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Abstract

We consider the bilinear Schrodinger equations on compact quan-
tum graphs. We prove the well-posedness and the global exact con-
trollability according to the structure of the graph. We apply the main
results to examples involving star graphs and tadpole graphs.
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1 Introduction

In this paper, we study the evolution of a particle confined in a compact
graph type structure ¢ (e.g. Figure 1) and subjected to an external field.
Its dynamics is modeled by the bilinear Schrodinger equation in the Hilbert
space # = L*(¥4,C)

iOp(t) = Arp(t) + u(t) By(2), t€(0,T),

¥(0) = o, T > 0.
The term wu(t)B represents the control field, where the symmetric operator
B describes the action of the field and u € L%((0,7T),R) its intensity. The

operator A = —A is a self-adjoint Laplacian. When the (BSFE) is well-posed,
we call I'} the unitary propagator generated by A + u(t)B.

(BSE)

A natural question of practical implications is whether, given any couple
of states, there exists u steering the quantum system from the first state in
the second one. In other words, when the (BSE) is exactly controllable.
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Figure 1: Example of compact graph

The (BSE) is said to be approximately controllable when, for any couple
of states, it is possible to drive the first state as close as desired to the second
one with a suitable control » and in finite time.

Each type of controllability is simultaneous when it is simultaneously
satisfied between more couples of states with the same control u.

The use of graph theory in mathematics and in physics is nowadays
gaining more and more popularity. In control theory, problems involving
graphs have been popularized in the very last decades and many results
are still missing. Indeed, a complete theory is far from being formulated as
the interaction between the different components of a graph may generate
unexpected phenomena. See [DZ06] for further details on the problem and
for various controllability results.

Regarding inverse problems, we refer to [ALM10] and [Bel04] for uniqueness
outcomes with the boundary control approach and to [BCV11] and [IPR12]
for uniqueness and stability results through Carleman estimates.

Despite the mentioned works, the controllability of the bilinear Schréodinger
equation on compact graphs is still an open problem. For this reason, we
study the well-posedness and the global exact controllability of the (BSE)
in suitable subspaces of D(A).

Considering subspaces of D(A) is classical for this type of problems and
it is due to the seminal work [BMS82] on bilinear systems by Ball, Mardsen
and Slemrod. Even though [BMS82] guarantees that the (BSE) admits a
unique solution in .77, it provides the following non-controllability result.
Let S be the unit sphere in % and I'}.i)y be the solution of the (BSE) at
time T > 0 with initial state )9 € S. The set of the attainable states from

Yo,
{T4apo: T >0, ue L*((0,T),R)},

is contained in a countable union of compact sets. Then, it has dense com-
plement in S. As a consequence, the exact controllability of the bilinear
Schrodinger equation can not be achieved in S when u € L2 ((0,00),R)
(see also [Tur00] by Turinici).

Because of the Ball, Mardsen and Slemrod result, many authors have
addressed the problem by weaker notions of controllability when ¢ = (0, 1).
Let Ap = —A be the Dirichlet Laplacian on the interval (0,1), i.e.

D(AD) = Hz((ov 1)7(C) N H&((O, 1)7(C))



In [BL10], Beauchard and Laurent prove the well-posedness and the local
exact controllablity of the bilinear Schrédinger equation in H, := D(AS/ 2)

for s = 3, when B is a multiplication operator for suitable u € H3((0,1),R).
In [Morl14], Morancey proves the simultaneous local exact controllability of
two or three (BSE) in HE)’O) for suitable B = u € H3((0,1),R).

In [MN15], Morancey and Nersesyan extend the previous result and achieve
the simultaneous global exact controllability of finitely many (BSE).

In [Ducb], the author ensures the simultaneous global exact controllability in
projection for sequences in H(SO), while he exhibits the global exact controlla-
bility between eigenstates with explicit controls and times in [Duca]. Both
the results are provided for suitable bounded symmetric operators B.

The global approximate controllability of the bilinear Schrodinger equa-
tion is proved in literature with different techniques.
Adiabatic arguments are considered by Boscain, Chittaro, Gauthier, Mason,
Rossi and Sigalotti in [BCMS12] and [BGRS15].
The result is achieved with Lyapunov techniques by Mirrahimi in [Mir09]
and by Nersesyan in [Ner10].
Lie-Galerking arguments are used by Boscain, Boussaid, Caponigro, Cham-
brion, Mason and Sigalotti in [CMSB09], [BCCS12], [BACC13] and [BCS14].

1.1 Preliminaries

Let ¢ be a compact graph composed by N € N edges {e;};<n of lengths
{L;}j<n and M € N vertices {vj}j<p. We call V. and V; the external and
the internal vertices of ¢, i.e.

Ve:i={ve{vihcj<m|Te € {ej}jan v e},  Vii={vjhigj<m \ Ve

In the current work, we study graphs equipped with a metric, which
allows to parametrize each edge with a coordinate going from 0 to the length
of the edge. We recall that a graph is said to be compact when it composed
by a finite number of vertices and edges of finite length.

We consider a compact metric graph ¢ as domain of functions f :=

(fY, s fN): 9 — C so that f7 :e; — C with j < N and the Hilbert space
H =I1*(¥,C) HL2 ¢;,C

The space # is equipped with the norm || - || induced by the scalar product

<TP7¢> = <w7§0>%ﬂ = Z(dﬂ L2(e], Z )d.’lf, Yy, p € .

J<N J<N



We also denote H® := H*(¥,C) = Hévzl H?*(e;,C) for every s > 0.

In the (BSE), the operator A is a self-adjoint Laplacian such that the
functions in D(A) satisfy the following boundary conditions. Each v € V; is
equipped with Neumann-Kirchhoff boundary conditions when

Vf e D(A).

f is continuous in v,
]
Zeav B:i (’U) = O’

The derivatives are assumed to be taken in the directions away from the ver-
tex (outgoing directions). In addition, the external vertices V. are equipped
with Dirichlet or Neumann type boundary conditions.

1.2 Novelties of the work

The main difference between studying the controllability of the bilinear
Schrodinger equation on 4 = (0,1) and on generic graph ¢ is the following
fact. Let {A;}ren be the ordered sequence of eigenvalues of A and {¢y tren
be a Hilbert basis of .7 made by corresponding eigenfunctions. We know

1 inf — > if = 1
(1) inf M1 =Ml 203 F=(0,1),

which is an important hypothesis for the works [BL10], [Ducb]|, [Duca] and
[Mor14]. Unfortunately, the identity (1) is not guaranteed when ¢ is a
generic compact graphs. Nevertheless, there exist M € N and ¢’ > 0 so that

inf [Apyrq — x| > &
(2) inf [Akrat — Al > O'M

(see Remark 2.2 for further details). To ensure controllability results, we
introduce a weaker assumption on the spectral gap and we assume that
there exist C' > 0 and d > 0 such that

(3) Moyt — M| > Ck™%1, VEkeN.

Proving the validity of the identity (3) is not an easy task as the spectrum
of A is usually unexplicit. In addition, the more the structure of the graph
is complicated, the more the spectral behaviour is difficult to characterize.

By using Roth’s Theorem [Rot56], we prove the validity of the spectral
gap (3) for the following types of graphs.

X o Oo— o

Figure 2: Respectively a star graph, a double-ring graph, a tadpole graph and
a two tails tadpole graph.



The identity spectral gap is valid when {1, {L;}i< N} are linearly indepen-
dent over QQ and all the ratios Lj/L; are algebraic irrational numbers. The
result does not depend from the choice of boundary conditions of D(A) in
the external vertices V., which can be both Dirichlet, or Neumann type.

Moreover, we characterize the spaces Hj with s > 0 and we ensure
different interpolation features as the following one.

Proposition 1.1. Let & be a compact graph. Let D(A) be equipped with
Dirichlet or Neumann boundary conditions in V. and Neumann-Kirchhoff
i V;. Then

H %2 = Hi} N H* T2 Vs; € NU {0}, s2 €10,1/2).

Proposition 1.1 holds under generic assumptions on the problem, but
stronger outcomes can be guaranteed by imposing more restrictive condi-
tions. We provide the complete result in Proposition 3.2.

The interpolation properties are crucial for well-posedness of the bilinear
Schrodinger equation in Hg with specific s > 3. In the same space, we prove
the global exact controllability when the identities (2) and (3) are satisfied
for suitable parameters. The complete result is provided in Theorem 2.3.

Two interesting applications of Theorem 2.3 are the following examples
that respectively involve a star graph and a tadpole graph.

Let ¢ be a star graph composed by N € N edges {ex}r<n. Each ey is
parametrized with a coordinate going from 0 to the length of the edge Ly.
We set the 0 in the external vertex belonging to ey.

\4 L . 0
/ e .

Figure 8: The figure represents the parametrization of the star graph edges.

Example 1.2. Let & be a star graph with four edges of lengths {L;};j<4 and
D(A) be equipped with Dirichlet boundary conditions in Ve and Neumann-
Kirchhoff in V;. Let B

By = (' 4% 0% vt — ((@ = L1)*',0,0,0), vy € .

There exists C C (RT)* countable such that, for every {L;}j<s € (RT)*\
C such that {1, Ly, Lo, L3, Ly} are linearly independent over Q and all the
ratios Ly /L; are algebraic irrational numbers, the (BSE) is globally exactly
controllable in

Hyte e (0,1/2).



Proof. See Section 6. O

Let ¢ be a tadpole graph composed by {ej,ea}. The self-closing edge e;
is parametrized in the clockwise direction with a coordinate going from 0 to
L; (the length e1). On the “tail” e, we consider a coordinate going from 0
to Lo and we associate the 0 to the external vertex.

L1 RN LQ
el €2 0 - 0

Figure 4: The parametrization of the tadpole graph.

Example 1.3. Let ¢ be a tadpole graph composed by a self-closing edge e;
of length Ly and a second edge ey of length Lo. Let D(A) be equipped with
Neumann boundary conditions in V. and Neumann-Kirchhoff in V;. Let

. 2m . 71' s 3 3 3
w(x) :=sin (L—l:c) + sin (L—lx) + L—%x(x — L) — 67[/?3: (x — L),
By = ! 02) — (up',0), Y€ A

There exists C C (R1)2 countable so that, for each {Ly, Ly} € (RT)2\C such
that {1, L1, Lo} are linearly independent over Q and all the ratios Ly /L; are
algebraic irrational numbers, the (BSE) is globally exactly controllable in

Hy ec (0,1/2).
Proof. See Section 6. O

In Example 1.2 and Example 1.3, we notice an interesting phenomenon.
The controllability holds even if the control fields act on one edge of the
graphs. It is due to the choice of the lengths, which are linearly independent
over Q and such that all the ratios Lj/L; are algebraic irrational numbers.

