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Abstract

In the present work, we study the well-posedness and the controllability of the bilinear Schrodinger
equation on compact graphs. In particular, we consider the (BSE) idyt) = At + u(t) By in L*(¥,C)
where ¢ is a compact graph. The operator A is a self-adjoint Laplacian, B is a bounded symmetric
operator and u € L?((0,T),R) with T > 0. We study interpolation properties of the spaces D(]A|*/?)
for s > 0, which lead to the well-posedness of the equation in D(|A|*/?) with suitable s > 3. In such
spaces, we attain the global exact controllability of the (BSE) and we provide examples of the main
results involving star graphs and tadpole graphs.

1 Introduction

In this paper, we study the evolution of a particle confined in a compact graph type structure ¢ and
subjected to an external field.

—1 - | E—

Figure 1: Example of compact graph.

Its dynamics is modeled by the bilinear Schrédinger equation in the Hilbert space L?(¥, C)
10y (t) = A(t t)By(t t 0,7

The term u(t)B represents the control field, where the bounded symmetric operator B describes the
action of the field and u € L?((0,T),R) its intensity. The operator A = —A is a self-adjoint Laplacian
equipped with suitable boundary conditions (presented in Section 2). When the (BSFE) is well-posed,
we call '} the unitary propagator generated by A + u(t)B.

A natural question of practical implications is whether, given a couple of states, there exists u steering
the system from the first state to the second one. In other words, when the (BSFE) is exactly controllable.

The exact controllability of infinite-dimensional quantum systems is in general a delicate matter.
When we consider the linear Schrodinger equation, the controllability and observability properties are
reciprocally dual. Different results were developed by addressing the problem directly or by duality (see
for instance [Bur91, Leb92, Lio83, LT92]). For results on networks, we refer to [AG18, AJ04, AJKO5,
MAN17] and to [AN15, DZ06]. Regarding inverse problems, we cite [ALM10, Bel04] for the boundary
control approach and [BCV11, IPR12] for uniqueness and stability results via Carleman estimates.

In the current manuscript, we study the global exact controllability of the bilinear Schrédinger equa-
tion on compact graphs. Before providing further details on the work, we underline that the exact
controllability of bilinear quantum systems can not be proved with the classical techniques adopted for



the linear Schrédinger equation. Indeed, the bilinear Schrodinger equation is not exactly controllable in
the Hilbert space where it is defined when B is a bounded symmetric operator and u € L?((0,7T),R) with
T > 0; even though it is well-posed in such space. We refer to [BMS82] by Ball, Mardsen and Slemrod
where the well-posedness and the non-controllability of the equation are proved.

To overcome this non-controllability result, different works were developed by addressing the control-
lability of the bilinear Schrédinger equation in suitable sub-spaces of D(A) when ¢4 = (0,1). Let

D(—Ap) = H*((0,1),C) N Hy((0,1),C)), —Apt:=—-At, Y€ D(—Ap).

This idea, introduced by Beauchard in [Bea05], has been mostly popularized by Beauchard and Laurent
with [BL10]. In this work, they prove the well-posedness and the local exact controllability of the equation
in Hpy = D(|Ap|*/?) for s = 3 when B is a suitable multiplication operator.

In [Mor14], Morancey proves the simultaneous local exact controllability of two or three (BSE) in H, (30).
Such outcome is extended to a global controllability for any finite number (BSE) in H ELO) by Morancey
and Nersesyan in [MN15]. Both the outcomes are provided for suitable multiplicaton operators B.

In [Ducl8b], the author ensures the simultaneous global exact controllability in projection of infinite
(BSE) in H (30), while he exhibits the global exact controllability of the equation via explicit controls and
explicit times in [Ducl9]. The result are valid for suitable bounded symmetric operators B.

Even though the global exact controllability of the (BSE) on ¢ = (0, 1) is well-established, the result
on generic compact graphs is still an open problem. In the following subsection, we present the main
obstacles appearing when we try to adopt the techniques developed in [BL10, Morl4, MN15, Ducl8b,
Ducl9] in the framework of the bilinear Schrédinger equation on compact graphs.

1.1 Novelties of the work

Let (A& )ren+ be the ordered sequence of eigenvalues of A and (¢ )ren+ be a Hilbert basis of L?(¢, C) made
by corresponding eigenfunctions. To understand the main difference between studying the controllability
of the (BSE) on bounded intervals & = (0,1) and on generic ¢, we notice that the spectral gap

(1) kléle* [Akt1 = Akl >0,

is only guaranteed when ¢ = (0, 1). This hypothesis is crucial for the techniques developed in the works
[BL10, Duc18b, Ducl9, Morl4], which can not be directly applied in the current framework. Indeed,
the global exact controllability is usually proved by extending a local result, which follows from the
solvability of a suitable “moment problem” in #2. Such result is usually attained by using Ingham’s type
theorems that are valid when (1) is verified (see for instance [KL05, Theorem 4.3]).

To overcome this problem, we develop a new technique in Appendix B leading to the solvability of
this moment problem in suitable sub-spaces of 2 when the following assumptions are verified. The first
condition demands the existence M € N* and C' > 0 so that

(2) klenl\I;* At — x| > C.

Such hypothesis is always guaranteed when ¢ is a compact graph (see Remark 2.2 for further details),
The second assumption consists in the existence of C' > 0 and d > 0 such that

3) Mt — M| 2 Ch™%7, YkeN',

The solvability of the moment problem in sub-spaces of ¢2 forces us to study the exact controllability
in D(]A|2) with s > 3 that is not always integer (contrary to [BL10, Ducl8b, Ducl9, Mor14]). The
characterization of these spaces is still unknown when A is a self-adjoint Laplacian on a compact graph ¢.
As a consequence, we provide different interpolation properties in order to understand which boundary
conditions define the spaces D(|A|2) when s € Rt \ N*. An example is the following.



Let {ex}r<n be the N edges composing ¢4 and H*® = Hivzl H*(ey, C) with s > 0. Let D(A) be the
subspace of those functions in H? satisfying Dirichlet or Neumann boundary conditions in the external
vertices of &4 and Neumann-Kirchhoff boundary conditions (defined in Section 2) in the internal vertices.

R

Internal vertices m External vertices x

Figure 2: Internal and external vertices in a compact graph.

In this framework, for H, := D(|A|?) with s > 0, we have
H} ™™ = H} nH* Vs €N, s9€[0,1/2).

This identity holds under generic assumptions on the problem, but stronger outcomes can be guaranteed
by imposing more restrictive conditions. We provide the complete result in Proposition 3.2.

Thanks to the interpolation properties, we attain in Section 3 the well-posedness of the bilinear
Schrodinger equation in Hg, with specific s > 3. In such spaces, we prove that the global exact control-
lability can be ensured for u € L?((0,T),R) with T > 0 when the identities (2) and (3) are satisfied with
suitable parameter d. The complete result is provided in Theorem 2.4.

After having provided the abstact controllability result, another difficulty appears when we try to
verify if a specific bilinear quantum problem is globally exactly controllable. Indeed, proving the validity
of the identity (3) is not an easy task as the spectrum of A is usually not explicit and, more the structure
of the graph is complicated, more the spectral behaviour is difficult to characterize. To this purpose, we
provide some spectral results in Appendix A based on the Roth’s Theorem [Rot56] and outcomes from
[DZ06, BK13]. This analysis leads to validity of the identity (3) for the following types of graphs.

P b T s S o o

Figure 3: Respectively a star graph, a double-ring graph, a tadpole graph and a two-tails tadpole graph.

The spectral gap (3) is valid when the lengths of the edges of the graph {Ly}r<n are such that the
ratios L /L; are algebraic irrational numbers. The result is guaranteed independently from the choice of
boundary conditions in D(A) in the external vertices, which can be Neumann or Dirichlet type boundary
conditions. This outcome leads to the controllability of the following explicit bilinear quantum systems.

Let ¢ be a star graph composed by N € N* edges {e}r<n connected in an internal vertex v. Each
e is parametrized with a coordinate going from 0 to the length of the edge Ly in the vertex v.

’\4‘ *Lk - 0
— | v - -
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Figure 4: The figure shows the parametrization of a star graph with 4 edges.

Definition 1.1. Let N € N*. We denote AL(N) the set of elements {L;}j<n € (RT)Y so that:
{1, {L;},< N} are linearly independent over Q and all the ratios Ly/L; are algebraic irrational numbers.

Theorem 1.2. Let 4 be a four edges star graph. Let D(A) be the set of functions f € H? so that:

e f(0) =0 for every external vertex ¥ of ¢ (Dirichlet boundary conditions);

e f is continuous at the vertex v and ) gf (v) = 0 (Neumann-Kirchhoff boundary conditions).

Let the control field B be such that, for every ¢ € L*(¥4,C),

Bip(z) = (x — L1)*(x), T € e,
By(xz) =0, x €Y\ ey.



There exists C C (RT)* countable such that, for every {L;}j<s € AL(4)\C, the (BSE) is globally exactly
controllable in

Hé"’e e> 0.
In other words, for every W', ¥? € H;"'E such that ||[Yt||L2 = |[v?| 12, there ewist T > 0 and u €

L2((0,T),R) such that Tt = ¢2.

In Theorem 1.2, we notice an interesting phenomenon. The controllability holds even if the control
field only acts on one edge of the graph. It is due to the choice of the lengths, which are linearly
independent over Q and such that all the ratios Lj/L; are algebraic irrational numbers.

Another application of Theorem 2.4 is the following. Let & be a tadpole graph composed by two
edges {e1,ea} connected in an internal vertex v. The edge ey is self-closing and parametrized in the
clockwise direction with a coordinate going from 0 to L; (the length e1). On the “tail” e, we consider
a coordinate going from 0 in the to Ly and we associate the 0 to the external vertex o.

- Ly <L
£ D1 D 0

Figure 5: The parametrization of the tadpole graph.

Theorem 1.3. Let 4 be a tadpole graph. Let D(A) be the set of functions f € H? such that:

e f(0) =0 (Dirichlet boundary conditions);

e f is continuous at v and ) -, ;Tf(v) =0 (Neumann-Kirchhoff boundary conditions).

Let pp(x) :=sin (%x) +x(z — L1), and pa(x) := 22 — (2L1 + 2Lo)x + L3 + 2L1Lo. Let B be such that
Bi(z) = p(z)y(2), T € e,
By(z) = po(x), T € e,

for every ¢ € L*(4,C). There exists C C (RT)? countable so that, for each {L1, L2} € AL(2)\C, the
(BSE) is globally evactly controllable in Hy ™ with e > 0.

Another application of Theorem 2.4 is provided by Corollary 2.7 which considers ¢ = {I,},<n a set
of N € N* unconnected intervals. We show that when {L;};<ny € AL(N), the controllability of the
(BSE) can be ensured in the space

IT &5t

J<N

In other words, we ensure the controllability of vectors of functions {t;};<n such that ¢; € H‘?j‘e

for every j < N. The result differs from the simultaneous controllability provided by [MN15] (also by
[Ducl8b]) that takes in account vectors of functions belonging to the same space.

1.2 Scheme of the work

In Section 2, we present the main results of the work. The global exact controllability of the (BSE) is
ensured in Theorem 2.4. Theorem 2.5 shows types of graphs satisfying the hypothesis of Theorem 2.4.
In Corollary 2.7, we provide an application of Theorem 2.4. In Section 3, Proposition 3.1 attains the
well-posedness of the (BSE) by using the interpolation properties of the spaces Hg, for s > 0 provided
by Proposition 3.2. Section 4 exhibits the proof of Theorem 2.4 which follows from the local exact
controllability ensured in Proposition 4.1. Theorem 2.5 and Corollary 2.7 are proved in Section 5, while
Theorem 1.2 and Theorem 1.3 in Section 6. In Appendix A, we provide some spectral results for the
problem, while we study different moment problems in Appendix B. In Appendix C, we adapt the
perturbation theory techniques developed in [Ducl8b, Appendiz B].



2 Main results

A compact graph ¢ is a structure composed by N € N* edges {e;};j<n of finite lengths {L;};<n
connecting M € N* vertices {v;};<nm. For each j < M, we denote

(4) N(v;):={le{l,..,N} | v; € e}, n(v;) == |N(v;)|.

