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Abstract

In the present work, we study the bilinear Schrodinger equation
10, = A + u(t)By in L*(¥,C) where ¢ is a compact graph. The
operator A is a self-adjoint Laplacian, B is a bounded symmetric op-
erator and u € L?((0,7),R) is the control with 7' > 0. We study
interpolation properties of the spaces D(|A|*/2) for s > 0, which allow
to prove the well-posedness of the equation in D(]A|*/?) with s > 3. In
such spaces, we attain the global exact controllability of the bilinear
Schrédinger equation under suitable assumptions on ¢. We provide
examples of the main results involving star graphs and tadpole graphs.

AMS subject classifications: 35Q41, 93C20, 93B05, 81Q15.

Keywords: Bilinear Schrodinger equation, global exact controllability, quan-
tum compact graphs, star graphs, tadpole graphs, moments problems.

1 Introduction

In this paper, we study the evolution of a particle confined in a compact

graph type structure ¢ (e.g. Figure 1) and subjected to an external field.

Its dynamics is modeled by the bilinear Schrodinger equation in the Hilbert

space S := L*(¥4,C)

(558 {iatwt) =AY +u®BYW), e (0.7),
¥(0) = o, T>0.

The term wu(t)B represents the control field, where the symmetric operator
B describes the action of the field and u € L%((0,7T),R) its intensity. The
operator A = —A is a self-adjoint Laplacian. When the (BSFE) is well-posed,
we call I'} the unitary propagator generated by A + u(t)B.
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Figure 1: Example of compact graph

A natural question of practical implications is whether, given a couple of
states, there exists u steering the system from the first state to the second
one. In other words, when the (BSE) is exactly controllable. The (BSE)
is said to be approzimately controllable when, for any couple of states, it
is possible to drive the system from the first state as close as desired to
the second one with a suitable control v and in finite time. Each type of
controllability is said to be simultaneous when it is simultaneously satisfied
between more couples of states with the same control.

The use of graph theory in mathematics and physics is nowadays gaining
more and more popularity. In control theory, problems involving graphs have
been popularized in the very last decades and many results are still missing.
In fact, a complete theory is far from being formulated as the interaction
between the components of a graph may generate unexpected phenomena.
On this peculiarity, we refer to [DZ06] by Ddger and Zuazua where the
boundary controllability is studied for various partial differential equations.
Nevertheless, the controllability of the bilinear Schrédinger equation on
graphs is still an open problem. For this reason, we study well-posedness
and global exact controllability of the (BSE) in suitable subspaces of D(A).

The choice of considering subspaces of D(A) is classical for this type of
results and it is due to the seminal work [BMS82] on bilinear systems by Ball,
Mardsen and Slemrod. Even though they ensure that the (BSE) admits a
unique solution in .7, they also prove that, for u € L2 ((0, 00),R), the exact
controllability of the bilinear Schrodinger equation can not be achieved in

" and in D(A) when B : D(A) — D(A) (see [BMS82, T"heorem 3.6]).

Because of the Ball, Mardsen and Slemrod result, many authors have
considered weaker notions of controllability when ¢ = (0,1). Let

D(Ap) = H*((0,1),C) N Hy((0,1),C)),  Apy:=—At¢, Vi€ D(Ap).

In [BL10], Beauchard and Laurent prove the well-posedness and the local
exact controllability of the bilinear Schréodinger equation in H (SO) = D(A%2)

for s = 3, when B is a multiplication operator for suitable u € H3((0,1),R).
In [Morl14], Morancey proves the simultaneous local exact controllability of
two or three (BSFE) in HE‘O) for suitable B = u € H3((0,1),R).

In [MN15], Morancey and Nersesyan extend the previous result. They
achieve the simultaneous global exact controllability of finitely many bilinear

Schrodinger equations in H?O) for suitable B = u € H*((0,1),R).



In [Ducb], the author ensures the simultaneous global exact controllability in
projection of infinite (BSE) in H ?0) for suitable bounded symmetric B.
Under similar assumptions, the author exhibits the global exact controlla-
bility of the bilinear Schrédinger equation between eigenstates via explicit
controls and explicit times in [Ducal.

The global approzimate controllability of the (BSE) is proved with many
different techniques in literature. Some of the existing results are the fol-
lowing. The outcome is achieved with Lyapunov techniques by Mirrahimi in
[Mir09] and by Nersesyan in [Ner10]. Adiabatic arguments are considered by
Boscain, Chittaro, Gauthier, Mason, Rossi and Sigalotti in [BCMS12] and
[BGRS15]. Lie-Galerking methods are used by Boscain, Boussaid, Caponi-
gro, Chambrion and Sigalotti in [BACC13] and [BCS14].

1.1 Preliminaries

Let ¢ be a compact graph composed by N € N edges {e;};j<n of lengths
{L;}j<n and M € N vertices {v;}j<p. We call V. and V; the external and
the internal vertices of ¢, i.e.

Ve = {U S {Uj}jSM | dle € {ej}jSN RS 6}, V= {Uj}jSM \ Ve.

We study graphs ¢ equipped with a metric parametrizing each ej with
a coordinate going from 0 to the length of the edge Li. We recall that a
graph is said to be compact when it composed by a finite number of vertices
and edges of finite length.

We consider a compact metric graph ¢ as domain of functions f :=
(fY, s fN): 9 — C so that f7:e; — C with j < N. For s > 0, we denote

H =L*Y,C) = HL%],, H® := H%(%,C) = HHseJ,

The Hilbert space . is equipped with the norm || - || and the scalar product

<1/}7¢> = <1/]790>ﬁ0 = Z<¢]7 ‘ L2 (e4,C Z )d$, VT,Z),QO € .

JEN JEN

In the (BSE), the operator A is a self-adjoint Laplacian such that the
functions in D(A) satisfy the following boundary conditions. Each v € V; is
equipped with Neumann-Kirchhoff boundary conditions when

of

Le

f is continuous in v, E

esv

(v) = 0, Vf € D(A).

The derivatives are assumed to be taken in the directions away from the
vertex (outgoing directions). The external vertices V. are equipped with
Dirichlet or Neumann type boundary conditions, i.e. for every v € V,

of

either f(v) =0 (Dirichlet), or %(v) =0 (Neumann) Vf e D(A).
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For every compact graph, the operator A admits purely discrete spec-
trum (see [Kuc04, Theorem 18]). We call {)\;};en the non-decreasing se-
quence of eigenvalues of A and {¢;};en a Hilbert basis of # composed by
corresponding eigenfunctions.

1.2 Novelties of the work

The main difference between studying the controllability of the bilinear
Schrodinger equation on ¢4 = (0,1) and on generic graph ¢ is that

1 inf — > h = 1
(1) inf |Agp1 — Al 20 when ¢ =(0,1),

which is an important hypothesis in the works [BL10], [Ducb], [Duca] and
[Mor14]. Unfortunately, the identity (1) is not guaranteed when ¥ is a
generic compact graphs. Nevertheless, there exist M € N and é > 0 so that

inf |A —A 0
(2) nf Ak — Al > dM

(see Remark 2.2 for further details). To ensure controllability results, we
introduce a weaker assumption on the spectral gap and we assume that

(3)  30>0,d>0 : | — M| >CkwMT, vk € N.

Proving the validity of the identity (3) is not an easy task as the spectrum
of A is usually unexplicit. In addition, the more the structure of the graph
is complicated, the more the spectral behaviour is difficult to characterize.

By using Roth’s Theorem [Rot56], we prove the validity of the identity
) for the following types of graphs.

XOOO—O%

Figure 2: Respectively a star graph, a double-ring graph, a tadpole graph and
a two-tails tadpole graph.

The spectral gap is valid when all the ratios Ly, /L; are algebraic irrational
numbers independently from the choice of boundary conditions of D(A) in
the external vertices, which can be both Dirichlet, or Neumann type.

Afterwards, we study the spaces Hg with s > 0 and we ensure different
interpolation properties. When D(A) is equipped with Dirichlet or Neumann
boundary conditions in V., and Neumann-Kirchhoff in V;, we show that

H "2 = HZ} N H* ™2 Vs1 € NU{0}, s2 €10,1/2).



This identity holds under generic assumptions on the problem, but stronger
outcomes can be guaranteed by imposing more restrictive conditions. We
provide the complete result in Proposition 3.2.

The interpolation properties are crucial for well-posedness of the bilinear
Schrodinger equation in H with specific s > 3. In such spaces, we prove
the global exact controllability when the identities (2) and (3) are satisfied
with suitable parameter d. The complete result is provided in Theorem 2.3.
Two interesting applications of Theorem 2.3 are the following examples that
respectively involve a star graph and a tadpole graph.

Let ¢ be a star graph composed by N € N edges {ex}r<n. Each ey is
parametrized with a coordinate going from 0 to the length of the edge Ly.
We set the coordinate 0 in the external vertex belonging to e.

\4 L B 0
/ e e

Figure 3: The figure shows the parametrization of a star graph with 4 edges.

Definition 1.1. For every N € N, we define AL(N) C (RT)Y as follows.
For every {L;};j<y € AL(N), the numbers {1,{L;};<n} are linearly inde-
pendent over Q and all the ratios Lj/L; are algebraic irrational numbers.

Example 1.2. Let & be a star graph with four edges of lengths {L;} ;<4 and
D(A) be equipped with Dirichlet boundary conditions in Ve and Neumann-
Kirchhoff in Vi;. Let B : ¢ = (1,42 3 4t —s ((1‘ — L1)41/11,0,0,0)
for every ¢ € . There exists C C (RT)* countable such that, for every
{L;}j<a € AL(4)\ C, the (BSE) is globally exactly controllable in

Hyt €€ (0,1/2).
In other words, for every ', ¢? € H;Jre such that ||| = [|4?|], there exist

T >0 and u € L?((0,T),R) such that D%l = 2.
Proof. See Section 6. O

In Example 1.2, we notice an interesting phenomenon. The controllabil-
ity holds even if the control field only acts on one edge of the graph. It is
due to the choice of the lengths, which are linearly independent over Q and
such that all the ratios Ly/L; are algebraic irrational numbers.