The same techniques adopted in Example 1.2 and Example 1.3 are also
valid if we change the boundary condition in the external vertices from
Dirichlet type to Neumann and vice versa.

Let {I;};<n be a set of non-connected intervals with N € N and '’ be
the propagator generated by A; + u(t)B; with

Bj=Bliauy), Ay =Aleg),  Hi=D((4;)2),  s>0.

The following controllability result, denoted contemporaneous controllability,
follows from Theorem 2.3 when we consider ¥ = {I;};<n.



Example 1.4. Let {I;}j<n be a set of bounded unconnected intervals and
D(A) be equipped with Dirichlet boundary conditions for every j < N and
N € N. Let B be such that

N2 S
' - 1 N j iy J _J
B =(,..7) = ; Lk W(le>’”"; L wj(LNm)

There exists C C (RT)N countable such that, for every {L;}j<n € (RT)N\C
such that {1, {Lj}jgN} are linearly independent over Q and all the ratios
Li/Lj are algebraic irrational numbers, the bilinear Schrédinger equations
are contemporaneously globally exactly controllable in

IT =2 e € (0,1/2).
J<N

In other words, for every ¢1,v¢2 € [[;<n H}”Jﬂre such that ||¢1]] = ||1be]|, there
exist T > 0 and u € L*((0,T),R) such that F%’WJ{ = w% for every 7 < N.

Proof. See Section 6. ]

We underline that the contemporaneous global exact controllability is
deeply different from the simultaneous controllability results provided by
[Mor14], [MN15] and [Ducb]. Indeed, the mentioned works consider vectors
(or sequences) of functions each one belonging to the same space.

1.3 Scheme of the work

In Section 2, we present the main results of the work. The global exact
controllability of the (BSE) is ensured in Theorem 2.3. Theorem 2.5 and
Corollary 2.6 show types of graphs satisfying the hypothesis of Theorem 2.3.
The contemporaneous controllability is introduced in Corollary 2.7.

In Section 3, Proposition 3.1 ensures the well-posedness of the (BSE). We
provide interpolation features of the spaces Hg, for s > 0 in Proposition 3.2.
Section 4 exhibits the proof of Theorem 2.3, while the proofs of Theorem
2.5, Corollary 2.6 and Corollary 2.7 are provided in Section 5.

In Section 6, we explain Example 1.2, Example 1.3 and Example 1.4 and
the other examples introduced in Section 2.

In Appendix A, we provide some spectral results by using some classical
theorems on the approximation of real numbers by rational ones, while we
treat the solvability of the so called “moments problems” in Appendix B.
In Appendix C, we adapt the perturbation theory techniques exposed in
[Ducb, Appendiz A].



2 Main results

Let & be a compact graph composed by N edges {e;}j<n of lengths {L;};<n
connecting M vertices {v;}1<j<nm. For each j < M, we denote

(4) N(vj):={le{l,..,N} | v; € e}, n(vj) == |N(vj)|.

We respectively call (NK), (D) and (N) the Neumann-Kirchhoff, Dirichlet
and Neumann boundary conditions for the D(A).

When we consider the self-adjoint operator A on ¢, it is denoted quan-
tum graph. By denoting ¢ a compact quantum graph, we are implicitly
introducing a Laplacian A equipped with self-adjoint boundary conditions.

We say that a quantum graph ¢ is equipped with one of the previous
boundary conditions in a vertex v, when each f € D(A) satisfies it in v.
We say that a quantum graph ¢ is equipped with (D/N)-(NK) when, for
every f € D(A) and v € V,, the function f satisfies (D) or (N) in v and, for
every v € V;, the function f verifies (MK) in v.

We say that a quantum graph ¢ is equipped with (D)-(NK) (or (N)-(NK))
when, for every f € D(A) and v € V,, the function f satisfies (D) (or (N))
in v and verifies (NK) in every v € V;.

For every compact graph ¢, the operator A admits purely discrete spec-
trum (see [Kuc04, Theorem 18]). We call {)\;}jen the non-decreasing se-
quence of eigenvalues of A and {¢;};jen a Hilbert basis of # composed by
the corresponding eigenfunctions. Let ¢;(t) = e *tp; = e~™Nitp; and [r] be
the entire part of a real number » € R. For s > 0, we define the spaces

Hi = {1/} € H® | 92" is continuous in v, ¥n € NU{0}, n < [(s+1)/2];

> O2() =0, Y e NU O}, < [s/2], vo e Vi),

e€EN(v)
1
Hjy = Hy(%,C) 1= D(A), |-l =11 Dl = (DD I Co )
keN
%
P(C) = {{arhhen € C | S IWar <oof, -l = (D16 2)".
keN keN
Remark 2.1. If0 & o(A) (the spectrum of A), then || - || < I|A]2 - |, i.e.
3C1LC>0 = G-y < 1A - |* = Z A2 (5 o) )? < Call - 117
keN

Indeed, from [BK13, Theorem 3.1.8] and [BK13,Theorem 3.1.10], there ex-
ist Cs,Cy > 0 such that C3k? < N\, < Cyk? for every k > 2 and for k=1 if
A # 0 (see Remark A4 for further details). If 0 € o(A), then A1 = 0 and
there exists c € R such that 0 ¢ o(A+c) and || - |5 < |||A + cz - .
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Remark 2.2. For any ¢ the only eigenvalue that can be 0 is \1. More-
over, the identity (2) follows from [DZ06,relation (6.6)], which implies the
ezistence of M € N and &' > 0 such that infren [V it — V| > 6 M and

licglf\l|)\k+M — k| >V >\2|\/Xn+/\/l — \/Xn‘ > § M.

We point out that it is possible to set M > M+ N+1 (even though this value
is not optimal). This property can be deduced from [BK13,Theorem 3.1.8]
and [BK13,Theorem 3.1.10] adopted as in Remark A.4.

Let n > 0 and a > 0. We define the following assumptions on (A, B) for
(5) L= (k) N2 j £ k).
Assumptions (I(n)). The operator B satisfies the following conditions.
1. There exists C' > 0 such that |(¢;, Bo1)| > ;2% for every j € N.
2. For every (j,k),(I,m) € I such that (j,k) # (I,m) and \j — A\, =
Al = Am, it holds (¢, Boj) — (bk, Bék) — (b1, Bdi) + (dm, Bdm) # 0.

Assumptions (II(n,a)). Let Ran(B)| H2, ) € HZ and one of the following
assumptions be satisfied.

1. When ¥ is equipped with (D/N)-(NK) and a + n € (0,3/2), there
exists d € [max{a +n,1},3/2) such that Ran(B]H?;d) C H*™ N H2.

2. When ¢ is equipped with (N)-(NK) and a + 7 € (0,5/2), there exist
d € [max{a +n,2},5/2) and d; € (d,5/2) such that Ran(B]Hg;d) -
H?**n HY N HZ and Ran(B|ye, ) C HY.

3. When ¥ is equipped with (N)-(NMK) and a +n € (0,7/2), there exist
d € [max{a + 1,2},7/2) and d; € (d,7/2) such that Ran(B|H;+d) -

2+d 24-d 2 d
H*M N HE N HY and Ran(B\HdeX}K) C Hjjy.

4. When ¥ is equipped with (D)-(NK) and a+n € (0,5/2), there exists
d € [max{a+n,1},5/2) such that Ran(B|2+4) C H2+dﬂH/2\?,’gﬂHé. If

2
a+mn > 2, then there exists d; € (d,5/2) such that Ran(B|ya, ) C H.

From now on, we omit n and a from the notations of Assumptions I and
Assumptions II when these parameters are not relevant.

Theorem 2.3. Let 4 be a compact quantum graph. Let d > 0 and C > 0
be such that

(6) Nes1 — M| > CE M7 Wk eN.

If the couple (A, B) satisfies Assumptions 1(n) and Assumptions II(n,d)
for some 1 > 0, then the (BSE) is globally exactly controllable in Hj for
s=2+4d and d from Assumptions II.



Proof. See Paragraph 4. O

Definition 2.4. For every N € N, we define AL(N) C (RT)Y as follows.
For every {L;}j<y € AL(N), the numbers {1,{L;};<n} are linearly inde-
pendent over Q and all the ratios Lj/L; are algebraic irrational numbers.

In the next theorem, we provide the validity of the spectral hypothesis
of Theorem 2.3 when ¢ is one of the graphs introduced in Figure 2. The
provided result leads to the examples 1.2 and 1.3.

Theorem 2.5. Let {L;}j<n € AL(N). Let 4 be either a tadpole, a two-
tails tadpole, a double-rings graph or a star graph of N < 4 edges and let G
be equipped with (D/N)-(NK). If the couple (A, B) satisfies Assumptions
I(n) and Assumptions II(n,€) forn,e > 0, then the (BSE) is globally exactly
controllable in Hj for s =2 +d and d from Assumptions I1.

Proof. See Paragraph 5. O

The techniques leading to Theorem 2.5 can be adopted in order to prove
the following corollary.

Corollary 2.6. Let {L;};j<2 € AL(2). Let ¥ be one of the following graphs:
e q two-tails tadpole with one edge long Ly and the others Lo;
e a 3 edges star graph so that one edge is long L1 and the others La;
e a4 edges star graph so that two edges are long L1 and the others L.

If the couple (A, B) satisfies Assumptions I(n) and Assumptions II(n,€) for
n,€ > 0, then the (BSE) is globally exactly controllable in Hj for s =2+d
and d from Assumptions II.

Proof. See Remark Paragraph 5. O
Let {I;};<n be a set of non-connected intervals with N € N and T’ be
the propagator generated by A; + u(t)B; with
Bj = B|L2(Ij)7 Aj = A|L2(Ij)7 H}SJ = D((Aj)a), s> 0.
Theorem 2.3 implies the following corollary that leads to Example 1.4.

Corollary 2.7. Let 9 = {I;}j<n be a compact quantum graph composed
by a set of bounded unconnected intervals. Let the couple (A, B) satisfy
Assumptions I(n) and Assumptions 1I(n,€) for some n,e > 0. If {Ly}r<n €
AL(N), then the (BSE) is contemporaneously globally exactly controllable
n ngN HISJ_ for s =2+d and d from Assumptions II.

Proof. See Paragraph 5. O
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3 Well-posedness and interpolation properties of
the spaces [

Let introduce the well-posedness of the (BSE).

Proposition 3.1. Let ¥ a compact quantum graph and the couple (A, B)
satisfies Assumptions 1(n) and Assumptions I1(n,d) for n,d > 0.

