aj(·)Bj(·) is non-constant and analytic in R+, while we notice

that B1,j = 〈φ1, Bφj〉L2 = B̃j(L1) by calculation. The set of positive zeros Ṽj of each B̃j is a discrete subset of

R+ and Ṽ =
⋃
j∈N∗ Ṽj is countable. For every {Ll}l≤4 ∈ AL(4) such that L1 6∈ Ṽ , we have |B1,j | 6= 0 for every

j ∈ N∗. Now, there holds |B1,j | ∼ |aj |L1

√
λ1
√
λj(λj − λ1)−2 for every j ∈ N∗ \ {1}. From Lemma 2.3 and the

identity (14), the first point of Assumptions I(2 + ε) is verified as, for each ε > 0, there exists C3 > 0 such that

|B1,j | ≥
C3

j4+ε
, ∀j ∈ N∗.

2) Validation of Assumptions I.2 . By calculation, we notice that Bj,j = 〈φj , Bφj〉L2 = Fj(L1) where

Fj(x) := aj(x)
−30
√
λkx+ 20

√
λ
3

kx
3 + 4

√
λ
5

kx
5 + 15 sin(2

√
λkx)

40
√
λ
5

k

.

Let (k, j), (m,n) ∈ I, (k, j) 6= (m,n) for I defined above Assumptions I. For Fj,k,l,m(x) = Fj(x)−Fk(x)−Fl(x)+
Fm(x), it follows Fj,k,l,m(L1) = Bj,j −Bk,k−Bl,l+Bm,m and Fj,k,l,m(x) is a non-constant analytic function for
x > 0. Furthermore Vj,k,l,m, the set of the positive zeros of Fj,k,l,m(x), is discrete and V :=

⋃
j,k,l,m∈N∗
j 6=k 6=l6=m

Vj,k,l,m

is a countable subset of R+. For each {Ll}l≤3 ∈ AL(3) such that L1 6∈ V ∪ Ṽ , Assumptions I(2 + ε) are verified.

3) Validation of Assumptions II.3 and conclusion. We notice that B stabilizes the spaces H2
G , Hm and

Hm
NK for m ∈ (0, 9/2) since, for n ∈ N∗ such that n < 5, we have

∂n−1x (Bψ)1(L1) = .... = ∂n−1x (Bψ)3(L3) = 0, ∀ψ ∈ Hn
NK,

which implies Bψ ∈ Hn
NK. The third point of Assumptions II(2 + ε1, ε2) is valid for each ε1, ε2 > 0 such that

ε1 + ε2 ∈ (0, 1/2). From Proposition 3.3, the controllability holds in H4+ε
G with ε > 0. Finally, we note that

H4+ε
G = H4+ε ∩H4

G (see Proposition 4.2 for further details).

Remark 3.5. The proof Theorem 1.2 can also be adapted for star-graphs equipped with (N ) or with (D/N ). In
such cases, we respectively have to use Proposition A.2 and Remark A.3 instead of [DZ06, P roposition A.11].

Remark 3.6. Let us consider a three edges star graph G equipped with (D). The same observations can be
done for star graphs of N ∈ N∗ edges and equipped with (D/N )

1) When {L1, L2, L3} ∈ AL(3), each eigenfuction φ = (φ1, φ2, φ3) of A is such that φj 6≡ 0 for every j ≤ 3.
Indeed, if for instance φ1 ≡ 0, then the continuity would imply φ2(L2) = φ3(L3) = 0 and then the corresponding

eigenvalue λ would be the form λ =
n2
1π

2

L2
2

and λ =
n2
2π

2

L2
3

for suitable n1, n2 ∈ N∗ which is impossible.

2) When L2/L3 is rational, there exist n,m ∈ N∗ such that L2/L3 = n/m. In this case, there exist eigenfuctions

of A of the form (0, sin(
√
µx),− sin(

√
µx)) where µ = k2m2π2

L2
3

is the corresponding eigenvalue for some k ∈ N∗.
When also L1/L3 is rational, there exist n′,m′,∈ N∗ such that L1/L3 = n′/m′. The sequence {µk}k∈N∗ with

µk = k2m2m′2π2

L2
3

is composed by eigenvalues of A and they are multiple. Indeed, fixed k ∈ N∗,

fk =
(
− 2 sin(

√
µkx), sin(

√
µkx), sin(

√
µkx)

)
, gk =

(
0, sin(

√
µkx),− sin(

√
µkx)

)
are reciprocally orthogonal eigenfunctions of A corresponding to µk.

3.3 Controllability of a bilinear quantum system on a tadpole graph

Another application of Theorem 3.2 is the following. Let G be a tadpole graph composed by two edges {e1, e2}
connected in an internal vertex v. The edge e1 is self-closing and parametrized in the clockwise direction with
a coordinate going from 0 to L1 (the length e1). On the “tail” e2, we consider a coordinate going from 0 in the
to L2 and we associate the 0 to the external vertex ṽ.

0

L1

e1 e2
0

L2v

~v

r

Figure 7: The parametrization of the tadpole graph and its symmetry axis r.

Theorem 3.7. Let G be a tadpole graph equipped with (D). Let B : ψ ∈ L2(G ,C) −→ (µ1ψ
1, µ2ψ

2) with

µ1(x) := sin
(2π

L1
x
)

+ x(x− L1), µ2(x) := x2 − (2L1 + 2L2)x+ L2
2 + 2L1L2.

There exists C ⊂ (R+)2 countable so that, for each {L1, L2} ∈ AL(2) \ C, the (BSE) is globally exactly control-
lable in H4+ε

G with ε > 0.
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Proof. Let r be the symmetry axis of G (see Figure 7). We construct (φk)k∈N∗ as a sequence of symmetric
or skew-symmetric functions with respect to r. If φk = (φ1k, φ

2
k) is skew-symmetric, then φ2k ≡ 0, φ1k(0) =

φ1k(L1/2) = φ1k(L1) = 0 and ∂xφ
1
k(0) = ∂xφ

1
k(L1). We respectively denote by

(fk)k∈N∗ =

((√ 2

L1
sin
(
x

2kπ

L1

)
, 0
))

k∈N∗
, (νk)k∈N∗ :=

(
4k2π2

L2
1

)
k∈N∗

the skew-symmetric eigenfunctions belonging to the Hilbert base (φk)k∈N∗ and the ordered sequence of corre-
sponding eigenvalues. If φk = (φ1k, φ

2
k) is symmetric, then we have ∂xφ

1
k(L1/2) = 0 and φ1k(·) = φ1k(L1− ·). The

(D) conditions on ṽ implies that the symmetric eigenfunctions corresponding to the eigenvalues (µk)k∈N∗ are

(gk)k∈N∗ :=
((
a1k cos

(√
µk

(
x− L1

2

))
, a2k sin(

√
µkx)

))
k∈N∗

, for {(a1k, a2k)}k∈N∗ ⊂ C2.

Now, we characterize the eigenvalues (µk)k∈N∗ . The (NK) conditions in v ensure that a1k cos(
√
µk(L1/2)) =

a2k sin(
√
µkL2)) and 2a1k sin(

√
µk(L1/2)) + a2k cos(

√
µkL2)) = 0. Finally, (µk)k∈N∗ are the zeros of

(15) 2 tan(
√
µk(L1/2)) + cot(

√
µkL2)) = 0.

The remaining part of the proof follows by the same argument of the one of Theorem 1.2. The only difference
is that we need to use Remark A.3 instead of [DZ06, P roposition A.11].

Remark 3.8. As showed in the proof of Theorem 1.2, the study of the spectrum of A on a 3-edges star-graph
equipped with (D) consists in seeking for (λk)k∈N solving the first two identities of (12). If for instance the
lengths of the edges are equal to L > 0, the eigenvalues are the zeros of sin(

√
λL) and of cos(

√
λL). However,

in the general framework, the eigenvalues are obtained by solving
∑
l≤3 cot(

√
λLl) = 0 which is a transcendental

equation and then not always explicitly solvable. Similarly in Theorem 3.7, some eigenvalues are the zeros of the
transcendental equation (15). The same observations is valid for other graphs (see [DZ06] for further details).

4 Well-posedness and interpolation properties of the spaces Hs
G

In the current section, we provide the well-posedness of the (BSE).

Theorem 4.1. Let (A,B) satisfy Assumptions II(η, d̃) with η > 0 and d̃ ≥ 0. Let ψ0 ∈ H2+d
G with d introduced

in Assumptions II. Let u ∈ L2((0, T ),R) with T > 0. There exists a unique mild solution of (BSE) in H2+d
G ,

i.e. a function ψ ∈ C0([0, T ], H2+d
G ) such that for every t ∈ [0, T ],

(16) ψ(t, x) = e−iAtψ0(x)− i
∫ t

0

e−iA(t−s)u(s)ψ(s, x)ds.