An edge connected in both sides with a unique vertex is called self-closing or loop. Given a couple of
vertices v and v of ¢, it is admitted having two or more edges connecting v with v. We respectively call
V. and V; the external and the internal vertices of ¢ (see also Figure 2), i.e

(5) V. = {U €{vj}tj<m | Nee{e}icn:ve e}, Vii=Av;}i<m \ Ve.

We study graphs equipped with a metric, which parametrizes each edge e; with a coordinate going from
0 to its length L;. A graph is compact when it is composed by a finite number of vertices and edges of
finite length. We consider functions f := (f!,..., fV): ¥ — C so that f7 : e; — C for every j < N and

H =I1X9,C) =[] L*(e;,C
j<N
The Hilbert space 2 is equipped with the norm | - |12 and the scalar product
<l/}7 50>L2 = Z <wja (Pj>L2(ej,(C) = Z %(z)wj(m)dxv vwv pe H.
J<N JEN VG

By referring to [BK13], we denote a graph ¢ as quantum graph when a self adjoint Laplacian A is defined
on it. When we introduce a quantum graph ¢, we are not only introducing the graph ¢, but also a
self-adjoint Laplacian A with domain D(A) characterized by the following boundary conditions.

Boundary conditions. Let ¢4 be a quantum compact graph.

(NK) A vertex v € V; is equipped with Neumann-Kirchhoff boundary conditions when every f € D(A)

is continuous at v and ) -, aan(v) = 0 (the derivatives have ingoing directions in v).

(D) A vertex v € V, is equipped with Dirichlet boundary conditions when f(v) = 0 for every f € D(A).
(N) A vertex v € V. is equipped with Neumann boundary conditions when 9, f(v) = 0 for every
f e D(A).
Notations. Let ¢4 be a quantum compact graph.

e The graph ¢ is said to be equipped with (D) (or (N)) when every v € V, is equipped with (D) (or
(N)) and every v € V; with (NK).

e The graph ¥ is said to be equipped with (D/N) when every v € V, is equipped with (D) or (N),
while every v € V; with (NK).

In our framework, the Laplacian A admits purely discrete spectrum (see [Kuc04, Theorem 18]). Let

(6) (Ak)ken D := () ren

respectively be the ordered sequence of eigenvalues of A and a Hilbert basis of 5 made by corresponding
eigenfunctions. Let ¢,;(t) = e‘i’\ftqu and [r] the entire part of r € R. For s > 0, we define the spaces

Hipe = {w € B* | 000 € C°(9,C), > 0pf(v) =0, Vn € 2N, m € 2N+1n,m < [s+1/2], v Vi,
e€N(v)

N
=[[H(er.C).  Hg:=DA?), h(C):= {(ak)keN* cC| Y Fal < oo}.
L keN*

We respectively equip the spaces Hg and h*(C) with the norms

o = (X W tonel)' = (3 k)t = e

keN* kEN*

N



Remark. Let a vertex v be either connected with one side of the two edges e and €, or with one edge
in both sides. The Neumann-Kirchhoff boundary conditions valid for f € HZ (or Hi; ) do not only
imply the continuity of f at v but also the continuity of its derivative. For this reason, e and € can be
considered as a unique edge long |e| + [€], when we consider the spaces Hg and HR - with any s > 0.
This is not true for the spaces H®, where the continuity of the functions at the vertices is not guaranteed.

Remark 2.1. If0 & o(A) (the spectrum of A), then || - ||(s) = [||A|2 - |12, i.e.

301,C2>0 = Cill -y S A - NZe = D0 NG dmal* < Gall - IR,

keN*

Indeed, from [BK13,Theorem 3.1.8] and [BK13,Theorem 3.1.10], there exist Cs5,Cqy > 0 such that
Csk? < A\ < C4k? for every k > 2 and for k = 1 if \y # 0 (see Remark A.4 for further details).
If0 € o(A), then A\y = 0 and there exists c € R such that 0 € (A +c) and || - ||(s) < [[|[A+¢|2 - |12

Remark 2.2. The relation (2) follows from [DZ06,relation (6.6)], which leads to the existence of M €
N* and &' > 0 such that infrens [V \pirt — V| > ' M and

kiean* ‘/\k—&-M — )\kl > \//\M+1 klenl\ff‘* |\f>\k+/\/l — \/Xk‘ > V)\M+15/M-

We define the following assumptions on (A, B). Let n > 0, a > 0 and I := {(j, k) € (N*)? : j # k}.

Assumptions I (). The operator B satisfies the following conditions.

1. There exists C' > 0 such that |(¢;, Bo1) 2| > 32’% for every j € N*.

2. For (j, k), (I,m) € I such that (j, k) # ([, m) and such that A; — Ay = \; — Ay, we have

<¢ij¢j>L2 - <¢kaB¢k>L2 7é <¢I7B¢Z>L2 - <¢m»B¢m>L2-

The first point of Assumptions I quantifies how much the control operator B “mixes” eigenstates
of A. The second is necessary to decouple eigenvalue resonances appearing in the proof of the global
approximate controllability, which is an important part of the proof of the global exact controllability.

Assumptions II (7,a). Let Ran(B|gz) C HZ and one of the following assumptions be satisfied.

1. When ¥ is equipped with (D/N) and a + n € (0,3/2), there exists d € [max{a + n,1},3/2) such
that Ra’n(B|H(2£+d) C H?tdn Hé

2. When ¢ is equipped with (M) and a +n € (0,7/2), there exist d € [max{a + 7,2},7/2) and
dy € (d,7/2) such that Ran(B|H;+d) CH*YnHA N HZ and Ra?”L(B|H;\z[1 ) C Hj\l},c.
K

3. When ¥ is equipped with (D) and a +n € (0,5/2), there exists d € [max{a + 7,1},5/2) such
that Ran(B|H3i+d,) C BN HGENHS. If a+n > 2, then there exists d; € (d,5/2) such that

Ran(B| 1) C H,

The validity of Assumptions II not only tells us that B stabilizes HZ, but also the following fact.
The action of B on suitable spaces H, with s > 2 preserves the regularity of the functions, even though
some boundary conditions are lost. The choice of the parameter s is done according to the boundary
conditions defined on the graph and to the values of the inputs 1 and a. From now on, we omit n and a
from the notations of Assumptions I and Assumptions II when these parameters are not relevant.

Definition 2.3. The (BSE) is said to be globally exactly controllable in Hg, with s > 3 when, for every
Y p? € HE such that |91 2 = [|¢?|| L2, there exist 7 > 0 and u € L*((0,T),R) such that T}t = 2.

Theorem 2.4. Let ¥ be a compact quantum graph. Let the spectral gaps (2) and (3) be guaranteed for
d >0 and M € N*. If the couple (A, B) satisfies Assumptions I(n) and Assumptions II(n,d) for some
n > 0, then the (BSE) is globally exactly controllable in H, for s =2+ d and d from Assumptions II.

Proof. See Section 4. O



In the next theorem, we provide the validity of the spectral hypothesis of Theorem 2.4 when ¢ is one
of the graphs introduced in Figure 3. The provided result leads to Theorem 1.2 and Theorem 1.3.

Theorem 2.5. Let {L;}j<n € AL(N). Let &4 be either a tadpole, a two-tails tadpole, a double-rings
graph or a star graph with N < 4 edges. Let 4 be equipped with (D/N). If the couple (A, B) satis-
fies Assumptions I(n) and Assumptions II(n,€) for some n,e > 0, then the (BSE) is globally exactly
controllable in H, for s =2+ d and d from Assumptions II.

Proof. See Section 5. O

Remark 2.6. Let {L;}j<2 € AL(2). As explained in Remark 5.1, Theorem 2.5 is also valid when 4 is
a two-tails tadpole or a star graph with 3 or 4 edges. For the tadpole graphs the claim is valid when the
tails are long Lo, while the head Ly. The property is valid in the cases of the star graphs with N = 3
(resp. N =4) when two edges are long L1 and the remaining one (resp. ones) L.

In the following corollary, we provide another result based on Theorem 2.4. We refer to Remark 6.1
for an explicit control field B ensuring the controllability.

Corollary 2.7. Let 9 = {I;};<n be a set of bounded unconnected intervals. Let the couple (A, B) satisfy
Assumptions I(n) and Assumptions II(n,€) for some n,e > 0. If {Li}r<n € AL(N), then the (BSE) is
globally exactly controllable in ngN HISJ with s = d+ 2 and d from Assumptions I1.

Proof. See Section 5. O

Remark. The size of the time in Theorem 2.4, Theorem 2.5 and Corollary 2.7 depends on the initial
and the final states of the dynamics. This is due to the global approzimate controllability result adopted
in the proof of Theorem 2.4. Nevertheless, the local exact controllability (preseted in Proposition 4.1), is
valid for any T > 0 when the hypotheses of Theorem 2.5 or Corollary 2.7 are satisfied (see Remark 5.2).

3 Well-posedness and interpolation properties of the spaces H;

In the current section, we provide the well-posedness of the (BSE).

Proposition 3.1. Let & a compact quantum graph. Let (A, B) satisfy Assumptions II(n,d) with 7 > 0
and d > 0. Let y° € H?;d with d introduced in Assumptions II and u € L?((0,T),R). There exists a
unique mild solution of (BSE) in HZt?, i.e. ¢ € Co([0,T), H5™™) such that for every t € [0,T],

t
(7) Y(t,x) = e y0(a) —i/ e A9y (5) By (s, z)ds.

0
Moreover, there exists C = C(T,B,u) > 0 so that Hw”CO([O T2 < C||¢0||H;+d, while | 0(t)|| 12 =
1691152 for cvery t € [0,T] and o € HZ™.

Now, we present some interpolation properties for the spaces HZ with s > 0. The proof of Proposition
3.1 is provided in the end of the section.

Proposition 3.2.
1) If the compact quantum graph 94 is equipped with (D/N), then

HZ3™ = HZ N H" 2 for s; €N, sy €[0,1/2).
2) If the compact quantum graph 4 is equipped with (N), then

H} T = H} NHB}E for 51 €2N, 55 €[0,3/2).
3) If the compact quantum graph ¢ is equipped with (D), then

HG Tt = g2 N HRE2TY for s1 € 2N, sy € [0,3/2).



Proof. 1) (a) Bounded intervals. Let ¥ = IV be an interval equipped with (N') on the external ver-
tices and & = I” be an interval equipped with (D) on the external vertices. From [Grul6, De finition 2.1],
for every s1 € 2N, s5 € [0,3/2) and s3 € [0,1/2), we have

(8) Hi™ =Hi, nHu (N, C), H™™ =@t nEatet(1P.c), H = H*(P,C).
Let & = I’™ be an interval equipped with (D) on one external vertex and (A') on the other. We prove
9) Hib2 = Hi, nHY™2(IM C), Vs €N, sy €[0,1/2).

Let I and IV respectively be two sub-intervals of I of length %|I M|. The interval IP contains one

external vertex of I, while IV contains the other. We consider both the edges as quantum graphs: 1P
is equipped in both the external vertices with (D) and I N is equipped with (N). Let x be the partition
of the unity so that y(x) = 1in I, x(z) = 0 in I\ I? and x(x) € (0,1) in I? \ I. There holds

P(x) =P (x) + 9 (x), with @' :=xv € Hip, ?:=(1—x)¢ € Hay

and then H}. = HZ, x HZ,. The same is valid for L*(/*, C) and H*(I™,C). Thus, for s € (0,2],
H*(IM,C) = H*(IP,C) x H*(IV,C), LY (1M, C) = L*(IP,C) x L*(IV,C).

Let [+, -]o be the complex interpolation of spaces for 0 < § < 1 defined in [Tri95, De finition, Chapter 1.9.2].
From [Tri95, Chapter 1.15.1, Chapter 1.15.3], for s; € N and s, € [0,1/2), we have
[L2(IV,C), HE,/]

HS? [L*(IP,C), H2

— — 52
s9/2 T TN IDLQ/Q - va'

Thanks to [Tri95, relation (12), Chapter 1.18.1], we have [L2(IV,C) x L2(TD7C),H%N X H.I%D]Sz/2 =
[L2(IV,C), H2, ]y, 2 % [L*(IP,C), HZ,],, /2, which implies

H32, = [LQ(IMC),H,QML - [LQ(TN,C),H%N} x [LZ(TD#C),H%D] =H3, x HZ,.