Let ¢4 be a tadpole graph composed by two edges {e1, e2}. The self-closing
edge e; is parametrized in the clockwise direction with a coordinate going
from 0 to Lj (the length e;). On the “tail” es, we consider a coordinate
going from 0 to Ly and we associate the 0 to the external vertex.



L1 ~ LQ
e e 0 0

Figure 4: The parametrization of the tadpole graph.

Example 1.3. Let ¥ be a tadpole graph. Let D(A) be equipped with Dirichlet
boundary conditions in V, and Neumann-Kirchhoff in V;. Let

2
w1 (z) = sin (L—Wx) +a(x—1L1), po(x):=x*— (2L +2Lo)x+ L3+2L1 Lo
1
and B : ¢ = (Y1, 9?) — (1!, patps) for every o € H. There exists
C C (R*)? countable so that, for each {L1, L2} € AL(2)\C, the (BSE) is
globally exactly controllable in
Hyt €€ (0,1/2).
Proof. See Section 6. O

The techniques adopted in Example 1.2 and Example 1.3 are also valid
if we consider Neumann boundary condition in the external vertices.

Let {I;};j<n be a set of unconnected intervals with N € N and I}/ 7 be
the propagator generated by A; + u(t)B; with
Bj = B|L2(Ij,(C)7 Aj = A|L2(Ij,(C)) H;J = D(’AJ‘E), s> 0.

The following result, denoted contemporaneous controllability, follows from
Theorem 2.3 when we consider ¥ = {I;};<n.

Example 1.4. Let {I;};<n with N € N be a set of unconnected intervals
and D(A) be equipped with Dirichlet boundary conditions. Let

1 1
L2222 L. L2z%2 L.
B:y =@ . N — E: Il (L § I ol (L
= L (Ll ) = L3 <LN )

There ezists C C (RT)N countable such that, for every {L;};j<n € AL(N)\C,
the (BSE) is contemporaneously globally exactly controllable in

IT 7+ €€ (0,1/2).

J<N
In other words, for every i, s € ngN H?J_Jre such that ||11]| = ||v2||, there
exist T > 0 and u € L*((0,T),R) such that T/ ] = ) for every j < N.
Proof. See Section 6. O

The contemporaneous controllability is deeply different from the simul-
taneous controllability provided by [Morl4], [MN15] and [Ducb] where the
authors consider sequences of functions belonging to the same space.



1.3 Scheme of the work

In Section 2, we present the main results of the work. The global ezxact
controllability of the (BSE) is ensured in Theorem 2.3. Theorem 2.4 shows
types of graphs satisfying the hypothesis of Theorem 2.3. The contempora-
neous controllability is introduced in Corollary 2.6.

In Section 3, Proposition 3.1 provides the well-posedness of the (BSE). We
attain interpolation properties of the spaces Hg, for s > 0 in Proposition 3.2.
Section 4 exhibits the proof of Theorem 2.3, while the proofs of Theorem
2.4 and Corollary 2.6 are provided in Section 5.

In Section 6, we explain Example 1.2, Example 1.3 and Example 1.4.

In Appendix A, we prove some spectral results by using classical theorems
on the approximation of real numbers by rational ones.

We treat the solvability of the so-called moments problems in Appendix B.
In Appendix C, we adapt the perturbation theory techniques exposed in
[Ducb, Appendiz Al.

2 Main results

Let ¢ be a compact graph composed by N edges {e;};j<n of lengths {L;};<n
connecting M vertices {v;};<p. For each j < M, we denote

(4) N(vj):={le{l,..,N} | v; € e}, n(v;) == |N(vj)].

We respectively call (NK), (D) and (N) the Neumann-Kirchhoff, Dirichlet
and Neumann boundary conditions for the D(A).

When we consider the self-adjoint operator A on ¢, ¢ is called quan-
tum graph. By denoting ¢ as a compact quantum graph, we are implicitly
introducing a Laplacian A equipped with self-adjoint boundary conditions.

We say that a quantum graph ¢ is equipped with one of the previous
boundary conditions in a vertex v, when each f € D(A) satisfies it in v. A
quantum graph ¢ is equipped with (D/N)-(NK) when, for every f € D(A)
and v € V, the function f satisfies (D) or (N) in v and, for every v € V;, the
function f verifies (MK) in v. We say that a quantum graph ¢ is equipped
with (D)-(NK) (or (N)-(NK)) when, for every f € D(A) and v € V,, the
function f satisfies (D) (or (N)) in v and verifies (NK) in every v € V;.

Let ¢;(t) = e~™'¢; and [r] be the entire part of € R. For s > 0, let

Hi = {1/} € H® | 92" is continuous in v, ¥n € NU{0}, n < [(s+1)/2];

S 90 (0) =0, Y € KU (0}, m < [3/2], Yo Vi),
e€N(v)

N|=

Hy = Hy(%,C) == D(A*?), |-l =1l -l = (Z |ks<'7¢k>|2) ,
keN



ol

B(€) = {{ahhen CC| Y Warf <oof, |-l = (X Ik )"

keN keN

Remark 2.1. If0 ¢ 0(A) (the spectrum of A), then |- || = I|A]Z - |, i.e.

301,C>0 = Gl I3 < AR - I = S IA o) < Gall - 12,
keN

Indeed, from [BK13,Theorem 3.1.8] and [BK13,Theorem 3.1.10], there ex-
ist C3,Cyq > 0 such that Cs3k? < M\, < Cyk? for every k > 2 and for k=1 if
A1 # 0 (see Remark A.4 for further details). If 0 € o(A), then \y = 0 and
there exists c € R such that 0 ¢ o(A +c) and || - [|(5) < [[|A + cz - .

Remark 2.2. The relation (2) follows from [DZ06,relation (6.6)], which
leads to the existence of M € N and & > 0 such that infren |V gt —
VAR > 0'M and

inf Mgt — e > VAo gyﬁkw — V| > VM.

We point out that it is possible to set M > M+ N+1 (even though this value
is not optimal). This property can be deduced from [BK13,Theorem 3.1.8]
and [BK13, Theorem 3.1.10] adopted as in Remark A.4.

Now, we define the following assumptions on the couple (A, B). Let
n>0,a>0and I:={(j,k) € N?:j+#k}.

Assumptions (I(n)). The operator B satisfies the following conditions.

1. There exists C' > 0 such that |(¢;, Bo1)| > ]2% for every j € N.
2. For (j,k),(I,m) € I such that (j,k) # (I,m) and A\j — A\t = X\ — Ay,

= (95, Bo;j) — (br, Bor) — (¢, Bor) + (dm, Bom) # 0.

Assumptions (II(n,a)). Let Ran(B)| "2 ) € HZ and one of the following
assumptions be satisfied.

1. When ¢ is equipped with (D/N)-(NK) and a + 7 € (0,3/2), there
exists d € [max{a +n,1},3/2) such that RCLTL(B|H(2§+d) C H*™MNH2.

2. When ¢ is equipped with (N)-(NK) and a +n € (0,7/2), there exist
d € [max{a +n,2},7/2) and dy € (d,7/2) such that RCLTL(B|H?¢+0Z) -
H2>H 4 HA\EE N HE and Ran(B| 4, ) C Hyh.

NK

3. When ¥ is equipped with (D)-(NK) and a +n € (0,5/2), there exists
d € [max{a+n,1},5/2) such that Ran(B]H?;d) C H>HnH B ENHZ. If
a-+n > 2, then there exists d; € (d,5/2) such that Ran(B|zya, ) C H.



From now on, we omit 1 and a from the notations of Assumptions I and
Assumptions II when these parameters are not relevant.

Theorem 2.3. Let 4 be a compact quantum graph. Let

(5)  3d>0,C>0 : || >Ck T,  VkeN

If the couple (A, B) satisfies Assumptions 1(n) and Assumptions II(n,d)
for some nn > 0, then the (BSE) is globally exactly controllable in Hj for
s =2+d and d from Assumptions II.

In other words, for every ¢!, ¢? € HE such that ||[¢'| = ||¢?|, there emist
T >0 and u € L?((0,T),R) such that D%l = 2.
Proof. See Paragraph 4. O

In the next theorem, we provide the validity of the spectral hypothesis
of Theorem 2.3 when ¢ is one of the graphs introduced in Figure 2. The
provided result leads to Example 1.2 and Example 1.3.

Theorem 2.4. Let {L;}j<n € AL(N). Let ¢ be either a tadpole, a two-
tails tadpole, a double-rings graph or a star graph with N < 4 edges. Let 9
be equipped with (D/N)-(NK). If the couple (A, B) satisfies Assumptions
I(n) and Assumptions II(n,€) for some n,e > 0, then the (BSE) is globally
exactly controllable in Hj, for s =2+ d and d from Assumptions II.

Proof. See Paragraph 5. O

Remark 2.5. Let {L;}j<o € AL(2). As explained in Remark 5.1, Theorem
2.4 is also valid when 9 is:

1) a two-tails tadpole with one edge long L1 and the others Lo;
2) a 3 edges star graph with one edge long L1 and the others La;
3) a4 edges star graph with two edges long L1 and the others L.

In the following corollary, we provide the contemporaneous controllability
introduced by Example 1.4. The result is consequence of Theorem 2.3.

Corollary 2.6. Let ¥ = {I;}j<n be a compact quantum graph composed by
bounded unconnected intervals. Let the couple (A, B) satisfy Assumptions
I(n) and Assumptions II(n,€) for some n,e > 0. If {Ly}r<n € AL(N), then
the (BSE) is contemporaneously globally exactly controllable in

HH?J, with s=d+2
J<N

and d from Assumptions II. In other words, for every 1,19 € ngN Hfj
such that ||¢1|| = |[v2||, there exist T > 0 and u € L*((0,T),R) such that

Dyl =), Vi< N,
Proof. See Paragraph 5. O



3 Well-posedness and interpolation properties of
the spaces [

In the current section, we provide the well-posedness of the (BSE).

Proposition 3.1. Let ¥ a compact quantum graph. Let the couple (A, B)

satisfy Assumptions II(n,d) with n,d > 0.