1) Let T > 0 and f € L?((0,T),H** N H2) with d from Assumptions II.
Let t — G(t) = fot AT f(r)dr. The map G € C°([0,T], H3™) and there
exists C(T) > 0 uniformly bounded for T' lying on bounded intervals so that

”GHLOO((07T)7H;+d < C<T)HfHLQ((O,T),HHde;)-

2) Let° € H;rd with d introduced in Assumptions II andu € L*((0,T),R).
There exists a unique mild solution of (BSE) in Héer, i.e. a function
¥ € Co([0,T), HZ'?) such that for every t € [0,T],

. t .
M wltn) =)~ [ ) B, )i
0
Moreover, there exists C = C (T, A, HUHLQ((O’T)’R)) > 0 so that

1l cogorzy ey < Cllellgzra, (Ol = 1000, vt € [0,T], vo € HE.

Now, we present some interpolation properties for the spaces Hg for
s > 0. The proof of Proposition 3.1 is provided in the end of the section.

Proposition 3.2.
1) If the compact quantum graph & is equipped with (D/N )-(NK), then

HZ = H N HS72(4,C)  for s1 € NU{0}, s2 €[0,1/2).
2) If the compact quantum graph & is equipped with (N')-(NK), then
H%*2 = H) NH3E? for s1 € 2NU{0}, s2 € [0,3/2).
8) If the compact quantum graph & is equipped with (D)-(N'K), then
B = R o s SONU(0), 5 < 10.3/2),

Proof. We recall that by defining ¢4 as a quantum graph, we are implicitly
introducing a Laplacian A equipped with suitable boundary conditions. We
refer to the first part of Section 2 for the definitions of Hj and Hjy.

11



1) (a) Bounded intervals. Let ¢ = IV be an interval equipped with ()
on the external vertices V.. From [Grul6, De finition 2.1],

(8) HiN™ =H3 nH (Y, 0), Vs1 € 2N U {0}, s2 € [0,3/2).

Let & = IP be an interval equipped with (D) on the external vertices. From
[Grul6, Definition 2.1], for s; € 2N U {0}, s2 € [0,3/2) and s3 € [0,1/2),

(9)  Hp"™ " = Hppt 0 HATe(IP,C), Hpp = HP(IP,C).

Let & = I'M be an interval equipped with (D) on one external vertex v; and
(N) on the other vy. We prove that

(10) H2 = H, nHP2(IMC),  Vs1 e NU{0}, sz € [0,1/2).

We consider the interval 12 C IM of length %]I M| as a quantum graph
containing v; and equipped in both the external vertices with (D).

Let the quantum graph I N C M be an interval of length %|I M|, containing
vy and equipped in both the external vertices with (N).

Let x be the partition of the unity so that x(x) = 1in I, x(z) = 0 in M\ 1P
and y(z) € (0,1) in IP\ I. There holds xv € H?, and (1—x)¢ € H3y and

(@) = x(@)y(x) + (1 = x(2))¥(x).

The same property is valid for If(IM,C) and H*(IM,C). Thus, for s €
(0,2], we have H5(I'M,C) = H*(IP,C) x H*(IN,C) and

Hjv = H%, x Hi,, L*(IM,C) = L*(IP,C) x L*(IV,C).

Let [+, -]g be the complex interpolation of two spaces for 0 < 6 < 1 defined in
[Tri95, De finition, Chapter 1.9.2]. From [Tri95, Remark 1, Chapter 1.15.1]
and [Tri95, Theorem, Chapter 1.15.3], for s; € NU {0} and s2 € [0,1/2),

2(TN 2 _ 2/7D 2 _
[L*(1 ,(:),HTN]SQ/2 = Hlffv, [L*(1 ,(:),HTD]SZ)/2 = H;;.

Thanks to [Tri95, relation (12), Chapter 1.18.1],

H33, = [L(IM,0), Hiw| = [12(0V,€) x L*(IP,C), HE, x H,)|

s2/2 s2/2
x [L%TD,C),H]%D} = H2 x H2

— 2(TN 2
- [L (I 7C)7HTN] 52/2 - N iz

s2/2

Equally, H}3{** = H,I“i}f” X H%lf” that leads to (10) thanks to (8) and (9).

12



(b) Star graphs with equal edges. Let Ay be a Laplacian on an interval
I of length L and equipped with (N). Let I N e the relative quantum graph
and {fj1 }jen be an Hilbert basis of L?(I,C) made by eigenfunctions of Ay
Let Apq be a Laplacian on I equipped with (D) in the external vertex
parametrized with 0 and with (N) in the other. We call I the relative
quantum graph and { fJZ}jeN a Hilbert basis of L?(I,C) composed by eigen-
functions of Axg.

Let . be a star graph of N edges long L and equipped with (A)-(NK).
The conditions (AV) on V, imply that each ¢ is (aj, cos(zv/Ar), ..., af cos(zv/Ar))
with A the corresponding eigenvalue and {aé}lg ~ C C. The condition (NK)
in V; ensures sin(v/ArL) >,y ak =0 and

ar cos(v/ ML) = ... = al cos \/\;L), Vk € N.
Each eigenvalues is either of the form ("_232”2 , or (2”2232”2 when 3,y al =

0 with n € N. Hence, for every k € N, there exists j(k) € N such that

either gi)ﬁc = cgffjl(k) for cﬁc eC, |c§€| <1, WViedl,..,N},
or d)gc = Ciff(k) for Cég eC, ’CH <1, WVie{l,.,N}

(11)
After, for each k € N and m € {1, 2}, there exist jeNand !l < N such that
= céqbflj with GS € C and \cé] < 1. Thanks to the last identity and (11),

(12) y=@"...vN)eH), < Y eH\nH\x, VI<N.

Now, we can consider each edge e; composing . as I (introduced above)
as its length is L. Let I and IV be defined above and H*(.#,C) =
(H*(I,C))N. For 51 € NU {0} and s3 € [0,1/2), from (12), we have

Y e V2 (7 C)NHS = vl e B2 (1,C)n B N Hi, VI<N.

From 1) (a), it follows 1! € H;}f” OH;}QLSQ for every | < N, which is valid
if and only if 1) € H5}™2 thanks to (12). In conclusion, we have

Hy™™ = Hy N H" (7, C).

(c) Generic graphs. Let ¢ be equipped with (D/N)-(NK) and L <
min{Ly/2 : k € {1,...,N}}. We define ¥(v) for every v € V; UV, and a
family of intervals {I;},<n as follows (see Figure 5). Let n(v) be defined in
(4) for every v € V. UV;.

If v € V;, then & (v) is a star sub-graph of & equipped with (N)-(NK), with
n(v) edges of equal length L, with internal vertex v.

Ifv € V¢, then 9| (v) is an interval of length L with external vertex v equipped
with the same boundary conditions that v has in 4. We impose (N') on the
other vertex.

13



For each v, ¥ such that ¢(v) and ¢ (?) have respectively two external vertices
wy and we lying on the same edge e and such that wy € 4(0), we construct an
interval strictly containing wy and ws, strictly contained in e and equipped
with (A). We collect those intervals in {I;};<n.

v v
vy Vge—e T o o—oUs

——o o—°
12
~ I \ B /i
':v4 R L’Us' V11 14 - S . "
\’Us \1)9 I’“]O

O Neumann-Kirchhoff boundaries ® Neumann boundaries

)

Figure 5: The left and the right figure respectively represent the graphs
{9 (v)}vev,uv. and the intervals {I;}j<n defined in the point 1) (c) of the
proof of Proposition 3.2.

From 1) (a) and 1) (b), for v € V;UV,, j < N, s1 € NU{0} and s5 € [0,1/2),

s1+s82 __ rrsi S$1+S2 S1+s2 _ rrsi s1t+s2(71.
Hg(v) _Hg(v)ﬂH (4 (v),C), Hp'' = Hp' N H (1;,C).

We notice that G := {¥(v;)}j<m U {lj}j<n covers 4. As in 1) (a), we
see each function of domain ¢ as a vector of functions of domain G; for a
suitable j < M 4+ N. We use [Tri95, relation (12), Chapter 1.18.1] asin 1)
(a). The interpolation between two products of spaces is the product of the
respective interpolations, which leads to

H%* = H) N HOP2(9,C) for s1 € NU{0}, s2 €[0,1/2).

2) Let ¢ be equipped with (AV)-(N'K). We consider {&(v)}yey, introduced
in 1) (c) and we define ¢ as follows (see Figure 6). For every v € Ve, we
remove from the edge including v, a section of length L /2 containing v. We
equip the new external vertex with (N') and we call N, € N the number of
external vertices of ¢.

v )
U1 Vge—e o o—oUs
\ le
)=
V4 &3 °v1y \ \ (
~ vs \7)9 IUl() A

O Neumann-Kirchhoff boundaries ® Neumann boundaries

Figure 6: The left and the right figure respectively represent the graphs
{94 (v)}vev, and the graph & considered in the point 2) of the proof of Propo-
sition 3.2.
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We call G" := {G}j<n,+1 := {9 (v)}oev, U {Z} which covers 4. For every

s1 € 2NU{0}, s2 € [0,3/2), we have H;J(;r)sz = H;;(U) N H51752 from (8) and

H(9,C) = H2 ™2 x [ B2 (9 (v),0).
’UEVE

The arguments of 1) (a), also adopted in 1) (c), lead to the proof.

3) Asin 2), the claim follows by considering {?!7 (v) }vev, as intervals equipped
with (D) and ¢ equipped with (D) in its external vertices. O

Proof of Proposition 3.1.

1) (a) Assumptions II.1 . Let f(s) € H*NHZ for almost every s € (0, 1),
t € (0,7) and f(s) = (f1(s),.... f¥(s)). We prove that G € C°([0,T], H).
The definition of G(t) implies G(t) = > 72, ¢ ft s (e, £(s))ds and

(13) 60l = (S [ e on i)
keN

We estimate (¢x, f(s,-)) for each k € Nand s € (0,t). We suppose that A\; #
0. Let 0,f(s) = (9xf1(5), ..., 0 fN (s) be the derivative of f(s) and P(¢y) =
(P(¢L), ..., P(¢Y)) be the primitive of ¢, such that P(¢y) = —iﬁﬂ)k. We
call de the two points composing the boundaries of an edge e. For every
v € Ve, 0 €V; and j € N(9), there exist a(v),a’ (7) € {—1,+1} such that

<¢kaf(s)> <¢k782 = 2 Z x¢k 8 f(s U)

’UGVe

2 5 Y a2 (5,0) 37 s [ 0u0)02 )y

UEV; JEN(v)

(14)

From [BK13, Theorem 3.1.8] and [BK13, T'heorem 3.1.10], there exist C7 >
0 such that A\, < C1k~* for every k € N (see Remark A.4), then

(15)

t
k3/ ei’\ks<¢k,f(s)>ds

0

t .
Dsbu(v) /0 M52 (5, 0)ds

g%(Z

UEV&

/ t
x¢j /0 eSO fI(s,v)ds| + ei/\ks/g@x¢k(y)8§’f(s,y)dyds

+ZZ

veV; jeN (v

Remark 3.3. We point out that A’'\ 1/2 Oxr, = )\k)\gzl/anff)k for every
k € N, where A’ = —A s a self- adjomt Laplacian with compact resolvent.