2/2 s2/2 52/2

Equivalently, H;}\j'sz =H ;}fsz x H %1;82 that proves to the identity (9) thanks to the validity of (8).

1) (b) Star graphs with equal edges. Let IV and I be two quantum graphs defined on an
interval I of length L. We suppose that IV is equipped with (N), while I is equipped with (D) in the
external vertex parametrized with 0 and with (NV) in the other. We respectively call Ays and Aaq the
two self-adjoint Laplacians defining IV and I™. Let (fjl)jeN* be a Hilbert basis of L?(I,C) made by
eigenfunctions of Ay and ( fj2) jen+ a Hilbert basis of L?(I,C) composed by eigenfunctions of A

Let . be a star graph of N edges long L and equipped with (V). The (N) conditions on V, imply that
o = (a}, cos(zv/Ay), ..., al cos(x+/Ay)) with k € N*, A, the corresponding eigenvalue and {aj };<ny C C.
The (NK) condition in V; ensures that sin(vArL) >« 5 @l = 0 and aj. cos(vA,L) = ... = aly cos /ArL)

2_2 2_2
for every k € N*. Each eigenvalue is either of the form (”722 T or (2”411; " when Y,y al = 0 with

n € N*. Hence, for every k € N*, there exists j(k) € N* such that

cither ¢} = cifjpy for ¢ €C, || <1, Wle{l,.,N},

(10) I g2 ! !
or Oy = cufjuy for ¢, €C, || <1, Vie{l,.., N}

In addition, for each k € N* and m € {1,2}, there exist j(k) € N* and | < N such that f* = os,(k)q%(k)
with oéf( K € C uniformly bounded in k& €* and | < N. Thanks to the last identity and to (10),

(11) V= YN eHY <= Y eHjvNHjxm, VI<N.



1) (c) Generic graphs. Let ¢ be equipped with (D/A) and L < min{L/2: k € {1,..., N}}. Let n(v)
be defined in (4) for every v € V, UV;. We define the graphs ¢(v) for every v € V; UV, and the intervals
{I;};j<n as follows (see Figure 6 for an explicit example). If v € V;, then %(v) is a star sub-graph of ¢
equipped with (V) and composed by n(v) edges long L and connected to the internal vertex v. If v € Ve,
then 9/ (v) is an interval long L such that the external vertex v is equipped with the same boundary
conditions that v has in 4. We impose (N) on the other vertex. For each v,9 € V., UV;, the graphs
G| (v) and 1 () have respectively two external vertices wy and ws lying on the same edge e and such that
wy & 9| (0). We construct an interval strictly containing w; and ws, strictly contained in e and equipped
with (N). We collect those intervals in {I;},<n-.
I L
VR

I Vgm—e .—%7—- o—als .
sl 12 I
) Vs y 9 it
" ol —'n ‘>ZQ "\15 [0
{; U3 Y :’1;10

Boundaries: o0 Neumann-Kirchhoff, @ Neumann, m Dirichlet/Neumann.

Figure 6: The left and the right figures respectively represent the graphs {4 (v)}vev,uv, and the intervals
{I;}j<n for a given graph 4.

From 1) (a) and 1) (b), for every v € V;UV,, j < N, 81 € N and s3 € [0,1/2), we have the validity

of the identities H;J;z = H;J(U) N H*17%2(4(v),C) and HZ?“Q = Hfjl N H51752(1;, C). We notice that

G ={9vj)}j<m U{I;}j<n covers 4. As in 1) (a), we see each function of domain ¢ as a vector of
functions of domain G; with j < M + N. We use [Tri95, relation (12), Chapter 1.18.1] as in 1) (a) and

H(;H_Sz = H;l NHSt2 for s € N, s5 €[0,1/2).

2) Let ¢ be equipped with (N) and N, = |V,|. We consider {4 (v)}yev, introduced in 1) (c¢) and we
define ¢ from ¥ as follows (see Figure 7). For every v € V., we remove from the edge including v, a
section of length L /2 containing v. We equip the new external vertex with (A).

U1 Vom—e- & o—als
=~ 12 ’—T——‘
81 ds of‘ij ~ 41/
'7; *av3 V9 :Uln ‘/‘,\' \

Boundaries: 0 Neumann-Kirchhoff, @ Neumann, m Dirichlet/Neumann.

Figure 7: The left and the right figures respectively represent the graphs {g(v)}vevﬁ and gfor a given
graph 4.

We call G" := {G;}j<n.+1 = {9 (1) }vev, U{Z} which covers &. For every s; € 2N, sy € [0,3/2), we
have H;l(t;? = H;;(v) N H**+52 from (8). The arguments of 1) (a), lead to the proof since
Hp = Hat2 x ] H (9 (v),0).
veV,

3) As in 2), the claim follows by considering {g7 (v)}vev, as intervals equipped with (D) and 4 equipped
with (D) in its external vertices. O

Proof of Proposition 3.1. Part of the statement is proved by generalizing the proofs of [BL10, Lemma 1]
and [BL10, Proposition 2], which are designed for the interval ¢ = (0, 1) equipped with Dirichlet bound-
ary condition. The remaining part consists in exploiting the interpolation properties stated in Proposition
3.2 in order to ensure the well-posedness in higher regularity spaces than H%.



1) Preliminaries. Let 7 > 0 and the function f be such that f(s) € H**4n H}[chd N HZ for almost
every s € (0,t) and ¢ € (0,T). We introduce

)
G(+) ::/0 eZATf(T)dT

In the first part of the proof, we prove that G € C°([0, 77, Hé+d) by ensuring the existence of C(T") > 0
uniformly bounded for T" lying on bounded intervals such that

||G||Loo((o7T)7H;+d) < C’(T)”f”L2((0,T),H2-*-ﬂl)-

1) (a) Assumptions IL.1 . Let f(s) € H® N H for almost every s € (0,t), t € (0,T) and f(s) =
(f1(8), ey fN(5)). We prove that G € C°([0,T], HS). The definition of G(t) implies

=S [ ton s 1600 = ([ [t se])

keN*

We estimate (¢, f(s,-))r2 for each & € N* and s € (0,t). We suppose that Ay # 0. Let 0,f(s) =
(02 f1(8), -, O fV(5) be the derivative of f(s) and P(¢r) = (P(é1), ..., P(¢)) be the primitive of ¢y
such that P(¢y) = f;fkamk. We call de the two points composing the boundaries of an edge e. For
every v € V., © € V; and j € N(¥), there exist a(v),a’ (0) € {—1,+1} such that

(13) <¢k,f(5)>L2 )\2/81,@ )6 f(S ydy—|— Z Z aJ zﬁbj )83f'J(s,’U)

UGV UVe jJEN(v)
From Remark A.4, there exist C; > 0 such that )\;2 < C1k~* for every k € N* and

P>

veEV;UV, jEN (v)

t
w(/)J / ei”\’“saifj(s, v)ds
0

).

Remark 3.3. We point out that A’ 29 Oz = Ay 1/2 O by for every k € N* where A’ = —A s
a self-adjoint Laplacian with compact resolvent Thus, H)\_l/Q I¢k||L2 = ()\;1/2 x(bk, ;1 OrPr) 12 =
(¢k7)\k Adr) 2 =1 and then ()\ 129 ﬂi(bk)keN* 1s a Hilbert basis of .

3 / NS (g, F(5)) pads

(14)

ez/\ks

(y)02 f (s, y)dyds

-1

Let a' = (a!)ken+,b' = (b})ren~ C C for I < N be so that ¢! () = al, cos(v/Apx) + bl sin(v/Agx) and
—al, sin(v/Apz) + bl cos(vAez) = A 20,6k (x). Now, we have al, bl € £°°(C) since

—1/2 *
2> |\ 2000k 120 ) + 1041200y = (ak? + [BLP)er,  VkeN, I<N.

Thus, there exists Co > 0 so that, for every k € N* and v € V, UV, we have |)\,;1/23x¢>k(11)| < Cs. From
the validity of the relations (12) and (14), it follows

G(t)]l(3) < C1Ca Z Z H/ D2 fi(s,v) M()SdsH +C1H/ <)\_1 29 Dub(( 9 (s )> iA(»sdsHﬁ'

veV,UV; jEN (v)

The last relation and Proposition B.6 ensure the existence of C3(t), Cy4(t) > 0 uniformly bounded for ¢
in bounded intervals such that

(15) Gz < Cs(t) Z Z 10217, 0) |22 (0.).0) + VEIF I 2((0,0),1%) < Ca@IF 5 )l L2 (0,00, %) -

vEVLUV; jEN (v)
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We underline that the identity is also valid when A; = 0, which is proved by isolating the term with
k =1 and by repeating the steps above. For every ¢ € [0,T], the inequality (15) shows that G(t) € H3.
The provided upper bounds are uniform and the Dominated Convergence Theorem leads to

G e CO(0,7], HY).
When f(s) € H5 N Hy, for almost every s € (0,t) and ¢ € (0,T), the techniques just adopted leads to
G € C%([0,7], Hg)

Let F(f f AT f(1)dr for f € # and t € (0,T). For B a Banach space, let X(B) be the space of
functlons f so that f(s) € B for almost every s € (0,t) and ¢t € (0,T). The first part of the proof implies
F:X(H*NH2) — C°([0,T], H3), F: X(H° N HY) — C°([0,T], HY).

From a classical interpolation result (see [BL76, Theorem 4.4.1] with n = 1), we have F : X(H**?n
H,M) — C9([0,T), HZ™) with d € [1,3]. Thanks to Proposition 3.2, if d € [1,3/2) and f(s) €
o0 A n HZ = H* 40 H ™ for almost every s € (0,t) and ¢ € (0,T), then

G € C°([0,T), HZ'Y).

1) (b) Assumptions IL.3 . If ¢ is equipped with (D), then HZ = H3;c N H), and Hy = Hjyye N HY
from Proposition 3.2. As above, if f(s) € H3 N Hi; e N H,, for almost every s € (0,t) and ¢t € (0,7),
then G € C°([0,T), HY), while if f(s) € H5 N Hjr N Hy for almost every s € (0,t) and ¢ € (0,7), then
G € C°([0,T], H}). From the interpolation techniques, if d € [1,5/2) and f(s) € H**n H}v*kd N HY for
almost every s € (0,¢) and ¢ € (0,T), then G € C°([0,T], H5") and the proof is attained.

1) (c) Assumptions IL1.2 . Let f(s) € H* N H3;c N HZ for almost every s € (0,¢) and ¢t € (0,T)
and ¢ be equipped with (A'). In this framework, the last term in right-hand side (13) is zero. Indeed,
02f(s) € CY as f(s) € Hi and, for v € V,, we have 0, ¢, (v) = 0 thanks to the (N) boundary conditions
(the terms a’ (v) have different signs according to the orientation of the edges connected in v). For every
v € V;, thanks to the (VK) in v € Vi, we have 37, v, a? (v)d,¢7.(v) = 0. From (13), we obtain

G fNe =2 O O @0 (5,0) + AQ/@ O £ (5, y)dy
k veEV;UVe jEN (v)

Now, (ér)ken~ is a Hilbert basis of . and we proceed as in (14) and (15). From Proposition B.6, there ex-
ists Cg(t) > 0 uniformly bounded for ¢ lying in bounded intervals such that |G| s < C1()[f(-, ) llz2((0,0),74)
and G € C°([0,T], H). Equivalently, when f(s) € H® N Hy,c N Hy, for almost every s € (0,¢) and

€ (0,T), we have G € C°([0,T], HS). As above, Proposition 3.2 implies that when d € [2,7/2) and
f(s) € H*n H\AE N HZ for almost every s € (0,¢) and ¢ € (0,T), then G € C°([0,T], HZ'?).
2) Conclusion. As Ran(B|H;+d) C H* 0 HWEHZ C H*™, we have B € L(H,™, H*+)
thanks to the arguments of [Ducl8b, Remark 2.1]. Let ¢ € Hfjd. We consider the map F : ¢ €
CO([0,T], HZt) = ¢ € C°([0,T], Hy™) with

B(t) = F()(t) = ey — /0 A=)y (s)By(s)ds, Vit e [0,T).