Moreover, there exists C = C(T,B, u) > 0 so that ‖ψ‖C0([0,T ],H2+d
G ) ≤ C‖ψ0‖H2+d

G
, while ‖ψ(t)‖L2 = ‖ψ0‖L2

for every t ∈ [0, T ] and ψ0 ∈ H2+d
G .

Before proving Theorem 4.1, we present some interpolation properties for the spaces Hs
G with s ≥ 0 in the

following proposition. In this result, we denote by H0
G , H

0
NK and H0 the Hilbert space L2(G ,C).

Proposition 4.2.
1) If the compact quantum graph G is equipped with (D/N ), then

Hs1+s2
G = Hs1

G ∩H
s1+s2 for s1 ∈ N, s2 ∈ [0, 1/2).

2) If the compact quantum graph G is equipped with (N ), then

Hs1+s2
G = Hs1

G ∩H
s1+s2
NK for s1 ∈ 2N, s2 ∈ [0, 3/2).

3) If the compact quantum graph G is equipped with (D), then

Hs1+s2+1
G = Hs1+1

G ∩Hs1+s2+1
NK for s1 ∈ 2N, s2 ∈ [0, 3/2).

Proof. 1) Graph equipped with (D/N ). We start by proving the first statement of Proposition 4.2.
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1) (a) Preliminaries. Let IN and ID be two quantum graphs defined on an interval I of length L. We
suppose that IN is equipped with (N ), while ID is equipped with (D). From [Gru16, Definition 2.1], for every
s1 ∈ 2N, s2 ∈ [0, 3/2) and s3 ∈ [0, 1/2), we have

Hs1+s2
IN

= Hs1
IN
∩Hs1+s2(IN ,C), Hs1+s2+1

ID
= Hs1+1

ID
∩Hs1+s2+1(ID,C), Hs3

ID
= Hs3(ID,C).(17)

Let G = IM be an interval equipped with (N ) in the external vertex parametrized with 0 and with (D) in the
other. We prove

(18) Hs1+s2
IM

= Hs1
IM
∩Hs1+s2(IM,C), ∀s1 ∈ N, s2 ∈ [0, 1/2).

Let ĨD and ĨN respectively be two sub-intervals of IM of length 3
4L. The interval ĨD contains one external

vertex of IM, while ĨN contains the other. We consider both the intervals as quantum graphs: ĨD is equipped
in both the external vertices with (D) and ĨN is equipped with (N ). Fixed s > 0,

Hs(IM,C) = Hs(ĨD,C)×Hs(ĨN ,C), L2(IM,C) = L2(ĨD,C) × L2(ĨN ,C).

Let [·, ·]θ be the complex interpolation of spaces for 0 < θ < 1 defined in [Tri95, Definition, Chapter 1.9.2].

From [Tri95, Chapter 1.15.1 & Chapter 1.15.3], for s2 ∈ [0, 1/2), we have
[
L2(ĨN ,C), H2

ĨN

]
s2/2

= Hs2
ĨN

and[
L2(ĨD,C), H2

ĨD

]
s2/2

= Hs2
ĨD
. Thanks to [Tri95, relation (12), Chapter 1.18.1], we have[

L2(ĨN ,C) × L2(ĨD,C), H2
ĨN
× H2

ĨD

]
s2/2

=
[
L2(ĨN ,C), H2

ĨN

]
s2/2

×
[
L2(ĨD,C), H2

ĨD

]
s2/2

,

=⇒ Hs2
IM

=
[
L2(IM,C), H2

IM

]
s2/2

=
[
L2(ĨN ,C), H2

ĨN

]
s2/2

×
[
L2(ĨD,C), H2

ĨD

]
s2/2

= Hs2
ĨN
× Hs2

ĨD
.

Equivalently, Hs1+s2
IM

= Hs1+s2
ĨN

×Hs1+s2
ĨD

for every s1 ∈ N∗ and s2 ∈ [0, 1/2) which leads to (18) thanks to (17).

1) (b) Sobolev’s spaces for star graphs with equal edges. Let IN and IM be defined as in 1) (a).
We respectively call AN and AM the two self-adjoint Laplacians defining IN and IM. Let (f1j )j∈N∗ be a

Hilbert basis of L2(I,C) made by eigenfunctions of AN and (f2j )j∈N∗ a Hilbert basis of L2(I,C) composed by
eigenfunctions of AM. Let G be a star graph of N edges long L and equipped with (N ). The (N ) conditions
on Ve imply that

φk = (a1k cos(x
√
λk), ..., aNj cos(x

√
λk)), ∀k ∈ N∗

where λk is the corresponding eigenvalue and for suitable {alk}l≤N ⊂ C. The (NK) condition in Vi ensures that

sin(
√
λkL)

∑
l≤N

alk = 0, a1k cos(
√
λkL) = ... = aNk cos(

√
λkL), ∀k ∈ N∗.

Thus, each eigenvalue is either of the form (n−1)2π2

L2 when
∑
l≤N a

l
k 6= 0, or (2n−1)2π2

4L2 when
∑
l≤N a

l
k = 0 for

suitable n ∈ N∗. For every k ∈ N∗, there exists j(k) ∈ N∗ such that

φlk is equal either to clkf
1
j(k), or to clkf

2
j(k) with clk ∈ C, |clk| ≤ 1, ∀l ∈ {1, ..., N}.(19)

In addition, for each k ∈ N∗ and m ∈ {1, 2}, there exist j̃(k) ∈ N∗ and l ≤ N such that fmk = cl
j̃(k)

φl
j̃(k)

with

cl
j̃(k)
∈ C uniformly bounded in k ∈ N∗ and l ≤ N . The last identity and (19) tell that the components of the

elements (φk)k∈N∗ are elements of (f1j )j∈N∗ and (f2j )j∈N∗ and vice versa. Thus, ψ = (ψ1, ..., ψN ) ∈ Hs
G if and

only if ψl ∈ Hs
IN ∩H

s
IM for every l ≤ N.

1) (c) Conclusion. Let G be equipped with (D/N ) and L̃ < min{Lk/2 : k ∈ {1, ..., N}}. Let n(v) be defined

in (4) for every v ∈ Ve ∪ Vi. We define the graphs G̃ (v) for every v ∈ Vi ∪ Ve and the intervals {Ij}j≤N as

follows (see Figure 8 for an explicit example). If v ∈ Vi, then G̃ (v) is a star sub-graph of G equipped with (N )

and composed by n(v) edges long L̃ and connected to the internal vertex v. If v ∈ Ve, then G̃ (v) is an interval

long L̃ such that the external vertex v is equipped with the same boundary conditions that v has in G . We
impose (N ) on the other vertex. Let v, v̂ ∈ Ve ∪ Vi be such that v, v̂ ∈ e1. Now, the graphs G̃ (v) and G̃ (v̂) have

respectively two external vertices w1 and w2 lying on the same edge e1 and such that w1 6∈ G̃ (v̂). We construct
an interval I1 strictly containing w1 and w2, strictly contained in e1 and equipped with (N ). We repeat the
procedure for every edge ej with j ≤ N and we define the intervals {Ij}j≤N .
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v1

v2
v3

v4 v5

v6
v7 v8

v9 v10

v11

v12

I2

I1

I3

I4

I5

I6

I7 I8

I9

I10

I11

Boundaries: Neumann-Kirchhoff, Neumann, Dirichlet/Neumann.

Figure 8: The left and the right figures respectively represent the graphs {G̃ (v)}v∈Vi∪Ve and the intervals {Ij}j≤N
for a given graph G .

From 1) (a) and 1) (b), for every v ∈ Vi ∪ Ve, j ≤ N , s1 ∈ N and s2 ∈ [0, 1/2), we have the va-

lidity of the identities Hs1+s2
G̃ (v)

= Hs1
G̃ (v)

∩ Hs1+s2(G̃ (v),C) and Hs1+s2
Ij

= Hs1
Ij
∩ Hs1+s2(Ij ,C). We notice

that G := {G̃ (vj)}j≤M ∪ {Ij}j≤N covers G . As in 1) (a), we see each function of domain G as a vector
of functions of domain Gj with j ≤ M + N . The first relation of Proposition 4.2 is proved by adopting
[Tri95, relation (12), Chapter 1.18.1] as in 1) (a).