Thus, | N, 20u0k? = (A 200, Ay 20utn) = (6. A Ad) = 1 and
then {A;l/QBxcbk}keN is a Hilbert baszs of .
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Leta—{ak}C(Candblz{b}C(CforlE{1 N}besothat
ok (z) = al cos(v/Apz)+bL sin(v/Agx). Hence, —al sin(y/A a:)+bk cos(vArx)
_1 2 —-1/2
120,},(z). Now, 2 > ||\, /?0 $¢kHL2 oy TS5 T2 ety = (i >+0G ) ey for
every k € Nand ! € {1,...,N}. Thus, a! bl € EOO(C) and there exists Cy > 0

such that, for every kK € N and v € V, U V;, we have |)\,;1/28$¢k(v)\ < (O,
Thanks to the identities (13) and (15), it follows

1G(@)l3) < C1C2 Z Z H/ D2 fI(s,v)er0)3ds

(16) veVeUV; jEN (v)

+ Cl H /O <)\(_)1/26$¢() (S)7 8§f(8)>ei)\(.)sds

02

eQ

From Proposition B.6 and (16), there exist Cs(t),Cy(t) > 0 uniformly
bounded for ¢ in bounded intervals such that

(17) Gz, < Cs(t) Z Z 102 17 (- 0) | 2(0,0,0) + VEIF Il 20,09, %)

veVeUV; jEN (v)

and HGHH% < C4(t)Hf(-,~)HL2((0¢)7H30H§2§). If \y = 0, then there exists
C5(t) > 0 uniformly bounded for ¢ lying on bounded intervals such that
| f(f<¢17 f(5)>d8| < C5@)Hf(a ')||L2((0,t),H3ﬂH€2¢)‘ Equivalenﬂy to (15)a

) 1
Then, (17) is proved as above. For every t € [0,7], the inequality (17)

shows that G(t) € H3 N Hé The provided upper bounds are uniform and
the Dominated Convergence Theorem leads to G € C°([0,T1], H3).

Let f(s) € H5N Hy for almost every s € (0,t) and ¢ € (0,T). The same
techniques adopted above shows that G € C°((0,T], H;)).

We denote F(f = fot AT f(r)dr for f € # and t € (0,T). Let
X (B) be the space Of functlons fso that f(s) belongs to a Banach space B
for almost every s € (0,t) and ¢t € (0,7). The first part of the proof implies

ie0ls <0 (X [k [ e aznas]) (| [ o0 sepias

F:X(H*nHZ) — C°([0,T),Hy), F:X(H°NHg) — C°([0,T], H).

From a classical interpolation result (see [BL76, Theorem 4.4.1] with n = 1),
we have F : X (H**n H,t) — C°((0,T], HZ™) with d € [1,3]. Thanks
to Proposition 3.2, if d € [1,3/2) and f(s) € H***NH2 = H*™4N Hé‘“j for
almost every s € (0,t) and t € (0,7), then G € C°([0,T], Héer). The proof
is achieved when the first point Assumptions II is verified.
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(b) Assumptions II1.4 . If ¢ is equipped with (D)-(NK), then HZ =
H/%/K ﬂH{} and Hé = H}\/IC ﬁHé from Proposition 3.2. The previous part of
the proof implies that if f(s) € H® N Hy, N Hy, for almost every s € (0,1)
and t € (0,7), then G € C°([0,T], H3), while if f(s) € H®> N Hy, N HE, for
almost every s € (0,¢) and ¢t € (0,T), then G € C°([0,T], H}).

Thanks to interpolation technique previously adopted, if d € [1,5/2) and
f(s) € H¥ N HAE N HY for almost every s € (0,¢) and ¢ € (0,7, then
G e CO([O,T],Hé+d). The proof is attained under the hypotheses of the
fourth point Assumptions I by considering that HJQ\?,‘Cd N Hé = Hj; 23d ﬂHg
H?*tn Hﬁ,‘g N ng thanks to Proposition 3.2.

(c) Assumptions IL.2 . Let f(s) € H* N H};. N HZ for almost every
s € (0,t) and t € (0,T) and ¢4 be equipped with (N). We proceed as in
(14) and we notice that the first two terms of the last line are equal to zero.
Indeed, 92f(s) € CY as f(s) € Hiyc and, for v € V,, we have 9,¢5(v) = 0
thanks to the (N) boundary conditions. After, for every v € V;, thanks to
the (NK) in v € V;, we have Y-y, @/ (v)32¢(v) = 0 as the terms o’ (v)
assume different signs according to the orientation of the edges connected
in v. In (14), the integration by parts leads to

(0016 = 5 [ 2tn 0L 5.y =~ 3 a(@)x(@)0LS )

k vev,

222“] ()61 W)L (s,0) + )\2/¢k )02 £ (s, y)dy

kE vev; JEN (v

Now, {¢x}ren is a Hilbert basis of # and we proceed as in (15), (16) and
(17). From Proposition B.6, there exists Cg(¢) > 0 uniformly bounded for ¢
lying in bounded intervals such that HGHH4 < Ci()|| f(, ')HL2((0,t),H4ﬂH%)-

As above, when d € [2,5/2) and f(s) € H** N HZ N HZN§ for almost
every s € (0,t) and t € (0,T), then we have G € C°([0, T] H, %), thanks to
H** N HY = HZ™ for d € [2,5/2) due to Proposition 3.2. It achieves the
proof under the hypotheses of the second point of Assumptions II.

(d) Assumptions IL.3 . If d € [2,7/2) and f(s) € Hi;jcd N HZ for almost
every s € (0,¢) and t € (0,7T), then G € C°([0,T], HZ™), thanks to H2+d
Hj = H2+d for d € [2,7/2) due to Proposition 3.2. This attains the proof
under the hypotheses of the third point of Assumptions II.

2) The arguments of [Ducb, Remark 1.1] and Ran(B|2+4) C H*n Hé
:
lead to B € L(Hé d, H**n Hé) For every ¢ € Hé d, let

ts F(1)(t) = e 4t - /0 t e~ A=)y () By (s)ds € C°([0, T], HZ™).
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For every ¢!, ¢? € Hf;d, thanks to the first point of the proof, there exists
C(t) > 0 uniformly bounded for ¢ lying on bounded intervals, such that

IF@ ) — PO Ol < H | e u B s) — s

(2+4d)

< COlull 208 Il B I pgszva grosa 19" = 0 e oy iz

We refer to the techniques adopted in the proof of [BL10, Proposition 2]. If
|l 2 ((0,),R) s small enough, then F is a contraction and Banach Fixed Point
Theorem implies that there exists 1 € C°([0, 77, Hé+d) such that F(¢) = 9.
When |[ul[z2((0,0),) is not sufficiently small, one considers {t;}o<;<n a parti-
tion of [0,¢] for n € N. We choose a partition such that each [|ul| L2, _, ¢, R)
is so small that the map F', defined on the interval [t;_;,t;], is a contrac-
tion and proceed as before. The remaining claim follows from the proof of
[BL10, relation (23)]. O

4 Proof of Theorem 2.3

The result is achieved as in the proof of [Duch, Proposition 3.4]. In par-
ticular, it is obtained by gathering the local exact controllability and the
global approximate controllability (both proved below) thanks to the time
reversibility of the (BSE) (see [Ducb, Apprendiz 1.3]).

4.1 Local exact controllability in

Let Of p := {ve | |v|=1, |v- $1(T)|\(s) < €} and Assumptions I be
verified. We define the application «, the sequence with elements ay(u) =
(or(T),TH¢1) for k € N, such that

o 2((0,T),R) — Q = {x == {ayhen € B°(C) | x]2 = 1}.

The local exact controllability in OF ; with 7" > 0 is equivalent to the local
surjectivity of T'f¢1 : u € L2((0,T),R) +— ¢ € Oy C Hy. Thanks to

F?¢1 = Z¢k<t)<¢k(t>vrg¢l>7 T > 0, u € Lz((O,T),R)’

keN

the controllability is equivalent to the local surjectivity of the map «. To this
end, we use the Generalized Inverse Function Theorem ([Lue69, Theorem 1;
p. 240]) and we study the surjectivity of vy(v) := (dy(0)) - v the Fréchet
derivative of o with «(0) = & = {dx1}ken. Let Bji = (¢;, Boy) with
J,k € N. As in [Duca, relation (6)], the map -~ is the sequence of elements
Yi(v) == —i fOTv(T)ei()"“—Al)SdTBkJ with k£ € N such that

v L2((0,T),R) — T@Q = {X = {xk}keN € hs((C) ’ 1T € R}
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Thanks to Proposition 3.1, the well-posedness of the (BSE) is guaranteed
in Hg. Hence, a and v take both value in h°. Thus, the local surjectivity
of a can be proved by ensuring the solvability of the moment problem

T
(18) x/Br1 = z/ U(T)ei()\k_)\l)TdT, V{xktken € h°.
0

Now, Proposition B.5 leads to the solvability of (18) in K. Indeed, if
{zk}ken € h‘i+2+’7 then the hypotheses of Proposition B.5 are satisfied since
B11 € Ras B is symmetric, the element z:cl/Bl 1 € Rand {a:kB }keN € h‘z
thanks to the first point of Assumptions I. In conclusion, {7 (u )}keN S
for every u € L?((0,T),R) and the moment problem (18) is solvable for
{Zk}ren € B* C B2+ with s = d + 2 since d > d + 7.

4.2 Global approximate controllability in

Let s = d+ 2 for d introduced in Assumptions II. The approximate control-
lability of the (BSE) in H, follows from the proof of [Ducb Theorem 3.3].
In other words, for every ¥ € H, Te U() such that I‘dJ € H and € > 0,
there exist T'> 0 and u € L?((0,T),R) such that HFw Ll < e

The only difference with the mentioned proof is that the propagation
of regularity from Kato [Kat53] has to be applied by considering different
spaces. Let B : Hy — Hg' for sy > 0. As in [Ducb,p. 16], for every
T >0, u € BV((0,7),R) and ¢ € H§1+2, there exists C'(K) > 0 de-
pending on K = (|lull pv(o,7)r): lull oo ((0.7).R)s Tllwll Lo (0,7)m)) such that
IT7Y (s142) < CU)|[Y]l(5,42)- This result leads to the global approximate
controllablhty in H Wlth s € [s1,81 +2) when B : H) — Hg}.