For every %1, % € CO([0, 7], HZ"), we have F(41)(t) — F(42)(t) = £ e~ A=)u(s) B! (s) — $2(s))ds
From 1), there exists C(¢) > 0 uniformly bounded for ¢ lying on bounded intervals such that

||F(1/)1) - F(¢2)||Loo((o7T)7H;+d) < C(T)”“HH((O,T),R) Il Bl L(H;+d7H2+d)||¢1 - 7/}2||Loo((o7T)7H?5+d)-

If ||ullr2¢(0,7)r) is small enough, then F is a contraction and Banach Fixed Point Theorem implies
that there exists ¢ € C°([0,7], HZ") such that F(i)) = 1. When lull £2((0,7),r) is not sufficiently
small, one considers {¢;}o<j<n a partition of [0,T] with n € N*. We choose a partition such that each
llullz2((¢,_.¢,],r) is so small that the map F', defined on the interval [t; i,%;], is a contraction. Thanks
to the Banach Fixed Point Theorem, the existence and the uniqueness of the mild solution is provided.
In conclusion, the solution 1 of the (BSE) when u € C°((0,7T),R) is C1((0,T), ) and 9]+ (t)|*> = 0,
which implies [[1(¢)| = [|[%(0)]|| for every t € [0,T]. The generalization for u € L?((0,T),R) follows from
classical density arguments. O
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4 Proof of Theorem 2.4

The result is achieved as in the proof of [Ducl8b, Proposition 3.4] (also done in [MN15]). In particular,
it is obtained by gathering the local exact controllability and the global approximate controllability (both
provided below) thanks to the time reversibility of the (BSE).

4.1 Local exact controllability in

The aim of the section is to prove the local exact controllability in Hg when the hypotheses of Theorem
2.4 are satisfied. Let Of ;. := {tp € HY| ]2 =1, [ — ¢1(T)l(s) < €} with s,T,e > 0.

Proposition 4.1. Let the hypotheses of Theorem 2.4 be satisfied. Let s = 2 + d with d defined in
Assumptions 1I. There exist T > 0 and € > 0 such that, for every ¢ € O, there exists a control
function u € L*((0,T),R) such that 1 = T%¢;.

Proof. The result can be proved by ensuring to the surjectivity, for 7' > 0 sufficiently large, of the map

IY¢1ueUC L*((0,T),R) — v € Olp C Hy,  TPér = on(t)pn(t). D) e
keN*

Let the map « be the sequence with elements oy (u) = (¢pr(T), T%¢1) 2 for k € N*, so that
o L(0,),R) — Q i= {x i= (zi)nen € K*(C) | Il = 1}.

The local controllability can be guaranteed by proving the local surjectivity of the map « in a neigh-
borhood of «a(0) = & = (§k1)ken+ Wwith respect to the h* norm. To this end, we use the Gen-
eralized Inverse Function Theorem ([Lue69, Theorem 1; p. 240]) and we study the surjectivity of
v(v) = (dya(0)) - v the Fréchet derivative of a. Let Bji = (¢;, Bér)r2 with j,k € N*. The
map v : L*((0,7),R) — T5Q = {x := (zx)ren- € h*(C) | iz; € R} is the sequence of elements
v (v) == —i fOTU(T)ei(Ak_’\l)sdTBkJ with k& € N*. Let the moment problem

T
(16) ry/Br1 = ﬂ‘/ u(r)e! AT ar, V(zk)ken € TsQ C h°.
0

Proving surjectivity of 7 corresponds to ensure the solvability of (16). In other words, we prove that
there exists T > 0 large enough such that, for every (xy)ren+ € T5Q, there exists u € L?((0,T),R) such
that (xg)ren = (Vr(u))ken+. Even though the strategy of the proof is common for this kind of works
(see [BL10, Morl4, MN15, Ducl8b, Ducl9]), proving the solvability of (16) can not be approached with
the classical techniques as we can not ensure the validity of the spectral gap infrens [Agr1 — Ax| > 0
(as presented in Section 1.1). To this purpose, we refer to the theory developed in Appendix B and,
in particular, to Proposition B.5. We notice that By; € R as B is symmetric, iz1/B11 € R and

(xk/Bkvl)keN* € h?=" C he thanks to the first point of Assumptions I. Thanks to (2) and (3), the

hypotheses of Proposition B.5 are satisfied and the solvability of (16) is guaranteed in hd. In conclusion,
the map ~ is surjective and « is locally surjective, which implies the local exact controllability. O

4.2 Global approximate controllability in I

Definition 4.2. The (BSE) is said to be globally approximately controllable in Hg with s > 0 when,
for every ¢ € Hi, I' € U() such that I'y € H and € > 0, there exist T > 0 and u € L*((0,T),R)
such that [|[T'y — '35 < e

Proposition 4.3. Let (A, B) satisfy Assumptions I(n) and Assumptions H(n,ci) form >0 and d>0.
The (BSE) is globally approxzimately controllable in H, for s =2+ d with d from Assumptions II.

Proof. In the point 1) of the proof, we suppose that (A, B) admits a non-degenerate chain of connect-
edness (see [BACC13, Definition 3]). We treat the general case in the point 2) .

12



J .
1) (a) Preliminaries. Let 7, be the orthogonal projector m,, : & — 4, := span{¢; : j <m}

for every m € N*. Up to reordering of (¢x)ken+, the couples (7, Amp,, mm Bmy,) for m € N* admit non-
degenerate chains of connectedness in 7, Let ||| pv(r) = ||| Bv((0,7),r) and [ - [I[ (5 := I - |l L(Hg,HE)

for s > 0.

Claim. VI € U(J#), Ve >0, AN, € N*, Ty, € U(H) : 7n,Tn, 7N, € SU(Hy,),
(17) T, 61 — Tl 2 < e.

Let Ny € N* and ¢ := ||7TN1f¢1||Z217TN1f¢1. We define (qzj)QSjSNl such that ((Ej)jSNl is an orthonormal
basis of %, . The operator r N, is the unitary map such that r N Pj = qgj for every j < Nj. The provided
definition implies limy, o0 |[Tn,¢1 — L1 ||2 = 0. Thus, for every e > 0, there exists N; € N* large
enough satisfying the claim.

1) (b) Finite dimensional controllability. Let T,4 be the set of (j,k) € {1,...,N1}? such that
B :={¢;, Bor)r2 # 0 and |A\; — | = | A, — Ni| with m, [ € N* implies {j, k} = {m,{} for B,,,; = 0. For
every (j, k) € {1,...,N1}? and 6 € [0, 27), we define Ef’k the N7 x N1 matrix with elements (Eﬁk)l,m =0,
(B )ik =€ and (EY) )y ; = —e~ " for (I,m) € {1,..., Ni}>\{(j, k), (k, j)}. Let Eag = {ES, : (j,k) €
Tua, 0 €0, 27r)} and Lie(E,.q). Fixed v a piecewise constant control taking value in E,4 and 7 > 0, we
introduce the control system on SU ()

z(t) = z(t)v(t), t e (0,7),
1s) {x(o) = Idsu(ey,)-

Claim. (18) is controllable, i.e. for R € SU(#,), there exist p € N*, My,....M, € Egq,
ai,...,a, € RT such that R = e*1Mi o .. oMo,

For every (j, k) € {1,..., N1}?, we define the Ny x Ny matrices Ry, C;x and D; as follow. For (I,m) €
{1, ...,N1}2 \ {(]7 k), (k7j)}, we have (Rj,k)l,m =0 and (Rj,k)j,k = _(Rj,k)k,j = 1, while (Cj,k)l,m =0
and (Cjx)jx = (Cjx)k,; = i. Moreover, for (I,m) € {1,...,N1}*\ {(1,1),(4.5)}, (Dj)i,m = 0 and
(Dj)11 = —(Dj);,; =i. We consider the basis of su(y,)

e:={Rjr}jk<ny U{Cik}jkan U{D;}j<n,.

Thanks to [Sac00, Theorem 6.1], the controllability of (18) is equivalent to prove that Lie(E.q) 2
su(H#y, ) for su(#y,) the Lie algebra of SU(#n, ). The claim si valid as it is possible to obtain the
matrices R;x, Cj, and D; for every j,k < Ny by iterated Lie brackets of elements in Fqq.

1) (c) Finite dimensional estimates. Let I' € U(#) and I'y, € U(#) be defined in 1) (a). Thanks
to the previous claim and to the fact that 7y, I'n, N, € SU (%, ), there exist p € N*, My,..., M, € Euq
and aq, ..., € RT such that

(19) N, Uy Ty =Moo Mp,

Claim. For every | < p and e from (19), there exist {T! };en+ € RY and {u!, },,en+ such that
ul, € L2((0,T),R) for every n € N* and

L
(20) lim [T ¢ — e* Mg 2 =0, Yk < Ny,
n— oo n
sup HuiL”BV(T}L) < 00, sup ||Uln||Loo((o,T,,g),R) < o0,
(21) neN* neN*

sup T [|ub, || Lo (0,71 r) < 0.
neN*

We consider the results developed in [Chal2, Section 3.1 & Section 3.2] by Chambrion and leading to
[Chal2, Proposition 6] since (A, B) admits a non-degenerate chain of connectedness ([BACC13, Defini-
tion 3]). Each e*Mt is a rotation in a two dimensional space for every I € {1,...,p} and this work allows
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to explicit {7 }nen+ C RT and {ul, },en- satisfying (21) such that u!, € L2((0,T%),R) for every n € N*
and

ul «
(22) Jim |7y, D o — e M| 2 =0, Yk < Ny

l
As etMr € SU(Ay,), we have limy, o0 [T ¢ — €M || 2 = 0 for k < Ny.

1) (d) Infinite dimensional estimates.

Claim. Let T € U(s2). There exist K1, Ko, K3 > 0 such that for every ¢ > 0, there exist 7' > 0
and u € L*((0,7),R) such that ||T%¢; — T'¢1]/zz < € and

(23) lullpvry < K1, [wll Lo (0,7),R) < Ka, Tullzo(0,1),r) < K3

Let 1) (c) be valid with p = 2. Although, the following result is valid for any p € N*. There exists
2 <[ < Nj such that e*1Mi¢; = ¢;. Thanks to (20), there exists n € N* large enough such that,

2 1 2 1 2
D707 61 — e2 et Mgy |2 < || s | IT75 61 — e M on 2 + [Drady — €222y 12 < e

The identity (19) leads to the existence of K1, Ko, K3 > 0 such that for every e > 0, there exist T' > 0
and u € L?((0,T),R) such that ||[T%¢; — 'y, é1]|z2 < € and

(24) lullpviry < K1, |lullpeo,ryr) < Koy TlJul|poeo,1)r) < Ks.

The relation (17) and the triangular inequality achieve the claim.

1) (e) Global approximate controllability with respect to the L?-norm. Let ¢ € J# and
T eU().

Claim. There exist K1, K2, K3 > 0 such that for every ¢ > 0, there exist T > 0 and u €
L2((0,T),R) such that [|[T%t — T'yg||z2 < € and

(25) lull v () < K1, lull o (0,7),r) < K2, TlJul| Los(0,1)R) < K3.
We assume that ||¢||r2 = 1, but the same proof is also valid for the generic case. From the point 1) (d),
there exist two controls respectively steering ¢, close to v and ¢ close to ['y). Vice versa, thanks to the

time reversibility, there exists a control steering ¥ close to ¢;. In other words, there exist 717,75 > 0,
up € L2((0,T1),R) and us € L?((0,T%),R) such that

I v = orllrz < ITrsdr — TllL> < e
The chosen controls u; and ug satisfy (25). The claim is proven as
ITETr ¢ =Tl < ITRTH¢ = TRl + [T e — Tl < 26

1) (f) Global approximate controllability in higher regularity norm. Let ¢ € Hj with s €
[s1,51 +2) and s; € N*. Let I' € U(5) be such that ') € Hj and B : Hy} — Hj'.

Claim. There exist 7 > 0 and u € L?((0,T),R) such that |[T% — wa(s) <e.