1) LetT > 0 and f € L*((0,T), H2+dﬂHJ1\?,’gﬂHé) with d from Assumptions
II. Let t — G(t) = fg AT f(1)dr. The map G € CO([O,T],Hé+d) and there
exists C(T) > 0 uniformly bounded for T lying on bounded intervals so that

G Lo 0,1y, 22 < OISl L2(0,1), 11244

2) Lety € Héer with d introduced in Assumptions II andu € L?((0,T),R).
There exists a unique mild solution of (BSE) in H(?rd, i.e. a function
¥ € Cy([0,T7, H(?;d) such that for every t € [0,T],

t

(6) Ulta) = A0a) — i [ (s B, )i
0

Moreover, there ezists C' = C(T, B,u) > 0 so that

19l coo,m,mzrey < CH%bOHH;w, @Il = 19°l, vt € [0,T], ¢ € HZ".

Now, we present some interpolation properties for the spaces Hg, with
s > 0. The proof of Proposition 3.1 is provided in the end of the section.

Proposition 3.2.
1) If the compact quantum graph 94 is equipped with (D/N )-(NK), then

H'™2 = H) N H*'™2(4,C) for s1 € NU{0}, s €1[0,1/2).
2) If the compact quantum graph 4 is equipped with (N )-(NK), then
Hg ™2 = H) NHJE?  for s1€ 2NU{0}, so €[0,3/2).
3) If the compact quantum graph 4 is equipped with (D)-(NK), then
HZ T = gttt n gttt for s; € 2NU {0}, s € [0,3/2).

Proof. We recall that by defining ¢ as a quantum graph, we are implicitly
introducing a self-adjoint Laplacian A.

10



1) (a) Bounded intervals. Let ¢ = IV be an interval equipped with ()
on the external vertices V.. From [Grul6, De finition 2.1],

(1) HIN™ =H3 nH (Y, ©), Vs1 € 2N U {0}, s2 € [0,3/2).

Let & = IP be an interval equipped with (D) on the external vertices. From
[Grul6, Definition 2.1], for s; € 2N U {0}, s2 € [0,3/2) and s3 € [0,1/2),

(8) Hp"™ " = HppT 0 HYTR(IP,C), Hpp = HP(IP,C).

Let & = I'M be an interval equipped with (D) on one external vertex v; and
(N) on the other vy. We prove that

9) Hf2=Ho,nH2(IMC), Vs e NU{0}, s2 € [0,1/2).

We consider the interval 12 C IM of length %]IM| as a quantum graph
containing v; and equipped in both the external vertices with (D). We
denote IV C I'M an interval of length %\I M\, containing vo and equipped in
both the external vertices with (N). Let x be the partition of the “unity so
that x(r) = 1in I, x(x) = 0 in 1™\ I? and x(z) € (0,1) in IP \ I. There
holds ! := 1 € HIQD, P2 = (1-x)y € HIQN and

() =y (x) +*(x) =  Hpu=H? x Hi
The same is valid for L?(I™,C) and H*(I'™,C). Thus, for s € (0,2],
H¥(IM,C) = H*(IP,C)xH*(IV,C),  L*(IM,C)=L*(IP,C) x L*(IV,C).

Let [, -]p be the complex interpolation of two spaces for 0 < 6 < 1 defined in
[Tri95, De finition, Chapter 1.9.2]. From [Tri95, Remark 1, Chapter 1.15.1]
and [Tri95, Theorem, Chapter 1.15.3], for s; € NU {0} and s2 € [0,1/2),

[L2(IV,C), H3, ], = HZ [L*(IP,C), H?

_ 52
]52/2 N7 ID]SQ/Q _HfD

Thanks to [Tri95, relation (12), Chapter 1.18.1], the interpolation of two
products of spaces is the product of the two respective interpolations and

s2 | 72(gM 2 _ 7N 2(7D 2 2
H, = [L (I ,C),HIMLQ/Q_ [L (IV,C) x L*(IP,C),H2, x HIDLQ/Q

= [12@, 0,82, x [12(0P.0), 0G| = HZ x HE.

s2/2 s2/2

Equally, HIS}VT” = H;}f” X H%;LSQ that leads to (9) thanks to (7) and (8).
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(b) Star graphs with equal edges. Let Ay be a Laplacian on an interval
I of length L and equipped with (N). Let I N e the relative quantum graph
and {fj1 }jen be an Hilbert basis of L?(I,C) made by eigenfunctions of Ay
Let Apq be a Laplacian on I equipped with (D) in the external vertex
parametrized with 0 and with (N) in the other. We call I the relative
quantum graph and { fJZ}jeN a Hilbert basis of L?(I,C) composed by eigen-
functions of Axy.

Let .¥ be a star graph of N edges long L and equipped with (N)-(NVK).
The (N) conditions on V. imply that each ¢y, is (aj. cos(zv/Ag), ..., aj-v cos(zv/Ar))
with A\ the corresponding eigenvalue and {aé-}lg N C C. The (NK) condi-
tion in V; ensures that sin(v/AL) Y,c v @} = 0 and

ar cos(v/ApL) = ... = aly cos \/\iL), VEk e N.
Each eigenvalue is either of the form (n—ng%r?’ or (2”4_L1327r2 when 7,y al =

0 with n € N. Hence, for every k € N, there exists j(k) € N such that

either ¢ = c@f}(k) for ¢ eC, |d|<1, WVie{l,.., N},

(10) 1l r2 l l
or O = fjy for ¢ €C, lex] <1, Vie{l,..,N}

After, for each k € N and m € {1, 2}, there exist 3 € Nand [ < N such that
= Glj(f% with c% € Cand |c§~\ < 1. Thanks to the last identity and to (10),

(1) =@ N eH) <= ' eHvNHjm, VI<N.

Now, we consider each edge e; composing . as I (introduced above) since
every e; is long L. Let I’ and IV be defined above and H*(.#,C) =
(H*(I,C))N. For 51 € NU {0} and s3 € [0,1/2), from (11), we have

e H (7, C)NHY = e H""(I,C)nHY NHL, VI<N.

The relations (7) and (8) imply that ¢! € H*1"2(I,C) N Hj} N Hji, for
every | < N if and only if 4! € Hls}jrs2 N H;},TS? for every | < N, which is
valid if and only if 1) € H5}™2 thanks to (11). In conclusion, we have

Hy™™ = Hy N H" (7, C).

(c) Generic graphs. Let ¢ be equipped with (D/N)-(NK) and L <
min{Ly/2: k € {1,..., N}}. Let n(v) be defined in (4) for every v € V. UV;.
We define the graphs ¢(v) for every v € V; UV, and the intervals {I i<
as follows (see Figure 5 for an explicit example).

If v € V;, then ¢(v) is a star sub-graph of ¢ equipped with (A)-(MK) and
composed by n(v) edges long L and connected to the internal vertex v.
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If v € V,, then ¢(v) is an interval long L such that the external vertex v is
equipped with the same boundary conditions that v has in 4. We impose
(N') on the other vertex. N N

For each v,0 € V. UV;, the graphs ¢ (v) and ¢ (9) have respectively two ex-
ternal vertices wy and ws lying on the same edge e and such that wy & 4(0).
We construct an interval strictly containing w; and ws, strictly contained
in e and equipped with (NV)). We collect those intervals in {I;};<n.

v I; I
v Vg 7 o—alg .

ok of Dt
oo N Lo

Boundaries: O Neumann-Kirchhoff, ® Neumann, B Dirichlet/Neumann.

)

Figure 5: The left and the right figures respectively represent the graphs
{9 (v)}vev,uv, and the intervals {I;};<n for a given graph 4.

From 1) (a) and 1) (b), for v € V;UV,, j < N, 51 € NU{0} and s5 € [0,1/2),

+s2 _ + +s2 _ +s2(7.
HZt = H2 OHY2(G(0),C),  Hp™ = Hp' 0 H5(1;,0).

We notice that G := {¥4(vj)}j<m U {I;};<n covers 4. As in 1) (a), we
see each function of domain ¢ as a vector of functions of domain G; with
Jj < M+ N. We use [Tri95, relation (12), Chapter 1.18.1] as in 1) (a) and

H3** = H) N HO'2(4,C) for s1 € NU{0}, s2 €[0,1/2).

2) Let 4 be equipped with (N)-(NK) and N, = |V.|. We consider {9 ()} vev.
introduced in 1) (c) and we define ¢ from ¥ as follows (see Figure 6). For
every v € V., we remove from the edge including v, a section of length L /2
containing v. We equip the new external vertex with (N).

vy Vgm—e To) o—uls
~ /" _T
o a3 Ou1y \ T/
FEERW o L /“\ \

U2

Boundaries: O Neumann-Kirchhoff, ® Neumann, B Dirichlet/Neumann.
Figure 6: The left and the right figures respectively represent the graphs
{9 (v)}vev, and 4 for a given graph 4.

We call G := {G}}j<n.+1 = {4 (V) }ev, U {Z} which covers 4. For every

s1 € 2N U {0}, s2 € [0,3/2), we have H;J(:)SZ’ = H;J(v) N H51t52 from (7).
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The arguments of 1) (a), also adopted in 1) (c), lead to the proof since

H{2(4,C) = H2™2 x [ B2 (9 (v),C).

VEV,

3) Asin 2), the claim follows by considering {%(v)}vev, as intervals equipped
with (D) and ¢ equipped with (D) in its external vertices. O
Proof of Proposition 3.1.

1) (a) Assumptions IL.1 . Let f(s) € H*NHZ for almost every s € (0,1),
t€(0,7) and f(s) = (f1(s), ..., fV(s)). We prove that G € C°([0,T], H).
The definition of G(t) implies G(t) = > 72 é fg ¢S (b, f(s))ds and

(12) IG(2) (Z‘/&/ s ¢k,f(s)>ds‘2)é.