Let d be the parameter introduced by the validity of Assumptions II.

If d < 2, then B : H(; — Hw and the global approximate controllability is
verified in Hd‘”'2 since d 4+ 2 < 4.

If d € ]2, 5/2) and the second or the fourth point of Assumptions II is
verified, then B : H% — H®" for d; € (d,5/2) from Assumptions II. Now,
H(‘;l Hd1 N H,%, thanks to Proposition 3.2, and B : H% — H(¢ implies
B:Hg, d H,, 4l The global approximate controllability is verified in Hy d+2
since d+2 < d1+2

If d € [5/2,7/2), then B : Hihe — Hi}y for di € (d,7/2) and HY' = Hi} N
Hé from Proposition 3.2. Now, B : Hé — Hé that implies B : Hél — Hél.
The global approximate controllability is verified in H;HQ since d+2 < dj+2.

5 Proofs of Theorem 2.5, Corollary 2.6 and Corol-
lary 2.7

Let {)\f} keN denote the eigenvalues A on a compact quantum graph 9.
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Figure 7: The figure represents the graphs described in the proof of Theorem
2.5. The column 1 shows the considered graphs 4. The 2 provides the
corresponding graphs 4N, while the column 3 shows 4.

Proof of Theorem 2.5. Let ¢ be a tadpole graph equipped with (D)-(NK).
Let 4P be the graph obtained from % by imposing (D) on v € V; and
e1 be the edge connecting v to itself. We define ¢4V the graph obtained
by disconnecting e; in one side and by imposing (N) on the new external
vertex of e; (see the first line of Figure 7 for further details). Thanks to
Proposition A.3, for k € N, it holds

19) <A <A <A < SN N <A <
Now, {)\gD } ey and {)\gN } ke are the sequences of eigenvalues respectively

and {42k 1

(L1+L2 }k;eN It {L17L2} e AL,

obtained by reordering { za } keN

je{1,2}

then {Ly, Lo, L1 + Lo} € AL. The techniques of the proof of Proposition
A.2 lead to the existence of C' > 0 such that, for every € > 0, there holds

N =M= W = A > Ck™, WkeN.
The relation (6) is verified and the claim is guaranteed by Theorem 2.3.

The same techniques lead to the claim when ¥ is a tadpole graph equipped
with (N)-(NVK), but also when ¢ is a two-tails tadpole graph, double-rings
graph or star graph with N < 4 edges. In every framework, we impose that
{Li}p<n € AL(N). In Figure 7, we represent how to define 9V and 4P
from the corresponding graphs ¢. O

Proof of Corollary 2.6. We decompose the considered graphs ¢ in ¢V and
4P as in the proof of Theorem 2.5 (by following the instructions of Figure
8). The techniques proving Theorem 2.5 attain the claim. ]
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Boundaries: O Neumann-Kirchhoff, ® Neumann, X Dirichlet, B Dirichlet/Neumann.

Figure 8: The figure represents the graphs considered by Corollary 2.6. The
columns 2 and 3 respectively show how to define 9% and 9P from the con-
sidered graphs 4 represented in the column 1. We sign with tildes and
hyphens the edges of equal length.

Proof of Corollary 2.7. As {\j}jen C { (k_41L)227r2 }rjen, the claim follows from
i RN

[Rot56]. In fact, thanks to the arguments adopted in the proof of Proposition
A.2, for every € > 0, there exists C7; > 0 such that

|Apt1 — k| > CLE™€, Vk € N.

In conclusion, the proof is achieved thanks to Theorem 2.3. O

6 Proofs of the examples 1.2, 1.3 and 1.4

Proof of Example 1.2. Let ¢ be a star graph with 4 edges of lengths {L;},<4
equipped (D)-(NK). The conditions (D) on the external vertices imply that
each eigenfunction ¢; with j € N satisfies gbé (0) =0 for every [ < 4. Then,

oj(x) = (a} sin(z/ ), a? sin(z/A;), a:; sin(z+/A;), a? sin(z/A;))
with {aé}lg C C such that {¢;}en forms a Hilbert basis of 77, i.e.

L L; cos(Ly \/)T) sin(L; \/)T)
1= / |al,|2 SiHQ(.T\/Y)dl‘ — ’al.‘Q el + j Ay
g 0 J J 24: J ( 5 2\/)\>j )

For every j € N, the condition (MVK) in V; leads to

a]l sin(v/A\jL1) = ... = a? sin(y/AjLn), Zag cos(y/A;Ly) =0,

1<4

Zcot(\/erl) =0, Z \aé\Qsin(Ll\//Tj) cos(Li\/A;) = 0.

1<4 I<N

(20)
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lbm \/>L1

Now, 1 = Z?Zl |a§~|2Ll /2 and the continuity implies al- =

]sm(\/iLl
[ # 1 and j € N, which ensures |a]1-|2(L1 + Z?:z 222(\/\;21)) = 2. Thus,
2 sin?(\/A\j Lo,
O) P et WA

St Lk [ si0* (/A L)

From (20) and (21), we have 2?21 cos(vVAgLy) [ 1,5, sin(vAgLm) = 0. The
validity of [DZ06, Proposition A.11] and Remark A.4 ensure that, for every
€ > 0, there exist C7,Cy > 0 such that

(22)

|a1‘ = 2 > 2 > &>
! Z?:l Ll Sin_Q(\/)\»le) - Z?:l Llcl_Q)\Jl-—H - J1+e

Now, <¢§€, B¢§>L2(€jvc) =0 for every 2 <[ <4 and k,j € N. Let

21,1 5i0°(\/Aj L

Vj € N.

aj(:t): Zk 2LkSIH \/>33 m¢k1$1n \/>L +me¢1Sin2(\//\>ij)’
B . _30\/7x+20\/7x +4\ﬁ1x +15sm(2fﬁ:
1($> :
40/ M
B (@) i 2 SV = VA (VR = V) Gsin(Vhr = V/)e)

(VAL = V)
—6(v M+ /AT + (VAL + /A3 + 6sin((VAL + /A))x)
(VAL + /)

with 7 € N. Each function B = ai(-)v/a;(: is non-constant
and analytic in R*, while we notlce that Blj = (¢1,B¢j> = B; (L) by

calculation. The set of positive zeros V of each B is a discrete subset of
R* and V = UgeNV is countable. For every {Ll}l§4 € AL(4) such that

L1 € V, we have |B1,j| # 0 for every j € N. From Remark A.4 and the
identity (22), the first point of Assumptions I(2 + €) is verified since, for
each € > 0, there exists C5 > 0 such that |B; ;| > % for every j € N.

Let (k,7),(m,n) € I, (k,j)# (m,n) for I denote in (5). We define

—30v/ A%z + 208/ N5 23 + 4y 7P + 15 sin(2v/Apz)
40V 5" '
By calculation, we notice that B;; = (¢;, B¢;) = Fj(L1). Moreover, for

Fjim(z) = Fj(x) — Fi(z) — Fi(z) + Fin(z), it follows Fj g m(L1) = Bj; —
By — Biy + By and Fjj () is a non-constant analytic function for

Fy(x) := a(a)
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x > 0. Furthermore Vj ., the set of the positive zeros of Fjjm(x), is

discrete and V := Uj,k,l,meN Vjkim is a countable subset of RT. For each
J#kAIEm
{Li}1<4 € AL(4) such that L1 ¢ V UV, Assumptions I(2 + €) are verified.

The fourth point of Assumptions II(2 + €1, €3) is valid for each €1,e2 > 0
such that €1 + €2 € (0,1/2) since B stabilizes H2, H™ and Hy} for m €
(0,9/2). Indeed, for every n € N such that n < 5, we have

Vi € Hye = OV Y (BY) (L) = ... = 0V Y(BY) (Ly) =0 = By € Hyy.
From Theorem 2.5, the controllability holds in Hy ™ with € € (0,1/2). O

Proof of Example 1.3. Let 4 be a tadpole graph containing an edge e; self-
closing in an internal vertex v € V; equipped with (NK). The edge ez is
connecting v to the external vertex v; € V. equipped with (V). Let r be
the axis passing along ey and crossing e; in its middle (see Figure 9).

v U1
r €2

€1

Figure 9: The figure represents the symmetry azis r of the tadpole graph.

We construct the eigenfunctions {¢y}ren as a sequence of symmetric
or skew-symmetric functions with respect to r since ¢ is symmetric with
respect to r. If an eigenfunction ¢ = (qﬁ}g, qbz) is skew-symmetric, then

¢ =0, ¢1(0) = ¢p(L1/2) = $p(L1) =0, o (0) = Dy (L1).

We denote {fi}ren the skew-symmetric eigenfunctions belonging to the
Hilbert basis {¢ }ren and {ux }ren the corresponding eigenvalues. We set

{fe}ren = {(\/2171 sin (x2Ller),0> }k:eN’ {1k ren = {4162;2 }keN.

If ¢, = (o1, ¢2) is symmetric, then we have 9,01 (L1/2) = 0 and ¢(-) =
#(L1 — ). The (N) conditions on vy implies that

{gk ke == {(ag cos(y/x(x—L1/2)), af, cos(y/ixx)) bren, with {(ag,aj)}bren C C?,

is the sequence of eigenfunctions symmetric and corresponding to the eigen-
values {pug}ren. We characterize {py}ren by considering that the (NK)
conditions in vy ensure aj. cos(y/ftg(L1/2)) = ai cos(y/mrL2)) and

(23) 2a}. sin(y/px(L1/2)) + a2 sin(y/xL2)) = 0,
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which imply 2 tan(y/i (L1/2))+tan(y/axLz)) = 0. We choose {(a}, a2)}ren C
C? such that {¢x}ren = {fr}ren U {9k }ren forms an Hilbert basis of 2.
In particular, the techniques leading to relation (21) in Example 1.2 imply

2 _ 2 cos?(y/pk(L1/2)) cos?(/mrLo) a2 = 2cos*(\/pk(L1/2))

a
|ak o "

with ay := 2L cos?(\/fig(L1/2)) + L2 cos?(\/fixgL2) and k € N. From (23),
(24)

L . L L i
2 cos (,/,uk31> cos (/1 L2) sin (\/Hk71> + cos? (w/ﬂk%) sin(y/uxLa) =

We underline that cos(y/ux(L1/2)) # 0 for every k € N. Indeed, if there
exists k: E N such that cos(y/ux(L1/2)) = 0, then there exists [ € N so that

e = L2 and gg(v1) = 0. Now, g7 = 0 since py is not an eigenvalue of a
Laplamans on ez equipped with (D) in v and (N) in vy as {L1, L2} € AL(2).
The contradiction follows because the (MK) conditions fail in v since

0293,(0) = —0ugi(L1) #0, = 9,g4(0) — 8z (L1) — Dugi(La) # 0.
If {L1, Ly} € AL(2), then {L1/2, Lo} € AL(2). From (24), we have

2 cos(/pr L) sin(y/1xk(L1/2)) + cos(y/prLr/2) sin(y/pxL2)) = 0

which leads to the validity of the two points of Remark A.6. We consider
the relation (30) and the arguments leading to (22) in Example 1.2. For
every € > 0, there exists C' > 0 such that, for every [ € {1, 2},

(25) lal,| > Ck™', Vk € N.