We consider the propagation of regularity developed by Kato in [Kat53]. We notice that (A +
u(t)B — ic) is maximal dissipative in Hg' for suitable ¢ = [[ul[r=(0,7) ) | Bll (5,)- Let A > ¢ and

ﬁf;” = D(AT (iX — A)) = H%1+2. We know that B : ITI(}H'2 C Hj} — HZ and the arguments of
[Ducl8b, Remark 2.1] imply that B € L(Hz 2, HS'). For T > 0 and u € BV((0,T),R), we have

M= sup || (iA=A—u(®)B) | o goase) < +00.
tE[O,T] G g
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We know ||k + f(-)llv(o,r)r) = |fllBV((0,7)R) fOr f € BV((0,T),R) and k € R. Equivalently,

N = A= A=uOB N gy (0 i eey) = Nlove 1B 1 pagpos g, <+
We call Cy := || A(A+u(T)B —i\)~!| (s;) < o0 and Ug* the propagator generated by A +uB —ic such

that Ugtp = e~ “T'%p. Thanks to [Kat53, Section 3.10], for every 1 € H;H'Q, it follows
JA+u(T)B = iUy < MMV N(A =Ny = D6l < CLMEMNHT g, ).

For every T > 0, u € BV((0,T),R) and ¢ € H(}ﬁ?, there exists C = C(K) > 0 depending on
K = ([ullsv oy, llull Lo (0.1),2)> Tllull oo ((0,7),%)) such that

(26) IT7 Pl s142) < CllYll(si+2)-

Now, we notice that, for every ¢ € HY, from the Cauchy-Schwarz inequality, we have [|A¢|2, <
[l 2]l A% 2 and there exists Cz > 0 such that [|A*|7. < [[AY[72]|A%Y]72 < Co||¥[lL2[|A%]I7.. By
following the same idea, for every ¢ € H;H, there exist my, mo € N* and Cs,Cy > 0 such that

+2

@) AR < Gl AT Gl = T < Callel T .

In conclusion, the point 1) (e), the relation (26) and the relation (27) ensure the claim.

1) (g) Conclusion. Let d be the parameter introduced by the validity of Assumptions II. If d < 2,
then B : H2 — HZ and the global approximate controllability is verified in Hgt? since d + 2 < 4. If
d € [2,5/2), then B: H" — H®% with d; € (d,5/2) from Assumptions II. Now, Hg' = H% N HZ, thanks
to Proposition 3.2, and B : H2 — HZ implies B : HY — H%. The global approximate controllability
is verified in H3"? since d +2 < di + 2. If d € [5/2,7/2), then B : Hi} — Hiy for di € (d,7/2) and
H;} = Hj‘f},C N Hé from Proposition 3.2. Now, B : Hé — Hé, that implies B : H(él — H(;l. The global
approximate controllability is verified in H;“ since d +2 < dy + 2.

2) Generalization. Let (A, B) do not admit a non-degenerate chain of connectedness. We decompose
A+u()B = (A+UoB)—|-U1(')B, ug € R, up € L2((O,T),R).

We notice that, if (A, B) satisfies Assumptions I() and Assumptions I1(7, d) for > 0 and d > 0, then
Lemma C.2 and Lemma C.3 are valid. We consider ug in the neighborhoods provided by the two lemmas
and we denote (¢,°)ren a Hilbert basis of % made by eigenfunctions of A + ugB. The point 1) can
be repeated by considering the sequence (¢}°)yen instead of (¢x)ren and the spaces D(]A + ugB|?)
in substitution of Hf with s > 0. The claim is equivalently proved since (A + uoB, B) admits a non-
degenerate chain of connectedness thanks to Lemma C.2 and |[|A + uoB|? - HL2 = ll¢sy with s =244

and d from Assumptions I1(n, d) thanks to Lemma C.3. O

5 Proofs of Theorem 2.5 and Corollary 2.7

Let (/\f) heN* denote the ordered sequence of eigenvalues of A on a compact quantum graph q.
Proof of Theorem 2.5. Let 4 be a tadpole graph equipped with (D) (see Figure 5). Let 4 be obtained
from ¢ by imposing (D) on v. Let ¥ be the graph obtained by disconnecting e; on one side and by

imposing (N) on the new external vertex of e; (see the first line of Figure 8 ).
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Boundaries: 0 Neumann-Kirchhoff, @ Neumann, x Dirichlet, m Dirichlet/Neumann.

Figure 8: The figure represents the graphs described in the proof of Theorem 2.5. The column 1 shows
the graphs & considered: tadpole, two-tails tadpole, double-rings graph, star graph with N = 3 and star
graph with N = 4. The columns 2 and 3 respectively provide the corresponding graphs 4~ and 4P .

We notice that ()\gD ) kN and (/\f,fN) bep- are the ordered sequences of eigenvalues respectively obtained
by reordering {k } KEN* and {%}%N* From Proposition A.3, we have

je{1,2}
(28) A <A <L NS <AL, VkeN

If {Ly,L2} € AL, then {L1, Lo, L1 + L2} € AL. The techniques of the proof of Proposition A.2 lead to
the existence of C' > 0 such that, for every € > 0, there holds

N =M > A - T >0k, YReN.

The relation (3) is verified and the claim is guaranteed by Theorem 2.4. The techniques introduced
lead to the claim when ¢ is a tadpole graph equipped with (A), but also when ¢ is a two-tails tadpole
graph, a double-rings graph or a star graph with N < 4 edges. In every framework, we impose that
{Li}r<n € AL(N). In Figure 8, we represent how to define 4V and ¥ from the corresponding . [

Remark 5.1. The techniques leading to Theorem 2.5 can be adopted in order to prove Remark 2.6. The
peculiarity of the proof is that when 4 is a star graphs, we construct 9N so that the edges of equal length
do not belong to the same connected component composing 4N

Proof of Corollary 2.7. As (A\;)jen+ C {(k—41L)227r2 }k,jeN*, the claim follows from Proposition A.1. In fact,
j J<N

thanks to the arguments adopted in the proof of Lemma A.2, for every e > 0, there exists C; > 0 such
that [Agtr1 — Ax| > C1k7¢ for every k € N*. In conclusion, Theorem 2.4 attains the proof. O

Remark 5.2. When the hypotheses of Theorem 2.5 or Corollary 2.7 are satisfied we know that, for
every € > 0, there exists C1 > 0 such that |A\gy1 — M| > C1k~¢ for every k € N*. Now, A\, ~ k? from
Remark A.4. The arguments of Remark 2.2 ensure that the validity of (42) is guaranteed for 6 > 0 large
as much as desired when M € N* is also sufficiently large. Under these assumptions, the local exact
controllability (proposed in Proposition 4.1) is valid for any positive time T > 0 as the moment problem
(16) is solvable for any positive time thanks to Proposition B.5 (which is valid for T > 27

6 Proofs of the theorems 1.2 and 1.3

Proof of Theorem 1.2. Let & be a star graph with 4 edges of lengths {L,},;<4 equipped (D). The (D)
conditions on the external vertices irnply that each eigenfunction (;5] With 7 € N* satisfies qﬁz (0) =0 for

every | < 4. Then, ¢;(z) = (a] sin(z\/A;), a3 sin(x+/X;), a¥ sin(z\/X;), af sin(z\/A;)) with {al};<4 € C
such that (¢;);en+ forms a Hilbert ba31s of A, i.e. Zlg fo |aj|2 sin?(xy/Aj)dz = 1, which leads to
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=14 \aé\Q(% COQ(LL‘F) gm(LL\F)). For every j € N*, the (NK) condition in V; yields that

iy
a} sin(v/AjL1) =...= a? sin(y/AjLn), Zaé— cos(v/AjL;) =0
(20) 1<4
Zcot(\//\ng) =0, Z |a ?sin(L;y/A;) cos(Liy/A;j) = 0.
1<4 ISN
Now, 1 = S Jal[2L;/2 and the continuity implies a} — a2 S2WSE) g0y 2 1 and j € N*, which
» 1= ey [0;PLa/2 and the continuity implies a; = aj T 72 for # 1 and j € N*, whic

4 sin2(\/)\>jL1)
ensures |af|? (L1 + Y, le) = 2. Thus,

-1
(30) laj|” =2 H sin?(\/\; Lm) <2Lk H sin?(y/\j L) > ,  VjeN".
m#1 k=1 m#k

From (29) and (30), we have Z?zl cos(vVAkLi) [ 1,5, sin(v/ Ak Lm) = 0. The validity of [DZ06, Proposition A.11]
and Remark A.4 ensure that, for every € > 0, there exist C7,Cy > 0 such that, for every j € N*,

1) 2 2 02
laj| = 1 2 > 1 o iie = Tiie
Zl:l Ll Sin (\/Ale) Zl:l Llcl )\j i 3

1) Assumptions I.1 . We notice that (¢!, B¢§>L2(ej7c) =0 for every 2 <1 <4 and k,j € N*. Let

211, ¢1sin2\/ i Lm

(31)

aj(fE) = Zk 9 Lk 5111 \/>1‘ mtk,1 SlIl \/7[, + me;ﬁl Sin2(\//\7ij)
Bi(z) = —30v/Arz + 20VA; 7 + 4v/A; @0 + 15sin(2v/ A7)
! ’ 40\/X5 )
B;(z) = 6(v A1 — \/7 4+ (VA — \/7 3 +6sin((vA — \/E)x)

(VA — /A
—6(v A1+ Az + (VAL + /A3 + 6sin((VAL + /X))
\F+\F

with j € N*. Each function B = yai(-)v/a;(- is non-constant and analytic in RT, while we
notice that By ; = <¢1,B¢])Lz = B 5 (L1) by calculatlon The set of positive zeros V; of each B is a
discrete subset of Rt and V = Ujen- V; is countable. For every {L;};<4 € AL(4) such that Ly ¢ V,
we have |By ;| # 0 for every j € N*. Now, there holds |By,;| ~ |a;|LivA1\/A;(A; — A1) 72 for every
j € N*\ {1}. From Remark A.4 and the identity (31), the first point of Assumptions I(2 + €) is verified
since, for each € > 0, there exists C5 > 0 such that |By ;| > Jf—f for every j € N*.

2) Assumptions 1.2 . Let (k,j), (m,n) € I, (k,j) # (m,n) for I := {(j, k) € (N*)?: j # k} and

—30v/ M + 200/ A5 20 + 4v/Ag 2 + 15 sin(2y/ M)
40V '

By calculation, we notice that B; ; = (¢;, Bo;) 2 = F;(L1). Moreover, for Fj i .m(z) = Fj(z) — Fi(x) —

Fi(z) + Fn(x), it follows Fj g m(L1) = Bj; — Bix — Biy + Bmm and Fj i m(2) is a non-constant

analytic function for « > 0. Furthermore Vj x 1 m, the set of the positive zeros of Fj j ;.m(x), is discrete

and V' := U; .1 men+ Vik lm IS a countable subset of R*. For each {L;};<4 € AL(4) such that L, ¢ VUV,
FkALAm

Assumptions I(2 + €) are verified.

Fy(x) := aj(z)

3) Assumptions I1.3 and conclusion. The third point of Assumptions II(2 + €1, €5) is valid for each
€1,€2 > 0 such that e + es € (0,1/2) since B stabilizes HZ, H™ and Hy}y for m € (0,9/2). Indeed, for

every n € N* such that n < 5, we have 971 (By) (L) = .... = 9771 (By)*(L4) = 0 for every ¢ € Hy,
which implies By € Hy; . From Theorem 2.5, the controllability holds in H;?E with € > 0. O
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Proof of Theorem 1.3. Let ¢4 be a tadpole graph equipped with (D) (see Figure 5). Let r be the axis
passing along e; and crossing e; in its middle.

— " y
r \_/ )

€1

Figure 9: The figure represents the symmetry axis r of the tadpole graph.