We estimate (¢, f(s,-)) for each k € Nand s € (0,t). We suppose that \; #
0. Let 9, f(s) = (0xf1(5), ..., 0= f N (5) be the derivative of f(s) and P(¢r) =
(P(#1), ..., P(¢X)) be the primitive of ¢y such that P(¢y) = —i k. We
call de the two points composing the boundaries of an edge e. For every
v € Ve, 0 €V;and j € N(9), there exist a(v),a’(7) € {—1,+1} such that
(13)

(00,160 = 3400 27(00) = 35 [ 0c0n0)02 o)

2ZZaJ 0a B (V)0 (5,0) + 22 0201 (0)02 £ (s, v).

k veV; jeN(v) k vev,

From [BK13, Theorem 3.1.8] and [BK13, Theorem 3.1.10], there exist C1 >
0 such that )\;2 < C1k~* for every k € N (see Remark A.4), then

(14)

k3 /Ot e (b, £(5))ds Oz 01 (v) /Ot M2 f(s,v)ds

<C];1<Z

UEVE

t
ei)\ks

¢
BRAC /ei)‘ks&%fj(s,v)ds +
0

+ZZ

veV; jEN (v

Remark 3.3. We point out that A'X 1/2 Op O = )\k)\;l/QHJCd)k for every
k € N, where A’ = —A s a self- adjomt Laplacian with compact resolvent.
Th’LLS, HAlzl/zaxﬁbk”Q = < 1/2 m¢ka 1/2 x¢k> = <¢ka)‘];1A¢k> =1 and
then {\; "*0urbhen s a Hilbert baszs of .

14
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Let al = {al},b! = {b.} C Cforl < N beso that ¢} (z) = a, cos(vApz)+
bl sin(v/Agx) and —al sin(yv/Agx) + bl cos(vAgz) = A 12 9,¢% (). Now,

~1/2

2> A7 2000k 22y + 1641220y = (labl? + B4 el

for every k € N and I € {1,...,N}. Thus, a!,b! € £>°(C) and there exists

Cy > 0 such that, for every k € N and v € V.UV, we have |/\,;1/2(9$¢k(v)\ <
(5. Thanks to the identities (12) and (14), it follows

ORI DS /a%,wsv otas|

(15) veVeUV; jEN (v)
v [ 0 o, 2P0
0 ¢

From Proposition B.6 and (15), there exist Cs(t),Cy4(t) > 0 uniformly
bounded for ¢ in bounded intervals such that

(16) Gz, < Cs(t) Z Z 10217 (- 0) | L2 (0,00.0) + VEIF Nl L2(0,0), %)

veVeUV; jEN (v)

and HGHH% < Ca@fCs )2 0,0),m3)- We underline that the identity is
also valid when A; = 0, which is proved by isolating the term with £ = 1
and by repeating the steps above. For every t € [0,7T], the inequality (16)
shows that G(t) € H3. The provided upper bounds are uniform and the
Dominated Convergence Theorem leads to G € CY([0,T], H).

Let f(s) € H®> N Hy, for almost every s € (0,t) and t € (0,T). The same
techniques adopted above shows that G € C°((0,T], HS).

We denote F(f = ft AT f(r)dr for f € # and t € (0,T). Let

X (B) be the space of functlonb f so that f(s) belongs to a Banach space B
for almost every s € (0,t) and ¢t € (0,7). The first part of the proof implies

F:X(H’nHg) — C°([0,T],Hj), F:X(H’NHg) — C°([0,T], Hy).

From a classical interpolation result (see [BL76, Theorem 4.4.1] with n = 1),
we have F : X(H2+dﬂH§1¢+d) — C°([0, T, Hé”i) with d € [1,3]. Thanks to
Proposition 3.2, if d € [1,3/2) and f(s) € H* I NH\}¢NHZ = H* 0 H
for almost every s € (0,t) and ¢t € (0,7, then G € CO([O,T],Hi+d). The
proof is achieved when the first point Assumptions II is verified.

(b) Assumptions IL.3 . If ¢ is equipped with (D)-(NK), then HZ =
H3,- N H}, and Hj = Hy, N HJ from Proposition 3.2. As above, if f(s) €
H?* N Hiye N HY for almost every s € (0,¢) and ¢ € (0,7), then G €
CO([0,T), HY), while if f(s) € H> N Hy;e N HS for almost every s € (0,t)
and t € (0,T), then G € CY([0,T], H;). From the interpolation techniques,
if d € [1,5/2) and f(s) € H*n HHd N HY for almost every s € (0,¢) and
t € (0,T), then G € C°([0,T], H2+d) and the proof is attained.
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(c) Assumptions IL.2 . Let f(s) € H* N H}, N HZ for almost every
s € (0,t) and t € (0,T) and ¢ be equipped with (N). In this framework,
the last line of (13) is zero. Indeed, 92f(s) € C° as f(s) € Hy/c and, for
v € V., we have 9,¢r(v) = 0 thanks to the (N) boundary conditions (the
terms a’(v) assume different signs according to the orientation of the edges
connected in v). After, for every v € V;, thanks to the (NVK) in v € V;, we
have 3¢y, @/ (v) xqﬁj( ) = 0. From (13), we obtain

(0016 = =55 [ 2oL 5.y =~ 3 a0)x(0)0LS )

kE vev,

2ZZCLJ ¢J )02 £ (s, v) + )\2/¢k )04 f(s,y)dy

k vev; jeN

Now, {¢x}ren is a Hilbert basis of .7 and we proceed as in (14), (15) and
(16). From Proposition B.6, there exists Cg(t) > 0 uniformly bounded for ¢
lying in bounded intervals such that ||GHH4 < CvOIfC ) 220,051

If f(s) € H* N Hi; N HZ for almost every s € (0,t) and t € (0,7T),
then G € C°([0,T], Hy). Equlvalently when f(s) € H% N Hy, N Hy for
almost every s € (0,t) and t € (0,T), we have G € C°([0,T], HS). As above,
Proposition 3.2 implies that when d € [2,7/2) and f(s) € H2+dﬁHWﬁH2
for almost every s € (0,t) and t € (0,7), then G € CO([O,T],H?*d).

2) As Ran(B| yz+4) C H* NH\3EH2 C H*H, we have B € L(HZ™, H*+4)

thanks to the arguments of [Ducb, Remark 1.1]. For every 1 € H(?rd, let

tes F(p)(t) = e — /0 Ay (5) By (s)ds € CO0, T, Hg).

For every 9!, 92 € Hé+d, thanks to the first point of the proof, there exists
C(t) > 0 uniformly bounded for ¢ lying on bounded intervals, such that

IF@") () = F(*)(1)]l 24a) < H / ey () B (s) — 3 (s))ds

(2+4d)

< CW)llull (0.0 1 B pgrzea prosay 19" = 81 oo 0,00, m200)-

We refer to the techniques adopted in the proof of [BL10, Proposition 2]. If
|2l £2((0,4),r) 13 small enough, then F is a contraction and Banach Fixed Point

Theorem implies that there exists 1 € C°([0, 77, Héﬂl) such that F(¢) =
Y. When ||ul[z2((0,4),r) is not sufficiently small, one considers {t;}o<j<n
a partition of [0,¢] with n € N. We choose a partition such that each
lwllL2((t,_.¢,),®) is so small that the map F', defined on the interval [t;_1,1;],
is a contraction and we apply the Banach Fixed Point Theorem. The re-
maining claim follows from the proof of [BL10, relation (23)]. O
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4 Proof of Theorem 2.3

The result is achieved as in the proof of [Duch, Proposition 3.4]. In par-
ticular, it is obtained by gathering the local exact controllability and the
global approximate controllability (both proved below) thanks to the time
reversibility of the (BSE) (see [Ducb, Apprendiz 1.3)).

4.1 Local exact controllability in

Let Of p = {v € H;‘ Il =1, [l — ¢1(T)ll(s) < €}. We ensure the
local exact controllability of the (BSE) in Of 1 with s = 2+ d and d from
Assumptions II, i.e. the existence of 7' > 0 and € > 0 such that

Ve Olp, JueL((0,T),R) :  w=T%.

Let Assumptions I be verified. We define the application «, the sequence
with elements ay(u) = (¢r(T),[%¢1) for k € N, such that

a: 2((0,T),R) — Q = {x == {ayhen € B°(C) | x]2 = 1}.

The local exact controllability in OS’T with T' > 0 is equivalent to the sur-
jectivity of the map Fg)(ﬁl cu € L2((0,T),R) — ¢ € Oir C Hg. As

Tigr =Y dr(t) (k1) Tid1), T >0, we L*(0,T),R),

keN

the controllability is equivalent to the local surjectivity of the map «. To this
end, we use the Generalized Inverse Function Theorem ([Lue69, Theorem 1;
p. 240]) and we study the surjectivity of vy(v) := (dy(0)) - v the Fréchet
derivative of o with «(0) = & = {dx1}ken. Let Bji = (¢;, Boy) with
J,k € N. As in [Duca, relation (6)], the map ~ is the sequence of elements
(V) = —1 fOTv(T)e"(’\k*Al)SdTBk,l with k € N such that

v L*((0,T),R) — T5Q = {x := {3 }ren € h*(C) | iz; € R}.

The surjectivity of v corresponds to the solvability of the moments problem
T .
(17) xk/Bk,l = —i/ U(T)el()‘kf/\l)TdT, V{xk}keN S T@Q C h®.
0

Proposition B.5 leads to the solvability of (17) in h%. Now, B;; € R as
B is symmetric, iz1/Bi1 € R and {kak_,ll}keN € h?" C h? thanks to
the first point of Assumptions I. Thus, there exists T > 0 large enough
such that, for every {zy}ren € T5Q, there exists u € L2((0,T),R) such
that {zk}ren = {7k (¢) }xen. In conclusion, the map ~ is surjective and « is
locally surjective, which implies the local exact controllability.
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4.2 Global approximate controllability in H

We study the approximate controllability of the (BSE) in H with s > 0,
i.e for every ¢ € Hj, Te U(4) such that fw € HZ and € > 0, there exist
T >0 and u € L*((0,7),R) such that [Ty — [ < e.