Let Byt = (1,¢?) = (19", 0) and By : ¢ = (', 9%) = (290", 0) with

2 3
w1 () —Slﬂ(lj ) pa(x) —sm(;1 ) 22 x(r—1Ly)— 67;(15533(;1:—111)3.

As pp is skew-symmetric with respect to r and po is symmetric, we have

(fr, Bifr) = (gr, Bifr) =0,  (fx, Bagr) = (gk, B2fr) = 0.

The remaining part of the example is ensured as Example 1.2. We fix j € N
and we notice by calculation that |< ,Bfh)| = ]( ,Baf)| ~ k75,

(95> Bgr)| = {95, B2gr)| 3/2|Sm((f Vi) L) +sin ((vVity/ig) L) |

(52 Bad] = 1(f;, Bugi)] ~ 121
M

sin (<\//Tk—2Lj:r>L1>+sin <<\//Tk+2£ir>l)1) ‘
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As in Example 1.2, there exists V' C Rt countable such that, for every
{L1, Ly} € AL(2) such that L1 ¢ V, we have |By | # 0 for every j € N.
We consider that sin(a + ) +sin(a — ) = 2sin(«) cos(f) with a, 5 € R. In
(25), we apply Remark A.4 and the relation (31) (from Remark A.6), which
leads to the validity of first point of Assumptions I(3 + €). For every ¢ > 0,
there exists Cy > 0 such that |By ;| > Cok=57¢ for every k € N.

The second point of Assumptions I(3 + €) is verified as in Example 1.2
and there exists V' C RT countable such that, for each {L1, Lo} € AL(2)
such that L; ¢ V UV, Assumptions I(3 + €) are verified.

The third point of Assumptions I1(3 + €1, €2) is valid for each €1,€e2 > 0
such that €1 + e, € (0,1/2) since B stabilizes H, H™ and Hjy} for m €
(0,11/2). Indeed, for every n € N\ {2,4}, we have
V€ Hye = ;1 (BY)'(L1) = 077 (BY) (La) = 0;

Vo € Hie = 0x(B)'(0) = 0x(BY) (L) = 27/ L1, 0a(BY)*(L2) = 0;
V€ Hye = 02(By)'(0) = 03(By)' (L) = =87 /LY, 9;(By)*(La) = 0.
From Theorem 2.5, the controllability holds in HJ™ with € € (0,1/2). O

Proof of Example 1.4. The conditions (D) imply that ¢y satisfies ¢! (0) =0
and ¢} (L;) = 0 for every k € N and [ < N. As {L;};<y € AL(N), for each
k € N, there exist m(k) € N and I(k) < N such that, for every n # I(k),

Ne=mkPPLd, 6 @) = 2L sin (V). of =0,

Hence, { A }ren is obtained by reordering {mL—;T By calculations,

m,leN’
I<N

1
|B1,j| > 2min{Ll2 1< N}’/ x> sin(m(j)mx) sin(m(1)rz)dz|,
0

which is the integral treated in [Ducb, Exzample 1.1]. As in the mentioned
example, for every j € N, there exists C > 0 such that |B;| > % > %
for every j € N since m(j) < j. Now

R LG() L72n(3)
B; 2Lm(j)/0 x“sin®(m(j)mx)dx = 3 Im(j)2at

As done in the proof of Example 1.2, there exists a countable set V' such
that, for each {L;};<y € AL(N) \ V, Assumptions I(1) are verified.

The fourth point of Assumptions II(1, e) is valid for each € € (0,3/2)
since B stabilizes Hg and H™ for m > 0 ( d/\m as there are not
internal vertices in ¢). Moreover, Hy 2td g 2+d , Hy [z C H2 — H? and B
maps H, 2Hd iy g2Hdng 2+dﬂH€¢ for every d > 0. In conclusmn Corollary 2.7
achieves the controllability for every e € (0,3/2) in H;“ T i H 3J+€ O
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A Spectral properties

In the current chapter, we characterize { A\t }ren, the eigenvalues of the Lapla-
cian A, according to the the structure of ¢ and to the boundary conditions
defining D(A).

Proposition A.1. (Roth’s Theorem; [Rot50]) If z is an algebraic irrational
number, then for every € > 0 the inequality ‘z — %‘ < ﬁ is satisfied for
at most a finite number of n,m € Z.

Lemma A.2. Let {)\ }keN and {)\ }k:eN be obtained by reordering

k22 k22 ~
{ L? }kleN’ { L2 }kieN for Ni, Ny € N, ALihisw {Likisy, C R
] ; Ok

1<Ny KR £9 .50}

respectively. If all the ratios L; /Ly are algebraic irrational numbers, then
Ve>0,3C>0 : [Ny — AP >Ck™,  VkeN.

Proof. Let z be an algebraic irrational number. From Proposition A.1,

‘ n C

Ve >0, 3C >0 z2——| > —— vYm,n € N.

Now for every k € N, there exist m,n € N and 4,1 < N such that )‘k+1 =
)\2 )\lchrl #* )\k We suppose L; < L;. If m < n, then for each

L2 9 L2 9
€ > 0, there exists C1 > 0 small enough
‘_me )(m @)‘>2mwm nm >26’1772
L L f/z o El L INJZ o mﬁi? .

=5 | 2 ﬂz(L;2 — E;Q), which implies
3Cy >0 ¢ A=A >Co(k+1)>C2 %, VkeN. 0O

The following proposition rephrases the results of [BK13, T'heorem 3.1.8]
and [BK13,Theorem 3.1.10]. Let {\{ }keN be the spectrum of A on a

generic compact quantum graph 2
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Proposition A.3. [BK13,Theorem 3.1.8] & [BK13,Theorem 3.1.10]

1) Let w, v be two vertices of 4 equipped with (NK) or (N'). If 4’ is the
graph obtained by merging in ¢4 the vertices w and v in one unique vertex
equipped with (N'K), then \{ < )\f, < )\fH for every k € N.

2) Let w be a vertex of 4. If 97 is the graph obtained by imposing (D) on
w, then )\f < )\fD < )‘fﬂ for every k € N.

Remark A.4. Let 4 be compact quantum graphs made by edges of lengths
{Li}i1<n. From Proposition A.3, there exist C1,Co > 0 such that, for k > 2,

(26) C1k? < A < Ok,

Indeed, we define 4P from & by imposing (D) in each vertex. We denote
GN' from 4 by disconnecting each edge and by imposing (N) in each vertex.
The graphs 4P and N are respectively obtained in at most M and 2N
steps from 9 (M and N are respectively the numbers of vertices and edges).
From Proposition A.3, we have )\fﬁfﬂv < )\f < )\ffM for k > 2N. The

N D . . . 2.2

sequences )\f and /\f are respectively obtained by reordering {kT?}zZEJR\If
k—1)272 - . ~ >

and {( L% B }E]R\;[ For 1> 2N +1, m = maxj<y L? and m = minj<y LJZ,

7

AN (I —2N —1)27? - 272 NP o (I + M)3r? < 1292M 72
2N = N2 = 2eNH) N2y THM =y S

The identity (26) is valid for k > 2 as A\ # 0, but also for k=1 if \y # 0.

The techniques from [DZ06, Appendiz A] lead to following proposition.

Proposition A.5. Let {Ly}r<n € AL(N) with N € N. Let {wp, }nen be the
unbounded sequence of positive solutions of the equation

(27) Z sin(xLy) H cos(xLy,) =0, z €R.
I<N m#l
For every € > 0, there exists C. > 0 such that, for everyl < N,

Ce

Vn € N.
wite’

| cos(wyn Ly)| >

Proof. We consider the notation introduced in [DZ06, Appendiz Al as || - ||,
E(-) and F(-). For 2 € R, {Li}r<ny € (RT)N and i < N, we also denote

n(z) = Ba—1/2), ()= F@=1/2), d(@) = lla=1/2]|, i(e) = n(Za).
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From [DZ06, relation (A.3)], for every = € R, we obtain the identities
(28)

2d(z) < |cos(mz)| < wd(x), 2d((ﬁzz($)—|—1) Iii) < ‘cos ((ﬁz%x)—l—i)iiw) ’

2
As cos(ag — ag) = cos(aq) cos(ae) + sin(aq) sin(ae) for aj,as € R and
mi(z) + 3 = %x - r(%x) for every x € R, we have

(29) Qd((ﬁLi(w) + %) II.Z) < |cos(Lyz)| +

s (w22 (2)] )|

From [DZ06, relation (A.3)] and (28), we have the following inequalities
[sin(m|r()DI < rC)I < wlr(-)] = md(-) < §|cos(w(-))], which imply

. Lj (Lz ) ‘ < Lj
smm | T—(r| —x m—
L; ™ - L

From (29), there exists C7 > 0 such that, for every i < N,

Hd(('fﬁ’(:ﬁ) + %)%) < 21\/1—1 H | cos(Ljz)| + Ci| cos(Liz)| Vo eR.