2) Graphs equipped with (N ). Let G be equipped with (N ) and Ne = |Ve|. We consider {G̃ (v)}v∈Ve
introduced in 1) (c) and we define G̃ from G as follows (see Figure 9). For every v ∈ Ve, we remove from the

edge including v, a section of length L̃/2 containing v. We equip the new external vertex with (N ).

v1

v2

v3

v4
v5

v6
v7 v8

v9 v10

v11

v12

Boundaries: Neumann-Kirchhoff, Neumann, Dirichlet/Neumann.

Figure 9: The left and the right figures respectively represent the graphs {G̃ (v)}v∈Ve and G̃ for a given graph G .

We call G′ := {G′j}j≤Ne+1 := {G̃ (v)}v∈Ve ∪ {G̃ } which covers G . For every s1 ∈ 2N, s2 ∈ [0, 3/2), we have

Hs1+s2
G̃ (v)

= Hs1
G̃ (v)
∩Hs1+s2 from (17). Now, Hs1+s2

NK = Hs1+s2
G̃

×
∏
v∈Ve H

s1+s2(G̃ (v),C). The second relation of

Proposition 4.2 follows from the arguments of 1) (a).

3) Graphs equipped with (D). The third point of Proposition 4.2 is proved as the second by considering

{G̃ (v)}v∈Ve as intervals equipped with (D) and G̃ equipped with (D) in its external vertices.

We are finally ready to prove Theorem 4.1 which follows from Proposition 4.2 and from the following auxiliary
result.

Lemma 4.3. Let (λk)k∈N∗ be the eigenvalues of a self-adjoint Laplacian A defined on a compact quantum graph
equipped with (D), (N ) or (D/N ). For every T > 0, there exists C(T ) > 0 uniformly bounded for T lying on
bounded intervals such that

∀g ∈ L2((0, T ),C),

∥∥∥∥∥
∫ T

0

eiλ(·)sg(s)ds

∥∥∥∥∥
`2

≤ C(T )‖g‖L2((0,T ),C).

Proof. The result is a consequence of Proposition B.6 which validity is ensured by Lemma 2.4.

Proof of Theorem 4.1. 1) Preliminaries. Let T > 0 and the function f be such that f(s) ∈ H2+d∩H1+d
NK ∩H2

G

for almost every s ∈ (0, T ). We introduce

G(·) :=

∫ (·)

0

eiAτf(τ)dτ.

In the first part of the proof, we prove that G ∈ C0([0, T ], H2+d
G ) by ensuring the existence of C(T ) > 0

uniformly bounded for T lying on bounded intervals such that ‖G‖L∞((0,T ),H2+d
G ) ≤ C(T )‖f‖L2((0,T ),H2+d). To

the purpose, we distinguish the different frameworks described by Assumptions II.

1) (a) Under Assumptions II.1 . Let f(s) ∈ H3∩H2
G for almost every s ∈ (0, T ) and f(s) = (f1(s), ..., fN (s)).

We prove that G ∈ C0([0, T ], H3
G ). Let t ∈ (0, T ). The definition of G(t) implies

G(t) =

∞∑
k=1

φk

∫ t

0

eiλks〈φk, f(s)〉L2ds, ‖G(t)‖(3) =
( ∑
k∈N∗

∣∣∣k3 ∫ t

0

eiλks〈φk, f(s)〉L2ds
∣∣∣2) 1

2

.(20)

We estimate 〈φk, f(s, ·)〉L2 for each k ∈ N∗ and s ∈ (0, t). We suppose that λ1 6= 0. Let ∂xf(s) =
(∂xf

1(s), ..., ∂xf
N (s) be the derivative of f(s). We call ∂e the two points composing the boundaries of an

edge e. For every v ∈ Ve, ṽ ∈ Vi and j ∈ N(ṽ), there exist a(v), aj(ṽ) ∈ {−1,+1} such that

〈φk, f(s)〉L2 =
1

λ2k

∫
G

∂xφk(y)∂3xf(s, y)dy +
1

λ2k

∑
v∈Vi∪Ve

∑
j∈N(v)

aj(v)∂xφ
j
k(v)∂2xf

j(s, v).(21)
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From Lemma 2.3, there exists C1 > 0 such that λ−2k ≤ C1k
−4 for every k ∈ N∗ and∣∣∣∣k3 ∫ t

0

eiλks〈φk, f(s)〉L2ds

∣∣∣∣ ≤ C1

k

( ∑
v∈Vi∪Ve

∑
j∈N(v)

∣∣∣∣∂xφjk(v)

∫ t

0

eiλks∂2xf
j(s, v)ds

∣∣∣∣
+

∣∣∣∣∫ t

0

eiλks
∫

G

∂xφk(y)∂3xf(s, y)dyds

∣∣∣∣
)
.

(22)

Remark 4.4. We point out that A′λ
−1/2
k ∂xφk = λkλ

−1/2
k ∂xφk for every k ∈ N∗, where A′ = −∆ is a self-adjoint

Laplacian with compact resolvent. Thus, ‖λ−1/2k ∂xφk‖2L2 = 〈λ−1/2k ∂xφk, λ
−1/2
k ∂xφk〉L2 = 〈φk, λ−1k Aφk〉L2 = 1

and then
(
λ
−1/2
k ∂xφk

)
k∈N∗ is a Hilbert basis of L2(G ,C).

Let al = (alk)k∈N∗ ,b
l = (blk)k∈N∗ ⊂ C for l ≤ N be so that φlk(x) = alk cos(

√
λkx) + blk sin(

√
λkx) and

−alk sin(
√
λkx) + blk cos(

√
λkx) = λ

−1/2
k ∂xφ

l
k(x). There holds al,bl ∈ `∞(C) since

2 ≥ ‖λ−1/2k ∂xφ
l
k‖2L2(el) + ‖φlk‖2L2(el) = (|alk|2 + |blk|2)|el|, ∀k ∈ N∗, l ≤ N.

Thus, there exists C2 > 0 so that, for every k ∈ N∗ and v ∈ Ve ∪ Vi, we have |λ−1/2k ∂xφk(v)| ≤ C2. From the
validity of the relations (20) and (22), it follows

‖G(t)‖(3) ≤ C1C2

∑
v∈Ve∪Vi

∑
j∈N(v)

∥∥∥ ∫ t

0

∂2xf
j(s, v)eiλ(·)sds

∥∥∥
`2

+ C1

∥∥∥∫ t

0

〈
λ
−1/2
(·) ∂xφ(·)(s), ∂

3
xf(s)

〉
L2e

iλ(·)sds
∥∥∥
`2
.

The last relation, Lemma 4.3 and Remark 4.4 ensure the existence of C3(t), C4(t) > 0 uniformly bounded for t
in bounded intervals such that

‖G‖H3
G
≤ C3(t)

∑
v∈Ve∪Vi

∑
j∈N(v)

‖∂2xf j(·, v)‖L2((0,t),C) +
√
t‖f‖L2((0,t),H3) ≤ C4(t)‖f(·, ·)‖L2((0,t),H3).(23)

We underline that the identity is also valid when λ1 = 0, which is proved by isolating the term with k = 1
and by repeating the steps above. For every t ∈ [0, T ], the inequality (23) shows that G(t) ∈ H3

G . The
provided upper bounds are uniform and the Dominated Convergence Theorem leads to G ∈ C0([0, T ], H3

G ).
When f(s) ∈ H5 ∩H4

G for almost every s ∈ (0, T ), the techniques just adopted leads to G ∈ C0([0, T ], H5
G ).

Let F (f)(t) :=
∫ t
0
eiAτf(τ)dτ for f ∈ L2(G ,C) and t ∈ (0, T ). For B a Banach space, let X(B) be the space

of functions f so that f(s) ∈ B for almost every s ∈ (0, T ). The first part of the proof implies

F : X(H3 ∩H2
G ) −→ C0([0, T ], H3

G ), F : X(H5 ∩H4
G ) −→ C0([0, T ], H5

G ).

From a classical interpolation result (see [BL76, Theorem 4.4.1] with n = 1), we have F : X(H2+d ∩H1+d
G ) −→

C0([0, T ], H2+d
G ) with d ∈ [1, 3]. Thanks to Proposition 4.2, if d ∈ [1, 3/2) and f(s) ∈ H2+d ∩ H1+d

NK ∩ H2
G =

H2+d ∩H1+d
G for almost every s ∈ (0, T ), then G ∈ C0([0, T ], H2+d

G ).

1) (b) Under Assumptions II.3 . If G is equipped with (D), then H2
G = H2

NK ∩H1
G and H4

G = H4
NK ∩H3

G

from Proposition 4.2. As above, if f(s) ∈ H3 ∩H2
NK ∩H1

G for almost every s ∈ (0, T ), then G ∈ C0([0, T ], H3
G ),

while if f(s) ∈ H5 ∩H4
NK ∩H3

G for almost every s ∈ (0, T ), then G ∈ C0([0, T ], H5
G ). From the interpolation

techniques, if d ∈ [1, 5/2) and f(s) ∈ H2+d ∩H1+d
NK ∩Hd

G for almost every s ∈ (0, T ), then G ∈ C0([0, T ], H2+d
G ).