Let B : Hy' — Hj with s; > 0. The claim is due the proof of
[Duch, Theorem 3.3] that we retrace by using the norm || - [|(5) with s €
0,51 + 2) instead of || - [|(3y and by considering Lemma C'.3. The proof of
[Duchb, relation (26)] implies

(18 3neN I < [l . v € HY.
As in [Ducb, p. 16], for each T'> 0, u € BV ((0,T),R) and ¢ € H{Z1+27

IC(K) >0 with K = (llull gy o)) 1wl o 0,0),R), Tllwll oo (0,1 ,7))

such that ||T%a] (s, 42y < C(K)||¥l(s,+2)- This identity and (18) attain the
global approximate controllability in Hj as in the mentioned proof.

Let d be the parameter introduced by the validity of Assumptions II.
If d < 2, then B : Hé — Hé and the global approximate controllability
is verified in H;+2 since d +2 < 4. If d € [2,5/2), then B : Hh — H%
with d; € (d,5/2) from Assumptions II. Now, Hg/ = H% N HZ, thanks to
Proposition 3.2, and B : HJ — HZ implies B : H)' — Hj'. The global
approximate controllability is verified in Hé” since d 4+ 2 < dj + 2.
If d € [5/2,7/2), then B : Hh — Hi}y for di € (d,7/2) and HY' = Hi N
Hé from Proposition 3.2. Now, B : Hé — Hé that implies B : Hg,l — Hél.
The global approximate controllability is verified in Hé” since d+2 < dj+2.

5 Proofs of Theorem 2.4 and Corollary 2.6

Let {)\f} ey denote the eigenvalues of A on a compact quantum graph q.

Proof of Theorem 2.4. Let ¢ be a tadpole graph equipped with (D)-(NK)
where the edge e; connects v € V; to itself. Let 9P be the graph obtained
from ¢ by imposing (D) on v. We define &N the graph obtained by discon-
necting e; on one side and by imposing (N') on the new external vertex of
e1 (see the first line of Figure 7 for further details). From Proposition A.3,

(19) M <A <M., M <ML <M, VkeN

Now, {A\Y
obtained by reordering {

P } keN and {XfN } pen are the sequences of eigenvalues respectively

k2m? 2k—1)272
7} ey and {7£(L1+)Lg)2}kel\]‘ If {L1, Lo} € AL,

Jje{1,2}
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Boundaries: 0 Neumann-Kirchhoff, ® Neumann, x Dirichlet, ®m Dirichlet/Neumann.

Figure 7: The figure represents the graphs described in the proof of Theorem
2.4. The column 1 shows the considered graphs &, which respectively are a
tadpole, a two-tails tadpole, a double-rings graph, a star graph with 3 edges
and a star graph with 4 edges. The column 2 provides the corresponding
graphs 9N, while the column 3 shows 4P .

then {L1, Lo, L1 + Lo} € AL. The techniques of the proof of Proposition
A.2 lead to the existence of C' > 0 such that, for every ¢ > 0, there holds

Ny =M= N - AT 20k, VkeN.

The relation (5) is verified and the claim is guaranteed by Theorem 2.3.

The techniques just introduced lead to the claim when ¥ is a tadpole
graph equipped with (A)-(NK), but also when ¥ is a two-tails tadpole
graph, a double-rings graph or a star graph with N < 4 edges. In every
framework, we impose that {Lj}r<ny € AL(N). In Figure 7, we represent
how to define ¥V and ¢? from the corresponding graphs ¢. O

Remark 5.1. The techniques leading to Theorem 2.4 can be adopted in
order to prove Remark 2.5. The peculiarity of the proof is that when ¥ is a
star graphs, we construct @GN 50 that the edges of equal length do not belong
to the same connected component composing GgN

Proof of Corollary 2.6. As {\j}jen C {(k 41LQW }k gem the claim follows from
i<N

[Rot56]. In fact, thanks to the arguments adopted in the proof of Proposition
A.2, for every € > 0, there exists C1 > 0 such that |Ag+1 — Ag| > C1k™¢ for
every k € N. In conclusion, Theorem 2.3 attains the proof. O

6 Proofs of the examples 1.2, 1.3 and 1.4

Proof of Example 1.2. Let ¢ be a star graph with 4 edges of lengths {L;},<4
equipped (D)-(NK). The (D) conditions on the external vertices imply that
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each eigenfunction ¢; with j € N satisfies gbé (0) =0 for every [ < 4. Then,
oj(x) = (a]l sin(z/ ), a? sin(z/ ), a? sin(z/ ), a? sin(z4/A;))
with {aé-}l§4 C C such that {¢;};en forms a Hilbert basis of 2, i.e.

L cos(Ll \/A») sm(Ll V)
1= |a 2 sin?(z+/\j)dx = k|2 l .

For every j € N, the (NK) condition in V; leads to

ajl- sin(y/A\;jL1) = ... = a? sin(y/A;Ln), Zaé- cos(\/AjL;) =0

<4

Zcot(\/)Tle) =0, Z \a]\Qsm (Lin/Aj) cos(Liy/Aj) = 0.

1<4 I<N

(20)

1s1n \/7L1
351n(le

. . 4 sin?(y/A\;L1)
[ #1 and j € N, which ensures ]a}\Q(Ll +> le) = 2. Thus,
2 [Tz 810 (v/Aj Lim)
4 . )
ket L [ 510 (y /A L)

From (20) and (21), we have 37, cos(vArL;) [Lnzsin(v/ Ak L) = 0. The
validity of [DZ06, Proposition A.11] and Remark A.4 ensure that, for every
€ > 0, there exist C1,Cy > 0 such that, for every j € N,

Now, 1 =31, |a§-]2Ll/2 and the continuity implies ag =

(21) laj|” = Vj € N.

‘al" = 2 > 2 > & )
! Z?:l Ll Sin_Q(\/)Tle) - Z?:l LlC’szjl-J“ = ]1+6

Now, <¢§€,B¢§->L2(ejy(c) =0 for every 2 <[ <4 and k,j € N. Let

211, #sinz VAL,

(22)

aj(®@) := Zk o L sin? \Fm m;éklsm \FL —i—xH ¢1sin2(\/)\7ij)
Bi(x) = —30\ﬁx+20ﬁ x —1—4\ﬁ1 x —|—15sm(2\ﬁ:n)

40V,
By(x) = 6(vVAL — Az + (VAL — \F —|—6sm (VAL = VA))z)

=)

6(v A+ Az + (VAL + VA —i-GSin((\//\l—i—‘/)\j):):)
(VAL + \/

with 7 € N. Each function B = ai(-)v/a;(: is non-constant

and analytic in R*, while we notlce that BLJ = (¢1,B¢j> = Bj(L1) by
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calculation. The set of positive zeros V] of each Ej is a discrete subset of

Rt and V = Ujen V) is countable. For every {Li}i<4 € AL(4) such that

Li ¢ V, we have |B1 ;| # 0 for every j € N. Now, there holds

Byl ~ la;lLiv/Ary/Ai (A = A1) 72, Vi e N\ {1}.

From Remark A.4 and the identity (22), the first point of Assumptions
I(2 + €) is verified since, for each € > 0, there exists C3 > 0 such that
| By ;| > jff% for every j € N.

Let (k,j),(m,n) € I, (k,j) # (m,n) for I :={(j,k) € N?:j # k} and

—30v/ 2%z + 208/ N5 23 + 4y 7 + 15 sin(2v/Apz)
40V %"

By calculation, we notice that B;; = (¢;, B¢;) = Fj(L1). Moreover, for
Fy o) = Fy(2) — Fy(x) — Fi(x) + Fn(), it follows Fyppm(L1) = Bj —
By — By + Bmm and Fjjjm(x) is a non-constant analytic function for
x > 0. Furthermore Vj ;.m, the set of the positive zeros of Fjjm(x), is
discrete and V = Uj,k,l,meN Vi kim is a countable subset of R™. For each
J#kAIEm
{Li}1<4 € AL(4) such that L1 ¢ V UV, Assumptions I(2 + €) are verified.
The third point of Assumptions I1(2 + €1, €2) is valid for each €1,e2 > 0
such that e; + e; € (0,1/2) since B stabilizes H2, H™ and Hjy} for m €
(0,9/2). Indeed, for every n € N such that n < 5, we have

Fi(2) = a;(a)

VY € Hye = O Y (BY) (L) = ... = 00 H(BY) (Ly) =0 = By € Hyy.
From Theorem 2.4, the controllability holds in H;;re with e € (0,1/2). O

Proof of Example 1.3. Let ¢4 be a tadpole graph containing an edge e; self-
closing in an internal vertex v € V; equipped with (NK). The edge ez is
connecting v to the external vertex v; € V, equipped with (D). Let r be the
axis passing along ey and crossing e; in its middle (see Figure 8).

Figure 8: The figure represents the symmetry axis v of the tadpole graph.
The graph ¢ is symmetric with respect to r and we construct the eigen-

functions {¢r }ren as a sequence of symmetric or skew-symmetric functions
with respect to r. If an eigenfunction ¢ = (¢}C, qﬁi) is skew-symmetric, then

¢ =0, ¢p(0) = dp(L1/2) = ¢p(L1) =0, 0204(0) = e (L1).
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We denote {fi}ren the skew-symmetric eigenfunctions belonging to the
Hilbert basis {¢y }ren and {vg ey the corresponding eigenvalues. We set

2 . 2k 4k 72
U e = {<\/:181n ($L71)70) }keN7 e = { Li }keN'

If ¢p = (¢}, ¢2) is symmetric, then we have 9,¢1(L1/2) = 0 and ¢i(-) =
¢+ (L1 — ). The (D) conditions on vy implies that, for {(a},a?)}ren C C?,

{9k ken = { (allc cos (\//Tk(fv - %))ﬂ% Sin(\//kaU)> }ren,

is the sequence of symmetric eigenfunctions and corresponding to the eigen-
values {u}ren. We characterize {puy}ren by considering that the (NK)
conditions in vy ensure that aj. cos(y/mk(L1/2)) = a2 sin(y/uxrL2)) and

(23) 2aj, sin(y/ir(L1/2)) + ai cos(y/ugL2)) = 0,

which imply 2 tan(y /i (L1/2))+cot(y/mrLz2)) = 0. We choose {(a}, a2)}ren
C? such that {¢g}ren = {fr}ren U {9k }ren forms an Hilbert basis of 7.
In particular, the techniques leading to relation (21) in Example 1.2 attain

1= 2O ) S L) o 2eos((La/2)
ag ag

N

with ap := Ly COS2(,/uk(L1/2)) + Lo sin2(w/,ukL2) and k € N. If {Ll,LQ} €
AL(2), then {L1/2, Ls} € AL(2). From (23), there holds

Liy . . L L
2 cos (./,uk71> sin(y/g L2) sin (w/,uk%) + cos? (\//Lké) cos(y/prL2) = 0.
We underline that cos(/ux(L1/2)) # 0 for every k € N and

2sin(y/uxLa) sin(y/px(L1/2)) + cos(y/ur(L1/2)) cos(y/pxL2) = 0,

which implies to the validity of the two points of Remark A.6 for each
I € {1,2} and with {L;/2, Lo} € AL(2). The arguments leading to (22) in
Example 1.2, applied with the identities (29) and (30), imply that

(24)  VYe>0, 3C >0 : |af|>Ck™17, Vk e N, Vi e {1,2}.