J#i

L; wL;
| — .
r(ﬂ:p)‘_ﬂ; |cos(L;x)|, VzeR

Thanks to (27), if there exists {wy,, } ken, subsequence of {wy, }nen, such that

|cos(Ljwn, )| “22% 0 then [ |cos(Liwn, )| =% 0.
J#
Equivalently to [DZ06, relation (A.10)] (proof of [DZ06, Proposition A.11]),
there exists a constant Cy > 0 such that, for every i € {0, ..., N}, we have

RS | (e B (e e

j 7

Now, we have [|z(-) [l > I - [l and I(-) = 1[] = || - [I. We consider
the Schmidt’s Theorem [DZ06, Theorem A.7] since {Ly }r<ny € AL(N). For
every € > 0, there exist Cs3, C4 > 0 such that, for every n € N, we have

1 . 1\ 2L; Cs
Lwy)| > - '(wn, =)= ~i
C| cos(Liwn)| _jl;Ii? I (7 (wn) + 5 ) - . 1> Grin T

C 3 04

> .
= 21+6 (an N 1>1+E — w71L+6
T

Remark A.6. The techniques adopted in the proofs of Proposition A.5
and [DZ06, Proposition A.11] lead to the following results. Let {Ly}r<n €
AL(N) with N € N. Let {wp}neny C RT be an unbounded sequence.
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o If, for every j < N, the ezistence of {wp, }ren, subsequence of {wy }nen,

such that | cos(Ljwn, )| N implies H#i\cos(Liwnk)] LN 0,

then, for every € > 0, there exists C. > 0 such that, for every I < N,

Ce

(30) | cos(wnLy)| > —Ire

Vn € N.

o If for every j < N the existence of {wn, }ken, subsequence of {wp }nen,

such that |sin(Ljwy, )| LN implies H#i|sin(Liwnk)\ LmiN 0,

then, for every e > 0, there exists C. > 0 such that, for every I < N,

Ce

(31) | sin(wy, Ly)| > Tre

Vn € N.

B Moments problems

Let . be a Hilbert space over a field K for = C or R and { f,,}nez C F.
In this appendix, we study the so-called “moments problem”, which consists
in finding v € 2 such that, for a {x, }nez € 2(K), there holds

Tn = <'U7fn>,%ﬂa n € Z.
We assume # = L*((0,T),R) and {fn}nen = {0 },en that lead to

T
Ty = / ePnsu(s)ds, {z,}nen € 2(C), weA.
0

Let Z* = Z\ {0}. We assume the numbers A = {\;}rez+ are not uniformly
separated but pairwise distinct and there exist M € N and § > 0 such that

. x> SM.
(32) Jnf Ak = Al 2 OM

From (32), we notice that there does not exist M consecutive k € Z* such
that |[A\g+1 — Ag| < 6. This fact leads to a partition of Z* in subsets that we
call E,, with m € Z*. By definition, for every m € Z*, if k,n € E,,, then
Ak — An| < 6(M — 1), while if k € E,,, and n & E,,, then |\ — A,| > 0.

The partition also defines an equivalence relation in Z* such that k,n €
Z* are equivalent if and only if there exists m € Z* such that k,n € E,,.
The sets {Ey, }mez- are the corresponding equivalence classes and i(m) :=
|Em| < M — 1. For every sequence x := {x;}cz+, we define the vectors
x" = {z1}ieE,, for m € Z*.

Let h = {hi}j<iom) € C'™) with m € Z*. For every m € Z*, we denote
Fm(ﬁ) : CHm) — C™) the matrix with elements, for every j, k < i(m),

IT 1z (R — h)~t, J<k,
~ 1<I<k
P () =4 1, j=k=1,
0, j>k.
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For each k € Z*, there exists m(k) € Z* such that k € E,, ;). Let F'(A)
be the linear operator on ¢?(C) such that F(A) : D(F(A)) — ¢2(C) and

(FAR), = (Fno(A"@)x™®) | vx = {ai}ieze € D(F(A)),

H(A) := D(F(A)) = {x:= {zp}rez- € *(C) : F(A)x € £*(C)}.

Proposition B.1. Let A := {A\;}rez be an ordered sequence of real num-
bers satisfying (32). If there exist d > 0 and C' > 0 such that

(33) Mis1 — M| = Clk|™ ™1 Wk € 27,
then we have H(A) 2 h%(C).

Proof. Thanks to (33), we have |[A\; — A\gy| > C'mineg,, \l]_ﬁ for every
m € Z* and j, k € E,,. There exists C1 > 0 such that, for 1 < j, k < i(m),

|Fm;j,k( ™) <C'1(max|l|M 1)k <Cl(lrggx|l|/vt 1)M 1

< ¢ 2Fmld min (7@
leEm leEm

and |Fy,.1.1(A™)| = 1. Then, there exist Cy,C3 > 0 such that, for j < i(m),
my* m : 2d my* m : 2d
(Fu(A™)" En(A™), ;< Co oin [P, Tr((Fr(A™)" Fru(A™)) < Ca min |1

with F,,,(A™)* the transposed matrix of F,,,(A™). Let p(M) be the spectral
radius of a matrix M and we denote ||M || = /p(M*M) its euclidean
norm. As (F,(A™)*F,,(A™)) is positive-definite, there holds

Il Fon(A™) 1% = p(Fm (A7) Frn(A™)) < Cy min >, Vi € Z°.

In conclusion, ||[F(A)x[|% < C3\|X|’Zg < +oo for x = {xp brez € hJ((C) as

2 : 2d 2
IFA)x[IE < Y I Ea(A™) 12 ) |ul* < Cs ) fnin |l >l
mez* leEm mezZ* l€EEm
O
Corollary B.2. If A := {\; }rez+ is an ordered sequence of pairwise distinct
real numbers satisfying (32), then F(A) : H(A) — Ran(F'(A)) is invertible.

Proof. Asin [DZ06, p. 48], we define F,,(A™)~! the inverse matrix of F,,(A™)
for every m € Z*. We call F(A)~! the operator such that (F(A)"'x); =
(Fm(k)(Am(k))*lxm(k)) for every x € Ran(F ( )) and k € Z*, which im-
plies F(A)"'F(A) = Idya) and F(A)F(A)™ = Idpan(r(a))- O
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For every k € 7Z*, we have the existence of m(k) € Z* such that

k € En@). We define F(A)* the infinite matrix such that (F(A)*x), =
(Fm(k)(Am(k))*Xm(k))k for every x = {x3}xez- and k € Z*, where Fm(k)(Am(k))*

is the transposed matrix of Fi, ) (A™R)), For T > 0 , we introduce
e:={e™'},cz- € L*((0,7),C).

Let t € (0,T) with T > 0. We call &(t) = (F(A)*{e"'}jez-), for every
k € Z*. By considering each & (t) as time-dependent function, we denote

E = {&()}hez- = F(A)'e C L*((0,7),C).

Remark B.3. Thanks to Proposition B.1, when {Ar}rez~ satisfies (32),
the space H(A) is dense in (*(C) as H(A) D h® which is dense in (>. In
this case, we can consider the infinite matriz F(A)* as the unique adjoint
operator of F(A) with domain H(A)* := D(F(A)*) C ¢*(C).
By transposing each F,,(A™) for m € Z*, the arguments of the proof of
Corollary B.2 lead to the invertibility of the map F(A)* : H(A)* — Ran(F(A)*)
and (F(A)*)™t = (F(A)™Y)*. Moreover, H(A)* D h? as in Proposition B.1.

In the following theorem, we rephrase a result of Avdonin and Moran
[AMO1], which is also proved by Baiocchi, Komornik and Loreti in [BKL02].

Theorem B.4 (Theorem 3.29; [DZ06]). Let {\;}rez+ be an ordered se-
quence of pairwise distinct real numbers satisfying (32). If T > 2x/§, then
2

{&k } ke~ forms a Riesz Basis in the space X := span{&| k € Z*}L .

Proposition B.5. Let {wi}ren € RT U {0} be an ordered sequence of real
numbers with wy = 0 such that there exist d,6,C > 0 and M € N with

d
gng |wk+ i — wi| = IM, |wgt1 — wi| > Ck™ ™-1, Vk € N.
€

Then, for T > 2n/§ and {zk}ren € hcz((C) with x1 € R, there exists u €
L%((0,T),R) such that

T
(34) Tp = / u(T)erT dr Vk € N.
0

Proof. From the definition of Reisz basis ([BL10, Appendix B.1; De finition 2|)
and [BL10, Appendixz B.1; Proposition 19; 2)], the map M : g € X —
{{&k> 9) L2(0.1),0) hez~ € ¢%(C) is invertible and, for every k € Z*, we have

€k 9) r2(0,1),c) = (F(A)*(e,9) r2((0,1),C) k-
Let X := M1 oF(A)*(h‘;((C)). From Remark B.3, we have H(A)* D h‘;((C).
The following maps are invertible (F'(A)*)™! : Ran(F(A)*) — H(A)* and
(F(A)*) P oM:ge X {(e,g9)r2(01)c)trezs € h*(C).
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Let I :x € 2(C) +— X € £?(C) be the complex conjugation. The map
To(F(A) )" oM :ge X {(g,¢) 201, hez € h(C)

is invertible. For every {xj}rez € h‘i((C), there exists g € X such that
Tp = fOT g(T)e7dr for every k € Z*. For u =g € L*((0,T),C), we have

T
xR = / u(r)eMTdr, VkeZ".
0

When k > 0, we call \p = wg, while A\ = —w_j, for k£ < 0 such that k # —1.
The sequence {Ag}rez-\{—1} is such that there exists C1 > 0 satisfying

inf [Aerore—Mel > OM, Mgt — k| > Cilk| ™1, Wk e Z°\{-1}.

Given {z}}ren € £2(C), we introduce {@k}eez\{-1) € ¢%(C) such that &}, =
xp for k > 0, while ), = T_ for k <0 and k# —1. As above there exists
u € L*((0,T),C) such that z; = fo s)ds and T = fo e~ wrsds for
every k € Z* \ {—1}, which implies and

T T
/ u(s)eM3ds =y, = / u(s)eM 4 ds, keN\{1}.
0 0

If 71 € R, then u is real and (34) is solvable for u € L?((0,T),R). O

Proposition B.6. Let {\i}rez be an ordered sequence of pairwise dis-
tinct real numbers satisfying (32). For every T > 0, there exists C(T) > 0
uniformly bounded for T lying on bounded intervals such that, for every
g € L*((0,T),C), we have

T .
/ ez)\(.)sg(s)ds
0 02

Proof. Let {wy}ren C R be such that v := infyz; |wx — w;| > 0 and L? :=
Lz((O T) C). Thanks to the Ingham’s Theorem [KLO05,Theorem 4.3], for
T > 2 the family of functions {e**()},cz is a Riesz Basis in

< C(M)gllz2(0,7).c)-

. L2
X = span{er() : k € N}
From [Duca, relation (29)], there exists C1(T") > 0 such that

3 e 0, u) 2 < CUT) ulZe,  Vu € X
keN

Let P: L? — X be the orthogonal projector. For g € L?, we have
(e, g) 2 }ren | o = [[{(e*), Pg) 12} ken]| 2 < CL(T) | PyllL2 < CL(T) gl L2

32



Let {Ar}rez- be introduced in the hypotheses. We decompose {Aj}ren
in M sequences {\ }ren with j < M such that

inf X, — M| > oM, Vi< M.
oy
Now, for every j < M, we apply the point 1) with {wg treny = {)\i}keN For

every T > 2m/6M and g € L?, there exists C(T) > 0 uniformly bounded
for T' in bounded intervals such that

€0, g 12 Yen

M
XL (-
PR B [{CR NPy
j=1

» S MCDglz2.