The graph ¢ is symmetric with respect to r and we construct the eigenfunctions (¢ )ren+ as a sequence
of symmetric or skew-symmetric functions with respect to r. If ¢ = (¢4, gb%) is skew-symmetric, then

¢ =0, 6,(0) = ¢x(L1/2) = ¢(L1) =0, 9o (0) = Dub(L1).-

We denote (fi)ren+ the skew-symmetric eigenfunctions belonging to the Hilbert basis (dx)ren+ and
(vk)ken+ the ordered sequence of corresponding eigenvalues. We set

2 2k 4k3m?
(fr)ken = ( \/7—sin{z—),0 ) ; (V) ren- = ( ) .
© ( Ly ( Ll) ) kEN* © L% keN*

If ¢, = (¢}, ¢3) is symmetric, then we have 9,¢}(L1/2) = 0 and ¢} (-) = ¢1(L1 — ). The (D) conditions

(
on v implies that (gx)ren- = ((af cos (yar(z — &), a} sin(,/ukx)))keN* for {(ag,af)}ken- C C* are
the symmetric eigenfunctions of A corresponding to the eigenvalues (ug)gen+. We characterize (ug)gen--

The (MK) conditions in v ensure that a}, cos(\/mr(L1/2)) = a sin(y/ftxL2)) and
(32) 2a}, sin(y/px(L1/2)) + ai cos(v/rL2)) =0 = 2tan(y/jux(L1/2)) + cot(y/prL2)) = 0.

We choose {(a},a?)}ken C C? such that (¢r)ken+ obtained by reordering (fi)ren+ U (gk)ren+ forms an
Hilbert basis of . In particular, the techniques leading to relation (30) in Theorem 1.2 attain

L2 2sin” (/i L2) a2 = 2 cos? (/1 (L1/2))
k

a Q.

la
with ay, := Lj cos? (/g (L1/2)) + Lo sin®(,/fixL2) and k € N*. From (32), there holds

2sin(y/uxL2) sin (\/;Tk%) + cos (m%) cos(y/mrL2) = 0.

1) Assumptions 1.1 . If {L;, Lo} € AL(2), then {L1/2, Lo} € AL(2). The validity of the two points
of Remark A.6 is guaranteed for each | € {1,2} and with {L1/2, L2} € AL(2). The arguments leading
to (31) in Theorem 1.2, applied with the identities (38) and (39), imply that

(33) Ye>0, 3C>0 : |af|>Ck™'7c, Vk € N*, Vi € {1,2}.

Let By : (¥',4?) — (hp',0) and By : (1, 4?) — (hiyt, hetp?) with h(z) = sin (%I), hi(x) =
x(x — L1) and ho(z) := 22 — (2L1 + 2Ls)x + L3 + 2L1 Lo. As h is skew-symmetric with respect to r and
hi is symmetric, we have

(fes Bifr)rz = {9k, Bigk)r2 =0,  (fx, Bagk)r2 = (9k, B2fr)12 = 0.

We fix j € N* and by calculation |(f}, Bf})r2| = [(f}, B2fi)p2| ~ k= Now, u ~ k? from Remark A.4.
Thanks to (33) and (39), for every e > 0, there exists C; > 0 such that, for k& € N* large enough,
|ak . 2j71’ L1 . 2j7T L1 C
(£, Bar)r2| = [{f5, Bigk) 2| ~ T 1O ((VN - 71) 7) +sin ((\/Mk + [T) ?N Z e

Moreover, |(g;, Bgr)r2| ~ |a2|"'k~2 ~ k=3¢ thanks to (33). As in Theorem 1.2, there exists V C R*
countable such that, for every {L1, L2} € AL(2) such that Ly ¢ V, we have | By x| # 0 for every k € N*.
The first point of Assumptions I(2 + ¢) is attained and, for every € > 0, there exists Cy > 0 such that

|Bl,k| > Cgk‘_4_6, Vk € N*.
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2) Assumptions 1.2 . The second point of Assumptions I(2 + €) is verified as in Theorem 1.2 since
there exists V' C R countable such that, for each {L1, Lo} € AL(2) such that L; ¢ VU V, Assumptions
I(2 + €) are verified.

3) Assumptions I1.3 and conclusion. The third point of Assumptions II(2 + €, €2) is valid for
€1,€2 > 0 such that €, + e; € (0,1/2) since B stabilizes Hy, H™ and Hy} for m € N* similarly to
Theorem 1.2. From Theorem 2.5, the controllability holds in H;‘e with € > 0. O

Remark 6.1. The techniques developed in the proofs of theorems 1.2 and 1.3 can be adopted to ensure
the validity of Corollary 2.7 when B s the control field

1
L2z?2 [
B:yp =" M) — (o', .0"), o= = wﬂ(*““’)’ VI < N.
i<~ L} L
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A Appendix: Spectral properties

In the current appendix, we characterize (Ag)gen+, the eigenvalues of the Laplacian A in the (BSE),
according to the structure of ¢4 and to the definition of D(A).

Proposition A.1. (Roth’s Theorem; [Rot56]) If z is an algebraic irrational number, then for every e > 0
the inequality ’z — %| < m% is satisfied for at most a finite number of n,m € Z.

Lemma A.2. Let {L;};<n, C R and {Ei}igm C R with Ny, Ny € N*. Let (/\,16) and (Ai) be

kEN* kEN*
obtained by reordering {kz—f and {kg~—“ respectively. If all the ratios L;/L; are algebraic
1

2
}k,leN* L? }k,ieN*
<Ny ) i<Ng

irrational numbers, then for every € > 0 there exists C > 0 such that |)\,1H_1 - )\i| > kg for every k € N*.

Proof. For every k € N*, there exist m,n € N* ¢ < N; and [ < N, such that )\11€+1 = mz;rz and
1

)\z = "27;2 We suppose L; < L;. Let z be an algebraic irrational number. From Proposition A.1, we
have that, for every e > 0, there exists C' > 0 such that |z —n/m| > Cm=27¢ for every m,n € N*. Thus,
when m < n, for each € > 0, there exists C; > 0 such that

m2m? n27r2‘ _ ‘(mﬂ' n mr) (mﬂ' mr)‘ S 2mmymnr nw S 20,72
L2 L2 Ll EZ Ll EZ Ei Ll Zz o meif .
If m > n, then |mL2§2 — "27;2 ‘ > 72 (sz — Z;z), which conclude the proof. O
l i

The following proposition rephrases the results of [BK13, Theorem 3.1.8] and [BK13, Theorem 3.1.10].

Let (Af) . be the ordered spectrum of A on a generic compact quantum graph ¥.

Proposition A.3. [BK13,Theorem 3.1.8] & [BK13,Theorem 3.1.10] Let ¥ be a compact graph con-
taining the vertices w and v. Let 9P be the graph obtained by imposing (D) on w. We have

A <A <YL, k € N*.

Let w and v be equipped with (NK) or (N). If 4’ is the graph obtained by merging in 4 the vertices w
and v in one unique vertex equipped with (NK), then )\f < )\f < )\E,f+1 for every k € N*.

Remark A.4. Let 4 a be compact graphs made by edges of lengths {L;}i<n. From Proposition A.3,

(34) 3C,C, >0 C1k? <\ < Cyk?, Vi > 2.
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Indeed, we define 9P from 4G by imposing (D) in each vertex. We denote @GN from 9 by disconnecting
each edge and by imposing (N) i7jzveach vertex. From Proposition A.3, we have )\fi\;N < )\@ < /\(,erM
D
for k > 2N. The sequences )\f and /\f are respectively obtained by reordering {7},€€N* and
i TISN

2.2 - N .
{(k le, T }keN*. Forl>2N +1, m = max;j<n L? and m = minj<y Lf, we have
i i<N - -

£\ (l — 2N —1)%72 < 127? £\ (l + M)?7? < [222M 72
o > N2 = 22N+ N2 frar < mo T m

The techniques developed in [DZ06, Appendixz A] in order to prove [DZ06, Proposition A.11] lead to
following proposition. For = € R, we denote E(x) the closest integer number to z and

)l = mip|e -2l F(z) =2 - ()

We notice |F(z)| = ||z || and —3 < F(2) < 3. Let {L;},<y € (R")Y and i < N. We also define

n@)=B(e=3). r@=Fe-g). de)= o=zl @@= n(Z).

™

Proposition A.5. Let {Ly}i<n € AL(N) with N € N*. Let (wy)nen+ be the unbounded ordered
sequence of positive solutions of the equation

(35) > sin(@Ly) [] cos(zLm) =0, zeR.

I<N m£l

For every ¢ > 0, there exists Ce > 0 so that | cos(wpLy)| > 1+E for every Il < N and n € N*.

Proof. From [DZ06, relation (A.3)], for every x € R, we obtain the identities
, 1\ L; ; 1\ L,
< < m' 1) < ‘ m' = ‘
(36) 2d(z) < |cos(mz)| < wd(x), Qd((m (x) + 2) Li> < |cos ((m () + 2) I, 7r)

As cos(ay — as) = cos(ay) cos(az) + sin(ay) sin(az) for ar,as € R and mi(z) + & = Lix — r(Liz) for

every x € R, we have
n (w2 ()
sin | m—=|r{ —=x .
Li ™

From [DZ06, relation (A.3)] and (36), we have the following inequalities [sin(m)r()D] < || lr()] I <
lr()| = wd(-) < Z|cos(r(-))|, which imply |sin (772 |r(&2)])| < 7 |r(Lia)| < 55| cos(Lix)| for

every x € R. From (37), there exists C > 0 such that, for every i < N,

Hd((ﬁ"ﬂ(x) + %) %) < 2N7: H |cos(L;zx)| + Ci|cos(L;x)| Va eR.
J#i ‘ J#i

(37) 2d(<n~zl(x) + %)%) <|cos(L;z)| +

If there exists (wn, Jken+ € (wn)nen+ such that |cos(Ljwny, )| LN 0, then J[;_, [cos(Liwn,)| LNy

thanks to (35). Equivalently to [DZ06, relation (A.10)] (proof of [DZ06, Proposztzon A.11]), there exists
a constant Cy > 0 such that, for every i € {0,..., N}, we have

Ol cos(Liwn)| > [T a( (') + ) 72) =TT 5 (o) + 5) 22 = 1)1
! g !

J#i
Now, we have [[2()[| = 3| - I and |[(-) = 1] = || - [I. We consider the Schmidt’s Theorem
[DZ06, Theorem A.7] since {Lk}k<N € AL(N For every € > 0, there exist C3,Cy > 0 such that, for
everynéNﬂwe have Hj;éi?l”( é)im *WZ%' O
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Remark A.6. The techniques proving [DZ06, Proposition A.11] and Proposition A.5 lead to the follow-
ing results. Let (wp)nens C RY be an unbounded sequence and (wy, )ren~ any subsequence of (wp)nens -
Let {Ly}r<n € AL(N) with N € N* and | < N.

1) If | cos(Liwn,,)| 2o implies [ [, | cos(Ljwn, )| E2%00 or [T Isin(Ljwn,)] LN 0, then

(38) Ye>0, 3C>0 : |cos(wnly)|>Cuw,'™c, VI < N, n € N*,

2) If |sin(Lijwn,, )] LNy implies [, | cos(Ljwn, )| 52000 or [T [sin(Ljwn,)| LN 0, then

39 Ve>0, 3IC>0 sin(wp L) > Cw 17¢, VI < N, n e N*.
n

B Appendix: Moment problem

Let 27 = L?((0,T),R) with T'> 0 and Z* = Z\ {0}. Let A = (\x)rez+ be pairwise distinct ordered real
numbers such that

3 N* 36 >0 : inf A — M| > OM.
(40) MeN, 20> {kez~ ;Hilc+M7s0}| ke~ M| 2 OM

From (40), we notice that there does not exist M consecutive k € Z* such that [A\g+1 — Ag| < d. This
leads to a partition of Z* in subsets that we call E,, with m € Z*. By definition, for every m € Z*, if
k,n € En,, then [A\y — A\, | < 0(M — 1), while if k € E,;, and n &€ E,,, then |\ — A,| > J. The partition
also defines an equivalence relation in Z* such that k,n € Z* are equivalent if and only if there exists
m € Z* such that k,n € E,,. The sets

{Em tmez
are the corresponding equivalence classes and i(m) := |E,,| < M — 1. For every sequence X := (2;)icz~,
we define the vectors
x" = {zi}ieE,,
for m € Z*. Let h = (hj)j<i(m) € C™ with m € Z*. For every m € Z*, we denote Fm(ﬁ) : ¢
C*™) the matrix with elements, for every j, k < i(m),

Hl;&_}(hj - hl)ilv ] S k?
~ 1<k
Fonjn(h) = 41, j=k=1,
0, ik

For each k € Z*, there exists m(k) € Z* such that k € E,,x). Let F(A) be the linear operator on £*(C)
such that, for every x = (z;);ez~ € D(F(A)),

(F(A)x), = (Fm(k) (Am<k>)xm<k>)k7 H(A) := D(F(A)) = {x = (zx)rez- € £2(C) : F(A)x € (*(C)}.