Let By : (¢, 42) = (hp',0) and By : (1, 4?) = (htp!, hetp?) with h(z) :=
sin (%’Im), hi(z) := z(x — L1) and hg(x) := 22 — (2L1 +2Ls)x + L3+ 2L Lo.
As h is skew-symmetric with respect to r and hy is symmetric, we have

(fes Bifx) = {9k, Bigk) = 0, (fx, Bagx) = (9gk, B2 fy) = 0.
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The remaining part of the example is ensured as Example 1.2. We fix j € N
and we notice by calculation that | jl, Bfh=|( jl, Bofh)| ~ k73,
|ag 2j7r> Ly 257\ Ly

485 Bow)| = 1475 B ~ 22 s (v—220) 2o (v 225) 2|

From Remark A.4, we have ug ~ k? and |az|~Y(g;, Bgk)| ~ k2 as Ly > L.
As in Example 1.2, there exists V C Rt countable such that, for every
{L1, Ly} € AL(2) such that L; ¢ V, we have |By | # 0 for every j € N.
Thanks to (30), for every € > 0, there exists C; > 0 such that

i (7)) (4 25) )] = o ) 2 .

From Remark A.4, the first point of Assumptions I(2 + €) is attained, i.e.
Ve >0, 302 >0 : |Byg| > Cok 47, Vk € N.

The second point of Assumptions I(2 + €) is verified as in Example 1.2
and there exists V' C R™ countable such that, for each {L1, Lo} € AL(2)
such that L; ¢ V UV, Assumptions I(2 + €) are verified.

The third point of Assumptions I1(2 + €1, €2) is valid for €1, €3 > 0 such
that e; + €2 € (0,1/2) since B stabilizes H2, H™ and Hy} for m € N
similarly to Example 1.2. From Theorem 2.4, the controllability holds in

Hyt with €€ (0,1/2). O

Proof of Example 1.4. The (D) conditions imply that ¢y satisfies gf)gﬂ(O) =0
and ¢! (L;) = 0 for every k € Nand | < N. As {L;};<n € AL(N), for each
k € N, there exist m(k) € N and [(k) < N such that, for every n # l(k),

- Ik . -
g = m(k/‘)QWQLz(/?)a /g( /(z) = \/%Sm (VAkz), o =0.

Hence, {\g }ken is obtained by reordering {%}mEN for every I < N. Now,
1

1
1By > 2min{L}: [ < N}‘/ z% sin(m(j)rz) Sin(m(l)ﬂm)dx’.
0

This is the integral treated in [Ducb, Fzample 1.1] where it is showed that,
for every j € N, there exists C1 > 0 such that |B;| > % > % for every
j € N since m(j) < j. Moreover, there holds

Loy Loy
3 2m(j)2n2
As done in the proof of Example 1.2, there exists a countable set V' such
that, for each {L;};<y € AL(N) \ V, Assumptions I(1) are verified.

The third point of Assumptions II(1, €) is valid for each € € (0,3/2) since
B stabilizes H2 and H™ for m > 0 (H™ = HJ}). Corollary 2.6 achieves

the controllability for every € € (0,3/2) in H;Jre = Hévzl H?fe. O

1
Bj; = 2L$n(j) / 2% sin®(m(j)mx)de =
0
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A Appendix: Spectral properties

In the current appendix, we characterize {A;}ren, the eigenvalues of the
Laplacian A, according to the structure of ¢ and to the choice of D(A).

Proposition A.1. (Roth’s Theorem; [Rot50]) If z is an algebraic irrational
number, then for every e > 0 the inequality ‘z — %‘ < m%+€ 1s satisfied for
at most a finite number of n,m € Z.

Lemma A.2. Let {)‘llr}keN and {’\%}keN be obtained by reordering

k22 k22 ~
, = N1, Ny e N, {L AL b CR
{ L? }kleN { 72 }k,ieN Jor N, N2 {Lihins {Lidi<n,

I<Ny v i<No
respectively. If all the ratios L; /L; are algebraic irrational numbers, then
Ve>0,3C>0 : |A\pyy — APl >Ck™¢,  VkeN.

Proof. Let z be an algebraic irrational number. From Proposition A.1, we
have that, for every ¢ > 0, there exists C' > 0 such that |z —n/m| > Cm=2¢
for every m,n € N. NOW for every k‘ € N, there exist m,n € Nand ¢,l <N

such that )‘llc—l-l = L2 , )\2 = "Lg ) )‘k+1 #* )\k We suppose L; < L;. If
m < n, then, for each € >0, there exists C7 > 0 such that
‘ _ ‘( )(mﬂ mr)‘ S 2mm | mnr  nw 2C’17T
L L f/z o ffz L, Ez o m€L2
If m > n, then mzlf — "27; | > 7(L; %2 — L;?). In conclusion,

Ve>0, 30y >0 1 [Ny =M > Ca(k+1)7¢> 27k, VkeN. O

The following proposition rephrases the results of [BK13, Theorem 3.1.8]
and [BK13,Theorem 3.1.10]. Let {)‘f}keN be the spectrum of A on a

generic compact quantum graph ¢.

Proposition A.3. [BK13, Theorem 3.1.8] & [BK13, Theorem 3.1.10]

1. Let w, v be two vertices of 4 equipped with (NK) or (N'). If 4" is the
graph obtained by merging in 4 the vertices w and v in one unique
vertex equipped with (N'K), then Xf < Xf/ < )‘fﬂ for every k € N.
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2. Let w be a vertex of 4. If 97 is the graph obtained by imposing (D)
on w, then )\'(,f < )\fD < )\f_H for every k € N.

Remark A.4. Let 4 be compact quantum graphs made by edges of lengths
{Li}i1<n. From Proposition A.3, there exist C1,Ca > 0 such that, for k > 2,

(25) C1k? < A < Cok?.

Indeed, we define 9P from 4 by imposing (D) in each vertex. We denote
@GN from & by disconnecting each edge and by imposing (N) in each vertez.
From Proposition A.3, we have )\fﬁsz < )\f < )‘ffM for k > 2N. The

N D . . . 2.2
sequences )\f and Af are respectively obtained by reordering {RL—Q} kN
i CI<N

and {$=Y oy For > 2N + 1, i = maxjey L3 and in = minj<y L2,

L JiEN
AN (I—2N —1)%72 1?72 \IP o (I + M)2x? < 1222M 72
[-2N = N2 = 2NNy M= =

The identity (25) is valid for k > 2 as A\, # 0, but also for k=1 if \y # 0.

The techniques developed in [DZ06, Appendiz A] and adopted in order
to prove [DZ06, Proposition A.11] lead to following proposition.

Proposition A.5. Let {Ly}r<n € AL(N) with N € N. Let {wp }nen be the
unbounded sequence of positive solutions of the equation

(26) Z sin(xLy) H cos(zLy,) =0, zeR.
I<N m£l
For every € > 0, there exists C. > 0 so that, for everyl < N,

Ce

¥n € N.
wht

| cos(wn Ly)| >

67

Proof. We consider the notation introduced in [DZ06, Appendiz Al as || - ||,
E(-) and F(-). For 2 € R, {Li}r<ny € (RT)N and i < N, we also denote

n(z) = E(x-1/2), r(z):=F(z-1/2), d(z):= [|z—1/2]|, m'(z):= n(ﬂx)

™

From [DZ06, relation (A.3)], for every x € R, we obtain the identities
(27)

2d(x) < | cos(m)| < md(x), 2d(<mi(x)+1>&) < ‘Cos ((mi(x)#)ﬁw)].

2/ L; 2/ L;
As cos(ag — ag) = cos(aq) cos(az) + sin(aq) sin(ag) for g, a2 € R and
mi(z) + 5 = %x - r(%m) for every x € R, we have

(28) 2d(<7’7’ﬂ(x) + 1) IE/Z) <|cos(Ljx)| +

(52)])]

. L;
in(7=2
sin ( 7 I
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From [DZ06, relation (A.3)] and (27), we have the following inequalities
[sin(x|r ()N <7 HrOl < 7lr()] = md(-) < Flcos(n(-))[, which imply

o (L)) <
sm | nmT—I[r{ —x m—
L; T - I

From (28), there exists C7 > 0 such that, for every i < N,

Hd((ﬁﬂ(z) + ;)g) < 2Nl_1 H | cos(Ljz)| + Ci| cos(Liz)| Vo eR.
J# j 71

J#i

r( ) < 2L]|cos(Lm)| Vx € R.