Thus, || fOT ei’\(')Tg(T)dtHez < O(T)||gl/z2 and, for every g € L?, we obtain

T
| [ ePomama], < Mool

In conclusion, for T > 27w /6 M, we choose the smallest value possible for
C(T). When T < 27 /6M, for g € L?, we define g € L?((0,27/5M + 1),C)
such that g =g on (0,7) and § =0 in (7,27 /M + 1). Then

T 2 /SMA+1
/ e g(7)dt / 0T g(r)dt
0 0

Let 0 < Ty < Ty < +00, g € L?(0,T}) and § € L?*(0,T») be defined as § = g
on (0,77) and g = 0 on (71, T2). We apply the last inequality to g that leads
to C(Th) < C(T»). O

< MCQ2r/6MA+1)| gl 12-
02

EQ

C Analytic perturbation

The aim of the appendix is to adapt the perturbation theory techniques
provided in [Ducb, Appendiz B], where the (BSE) is considered on ¥ =
(0,1) and A is the Dirichlet Laplacian. As in the mentioned appendix,
we decompose u(t) = ug + up(t), for ug and wuy(t) real. Let A+ u(t)B =
A+ upB + uy(t)B. We consider ugB as a perturbative term of A.

Let {A\;°}jen be the spectrum of A +ugB corresponding to some eigen-
functions {¢;°}jen. We refer to the definition of the equivalence classes
{Em}mez provided in the first part of Appendix B.

We denote as n : N — N the application mapping j € N in the value n(j)
such that j € E,;), while s : N — N is such that A\y;) = inf{\x > \; | k ¢
E,jy}. Moreover, p : N — N is such that \,;y = sup{k € E,;}.

The next lemma follows from the techniques adopted in the proofs of
[Ducb, Lemma B.2] and [Ducb, Lemmma B.3].
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Lemma C.1. Let the hypotheses of Theorem 2.3 be satisfied. Let j € N and
2

PjL be the projector onto span{¢m : m & E,;)} L . There exists a neigh-
borhood U(0) small enough of u =0 in R such that there exists ¢ > 0 such
that, for every up € U(0) and k € N,

Il (A+uB—vp) 'l <e, Ve = (Asi) — Ap(ie))/2-

Moreover, for ug € U(0), the operator (A+uoP-B — \j°) is invertible with
bounded inverse from D(A) N Ran(Pi-) to Ran(Pg) for every k € N.

Lemma C.2. Let the hypotheses of Theorem 2.3 be satisfied. There exists a
neighborhood U (0) small enough of u =0 in R such that, up to a countable
subset Q and for every (k,j),(m,n) € I, (k,j) # (m,n) (see (5)), we have

NO NI NI NN L0, (G, BOW) £0,  Vug € U(0)\ Q.

Proof. For k € N, we decompose the perturbed eigenfunction as follows

(35) GO =ardr+ Y. Biey+m

JEE, (1 \{k}

where a; € C, {Bf} C C and n is orthogonal to ¢; for every | € Eq.
Moreover, lim|,,|—o |ax| = 1 and lim, o \BJ’“\ =0 for every j,k € N and

uQ LU k4
— (A B ! — A
A0 = (A4 uoB)(ardr + E Bidj + k) agdp
JEEL 1y \{k}

TE€En (k) \{k} FE€En iy \{k}

Now, Lemma C'.1 leads to the existence of C; > 0 such that, for every k € N,

(36)

me=— (At wPtB =N R) two(wPt B Y BiRBo)
JEEL (1) \{k}

and [[ng|| < Cilup|. We compute A\,° = (4,2, (A + ugB)¢,°) and

A = lanl* Ak + (s (A+uoB)m) + > NlBIP+uwo > 1851 Bra

JEE, 1y \{k} JEE, (1) \{F}
+ uo > BEBEBji+uo > 1BfIP(Bj; — Bi) + uolakl’ B
TlEEL ) \{k} j# J€E,m\{k}
+2uR( > Bl Bé) @ > BiBeg+ax(on Bk
JE€EE L \{k} JE€EE L) \{k}
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Thanks to (36), it follows (ng, (A + woB)mk) = Ap°||Ink[® + O(ud) and there
exists fy such that lim, o fx = 0 uniformly in k and

M= (= Il (lanl+ DT A/ MlBER ) w
JE€EE, 1 \{k}

+uo(t = ImelP) ™ (Jax2+ D0 18FP) B + o + O(ud).
JEE, (k) \ 1K}

For a == (1 — [lnl®)" (el + Xjem, o ry [B51) as [kl < Caluol, it
follows lim, ¢ [@x| = 1 uniformly in k. From [DZ06, Proposition 6.2; 5)],
we have lim,, ;oo Ap/n% = 772/(25\;1 Ll)2 and, thanks to sup,cy | Ej| < M,

lim inf )\j)\k_l = lim sup )\j)\k_l =1.
k—+o0 jEEn<k)\{k} k——+o0 jEEn(k)\{k?}

For @ = (1)~ (o455, i Mg/ A BET2), we b T o ] =
1 uniformly in k£ and

(37) )\ZO =apA\p + ankBk,k + U()f]/C + O(ug)

When A\, = 0, the result is still valid. For each (k,7), (m,n) € I such that
(k,7) # (m,n), there exists fk jm,n such that lim, o fk,jmn = 0 uniformly
in k,j,m,n and

)\ZO — )\}LO — )\Umo + )\ZO = apAp — ’dj)\j — AmAm + AnAp + UOfk,j,m,n
-+ uO(akBng — aijJ' — ZL\mBm,m -+ aanm) = apA\ — Ej)\j

— AmAm + @Ay + uo(@kBr g — @jBjj — GmBmm + @nBnn) + O(ud).

Thanks to the third point of Assumptions I, there exists U(0) a neighborhood
of u = 0 in R small enough such that, for each u € U(0), we have that
every function Ay — AJ® — A0 + AR is not constant and analytic. Now,

Vikjmmn) = {u € D| Xt — A} — A, + A = 0} is a discrete subset of D and
V ={u€ D|3((k,5),(m,n)) € I : X =\ — A\l + At = 0}

is a countable subset of D, which achieves the proof of the first claim. The
second relation is proved with the same technique by considering that, for
every j, k € N, the analytic functions ug — (¢;°, B¢’) can not be constantly
zero since (¢;, Boy) # 0 and W = {u € D| 3(k,j) € I : (¢;°, B¢y") = 0} is
a countable subset of D. O

Lemma C.3. Let the hypotheses of Theorem 2.3 be satisfied. Let T > 0
and s = d + 2 for d introduced in Assumptions II. Let ¢ € R such that
0 o(A+ugB+c) (the spectrum of A+ugB+c) and such that A+uoB+c

35



is a positive operator. There exists a neighborhood U(0) of 0 in R such that,
for any ug € U(0),

H|A+UOB+C|%-

< -l
Proof. Let D be the neighborhood provided by Lemma C.2. We define a
neighborhood U(0) C D such that the claim is achieved. The proof follows
the one of [Ducb, Lemma B.6]. We suppose that 0 € o(A + upB) and
A+ ugB is positive such that we can assume ¢ = 0. If ¢ # 0, then the proof
follows from the same arguments.

Thanks to Remark 2.1, we have || - [|5) < [||A]2 - ||. We prove the existence

of Cy,Co,C3 > 0 such that, for every ¢ € D(|A + u0B|%) = D(|A\%),

(38)
1A +uoB|2¢|| = (A +uoB)29|| < Crl| A9 + Colll| < Cs]|Az4].

Let s/2 = k € N. The relation (38) is proved by iterative argument. First,
it is true for k = 1 and k = 2 since if B € L(D(A*)) for 1 < ky < 2, then
there exists C' > 0 such that |ABvy| < C|| B]| D(Akl)HAklsz for ¢ € D(A).
As B € L(J#), there exist Cy, C5 > 0 such that, for ¢ € D(A?),

1(A +uoB)?0l| < A% + [uol* | Bl + Juol | ABY|| + |uo| | BAY|
< 1A%l + fuol* | B2 I 192 ]| + Caluol | Bl Lipeary ¥l + luol 1B 1 12l z)

and ||(A + uoB)?¢| < Cs||A%Y|. Second, we assume (38) be valid for
k € N when B € L(D(A%)) for k—j —1 < k; < k — j and for every
j €10,....,k —1}. We prove (38) for k + 1 when B € L(D(A*)) for k —j <
kj < k—j+1 and for every j € {0,...,k}. There exists C' > 0 such
that ||A*By| < C|| B| D(Ak0)|]Ak0¢H for every ¢ € D(AF*1). Thus, as
(A + uoB)*+1e|| = || (A + uoB)*(A + uogB)y|, there exist Cg,C7 > 0 such
that, for every ¢ € D(AF1),

(A + uwoB) || < Co(|| A1 || + [uo||APBY || + (| Av|| + |uo| | By ||) < Crl| ARy,

As in the proof of [Ducb, Lemma B.6], the relation (38) is valid for any
s < k when B € L(D(A*)) for k —1 < kg < s and B € L(D(A*)) for
k—j—1<k;j <k—jand for every j € {1,..,k — 1}. The opposite
inequality follows by decomposing A = A + ugB — ugB.

In our framework, Assumptions IT ensure that the parameter s is 2 4 d.

If the third point of Assumptions II is verified for s € [4,11/2), then B
preserves HX}IC and Hé for dyi introduced in Assumptions II. Proposition

3.2 claims that B : Hél — Hél and the argument of [Ducb, Remark 1.1]
implies B € L(HY').

36



If the second or the fourth point of Assumptions II is verified for s € [4,9/2),
then B € L(#), B € L(H2) and B € L(HY) for di € [d,9,2) since
B stabilizes H% and Hé for dy introduced in Assumptions II. Thanks to
Proposition 3.2, B : Hél — Hél and the argument of [Ducb, Remark 1.1]
implies B € L(Hg').

If s < 4 instead, then the conditions B € L(%) and B € L(H2) are
sufficient (see [Ducb, Remark 1.1]). O

Remark C.4. The techniques developed in the proof of Lemma C.3 allow
to prove the following claim. Let the hypotheses of Theorem 2.3 be satisfied
and 0 < s1 < d+ 2 for d introduced in Assumptions II. Let ¢ € R such that
0 ¢& o(A+ugB + ¢) and such that A+ uyB + ¢ is a positive operator. We
have There exists a neighborhood U(0) C R of 0 so that, for any uy € U(0),
we have ||[|A+uoB +¢| 7 - || < || - [|(s1)-
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