Proposition B.1. Let A := (\;)rez be an ordered sequence of real numbers satisfying (40). Sufficient

condition to have H(A) D h%(C) is the existence of d > 0 and C > 0 such that
(41) Mip1 — M| > ClR~ 5 vk e zZ*.

Proof. Thanks to (41), we have [\; — A;x| > C'miniep,, |l\7ML;1 for every m € Z* and j,k € E,,. There
exists C7 > 0 such that, for 1 < j, k < i(m),

et < Oy ( max |l|ﬁ)M

d
Fomis e (A™)] < 1o 177)

' < 0 2Md in (1)
I€Em
and |Fp,.11(A™)| = 1. Then, there exist C3,C3 > 0 such that, for j < i(m),

mY* m : 2d mY* m : 2d
(Fun(A™) Fua(A™), < Ca in I, Tr(Fu(A™)"Fu(A™)) < Cs i |1

353
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with F,,(A™)* the transposed matrix of F,,(A™). Let p(M) be the spectral radius of a matrix M and
we denote || M || = /p(M*M) its euclidean norm. As (F,,(A™)*F,,(A™)) is positive-definite, there
holds .

Il Eon (A7) 1 = p(Fon(A™) Fy(A™)) < Gy yuin 1%, m € 2

In conclusion, ||F(A)x[|7% < C’3||X||ZJ < +oo for x = (z1)pez- € h4(C) as

2 my || 2 2 ; 2d 2
IF(A)]Z < Y I Fa(A™ 12D [ml> < Cs Y i [1] > O
meL* IEE, meL* IEE,
Corollary B.2. If A := (Ap)kez+ is an ordered sequence of pairwise distinct real numbers satisfying

(40), then F(A) : H(A) — Ran(F(A)) is invertible.

Proof. As in [DZ06, p. 48], we define F,,(A™)~! the inverse matrix of F,(A™) for every m € Z*. We
call F(A)~! the operator such that (F(A)™'x); = (Fm(k)(Am(k))_lxm(k))k, for every x € Ran(F(A))
and k € Z*, which implies F(A) ™' F(A) = Idya) and F(A)F(A)™" = Idgan(r(a))- O

For every k € Z*, we have the existence of m(k) € Z* such that k € E,,(x). We define F'(A)* the
infinite matrix such that (F(A)*x), = (Fm(k)(Am(’“))*xm(k))k for every x = (2 )kez+ and k € Z*, where
Frni) (A™*))* is the transposed matrix of Fm(k)(Am(k)). For T' > 0 , we introduce

€= (ei)\j(.))jEZ* C LQ((()?T)a(C)v E:= (gk('))kEZ* = F(A)*e C LQ((OvT)vC)

Remark B.3. Thanks to Proposition B.1, when (Ai)rez~ satisfies (40) and (41), the space H(A) is dense

in (2(C) as h? is dense in 2. Now, we can consider the infinite matriz F(A)* as the unique adjoint
operator of F(A) with domain H(A)* := D(F(A)*) C ¢*(C). By transposing each F,,(A™) for m € Z*,
the arguments of the proof of Corollary B.2 lead to the invertibility of F(A)* : H(A)* — Ran(F(A)*)
and (F(A)*)™! = (F(A)~Y)*. Moreover, H(A)* 2 h% as in Proposition B.1.

In the following theorem, we rephrase a result of Avdonin and Moran [AMO01], which is also proved
by Baiocchi, Komornik and Loreti in [BKL02].

Theorem B.4 (Theorem 3.29; [DZ06]). Let (Ax)kez- be an ordered sequence of pairwise distinct real

numbers satisfying (40). If T > 2mw /6, then (& )kez- forms a Riesz Basis in the space X := span{&;| k € Z*}

Proposition B.5. Let (wy)ren- C R U {0} be an ordered sequence of real numbers with wy = 0 such
that there exist d > 0, §,C > 0 and M € N* with

(42) i |t — | > 6M,  Jwrsr — wi| > CkT®T, Wk e N-

keN*

Then, for T > 2w /0 and for every (x)ken € hcz((C) with z1 € R,
T .
(43) Ju e L*((0,T),R) : ap= / u(T)e* dr Vk € N*.
0

Proof. Let A := (A;)rez~ be an ordered sequence of real numbers satisfying (40) and (41). From the defi-
nition of Reisz basis ([BL10, Appendixz B.1; Definition 2]) and [BL10, Appendiz B.1; Proposition 19; 2)]
the map M : g € X = (({x, 9)L2((0.1).0) )kez € ¢%(C) is invertible and, for every k € Z*, we have

(€, 9) L2((0,1),0) = (F(A)*(e,9) L2((0,1),0) ) k-

Let X := M~ 1o F(A)*(hg(C)). From Remark B.3, we have H(A)* D hg((C). The following maps are
invertible (F(A)*)~! : Ran(F(A)*) — H(A)* and

(F(A)") 'oM:ge X — (<€iwk('),9>L2((0,T),<c))kez* € h'(C).

For every (Zg)rez- € h‘i((C), there exists u € L?((0,T),C) such that 7} = fOT u(t)e* Tdr for every
k € Z*. When k > 0, we call A\, = wy, while \y = —w_j for £ < 0 such that k¥ # —1. The sequence
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(Ak)keze\{—1} satisfies (40) and (41) with respect to the indices Z* \ {—1}. Given (zx)ren- € h‘j((C)7 we
introduce (Zp)pez\{-1} € h?(C) such that & = zy for k > 0, while Z, =T _; for k < 0and k # —1. As
above, there exists u € L?((0,T),C) such that z; = fo s)ds and

T T
Ty = / u(s)e”*4ds, Vk € Z\{-1} = / u(s)e™ *ds = xp, = / (s)e™ 4 ds, ke N*"\{1}.
0 0 0
If 21 € R, then u is real and (43) is solvable for u € L?((0,T), R). O

Proposition B.6. Let (A;)recz+ be an ordered sequence of pairwise distinct real numbers satisfying (40).
For every T > 0, there exists C(T) > 0 uniformly bounded for T lying on bounded intervals such that

T .
/ e g(s)ds
0

Proof. 1) Uniformly separated numbers. Let (wi)ren+ C R be such that v := infj; |wi — w;| > 0.
In the current proof, we adopt the notation L? := L*((0,T),C). Thanks to the Ingham’s Theorem
[KLO5, Theorem 4.3], the sequence {e**()}, 7 is a Riesz Basis in

<CMgllzzc0.1).0)-

Vg € L*((0,7),C), ‘
02

. L?
X = span{ei() : ke N*} = < L*((0,T),C) when T >27/7.

Now, there exists C1(T) > 0 such that >, . [(€*0), u)12|? < C1(T)?||ul|?. for every u € X thanks to
[Ducl9, relation (30)]. Let P : L? — X be the orthogonal projector. For g € L?, we have

(1), g) L2 )en e S CiD)[|Pgllz> < CL(T)lgllz>-

2) Pairwise distinct numbers. Let (A;)rez+ be as in the hypotheses. We decompose (Ag)ren+ in
M sequences (A )gen+ with j < M such that infy [A], — X/| > 0M for every j < M. Now, for every
j < M, we apply the point 1) with (wg)ren = ()\i)keN*. For every T > 27 /0 M and g € L?, there exists
C(T) > 0 uniformly bounded for T in bounded intervals such that

)\J
<E H ! )keN=

3) Conclusion. We know ||f0 e“‘<->ﬂq(7)dt”e2 < MC(T)|gl|pz for every g € L? and, for T >
27 /8M, we choose the smallest value possible for C(T). When T < 27/6M, for g € L?, we define
g € L*((0,27/6M +1),C) such that g = g on (0,T) and g = 0 in (T, 27/6M + 1). Then

T ) 27w /6 M+1
/ ePOTg(T)dt / erOTg(T)dt
0 0

Let 0 < Ty < Ty < +00, g € L?(0,T1) and g € L*(0,T3) be defined as g = g on (0,77) and § = 0 on
(T1,T>). We apply the last inequality to g that leads to C(T7) < C(T5). O

- || et s Pg)r2)kens

, SMCD)|gl L2

H(<6Mk( ), 9) 12 ) ken-

< M2 /5M +1) g 2.
62

02

C Analytic perturbation

The aim of the appendix is to adapt the perturbation theory techniques provided in [Ducl8b, Appendiz B,
where the (BSE) is considered on ¢ = (0,1) and A is the Dirichlet Laplacian. As in the mentioned
appendix, we decompose u(t) = ug + u1(t), for up and wuy(t) real. Let A+ u(t)B = A+ uoB + u1(t)B.
We consider uoB as a perturbative term of A. Let (A\j°);jen~ be the ordered spectrum of A + ugB cor-
responding to some eigenfunctions (¢}°);en-. We refer to the definition of {Ey, }ez+ provided in the
first part of Appendix B. We denote n : N* — N* s : N* — N* and p : N* — N* those applications
respectively mapping j € N* in n(j), s(5),p(j) € N* such that

j c En(j)7 >\s(j) = inf{)\k > )\j | k ¢ En(j)}, >\p(j) = sup{k S En(j)}-

The proofs of [Ducl8b, Lemma B.2 & Lemma B.3] lead to next lemma. Let j € N* and P].J- be the
L2

projector onto span{d,, : m & En(j)}
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Lemma C.1. Let (A, B) satisfy Assumptions I(n)) and Assumptions II(n,d) forn >0 and d > 0. There
exists a neighborhood U(0) of u =0 in R such that there exists ¢ > 0 so that

H| (A + upB — I/k)71 |H <eg, V= (As(k) - )‘p(k))/27 Yug € U(O), vk € N*.

Moreover, for ug € U(0), the operator (A + ugPFB — \[°) is invertible with bounded inverse from
D(A) N Ran(P) to Ran(Pt) for every k € N*.

Lemma C.2. Let (A, B) satisfy Assumptions I(n) and Assumptions H(n,J) form > 0 and d > 0.
There ezists a neighborhood U(0) of u = 0 in R such that, up to a countable subset Q@ and for every

(k,5), (m,n) € T:={(j,k) € (N*)*: j #k}, (k,7) # (m,n), we have
A0 — A0 \UO g N0 £ ), ($22, BY) 12 # 0, Yuo € U(0)\ Q.

Proof. For k € N*, we decompose ¢,° = apdi, + ZjeE*(k) Bf(bj + 1, where a, € C, {Bf}jeN* C C and

i is orthogonal to ¢; for every [ € E, (). Moreover, lim|, |0 ax| = 1 and lim,,|—0 |ﬁ]k| = 0 for every
J.k € N*. We denote E}, ;) := Ey ) \ {k} for every k € N* and

AP0 = (A+upB) (amk + Z Bj’?gbj + nk) = ar(A + uyB)dy + Z ﬁ]’?(A +upB)pj + (A + ugB)ny.
JEEN o) JEEN 1)

Now, Lemma C.1 leads to the existence of C7 > 0 such that, for every k € N*,

u —1
jGE;(k)

and [|nk]| L2 < Cilug|. We compute A° = (¢.°, (A + ugB)$,°) 12 for every k € N* and

A = <)\k|ak|2 + > >\j|5f|2) + (s (A+woB)) 2 +uo Y BEBEB;,

JEE] 4y ILEET 1
+ uolag|* Be i + QUO%( > B, Béj)re+ar Y BFBij + anldk, Bnk>L2)~
i€, i€BL

Thanks to (44), it follows (nx, (A + uoB)nk) 2 = O(ud) for every k € N*. Let

2 k|2 2 k|2
7 |a| JFZ]‘EE;(M |ﬂj| . |a| +ZjeE;(k> /\j/)‘k|ﬂj|

ak = ar =
L= [Inell7- ’ L—[Inkll7-

As |||z < Cilug| for every k € N*, it follows limy,,|—0 [a@x| = 1 uniformly in k. Thanks to

lim inf AMA'= lim o osup AT =1,
k—>+00j€E:(k) k_>+OOjEE;(k)

we have lim,|—o [@x| = 1 uniformly in k. Now, there exists fi such that A\;° = @Ay + wo@r By x + uo fx

where lim|, |0 fr = 0 uniformly in k (the relation is also valid when A\, = 0). For each (k, j), (m,n) € I

such that (k,j) # (m,n), there exists fi jm,» such that lim|,|—o ft,j,m,» = 0 uniformly in k, j,m,n and
)\ZO — )\;{’0 — /\an(,) + /\ZO = apAp — Ej)\j — A Am + Qp A + uofk,j7m7n + ’u,o(akBka — aijvj — amBmm
+@nBnn) = Mk — G5A; — AmAm + Gn Ay + o(@xBrx — @ Bjj — GmBimm + @nBnn) + O(ud).