1) (c) Under Assumptions II.2 . Let f(s) ∈ H4∩H3
NK∩H2

G for almost every s ∈ (0, T ) and G be equipped
with (N ). In this framework, the last term in right-hand side (21) is zero. Indeed, ∂2xf(s) ∈ C0 as f(s) ∈ H3

NK
and, for v ∈ Ve, we have ∂xφk(v) = 0 thanks to the (N ) boundary conditions (the terms aj(v) have different
signs according to the orientation of the edges connected in v). For every v ∈ Vi, thanks to the (NK) in v ∈ Vi,
we have

∑
j∈N(v) a

j(v)∂xφ
j
k(v) = 0. From (21), we obtain

〈φk, f(s)〉L2 = − 1

λ2k

∑
v∈Vi∪Ve

∑
j∈N(v)

aj(v)φjk(v)∂3xf
j(s, v) +

1

λ2k

∫
G

φk(y)∂4xf(s, y)dy.

Now, (φk)k∈N∗ is a Hilbert basis of L2(G ,C) and we proceed as in (22) and (23). From Lemma 4.3, there
exists C6(t) > 0 uniformly bounded for t lying in bounded intervals such that ‖G‖H4

G
≤ C1(t)‖f(·, ·)‖L2((0,t),H4)

and G ∈ C0([0, T ], H4
G ). Equivalently, when f(s) ∈ H6 ∩ H5

NK ∩ H4
G for almost every s ∈ (0, T ), we have

G ∈ C0([0, T ], H6
G ). As above, Proposition 4.2 implies that when d ∈ [2, 7/2) and f(s) ∈ H2+d ∩H1+d

NK ∩H2
G for

almost every s ∈ (0, T ), then G ∈ C0([0, T ], H2+d
G ).
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2) Conclusion. As Ran(B|H2+d
G

) ⊆ H2+d ∩ H1+d
NKH

2
G ⊆ H2+d, we have B ∈ L(H2+d

G , H2+d) thanks to the

arguments of [Duc20, Remark 2.1]. Let ψ0 ∈ H2+d
G . We consider the map F : ψ ∈ C0([0, T ], H2+d

G ) 7→ φ ∈
C0([0, T ], H2+d

G ) with

φ(t) = F (ψ)(t) = e−iAtψ0 −
∫ t

0

e−iA(t−s)u(s)Bψ(s)ds, ∀t ∈ [0, T ].

For every ψ1, ψ2 ∈ C0([0, T ], H2+d
G ), we have F (ψ1)(t)−F (ψ2)(t) =

∫ t
0
e−iA(t−s)u(s)B(ψ1(s)−ψ2(s))ds. From

1), there exists C(t) > 0 uniformly bounded for t lying on bounded intervals such that

‖F (ψ1)− F (ψ2)‖L∞((0,T ),H2+d
G ) ≤ C(T )‖u‖L2((0,T ),R) |||B ||| L(H2+d

G ,H2+d)‖ψ
1 − ψ2‖L∞((0,T ),H2+d

G ).

If ‖u‖L2((0,T ),R) is small enough, then F is a contraction and Banach Fixed Point Theorem implies that there

exists ψ ∈ C0([0, T ], H2+d
G ) such that F (ψ) = ψ. When ‖u‖L2((0,T ),R) is not sufficiently small, one considers

{tj}0≤j≤n a partition of [0, T ] with n ∈ N∗. We choose a partition such that each ‖u‖L2([tj−1,tj ],R) is so small
that the map F , defined on the interval [tj−1, tj ], is a contraction. Thanks to the Banach Fixed Point Theorem,
the existence and the uniqueness of the mild solution is provided. In conclusion, the solution ψ of the (BSE)
when u ∈ C0((0, T ),R) is C1((0, T ), L2(G ,C)) and ∂t‖ψ(t)‖2 = 0, which implies ‖ψ(t)‖ = ‖ψ(0)‖ for every
t ∈ [0, T ]. The generalization for u ∈ L2((0, T ),R) follows from classical density arguments.

5 Abstract global exact controllability result

5.1 Local controllability

The aim of this section is to prove Theorem 3.2. The result is achieved by gathering the local exact controllability
and the global approximate controllability (both provided below) thanks to the time reversibility of the (BSE).
Before stating the local result, we need to introduce the following auxiliary lemma.

Lemma 5.1. Let the hypotheses of Theorem 3.2 be satisfied. Let T > 2π/δ with δ > 0 defined in Lemma 2.4.

For every (xk)k∈N∗ ∈ hd̃(C) with x1 ∈ R, there exists u ∈ L2((0, T ),R) such that

xk =

∫ T

0

u(τ)ei(λk−λ1)τdτ ∀k ∈ N∗.

Proof. The result is consequence of Proposition B.5.

Proposition 5.2. Let the hypotheses of Theorem 3.2 be satisfied. Let s = 2 + d with d defined in Assumptions
II. There exist T > 0 and ε > 0 such that, for every

ψ ∈ Osε,T :=
{
ψ ∈ Hs

G

∣∣ ‖ψ‖L2 = 1, ‖ψ − φ1(T )‖(s) < ε
}
,

there exists a control function u ∈ L2((0, T ),R) such that ψ = ΓuTφ1.

Proof. The result can be proved by ensuring to the surjectivity, for T > 0 sufficiently large, of the map

Γ
(·)
T φ1 : u ∈ L2((0, T ),R) 7−→ ψ ∈ Osε,T ⊂ Hs

G , Γ
(·)
t φ1 =

∑
k∈N∗

φk(t)〈φk(t),Γ
(·)
t φ1〉L2 .

Let the map α be the sequence with elements αk(u) = 〈φk(T ),ΓuTφ1〉L2 for k ∈ N∗, so that

α : L2((0, T ),R) −→ Q := {x := (xk)k∈N∗ ∈ hs(C) | ‖x‖`2 = 1}.

The local controllability can be guaranteed by proving the local surjectivity of the map α in a neighborhood
of α(0) = δ = (δk,1)k∈N∗ with respect to the hs norm. To this end, we use the Generalized Inverse Function
Theorem ([Lue69, Theorem 1; p. 240]) and we study the surjectivity of γ(v) := (duα(0)) · v the Fréchet
derivative of α. Let Bj,k := 〈φj , Bφk〉L2 with j, k ∈ N∗. The map γ : L2((0, T ),R) −→ TδQ = {x := (xk)k∈N∗ ∈
hs(C) | ix1 ∈ R} is the sequence of elements γk(v) := −i

∫ T
0
v(τ)ei(λk−λ1)sdτBk,1 with k ∈ N∗. Now,

xk/Bk,1 = −i
∫ T

0

u(τ)ei(λk−λ1)τdτ, ∀(xk)k∈N∗ ∈ TδQ ⊂ hs(24)

is the moment problem associated to the local exact controllability. Proving surjectivity of γ corresponds to
ensure the solvability of (24). In other words, we prove that there exists T > 0 large enough such that, for every
(xk)k∈N∗ ∈ TδQ, there exists u ∈ L2((0, T ),R) such that (xk)k∈N∗ = (γk(u))k∈N∗ . Even though the strategy of
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the proof is common for this kind of works (see [BL10, Mor14, MN15, Duc20, Duc19]), proving the solvability
of (24) can not be approached with the classical techniques as we can not ensure the validity of the spectral
gap infk∈N∗ |λk+1 − λk| > 0. To this purpose, we refer to the theory developed in Appendix B which leads to

Lemma 5.1. We notice that B1,1 ∈ R as B is symmetric, ix1/B1,1 ∈ R and
(
xk/Bk,l

)
k∈N∗ ∈ h

d−η ⊆ hd̃ thanks

to the first point of Assumptions I. Thanks to Lemma 2.4 and the identity (10), the hypotheses of Lemma 5.1

are satisfied and the solvability of (24) is guaranteed in hd̃. In conclusion, the map γ is surjective and α is
locally surjective, which implies the local exact controllability.

Remark 5.3. The identity (8) ensures the validity of (35) for δ > 0 as large as desired when M ∈ N∗ is also
sufficiently large. As a consequence, Lemma 5.1 is valid for any T > 0 and the same is true for the solvability
of the moment problem (24). Finally, Proposition 5.2 can be guaranteed for any positive time.