Thanks to (26), if there exists {wy,, }ken, subsequence of {wy, }nen, such that

k—o0

‘ COS(Lank” I O then H ’ COS(LZ‘wnk” ]H—OO> O
J#i

Equivalently to [DZ06, relation (A.10)] (proof of [DZ06, Proposition A.11]),
there exists a constant Cy > 0 such that, for every i € {0, ..., N}, we have

uleonLn) > [ (7 Gon)+ ) E) - II|Hf(( D+g) 1) Il

Now, we have [|z(-) [l > 3l - [I and I(-) = 1[| = || - [I. We consider
the Schmidt’s Theorem [DZ06, Theorem A.7] since {Lj }r<ny € AL(N). For
every € > 0, there exist Cs, Cy > 0 such that, for every n € N, we have

2L C. C
II50 (e +5) 220 > Gy 2 o O

Remark A.6. The techniques proving [DZ06, Proposition A.11] and Propo-
sition A.5 lead to the following results. Let {Ly}r<ny € AL(N) with N € N.
Let {wn}nen C RY be an unbounded sequence and | < N.

k—o00

1) If the existence of {wn, }ren C {wn}nen, such that | cos(Ljwy, )| —— 0

implies []; 4 | cos(Ljwn, )| Ny R [T | sin(Ljwn, )| LN 0, then

Ce
(29)  Ve>0,3C >0 : |cos(wnly)| > 2k, Vn € N
Wn
2) If the existence of {wn, tken C {wn }nen, such that |sin(Ljwy, )| LN

implies [ ;4 | cos(Ljwn, )| E2200 0 or [T | sin(Ljwn, )| ’H—°°> 0, then

Cgl
wh e’

(30)  Ve>0, 3C; >0 : [|sin(wply)| > Vn € N.
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B Appendix: Moments problem

Let 2 be a Hilbert space over a field K for £ = C or R and {f,}nez C
€. In this appendix, we study the solvability of the so-called “moments
problem”, which consists in finding v € 2 such that, for a {z,,}nez € 2(K')
with K’ = C or R, there holds z,, = (v, f,,)  for every n € Z.

Let # = L?((0,T),R) with T > 0. Let Z* = Z\ {0} and A = {\; }rez-
be pairwise distinct ordered real numbers such that

3 3 : inf - > .
(31) MeN, 36 >0 Jnf, [ Akt — Ak| > OM
We consider { fy, }nen = {ei’\“(')}neN and the following moment problem
T .
Ty = / sy (s)ds, with {2, }nen € £2(C), u€ .
0

From (31), we notice that there does not exist M consecutive k € Z*
such that |Ag+1 — Ak| < 6. This fact leads to a partition of Z* in subsets that
we call E,, with m € Z*. By definition, for every m € Z*, if k,n € E,,, then
A — An| < 6(M —1), while if k € E,,, and n € E,,, then |\ — \p| > 0.

The partition also defines an equivalence relation in Z* such that k,n €
7* are equivalent if and only if there exists m € Z* such that k,n € E,,.
The sets {E), }mez+ are the corresponding equivalence classes and i(m) :=
|En| < M — 1. For every sequence x := {x;}cz+, we define the vectors
x™ = {x1}ier,, for m € Z*.

Let h = {hi}j<iom) € CHm) with m € Z*. For every m € Z*, we denote
Fm(ﬁ) : C*m) — C™) the matrix with elements, for every j, k < i(m),

Hl;éj(hj - hl)_17 ] < k)
~ 1<k
me],k‘(h) = 1’ ] = ](; = 17
0, ik

For each k € Z*, there exists m(k) € Z* such that k € E,, ). Let F(A)
be the linear operator on #?(C) such that F(A) : D(F(A)) — £?(C) and

(P = (Fny (A" ®)xm®) - vx = {mihiezs € D(F(A)),

H(A) := D(F(A)) = {x = {2k }rez- € (*(C) : F(A)x € *(C)}.

Proposition B.1. Let A := {\}rez be an ordered sequence of real num-
bers satisfying (31). If there exist d > 0 and C' > 0 such that

(32) Mes1 — M| > Cle|" T Wk ez,

then we have H(A) 2 h‘i((C).
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Proof. Thanks to (32), we have |A\; — Ag| > C'mineg,, \l]_ﬁ for every
m € Z* and j,k € E,,. There exists C7 > 0 such that, for 1 < j, k& <i(m),
)/\/l 1

| Fin:j e (A™)| < Cl(max|l|M l)k < Cl(lrggxm/w i

< C12M4 min |14
leEm leEn

and |Fip.1,1(A™)| = 1. Then, there exist Cy,C3 > 0 such that, for j < i(m),

(F(A™) Frn(A™)) .

i S Cerené?nm , Tr(Epn(A™) F(A™)) < Cglrené?n|l|

with F,,(A™)* the transposed matrix of F,,(A"). Let p(M) be the spectral
radius of a matrix M and we denote |[|M || = /p(M*M) its euclidean
norm. As (F,(A™)*F,,(A™)) is positive-definite, there holds

1 E(A™) I* = p(Fn(A™)* Fn(A™)) < C3 jnin 1P, vmez".

In conclusion, ||[F(A)x|2, < C’gHXHZCZ < +oo for x = {xp trez € h‘z((C) as

P < D ITEn(A™) 1 D |l <C5 Y min Ill Pl

mezZ* l€EEm, mEZ* leE,

Corollary B.2. If A := {\; }rez+ is an ordered sequence of pairwise distinct
real numbers satisfying (31), then F(A) : H(A) — Ran(F(A)) is invertible.

Proof. Asin [DZ06,p. 48], we define F,,,(A™)~! the inverse matrix of F,,,(A™)
for every m € Z*. We call F(A)~! the operator such that (F(A)~'x); =
(Fm(k)(Am(k))*lxm(k))k, for every x € Ran(F(A)) and k € Z*, which im-
plies F(A)"'F(A) = Idya) and F(A)F(A)™' = Idgan(r(a))- O

For every k € Z*, we have the existence of m(k) € Z* such that
k € Ep). We define F(A)* the infinite matrix such that (F(A)*x), =

(Fm(k)(Am(k))*xm(k))k for every x = {z }rez+ and k € Z*, where Fm(k)(Am(k))*
is the transposed matrix of Fy, ) (A™R)). For T > 0 , we introduce

e = {eM'} ez € L2((0,7),C), = {&()}rezr = F(A)*e C L*((0,T),C).

Remark B.3. Thanks to Proposition B.1, when {Ar}rez~ satisfies (31),
the space H(A) is dense in (*(C) as H(A) D h® which is dense in (>. In
this case, we can consider the infinite matriz F(A)* as the unique adjoint
operator of F(A) with domain H(A)* := D(F(A)*) C ¢*(C).

By transposing each F,,(A™) for m € Z*, the arguments of the proof of
Corollary B.2 lead to the invertibility of the map F(A)* : H(A)* — Ran(F(A)*)
and (F(A)*)™t = (F(A)™Y)*. Moreover, H(A)* D h? as in Proposition B.1.
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In the following theorem, we rephrase a result of Avdonin and Moran
[AMO1], which is also proved by Baiocchi, Komornik and Loreti in [BKLO02].

Theorem B.4 (Theorem 3.29; [DZ06]). Let {A;}rez+ be an ordered se-
quence of pairwise distinct real numbers satisfying (31). If T > 277/5 then

{& trez+ forms a Riesz Basis in the space X := span{&x| k € Z*}

Proposition B.5. Let {wi}ren € RY U {0} be an ordered sequence of real
numbers with wy = 0 such that there exist d > 0, §,C > 0 and M € N with

it fonn — ol 2 6M, wng -l 2 Ck %1, VkeN
Then, for T > 27 /6 and for every {xy}ren € h‘z((C) with z1 € R,
(33)  JueL*(0,7),R) : = /0 ' u(T)e“rT dr Vk € N.
Proof. From the definition of Reisz basis ([BL10, Appendiz B.1; De finition 2|)

and [BL10, Appendixz B.1; Proposition 19; 2)], the map M : g € X
&k 9) L2 ((0,1),0) Yhe € ¢%(C) is invertible and, for every k € Z*, we have

&k 9) r2(0,1),c) = (F(A)* (e, 9) r2((0,7),C) k-

Let X := M1 oF(A)*(hd((C)). From Remark B.3, we have H(A)* D hg((C).
The following maps are invertible (F(A)*)~! : Ran(F(A)*) — H(A)* and

(F(A))™ o M : g€ X = {(e,9) 2(01)0) ez € h(C).
For every {zj }rez+ € hd((C), there exists u € L%((0,T),C) such that
T .
xR = / u(T)eMTdr, Vk e Z".
0

When k > 0, we call A\ = wg, while Ay = —w_, for &£ < 0 such that k& # —1.
The sequence {Ag}rez\{1} is such that there exists C1 > 0 satisfying

inf [Merore—Mel > OM, Mgt — k| > Cilk| ™1, Wk e 2"\ {-1}.
Given {zx }ren € £2(C), we introduce {Z }rez\ (—1} € £*(C) such that & =

xy for k > 0, while Z;, =7 _j for k < 0 and k # —1. As above, there exists
u € L?((0,T),C) such that

T T
x] = / u(s)ds, Ty = / u(s)e”*“*3ds,  Vke Z*\ {-1},
0 0
- / u(s)eMsds = xj, = / (s)eM4ds, ke N\{1}.
0 0
If 71 € R, then u is real and (33) is solvable for u € L?((0,T),R). O
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Proposition B.6. Let {\i}rez+ be an ordered sequence of pairwise dis-
tinct real numbers satisfying (31). For every T > 0, there exists C(T) > 0
uniformly bounded for T lying on bounded intervals such that

T .
/ ez)\(.)sg(s)ds
0 02

Proof. 1) Uniformly separated numbers. Let {wi }ren C R be such that
v = infpz; |wg — w;| > 0 and L? := L2((0,T),C). Thanks to the Ingham’s
Theorem [KLO5, Theorem 4.3], the sequence {€’+()},.c7 is a Riesz Basis in

Vg € L*(0,T),C), ] < O(D) gl 2 0m0)-

4 L2
X = span{eir() . k€ N}~ C L*((0,T),C) when T > 2r/y.

Now, there exists C1(1") > 0 such that ), (e () ) 2| < Oy (T)?|ul32
for every u € X thanks to [Duca, relation (29)]. Let P : L? — X be the
orthogonal projector. For g € L?, we have

(e, g) 2 en| o = [[{(e**1), Pg) 2 }ren]| o < CLUT) Pyl 2 < Co(T)]gll 2

2) Pairwise distinct numbers. Let {\;}rez+ be as in the hypotheses.
We decompose {Ag}ren in M sequences {A] }ren with j < M such that

inf |, — X[ >0M,  Vj<M.
k£l
Now, for every j < M, we apply the point 1) with {wk}ren = {)\i}keN- For

every T > 21 /SM and g € L?, there exists C(T) > 0 uniformly bounded
for T' in bounded intervals such that

, S ZH{ PO, g2 Yren »

H{ Pkl LQ}keN

< MO(T)|gll 2.