Thanks to the second point of Assumptions I, there exists U(0) a neighborhood of v = 0 in R small
enough such that, for each u € U(0), we have that every function A\;® — A¥® — Alo 4 Aj° is not constant

and analytic. Now, V(g jmn) = {u € D| A = A} = A, + A = 0} is a discrete subset of D and
V={ue D‘ A((k,7), (m,n)) € IR A — )\}L —Ap 4+ Ar =0}

is a countable subset of D, which achieves the proof of the first claim. The second relation is proved
with the same technique. For j, k € N* the analytic function vy — (gb}‘", B¢i°) 12 is not constantly zero
since (¢j, Bop)r2 #0and W = {u € D’ 3(k,j) € I:(¢;°, B¢,.") 2 = 0} is a countable subset of D. [
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Lemma C.3. Let (A, B) satisfy Assumptions I(n) and Assumptions II(n,d) for n > 0 and d>0. Let
T >0 and s = d+ 2 for d introduced in Assumptions II. Let ¢ € R such that 0 & o(A + uoB + ¢) (the
spectrum of A+ uogB + ¢) and such that A+ ugB + ¢ is a positive operator. There exists a neighborhood
U(0) of 0 in R such that,

(45) Vup € UO), A+ uwB+dli-| = -],

Proof. Let D be the neighborhood provided by Lemma C.2. The proof follows the one of [Duc18b, Lemma B.6].
We suppose that 0 & o(A + upB) and A + ugB is positive such that we can assume ¢ = 0. When ¢ # 0,

the proof follows from the same arguments. Thanks to Remark 2.1, we have || - [|(5) = [||A|2 - ||f2. We
prove the existence of C1,C,C3 > 0 such that, for every 1 € D(|A +uoB|2) = D(|A|?),

(46) I(A+uoB)2¢l 12 < CLl| A3 2 + Col|¥ll 12 < Csl|AZ4] 2.

Let s/2 = k € N*. The relation (46) is proved by iterative argument. First, it is true for k¥ = 1 when
B € L(D(A)) as there exists C' > 0 such that [ABY| 2 < C|| Bl ;(pay|A¢ |2 for ¢ € D(A). When
k=2if B€ L() and B € L(D(A)) for 1 < k; < 2, then there exist Cy, C5 > 0 such that

I(A +uoB)*Wllz < [ A% L2 + [uol* | B>l 2 + uo| [ABY| 2 + |uol | BAY|| 2
< A% e + uol | B 1 [9]lz2 + Caluol Il Bl (pearsy 19/l + luol I Bl 2)

and ||(A + uoB)?Y|| 2 < Cs||A%¢|| > for every 1 € D(A?). Second, we assume (46) being valid for
k € N* when B € L(D(A%)) for k—j —1 < k;j < k — j and for every j € {0,....k — 1}. We prove
(46) for k + 1 when B € L(D(Ak7)) for k —j < kj < k—j + 1 and for every j € {0,...,k}. Now,
there exists C' > 0 such that ||A¥By||.: < C|| B D(Ak0)||Ak0’(/J||L2 for every 1 € D(A¥*1). Thus, as
(A +uoB)ET1| 12 = ||(A + uoB)*(A + uoB)i|| L2, there exist Cg,Cr7 > 0 such that

(A +uoB)* 9 L2 < Co (A ]l 2 + |uol|A* B 2 + 1AVl z2 + [uol 1Bl 2) < CrllAM 4|2

for every ¢ € D(A**1). As in the proof of [Ducl8b, Lemma B.6], the relation (46) is valid for any s < k
when B € L(D(A*)) for k —1 < kg < s and B € L(D(A%)) for k—j—1<k; <k — j and for every
je{l,...,k —1}. The opposite inequality follows by decomposing A = A + uoB — ugB.

In our framework, Assumptions II ensure that the parameter s is 2 + d. Indeed, if the second point
of Assumptions II is verified for s € [4,11/2), then B preserves Hff},C and HZ for d; introduced in
Assumptions IT. Proposition 3.2 claims that B : HY — H&* and the argument of [Ducl8b, Remark 2.1]
implies B € L(HJ'). Thus, the identity (45) is valid because B € L(#), B € L(HZ) and B € L(HS')
with d; > s — 2. If the third point of Assumptions II is verified for s € [4,9/2), then B € L(J¢),
B € L(H2) and B € L(HY) for di € [d,9,2). The claim follows thanks to Proposition 3.2 since
B stabilizes H% and Hé for dq introduced in Assumptions II. If s < 4 instead, then the conditions
B e L() and B € L(HZ) are sufficient to guarantee (45). O

Remark C.4. The techniques developed in the proof of Lemma C.3 imply the following claim. Let
(A, B) satisfy Assumptions I(n) and Assumptions II(n, cZ) form>0andd>0. Let 0 < s1 < d+ 2 for
d introduced in Assumptions II. Let ¢ € R such that 0 ¢ o(A+ uoB + ¢) and such that A+ uoB + ¢ is
a positive operator. We have There exists a neighborhood U(0) C R of 0 so that, for any ug € U(0), we

have [||A+uoB +¢| 7 - |12 < | - ll(s1)-

References

[AG18] R. Assel and M. Ghazel. Energy decay for the damped wave equation on an unbounded
network. Evol. Equ. Control Theory, 7(3):335-351, 2018.

[AJO4] K. Ammari and M. Jellouli. Stabilization of star-shaped networks of strings. Differential
Integral Equations, 17(11-12):1395-1410, 2004.

25



[AJKO5]

[ALM10]

[AMO1]

[AN15]

[BCV11]

[BACC13]

[Bea05]

[Bel04]

[BK13]

[BKLO2]

[BL76]

[BL10]

[BMSS2]

[Bur91]

[Chal2]

[Ducl18b]

[Duc19]

[DZ06]

[Grul6)

[IPR12]

K. Ammari, M. Jellouli, and M. Khenissi. Stabilization of generic trees of strings. J. Dyn.
Control Syst., 11(2):177-193, 2005.

S. Avdonin, G. Leugering, and V. Mikhaylov. On an inverse problem for tree-like networks
of elastic strings. ZAMM, Z. Angew. Math. Mech., 90(2):136-150, 2010.

S. Avdonin and W. Moran. Ingham-type inequalities and Riesz bases of divided differences.
Int. J. Appl. Math. Comput. Sci., 11(4):803-820, 2001. Mathematical methods of optimization
and control of large-scale systems (Ekaterinburg, 2000).

K. Ammari and S. Nicaise. Stabilization of elastic systems by collocated feedback, volume 2124
of Lecture Notes in Mathematics. Springer, Cham, 2015.

L. Baudouin, E. Crépeau, and J. Valein. Global Carleman estimate on a network for the wave
equation and application to an inverse problem. Math. Control Relat. Fields, 1(3):307-330,
2011.

N. Boussai d, M. Caponigro, and T. Chambrion. Weakly coupled systems in quantum control.
IEEE Trans. Automat. Control, 58(9):2205-2216, 2013.

K. Beauchard. Local controllability of a 1-D Schrédinger equation. J. Math. Pures Appl. (9),
84(7):851-956, 2005.

M. I. Belishev. Boundary spectral inverse problem on a class of graphs (trees) by the BC
method. Inverse Problems, 20(3):647-672, 2004.

G. Berkolaiko and P. Kuchment. Introduction to quantum graphs, volume 186 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI, 2013.

C. Baiocchi, V. Komornik, and P. Loreti. Ingham-Beurling type theorems with weakened gap
conditions. Acta Math. Hungar., 97(1-2):55-95, 2002.

Joran Bergh and Jorgen Lofstrom. Interpolation spaces. An introduction. Springer-Verlag,
Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

K. Beauchard and C. Laurent. Local controllability of 1D linear and nonlinear Schrédinger
equations with bilinear control. J. Math. Pures Appl. (9), 94(5):520-554, 2010.

J. M. Ball, J. E. Marsden, and M. Slemrod. Controllability for distributed bilinear systems.
SIAM J. Control Optim., 20(4):575-597, 1982.

N. Burg. Controle de I’équation de Schrédinger en présence d’obstacles strictement convexes.
In Journées “Equations aux Dérivées Partielles” (Saint Jean de Monts, 1991), pages Exp.
No. XIV, 11. Ecole Polytech., Palaiseau, 1991.

T. Chambrion. Periodic excitations of bilinear quantum systems. Automatica J. IFAC,
48(9):2040-2046, 2012.

A. Duca. Simultaneous global exact controllability in projection of infinite 1d bilinear
schrodinger equations. submitted: https://arziv.org/abs/1703.00966, 2018.

A. Duca. Controllability of bilinear quantum systems in explicit times via explicit control
fields. International Journal of Control, 0(0):1-11, 2019.

R. Dager and E. Zuazua. Wave propagation, observation and control in 1-d flexible multi-
structures, volume 50 of Mathématiques & Applications (Berlin) [Mathematics & Applica-
tions/. Springer-Verlag, Berlin, 2006.

G. Grubb. Regularity of spectral fractional Dirichlet and Neumann problems. Math. Nachr.,
289(7):831-844, 2016.

L. I. Ignat, A. F. Pazoto, and L. Rosier. Inverse problem for the heat equation and the
Schrodinger equation on a tree. Inverse Problems, 28(1):015011, 30, 2012.

26



[Kat53]

[KLO5]

[Kuc04]

[Leb92)

[Lio83]

[LT92]

[Lue69]

[MAN17]

[MN15]

[Mor14]

[Rot56]

[Sac00]

[Tri95]

T. Kato. Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan,
5:208-234, 1953.

V. Komornik and P. Loreti. Fourier series in control theory. Springer Monographs in Math-
ematics. Springer-Verlag, New York, 2005.

P. Kuchment. Quantum graphs. I. Some basic structures. Waves Random Media, 14(1):S107—
S128, 2004. Special section on quantum graphs.

G. Lebeau. Contrdle de ’équation de Schrodinger. J. Math. Pures Appl. (9), 71(3):267-291,
1992.

J.-L. Lions. Contrale des systémes distribués singuliers, volume 13 of Méthodes Mathématiques
de UInformatique [Mathematical Methods of Information Science]. Gauthier-Villars, Mon-
trouge, 1983.

I. Lasiecka and R. Triggiani. Optimal regularity, exact controllability and uniform stabilization
of Schrédinger equations with Dirichlet control. Differential Integral Equations, 5(3):521-535,
1992.

D. G. Luenberger. Optimization by vector space methods. John Wiley & Sons, Inc., New
York-London-Sydney, 1969.

F. A. Mehmeti, K. Ammari, and S. Nicaise. Dispersive effects for the Schrodinger equation
on the tadpole graph. J. Math. Anal. Appl., 448(1):262-280, 2017.

M. Morancey and V. Nersesyan. Simultaneous global exact controllability of an arbitrary
number of 1D bilinear Schrodinger equations. J. Math. Pures Appl. (9), 103(1):228-254,
2015.

M. Morancey. Simultaneous local exact controllability of 1D bilinear Schrodinger equations.
Ann. Inst. H. Poincaré Anal. Non Linéaire, 31(3):501-529, 2014.

K. F. Roth. Rational approximations to algebraic numbres. In Collogue sur la Théorie des
Nombres, Bruzelles, 1955, pages 119-126. Georges Thone, Liege; Masson and Cie, Paris, 1956.

Yu. L. Sachkov. Controllability of invariant systems on Lie groups and homogeneous spaces.
J. Math. Sci. (New York), 100(4):2355-2427, 2000. Dynamical systems, 8.

H. Triebel. Interpolation theory, function spaces, differential operators. Johann Ambrosius
Barth, Heidelberg, second edition, 1995.

27