5.2 Global approximate controllability in Hs
G

Definition 5.4. The (BSE) is said to be globally approximately controllable in Hs
G with s > 0 when, for every

ψ ∈ Hs
G , Γ̂ ∈ U(L2(G ,C))

(
the space of the unitary operators in L2(G ,C)

)
such that Γ̂ψ ∈ Hs

G and ε > 0, there

exist T > 0 and u ∈ L2((0, T ),R) such that ‖Γ̂ψ − ΓuTψ‖(s) < ε.

Proposition 5.5. Let (A,B) satisfy Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0. The
(BSE) is globally approximately controllable in Hs

G for s = 2 + d with d from Assumptions II.

Proof. The proof is obtained by simply adapting the one of [Duc20, Theorem 4.4]. As a consequence, we only
focus on detailing those steps where the two proofs differ.

1) As in the mentioned proof, in the point 1) of the proof, we suppose that (A,B) admits a non-degenerate
chain of connectedness (see [CMSB09, Section 4.2] or [BCC13, Definition 3]). We treat the general case in the
point 2) . Let πm be the orthogonal projector πm : H := L2(G ,C) −→ Hm := span{φj : j ≤ m} with
m ∈ N∗. Up to reordering (φk)k∈N∗ , the couples (πmAπm, πmBπm) for m ∈ N∗ admit non-degenerate chains of
connectedness in Hm. Let ‖ · ‖BV (T ) = ‖ · ‖BV ((0,T ),R) and ||| · ||| (s) := ||| · ||| L(HsG ,HsG ) for s > 0.

1) (a) Approximate controllability with respect to the L2-norm. Let ψ ∈ H and Γ̂ ∈ U(H ). We
refer to the proof of the global approximate controllability with respect to the L2-norm developed in the first
point of the proof of [Duc20, Theorem 4.4]. By considering H := L2(G ,C), the mentioned proof ensures the
existence of K1,K2,K3 > 0 such that for every ε > 0, there exist T > 0 and u ∈ L2((0, T ),R) such that

‖u‖BV (T ) ≤ K1, ‖u‖L∞((0,T ),R) ≤ K2, T‖u‖L∞((0,T ),R) ≤ K3 and ‖ΓuTψ − Γ̂ψ‖L2 < ε.(25)

1) (b) Global approximate controllability in higher regularity norm. Let ψ ∈ Hs
G with s ∈ [s1, s1 + 2)

and s1 ∈ N∗. Let Γ̂ ∈ U(H ) be such that Γ̂ψ ∈ Hs
G and B : Hs1

G −→ Hs1
G . As in the proof of [Duc20, Theorem

4.4], we consider the propagation of regularity developed by Kato in [Kat53] which ensures the following fact.
For every T > 0, u ∈ BV ((0, T ),R) and ψ ∈ Hs1+2

G , there exists C(K) > 0 depending on

(26) K =
(
‖u‖BV (T ), ‖u‖L∞((0,T ),R), T‖u‖L∞((0,T ),R)

)
such that ‖ΓuTψ‖(s1+2) ≤ C(K)‖ψ‖(s1+2).

Now, we notice that, for every ψ ∈ H6
G , from the Cauchy-Schwarz inequality, we have ‖Aψ‖2L2 ≤ ‖ψ‖L2‖A2ψ‖L2

and there exists C2 > 0 such that ‖A2ψ‖4L2 ≤ ‖Aψ‖2L2‖A3ψ‖2L2 ≤ C2‖ψ‖L2‖A3ψ‖3L2 . By following the same

idea, for every ψ ∈ Hs1+2
G , there exist m1,m2 ∈ N∗ and C3, C4 > 0 such that

(27) ‖A s
2ψ‖m1+m2

L2 ≤ C3‖ψ‖m1

L2 ‖A
s1+2

2 ψ‖m2

L2 =⇒ ‖ψ‖m1+m2

(s) ≤ C4‖ψ‖m1

L2 ‖ψ‖m2

(s1+2).

Finally, when B : Hs1
G −→ Hs1

G with s1 > 0 and (A,B) admits a non-degenerate chain of connectedness, the
identities (25), (26) and (27) ensure the global approximate controllability in Hs

G for s ∈ [s1, s1 + 2).

1) (c) Conclusion. Let d be the parameter introduced by the validity of Assumptions II. If d < 2, then
B : H2

G → H2
G and the global approximate controllability is verified in Hd+2

G since d + 2 < 4. If d ∈ [2, 5/2),

then B : Hd1 → Hd1 with d1 ∈ (d, 5/2) from Assumptions II. Now, Hd1
G = Hd1 ∩ H2

G , thanks to Proposition

4.2, and B : H2
G → H2

G implies B : Hd1
G → Hd1

G . The global approximate controllability is verified in Hd+2
G

since d + 2 < d1 + 2. If d ∈ [5/2, 7/2), then B : Hd1
NK → Hd1

NK for d1 ∈ (d, 7/2) and Hd1
G = Hd1

NK ∩ H2
G from

Proposition 4.2. Now, B : H2
G → H2

G that implies B : Hd1
G → Hd1

G . The global approximate controllability is

verified in Hd+2
G since d+ 2 < d1 + 2.

2) Generalization. Let (A,B) do not admit a non-degenerate chain of connectedness. We decompose

A+ u(·)B = (A+ u0B) + u1(·)B, u0 ∈ R, u1 ∈ L2((0, T ),R).
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If (A,B) satisfies Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0, then Lemma C.2 and Lemma
C.3 are valid. We consider u0 in the neighborhoods provided by the two lemmas and we denote (φu0

k )k∈N∗

a Hilbert basis of H made by eigenfunctions of A + u0B. The point 1) can be repeated by considering the
sequence (φu0

k )k∈N∗ instead of (φk)k∈N∗ and the spaces D(|A + u0B|
s
2 ) in substitution of Hs

G with s > 0. The
claim is equivalently proved since (A + u0B,B) admits a non-degenerate chain of connectedness from Lemma
C.2 and

∥∥|A+ u0B|
s
2 ·
∥∥
L2 � ‖ · ‖(s) with s = 2 + d and d from Assumptions II(η, d̃) thanks to Lemma C.3.

5.3 Proof of Theorem 3.2

Let T, ε > 0 be so that Proposition 5.2 is valid. Let us assume ψ1, ψ2 ∈ Hs
G such that ‖ψ1‖L2 = ‖ψ2‖L2 = 1.

The same technique also applies in the general case. Thanks to Proposition 5.5, we have

∃T1, T2 > 0, u1 ∈ L2((0, T1),R), u2 ∈ L2((0, T2),R) : ‖Γu1

T1
ψ1 − φ1‖(s) < ε, ‖Γu2

T2
ψ2 − φ1‖(s) < ε

and then Γu1

T1
ψ1,Γ

u2

T2
ψ2 ∈ Osε,T . From 1), there exist u3, u4 ∈ L2((0, T ),R) such that

Γu3

T Γu1

T1
ψ1 = Γu4

T Γu2

T2
ψ2 = φ1 =⇒ ∃T > 0, ũ ∈ L2((0, T̃ ),R) : Γũ

T̃
ψ1 = ψ2.
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A Appendix: Some auxiliary spectral results

In the current appendix, we characterize (λk)k∈N∗ , the eigenvalues of the Laplacian A in the (BSE), according
to the structure of G and to the definition of D(A).

Proposition A.1. (Roth’s Theorem; [Rot55]) If z is an algebraic irrational number, then for every ε > 0 the
inequality

∣∣z − n
m

∣∣ ≤ 1
m2+ε is satisfied for at most a finite number of n,m ∈ Z.

Proof of Lemma 2.6. For every k ∈ N∗, there exist m,n ∈ N∗, i ≤ N1 and l ≤ N2 such that λ1k+1 = m2π2

L2
l

and

λ2k = n2π2

L̃2
i

. We suppose Ll < L̃i. Let z be an algebraic irrational number. From Proposition A.1, we have that,

for every ε > 0, there exists C > 0 such that |z − n/m| ≥ Cm−2−ε for every m,n ∈ N∗. Thus, when m < n, for
each ε > 0, there exists C1 > 0 such that∣∣∣m2π2

L2
l

− n2π2

L̃2
i

∣∣∣ =
∣∣∣(mπ
Ll

+
nπ

L̃i

)(mπ
Ll
− nπ

L̃i

)∣∣∣ ≥ 2mπ

L̃i

∣∣∣mπ
Ll
− nπ

L̃i

∣∣∣ ≥ 2C1π
2

mεL̃2
i

.

If m ≥ n, then
∣∣m2π2

L2
l
− n2π2

L̃2
i

∣∣ ≥ π2(L−2l − L̃
−2
i ), which conclude the proof.