Thus, Tei/\<'>7g(7')dtHZ2 < C(T)|\gl|z2 for every g € L? and, for T >
27 /0 M, we choose the smallest value possible for C(T"). When T' < 27 /0. M,
for g € L%, we define § € L?((0,27/5M + 1),C) such that § = g on (0,7)
and ¢ =0 in (T,27/0M + 1). Then

T 27w /dM+1
/ e”\(')Tg(T)dt / z)\()T ( )dt
0 0

Let 0 < Ty < Ty < +00, g € L?(0,T}) and § € L*(0,T») be defined as § = g
on (0,77) and g = 0 on (T1,T3). We apply the last inequality to g that leads
to C(Tl) < C(Tg). O

52

<MCQ2r/6M+1)| gl 12-
02
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C Appendix: Analytic perturbation

The aim of the appendix is to adapt the perturbation theory techniques
provided in [Ducb, Appendiz B], where the (BSE) is considered on ¥ =
(0,1) and A is the Dirichlet Laplacian. As in the mentioned appendix,
we decompose u(t) = ug + up(t), for ug and wuy(t) real. Let A+ u(t)B =
A+ upB + u1(t)B. We consider ugB as a perturbative term of A.

Let {A\[°}jen be the spectrum of A +ugB corresponding to some eigen-

functions {¢;°}jen. We refer to the definition of the equivalence classes
{Em}mez+ provided in the first part of Appendix B.

We denote as n : N — N the application mapping j € N in the value
n(j) € N such that j € E,;), while s : N — N is such that A,y = inf{\; >
Aj | k¢ Ey;)}. Moreover, p: N — N is such that ;) = sup{k € E,;)}.

The proofs of [Ducb, Lemma B.2 & Lemma B.3] lead to next lemma.

2
Let j € N and PjL be the projector onto span{¢,, : m ¢ En(j)} L .

Lemma C.1. Let the hypotheses of Theorem 2.3 be satisfied. There exists
a neighborhood U(0) of u =0 in R such that there exists ¢ > 0 so that

I (A+uoB—vi) Ml < ¢ viki= sy =Apw))/2, Vuo € U(0), Vk € N.

Moreover, for ug € U(0), the operator (A+uoP-B — \j°) is invertible with
bounded inverse from D(A) N Ran(P{) to Ran(Pg) for every k € N.

Lemma C.2. Let the hypotheses of Theorem 2.3 be satisfied. There exists a
neighborhood U(0) of u =0 in R such that, up to a countable subset Q) and
for every (k,j), (m,n) € I := {(j,k) € N2 : j # k}, (k,j) # (m,n), we have

I Y L) (610, BH1) # 0, Yug € U(0)\ Q.

_ k
Proof. For k € N, we decompose ¢.° = ap¢y + ZjeEn(k)\{k} Bid; + Mk,
where ay € C, {ﬂf}jeN C C and 7y, is orthogonal to ¢, for every | € E, ).
Moreover, lim|,|—o |ax| = 1 and lim, o \B]k\ =0 for every j,k € N and

NOOY = (A+uwB)(awde + > Big;+m) = Aardy,
JEE, (k) \{F}

JE€En k) \{F} GEEn (i \ (K}

Now, Lemma C.1 leads to the existence of C7 > 0 such that, for every k € N,

(34)

me=— (A+ wPEB =N PO o (P B+ Y BEPEBo)
JEEL 1y \{k}
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and x| < Cilug|. We compute A\° = (¢,°, (A + ugB)$,°) and

O = Ak + (s (At woB)m) + Y NIB P w185 B

JEE 1y \{k} JEE, (1) \{F}
tuo > BE8Bi+ue Y. IBFP(Bjy — Bra) + uolakl’ B
JAEE, () \{k} j#l JEE 1y \{k}
+2uR( > Bl Bé)ta > BiBeg+ax(on Bu)).
JEE, 1y \{k} JEE, 1y \{k}

Thanks to (34), it follows (nx, (A 4+ uoB)ne) = A0 ||Inkl® + O(ud). Let

ag = 5 ) ag = 2
1 — [l 1 — [l

As |||l < C1luol, it follows lim, |0 [@x| = 1 uniformly in k. Thanks to

lim inf  MA\'= lim osup AN =1,

we have limj, o |ax| = 1 uniformly in k. Now, there exists fj such that
(35) AL = Ak + uolp By + uo fi + O(ug)

where limy, |0 fx = 0 uniformly in k. When A\ = 0, the identity (35) is
still valid. For each (k,7),(m,n) € I such that (k,j) # (m,n), there exists
Jk,jmn such that limy, |0 fkjmn = 0 uniformly in k, j, m, n and

A0 — N0 NSO 4 NS0 = @A — @A) — G+ Gnn U0 S

+ uO(akBng — aijJ- — amBm,m + 6an,n) = &k)\k — Ej)\j
— AmAm + anAp + Uo(akBkvk — Ziij,j — amBmm + aanm) + O(U(Q))

Thanks to the third point of Assumptions I, there exists U(0) a neighborhood
of u = 0 in R small enough such that, for each u € U(0), we have that
every function Ay — AJ® — AJ0 + A0 is not constant and analytic. Now,

Vikjmmn) = {u € D| Xt — A} — Al + Ay = 0} is a discrete subset of D and
V ={ue D| 3((k,5),(m,n)) € I : X\ = \f — Al + A = 0}

is a countable subset of D, which achieves the proof of the first claim. The
second relation is proved with the same technique. For j, k € N, the analytic
function ug — (#7°, B¢,°) is not constantly zero since (¢;, Box) # 0 and
W ={ue D|3(k,j)el: (¢;°, B#y’) = 0} is a countable subset of D. [
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Lemma C.3. Let the hypotheses of Theorem 2.3 be satisfied. Let T > 0
and s = d + 2 for d introduced in Assumptions II. Let ¢ € R such that
0¢& o(A+upB+c) (the spectrum of A+wuoB+c) and such that A+uoB+c
is a positive operator. There exists a neighborhood U(0) of 0 in R such that,

(36) Vg € U(0), H|A+uoB+c|%-H = Il

Proof. Let D be the neighborhood provided by Lemma C.2. The proof
follows the one of [Ducb, Lemma B.6]. We suppose that 0 & o(A + uoB)
and A + ugB is positive such that we can assume ¢ = 0. If ¢ # 0, then the
proof follows from the same arguments.

Thanks to Remark 2.1, we have |- ||(5) < || |A|2-||. We prove the existence
of C1,Cy,C3 > 0 such that, for every ¢ € D(|A +uoB|2) = D(]A]|?),

(37) I(A + uoB) 29[| < C1l| AZ9|| + Call9)]| < Cs[|AZ .

Let s/2 = k € N. The relation (37) is proved by iterative argument. First,
it is true for k¥ = 1 when B € L(D(A)) as there exists C' > 0 such that
[ABY|| < C| B (peayllA¢l for o € D(A). When k = 2 if B € L(X)
and B € L(D(A")) for 1 < k; < 2, then there exist C4,C5 > 0 such that,
for ¢ € D(A?),

1(A +uoB)?wl| < [ A% + [uol* | B>l + Juol | ABY|| + |uo| | BAV||
< A% + Juol® Il B2 I 11| + Caluol N B 1.pcary 19l gy + Tuol Il B Il 2)

and [[(A + uoB)?¥|| < Cs||A%y||. Second, we assume (37) be valid for
k € N when B € L(D(A%)) for k—j —1 < k; < k — j and for every
j €10,....,k —1}. We prove (37) for k+ 1 when B € L(D(A")) for k —j <
kj <k —j+1 and for every j € {0,...,k}. Now, there exists C' > 0 such
that ||A*By| < C|| B| D(AkO)HAkowﬂ for every ¢ € D(A*1). Thus, as
(A + ugB) 14| = [|[(A 4+ uoB)* (A + uoB)y||, there exist Cg, C7 > 0 such
that, for every ¢ € D(A*+1),

I(A + uoB)* 19| < Co(|AM | + Juol[|A" Bo|| + [ A¢ ]| + |uol| B¥|) < Cr[| A4

As in the proof of [Ducb, Lemma B.6], the relation (37) is valid for any
s < k when B € L(D(A*)) for k —1 < kg < s and B € L(D(A*)) for
k—j—1<kj <k-—jand for every j € {1,....,k — 1}. The opposite
inequality follows by decomposing A = A + ugB — ugB.

In our framework, Assumptions IT ensure that the parameter s is 2 4 d.
If the second point of Assumptions II is verified for s € [4,11/2), then B
preserves Hj\l},C and Hé for dq introduced in Assumptions II. Proposition 3.2

claims that B : Hél — Hél and the argument of [Ducb, Remark 1.1] implies
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B e L(Hél). Thus, the identity (36) is valid because B € L(¢), B € L(H2)
and B € L(Hél) with d; > s — 2. If the third point of Assumptions II is
verified for s € [4,9/2), then B € L(), B € L(H2) and B € L(H%) for
dy € [d,9,2). The claim follows thanks to Proposition 3.2 since B stabilizes
H% and Hé for dy introduced in Assumptions II. If s < 4 instead, then the
conditions B € L(#) and B € L(H2) are sufficient to guarantee (36). [

Remark C.4. The techniques developed in the proof of Lemma C.3 imply
the following claim. Let the hypotheses of Theorem 2.3 be satisfied and
0 < s1 < d+ 2 for d introduced in Assumptions II. Let ¢ € R such that
0 ¢ o(A+upB + ¢) and such that A+ uyB + ¢ is a positive operator. We
have There exists a neighborhood U(0) C R of 0 so that, for any ug € U(0),
we have |[|A+uoB +¢| 7 - || < || - [|(s)-
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