We consider now the techniques developed in [DZ06, Appendix A] in order to prove [DZ06, P roposition A.11].
For x ∈ R, we denote by E(x) the closest integer number to x and

|||x ||| = min
z∈Z
|x− z|, F (x) = x− E(x).

We notice |F (x)| = |||x ||| and − 1
2 ≤ F (z) ≤ 1

2 . Let {Lj}j≤N ∈ (R+)N and i ≤ N . We also define

n(x) := E
(
x− 1

2

)
, r(x) := F

(
x− 1

2

)
, d(x) := |||x− 1

2
||| , m̃i(x) := n

(Li
π
x
)
.

Proposition A.2. Let {Lk}k≤N ∈ AL(N) with N ∈ N∗. Let (ωn)n∈N∗ be the unbounded ordered sequence of
positive solutions of the equation

(28)
∑
l≤N

sin(xLl)
∏
m6=l

cos(xLm) = 0, x ∈ R.

For every ε > 0, there exists Cε > 0 so that | cos(ωnLl)| ≥ Cε
ω1+ε
n

for every l ≤ N and n ∈ N∗.
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Proof. From [DZ06, relation (A.3)], for every x ∈ R, we obtain the identities

(29) 2d(x) ≤ | cos(πx)| ≤ πd(x), 2d
((
m̃i(x) +

1

2

)Lj
Li

)
≤
∣∣∣ cos

((
m̃i(x) +

1

2

)Lj
Li
π
)∣∣∣.

As cos(α1 − α2) = cos(α1) cos(α2) + sin(α1) sin(α2) for α1, α2 ∈ R and m̃i(x) + 1
2 = Li

π x − r
(
Li
π x
)

for every
x ∈ R, we have

2d
((
m̃i(x) +

1

2

)Lj
Li

)
≤ | cos(Ljx)|+

∣∣∣∣sin(πLjLi
∣∣∣r(Li

π
x
)∣∣∣)∣∣∣∣ .(30)

From [DZ06, relation (A.3)] and (29), we have the following inequalities | sin(π|r(·)|)| ≤ π ||| |r(·)| ||| ≤ π|r(·)| =
πd(·) ≤ π

2 | cos(π(·))|, which imply
∣∣ sin (πLjLi ∣∣∣r(Liπ x)∣∣)∣∣ ≤ π

Lj
Li

∣∣r(Liπ x)∣∣ ≤ πLj
2Li
| cos(Lix)| for every x ∈ R. From

(30), there exists C1 > 0 such that, for every i ≤ N ,∏
j 6=i

d
((
m̃i(x) +

1

2

)Lj
Li

)
≤ 1

2N−1

∏
j 6=i

| cos(Ljx)|+ C1| cos(Lix)| ∀x ∈ R.

If there exists (ωnk)k∈N∗ ⊆ (ωn)n∈N∗ such that | cos(Ljωnk)| k→∞−−−−→ 0, then
∏
j 6=i | cos(Liωnk)| k→∞−−−−→ 0 thanks

to (28). Equivalently to [DZ06, relation (A.10)] (proof of [DZ06, P roposition A.11]), there exists a constant
C2 > 0 such that, for every i ∈ {0, ..., N}, we have

C2| cos(Liωn)| ≥
∏
j 6=i

d
((
m̃i(ωn) +

1

2

)Lj
Li

)
=
∏
j 6=i

||| 1
2

((
m̃i(ωn) +

1

2

)2Lj
Li
− 1
)
||| .

Now, we have ||| 12 (·) ||| ≥ 1
2 ||| · ||| and ||| (·)−1 ||| = ||| · ||| . We consider the Schmidt’s Theorem [DZ06, Theorem A.7]

since {Lk}k≤N ∈ AL(N). For every ε > 0, there exist C3, C4 > 0 such that, for every n ∈ N∗, we have∏
j 6=i

1
2 |||
(
m̃i(ωn) + 1

2

)
2Lj
Li
||| ≥ C3

(2m̃i(ωn)+1)1+ε ≥
C4

ω1+ε
n

.

Remark A.3. The techniques proving [DZ06, P roposition A.11] and Proposition A.2 lead to the following
results. Let (ωn)n∈N∗ ⊂ R+ be an unbounded sequence and (ωnk)k∈N∗ any subsequence of (ωn)n∈N∗ . Let
{Lk}k≤N ∈ AL(N) with N ∈ N∗ and l ≤ N .

1) If | cos(Llωnk)| k→∞−−−−→ 0 implies
∏
j 6=l | cos(Ljωnk)| k→∞−−−−→ 0 or

∏
j 6=l | sin(Ljωnk)| k→∞−−−−→ 0, then

(31) ∀ε > 0, ∃C > 0 : | cos(ωnLl)| ≥ Cω−1−εn , ∀l ≤ N, n ∈ N∗.

2) If | sin(Llωnk)| k→∞−−−−→ 0 implies
∏
j 6=l | cos(Ljωnk)| k→∞−−−−→ 0 or

∏
j 6=l | sin(Ljωnk)| k→∞−−−−→ 0, then

(32) ∀ε > 0, ∃C > 0 : | sin(ωnLl)| ≥ Cω−1−εn , ∀l ≤ N, n ∈ N∗.

B Appendix: Moment problem

Let H = L2((0, T ),R) with T > 0 and Z∗ = Z \ {0}. Let Λ = (λk)k∈Z∗ be pairwise distinct ordered real
numbers such that

∃M ∈ N∗, ∃δ > 0 : inf
{k∈Z∗ : k+M6=0}

|λk+M − λk| ≥ δM.(33)

From (33), there do not exist M consecutive k ∈ Z∗ such that |λk+1 − λk| < δ and then, there exist some
j ∈ Z∗ \ {−1} such that |νj+1 − νj | ≥ δ. This leads to a partition of Z∗ in subsets {Em}m∈Z∗ that we
construct as follows. We denote by (lm)m∈Z∗ ⊆ Z∗ \ {−1} the ordered sequence of all the numbers such that
|νlm+1 − νlm | ≥ δ. We add the value −1 when |ν1 − ν−1| ≥ δ. We denote by {Em}m∈Z∗ the sets

E−1 =
{
k ∈ Z∗ : l−1 + 1 ≤ k ≤ l1

}
, Em =

{
k ∈ Z∗ : lm + 1 ≤ k ≤ lm+1

}
with m ∈ Z∗ \ {−1}. The partition of Z∗ in subsets {Em}m∈Z∗ also defines an equivalence relation in Z∗. Now,
{Em}m∈Z∗ are the equivalence classes corresponding to such relation and |Em| ≤ M − 1 thanks to (33). Let
s(m) be the smallest element of Em. For every x := (xk)k∈Z∗ ⊂ C and m ∈ Z∗, we define

xm := (xml )l≤|Em|, : xml = xs(m)+(l−1), ∀l ≤ |Em|.
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In other words, xm is the vector in C|Em| composed by those elements of x with indices in Em. For every
m ∈ Z∗, we denote Fm(Λm) : C|Em| → C|Em| the matrix with components

Fm;j,k(Λm) :=


∏
l 6=j
l≤k

(λmj − λml )−1, j ≤ k,

1, j = k = 1,

0, j > k,

∀j, k ≤ |Em|.

For each k ∈ Z∗, there exists m(k) ∈ Z∗ such that k ∈ Em(k), while s(m(k)) represents the smallest element of
Em(k). Let F (Λ) be the infinite matrix acting on x = (xk)k∈Z∗ ⊂ C as follows(

F (Λ)x
)
k

=
(
Fm(k)(Λ

m(k))xm(k)
)
k−s(m(k))+1

, ∀ k ∈ Z∗.

We consider F (Λ) as the operator on `2(Z∗,C) defined by the action above and with domain

H(Λ) := D(F (Λ)) =
{
x := (xk)k∈Z∗ ∈ `2(Z∗,C) : F (Λ)x ∈ `2(Z∗,C)

}
.

Remark B.1. Each matrix Fm(Λm) with m ∈ Z∗ is invertible and we call Fm(Λm)−1 its inverse. Now,
F (Λ) : H(Λ)→ Ran(F (Λ)) is invertible and F (Λ)−1 : Ran(F (Λ))→ H(Λ) is so that, for x ∈ Ran(F (Λ)),(

F (Λ)−1x
)
k

=
(
Fm(k)(Λ

m(k))−1xm(k)
)
k−s(m(k))+1

, ∀k ∈ Z∗.

Let Fm(k)(Λ
m(k))∗ be the transposed matrix of Fm(k)(Λ

m(k)) for every m ∈ Z∗. Let F (Λ)∗ be the infinite
matrix so that, for every x = (xk)k∈Z∗ ⊂ C,(

F (Λ)∗x
)
k

=
(
Fm(k)(Λ

m(k))∗xm(k)
)
k−s(m(k))+1

, ∀k ∈ Z∗.

Proposition B.2. Let Λ := (λk)k∈Z∗ be an ordered sequence of real numbers satisfying (33). Sufficient condi-

tion to have H(Λ) ⊇ hd̃(C) is the existence of d̃ ≥ 0 and C > 0 such that

|λk+1 − λk| ≥ C|k|−
d̃
M−1 ∀k ∈ Z∗.(34)

Proof. Thanks to (34), we have |λj − λk| ≥ C minl∈Em |l|−
d̃
M−1 for every m ∈ Z∗ and j, k ∈ Em. There exists

C1 > 0 such that, for 1 < j, k ≤ i(m),

|Fm;j,k(Λm)| ≤ C1

(
max
l∈Em

|l|
d̃
M−1

)k−1 ≤ C1

(
max
l∈Em

|l|
d̃
M−1

)M−1 ≤ C12Md̃ min
l∈Em

|l|d̃, |Fm;1,1(Λm)| = 1.

There exist C2, C3 > 0 such that, for j ≤ i(m), we have
(
Fm(Λm)∗Fm(Λm)

)
j,j
≤ C2 minl∈Em |l|2d̃ and then

Tr
(
Fm(Λm)∗Fm(Λm)

)
≤ C3 minl∈Em |l|2d̃. Let ρ(M) be the spectral radius of a matrix M and we denote

|||M ||| =
√
ρ(M∗M) its euclidean norm. As

(
Fm(Λm)∗Fm(Λm)

)
is positive-definite, there holds

|||Fm(Λm) ||| 2 = ρ
(
Fm(Λm)∗Fm(Λm)

)
≤ C3 min

l∈Em
|l|2d̃, ∀m ∈ Z∗.

In conclusion, ‖F (Λ)x‖2`2 ≤ C3‖x‖2hd̃ < +∞ for x = (xk)k∈Z∗ ∈ hd̃(C) as

‖F (Λ)x‖2`2 ≤
∑
m∈Z∗

|||Fm(Λm) ||| 2
∑
l∈Em

|xl|2 ≤ C3

∑
m∈Z∗

min
l∈Em

|l|2d̃
∑
l∈Em

|xl|2.

Remark B.3. Thanks to Proposition B.2, when (λk)k∈Z∗ satisfies (33) and (34), the space H(Λ) is dense

in `2(C) as hd̃ is dense in `2. Now, we consider F (Λ)∗ as the unique adjoint operator of F (Λ) in `2(Z∗,C)
with domain H(Λ)∗ := D(F (Λ)∗). As in Remark B.1, we define (F (Λ)∗)−1 the inverse of F (Λ)∗ : H(Λ)∗ →
Ran(F (Λ)∗) and (F (Λ)∗)−1 = (F (Λ)−1)∗. Finally, H(Λ)∗ ⊇ hd̃(C) which follows as Proposition B.2.

Let e be the sequence of functions in L2((0, T ),C) with T > 0 so that e := (eiλk(·))k∈Z∗ . We denote by Ξ
the so-called divided differences of the family (eiλkt)k∈Z∗ such that

Ξ := (ξk)k∈Z∗ = F (Λ)∗e.

In the following theorem, we rephrase a result of Avdonin and Moran [AM01], which is also proved by Baiocchi,
Komornik and Loreti in [BKL02].
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Theorem B.4 (Theorem 3.29; [DZ06]). Let (λk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers

satisfying (33). If T > 2π/δ, then (ξk)k∈Z∗ forms a Riesz Basis in the space X := span{ξk| k ∈ Z∗}
L2

.

Proposition B.5. Let (ωk)k∈N∗ ⊂ R+∪{0} be an ordered sequence of real numbers with ω1 = 0 such that there
exist d̃ ≥ 0, δ, C > 0 and M∈ N∗ with

inf
k∈N∗

|ωk+M − ωk| ≥ δM, |ωk+1 − ωk| ≥ Ck−
d̃
M−1 , ∀k ∈ N∗.(35)

Then, for T > 2π/δ and for every (xk)k∈N∗ ∈ hd̃(C) with x1 ∈ R,

(36) ∃u ∈ L2((0, T ),R) : xk =

∫ T

0

u(τ)eiωkτdτ ∀k ∈ N∗.

Proof. When k > 0, we call λk = ωk, while λk = −ω−k for k < 0 such that k 6= −1. The sequence (λk)k∈Z∗\{−1}
satisfies (33) and (34) with respect to the indices Z∗ \ {−1}. Theorem B.4 and the properties of a Reisz basis
(see for instance [BL10, Appendix B.1; Definition 2 & Proposition 19)] ensure the invertibility of the map

M : g ∈ X 7→ (〈ξk, g〉L2((0,T ),C))k∈Z∗\{−1} ∈ `2(C), with 〈ξk, g〉L2((0,T ),C) = (F (Λ)∗〈e, g〉L2((0,T ),C))k.

Now, H(Λ)∗ ⊇ hd̃(C) from Remark B.3 and the following map is invertible

(F (Λ)∗)−1 ◦M : g ∈ X̃ 7→ (〈eiωk(·), g〉L2((0,T ),C))k∈Z∗\{−1} ∈ hd̃(C), X̃ := M−1 ◦ F (Λ)∗(hd̃(C)).

For every (x̃k)k∈Z∗\{−1} ∈ hd̃(Z∗ \{−1},C), there exists u ∈ L2((0, T ),C) so that x̃k =
∫ T
0
u(τ)eiλkτdτ for every

k ∈ Z∗. Given (xk)k∈N∗ ∈ hd̃(N∗,C), we call (x̃k)k∈Z∗\{−1} ∈ hd̃(Z∗ \ {−1},C) such that x̃k = xk for k > 0,

while x̃k = x−k for k < 0 and k 6= −1. As above, there exists u ∈ L2((0, T ),C) so that x1 =
∫ T
0
u(s)ds and

x̃k =

∫ T

0

u(s)e−iλksds, ∀k ∈ Z∗ \ {−1} =⇒
∫ T

0

u(s)eiωksds = xk =

∫ T

0

u(s)eiωksds, k ∈ N∗ \ {1}.

If x1 ∈ R, then u is real and (36) is solvable for u ∈ L2((0, T ),R).

Proposition B.6. Let (λk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers satisfying (33). For
every T > 0, there exists C(T ) > 0 uniformly bounded for T lying on bounded intervals such that

∀g ∈ L2((0, T ),C),

∥∥∥∥∥
∫ T

0

eiλ(·)sg(s)ds

∥∥∥∥∥
`2

≤ C(T )‖g‖L2((0,T ),C).

Proof. 1) Uniformly separated numbers. Let (ωk)k∈Z∗ ⊂ R be such that γ := infk 6=j |ωk − ωj | >
0. In the current proof, we adopt the notation L2 := L2((0, T ),C). Thanks to the Ingham’s Theorem

[KL05, Theorem 4.3], the sequence {eiωk(·)}k∈Z∗ is a Riesz Basis in X = span{eiωk(·) : k ∈ Z∗}
L2

⊂ L2 when
T > 2π/γ. Now, there exists C1(T ) > 0 such that

∑
k∈Z∗ |〈eiωk(·), u〉L2 |2 ≤ C1(T )2‖u‖2L2 for every u ∈ X as in

[Duc19, relation (30)]. Let P : L2 −→ X be the orthogonal projector. For g ∈ L2, we have∥∥(〈eiωk(·), g〉L2)k∈Z∗
∥∥
`2

=
∥∥(〈eiωk(·), Pg〉L2)k∈Z∗

∥∥
`2
≤ C1(T )‖Pg‖L2 ≤ C1(T )‖g‖L2 .

2) Pairwise distinct numbers. Let (λk)k∈Z∗ be as in the hypotheses. We decompose (λk)k∈Z∗ inM sequences
(λjk)k∈Z∗ with j ≤ M such that infk 6=l |λjk − λ

j
l | ≥ δM for every j ≤ M. Now, for every j ≤ M, we apply

the point 1) with (ωk)k∈Z∗ = (λjk)k∈Z∗ . For every T > 2π/δM and g ∈ L2, there exists C(T ) > 0 uniformly
bounded for T in bounded intervals such that∥∥∥(〈eiλk(·), g〉L2)k∈Z∗

∥∥∥
`2
≤
M∑
j=1

∥∥∥(〈eiλ
j
k(·), g〉L2)k∈Z∗

∥∥∥
`2
≤MC(T )‖g‖L2 ,.

3) Conclusion. We know
∥∥ ∫ T

0
eiλ(·)τg(τ)dt

∥∥
`2
≤ MC(T )‖g‖L2 for every g ∈ L2 and, for T > 2π/δM, we

choose the smallest value possible for C(T ). When T ≤ 2π/δM, for g ∈ L2, we define g̃ ∈ L2((0, 2π/δM+1),C)
such that g̃ = g on (0, T ) and g̃ = 0 in (T, 2π/δM+ 1). Then∥∥∥∫ T

0

eiλ(·)τg(τ)dt
∥∥∥
`2

=
∥∥∥∫ 2π/δM+1

0

eiλ(·)τ g̃(τ)dt
∥∥∥
`2
≤MC(2π/δM+ 1)‖g‖L2 .

Let 0 < T1 < T2 < +∞, g ∈ L2(0, T1) and g̃ ∈ L2(0, T2) be defined as g̃ = g on (0, T1) and g̃ = 0 on (T1, T2).
We apply the last inequality to g̃ that leads to C(T1) ≤ C(T2).
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C Analytic perturbation

The aim of the appendix is to adapt the perturbation theory results from [Duc20, Appendix B], where the (BSE)
is considered on G = (0, 1) and A is the Dirichlet Laplacian. As in such work, we decompose u(t) = u0 + u1(t),
for u0 and u1(t) real. Let A+ u(t)B = A+ u0B + u1(t)B. We consider u0B as a perturbative term of A. Let
(λu0
j )j∈N∗ be the ordered spectrum of A+ u0B corresponding to some eigenfunctions (φu0

j )j∈N∗ .
Let the definition of {Em}m∈Z∗ provided in the first part of Appendix B. We repeat the construction of

such equivalence classes by considering (λj)j∈N∗ the sequence of the eigenvalues of A in the (BSE). In this case,
we consider the indices N∗ instead of Z∗ and the validiy of Lemma 2.4 instead of (33). We denote n : N∗ → N∗,
s : N∗ → N∗ and p : N∗ → N∗ those applications respectively mapping j ∈ N∗ in n(j), s(j), p(j) ∈ N∗ such that

j ∈ En(j), λs(j) = inf{λk > λj | k /∈ En(j)}, λp(j) = sup{k ∈ En(j)}.

Lemma C.1. Let (A,B) satisfy Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0. There exists
a neighborhood U(0) of u = 0 in R such that there exists c > 0 so that

||| (A+ u0B − νk)−1 ||| ≤ c, νk := (λs(k) − λp(k))/2, ∀u0 ∈ U(0), ∀k ∈ N∗.

Moreover, let P⊥j be the projector onto span{φm : m 6∈ En(j)}
L2

with j ∈ N∗. For u0 ∈ U(0), the operator

(A+ u0P
⊥
k B − λ

u0

k ) is invertible with bounded inverse from D(A) ∩Ran(P⊥k ) to Ran(P⊥k ) for every k ∈ N∗.

Proof. The proof exactly follows the ones of [Duc20, Lemma B.2 & Lemma B.3].

Lemma C.2. Let (A,B) satisfy Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0. There exists
a neighborhood U(0) of u = 0 in R such that, up to a countable subset Q and for every (k, j), (m,n) ∈ I :=
{(j, k) ∈ (N∗)2 : j < k}, (k, j) 6= (m,n), we have

λu0

k − λ
u0
j − λ

u0
m + λu0

n 6= 0, 〈φu0

k , Bφ
u0
j 〉L2 6= 0, ∀u0 ∈ U(0) \Q.

Proof. For k ∈ N∗, we decompose φu0

k = akφk +
∑
j∈E∗

n(k)
βkj φj + ηk, where ak ∈ C, {βkj }j∈N∗ ⊂ C and ηk is

orthogonal to φl for every l ∈ En(k). Moreover, lim|u0|→0 |ak| = 1 and lim|u0|→0 |βkj | = 0 for every j, k ∈ N∗.
We denote E∗n(k) := En(k) \ {k} for every k ∈ N∗ and

λu0

k φ
u0

k = (A+ u0B)
(
akφk +

∑
j∈E∗

n(k)

βkj φj + ηk

)
= ak(A+ u0B)φk +

∑
j∈E∗

n(k)

βkj (A+ u0B)φj + (A+ u0B)ηk.

Now, Lemma C.1 leads to the existence of C1 > 0 such that, for every k ∈ N∗,

ηk =−
((
A+ u0P

⊥
k B − λ

u0

k

)
P⊥k
)−1

u0

(
akP

⊥
k Bφk +

∑
j∈E∗

n(k)

βkj P
⊥
k Bφj

)
(37)

and ‖ηk‖L2 ≤ C1|u0|. We compute λu0

k = 〈φu0

k , (A+ u0B)φu0

k 〉L2 for every k ∈ N∗ and

λu0

k =
(
λk|ak|2 +

∑
j∈E∗

n(k)

λj |βkj |2
)

+ 〈ηk, (A+ u0B)ηk〉L2 + u0
∑

j,l∈E∗
n(k)

βkj β
k
l Bj,l

+ u0|ak|2Bk,k + 2u0<
( ∑
j∈E∗

n(k)

βkj 〈ηk, Bφj〉L2 + ak
∑

j∈E∗
n(k)

βkjBk,j + ak〈φk, Bηk〉L2

)
.

Thanks to (37), it follows 〈ηk, (A+ u0B)ηk〉L2 = O(u20) for every k ∈ N∗. Let

âk :=
|ak|2 +

∑
j∈E∗

n(k)
|βkj |2

1− ‖ηk‖2L2

, ãk :=
|ak|2 +

∑
j∈E∗

n(k)
λj/λk|βkj |2

1− ‖ηk‖2L2

.

As ‖ηk‖L2 ≤ C1|u0| for every k ∈ N∗, it follows lim|u0|→0 |âk| = 1 uniformly in k. Thanks to the fact

limk→+∞ infj∈E∗
n(k)

λjλk
−1 = limk→+∞ supj∈E∗

n(k)
λjλk

−1 = 1, we have lim|u0|→0 |ãk| = 1 uniformly in k.

Now, there exists fk such that λu0

k = ãkλk+u0âkBk,k+u0fk where lim|u0|→0 fk = 0 uniformly in k (the relation
is also valid when λk = 0). For each (k, j), (m,n) ∈ I such that (k, j) 6= (m,n), there exists fk,j,m,n such that
lim|u0|→0 fk,j,m,n = 0 uniformly in k, j,m, n and

λu0

k − λ
u0
j − λ

u0
m + λu0

n = ãkλk − ãjλj − ãmλm + ãnλn + u0fk,j,m,n + u0(âkBk,k − âjBj,j − âmBm,m
+ ânBn,n) = ãkλk − ãjλj − ãmλm + ãnλn + u0(âkBk,k − âjBj,j − âmBm,m + ânBn,n) +O(u20).
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Thanks to the second point of Assumptions I, there exists U(0) a neighborhood of u = 0 in R small enough
such that, for each u ∈ U(0), we have that every function λu0

k − λ
u0
j − λu0

m + λu0
n is not constant and analytic.

Now, V(k,j,m,n) = {u ∈ D
∣∣ λuk − λuj − λum + λun = 0} is a discrete subset of D and

V = {u ∈ D
∣∣ ∃((k, j), (m,n)) ∈ I2 : λuk − λuj − λum + λun = 0}

is a countable subset of D, which achieves the proof of the first claim. The second relation is proved with
the same technique. For j, k ∈ N∗, the analytic function u0 → 〈φu0

j , Bφ
u0

k 〉L2 is not constantly zero since

〈φj , Bφk〉L2 6= 0 and W = {u ∈ D
∣∣ ∃(k, j) ∈ I : 〈φu0

j , Bφ
u0

k 〉L2 = 0} is a countable subset of D.

Lemma C.3. Let (A,B) satisfy Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0. Let T > 0
and d be introduced in Assumptions II. Let c ∈ R such that 0 6∈ σ(A+ u0B + c) (the spectrum of A+ u0B + c)
and such that A + u0B + c is a positive operator. There exists a neighborhood U(0) of 0 in R such that, for
every s ∈ (0, 2 + d],

∀u0 ∈ U(0),
∥∥∥|A+ u0B + c| s2 ·

∥∥∥
L2
�
∥∥ · ∥∥

(s)
.(38)

Proof. Let D be the neighborhood provided by Lemma C.2. By applying the arguments of the proof of
[Duc20, Lemma B.6], it is possible to prove that the relation (38) is valid for s ∈ [s1, s1 + 2) when B : Hs1

G −→
Hs1

G . By classical interpolation results, the relation (38) is valid for every s ∈ [0, s1+2). Finally, how to consider
s1 in the different cases of Assumptions II is treated by the point 2) of the proof of Proposition 5.5.
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