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The problem of fixed-time fuel-optimal trajectories withghithrust propulsion in the vicinity of a Lagrange point
is tackled via the linear version of the primer vector thedviore precisely, the proximity to a Lagrange point i.e.
any equilibrium point - stable or not - in the circular resteid three-body problem allows for a linearization of the
dynamics. Furthermore, it is assumed that the spacecmftiigimbaled thrusters, leading to a formulation of the cost
function with the 1-norm for space coordinates, even thaugéneralization exists for steerable thrust and the 2-norm
In this context, the primer vector theory gives necessadysaifficient optimality conditions for admissible solutgn

to two-value boundary problems. Similarly to the case oflemvous in the restricted two-body problem, the in-plane
and out-of-plane trajectories being uncoupled, they candated independently. As a matter of fact, the out-of-plan
dynamics is simple enough for the optimal control problerbaécsolved analytically via this indirect approach. As
for the in-plane dynamics, the primer vector solution ofdbecalled primal problem is derived by solving a hierarchy
of linear programs, as proposed recently for the aforeroeatl rendezvous. The optimal thrusting strategy is then
numerically obtained from the necessary and sufficient itmmg. Finally, in-plane and out-of-plane control lawe ar
combined to form the complete 3-D fuel-optimal solution.sRié&s are compared to the direct approach that consists
in working on a discrete set of times in order to perform optation in finite dimension. Examples are provided
near various Lagrange points in the Sun-Earth and EarthAvlystems, hinting at the extensive span of possible
applications of this technique in station-keeping as welression analysis, for instance when connecting manifolds
to achieve escape or capture.

I. INTRODUCTION such orbits can be dynamically unstable, creating a need
) ) ) ) ) _for station-keeping. Even in a stable configuration, otbita
Lagrange points, a.k.a. libration points, are interesting,y,rhations such as radiation pressure can be enough to

in binary systems e.g. Earth-Moon, since they are motiqiy,ire trajectory corrections. Hence the minimization of
less in the corotating frame, and thus offer continuous Vigis| consumption for trajectories in the vicinity of libra-

ibility over one or two of the main bodies. A favoured typg, points is a topic of high interest. This problem can

of orbit around Lagrange points is the so-called halo ong, tormulated as an optimal control probfefrand tack-
due to its periodicity. Depending on the binary system,
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led by a direct or indirect approach. Generally Speak"@ven by: [|ul|1p= . Ju(v)||pdv. Let BV([vo, vs], R")

the direct approach consists in discretizing the continu- N b - _
ous control variables into a finite number of paramete?€ the space of functions of bounded variation over the in-
that can be fed to a nonlinear programming sclve®n - _ . N

the other hand, the indirect approach builds on the rgrvallvo, vy with: {lgle.p= Suf)zng(%) 9(i1)llp,

. . . . =1
ture of the problem and aims at guaranteing the optimalijhere the supremum is taken over all finite partitions
of the solution by looking at the so-called co-state varp_ — (vi)i=1....r Of [0, v7]. For a symmetric real matrix
ables, a somewhat generalisation of the Lagrange mulfi-= R"<", the notationS < 0 (S = 0) stands for the

pliers* . For space trajectories with high-thrust propulsiofegative (positive) semi-definiteness$f Finally, y .4 is
and parametrized with Cartesian coordinates, the indirgs¢ indicator function of the set.

approach is best known as the primer vector theory, due
to the work of Lawden in the early 196&%. In short, II. LINEARIZED DYNAMICS OE THE CR3BP
it states optimality conditions for a trajectory in terms of ] ] )
a vector (primer vector) whose magnitude has to be al- The circular restricted 3-body problem deals with the
ways smaller or equal to one for optimality certificatiofinotion of a negligible mass: (a spacecraft for instance)
The dates or locations where it reaches unit norm are @féected by Keplerian gravity field of two primary massive
ones where the optimal maneuvers should occur. WHagdi€sma < my orbiting in a circular orbit around their
these optimality conditions are only necessary with nof@rycentreB. This relative motion is classically studied
linear dynamics, they become sufficient in a linear sdft @ non-inertial synodic frameB, i, j, k) rotating with
ting, as proven rigorously by Neustatit The general, the two major point-masses; andms which origin is
non-linear theory has already been applied to high-thriR¢ated atB. Thez-axis is directed from the primany:,
trajectories in the restricted 3-body problem, see for ifR the primaryms, the z-axis is parallel to the direction
stance the work of Hiday-Johnston & Howfetlr Davis et of the orbital angular velocity vector of the primary sys-
al® . Despite their more general framework, the optimalif$m With respect to an inertial frame and thexis com-
conditions in this formulation lack the sufficiency of th@l€tes the right-handed system as depicted on Figure 1.
linearized dynamics that are yet available in the vicinitj® mean motiow of the primary system is constant and
of a Lagrange point. Furthermore, the optimal solutidven by:

to this control problem under the linear approximation, W!R® = G(my +ms), (1]
along with its co-state, could be a good initial guess farhereG is the gravitational constant arl the distance

the nonlinear case to be tackled indirectly. In this worketweenn; andms..

a modern numerical approach, based on convergent dis-

cretization methods for the solution of semi-infinite con- v Ay
vex problem (SICP¥ and heuristically improved from the
one used for the restricted 2-body problerh jiis intro-
duced for trajectories near any of the libration points in
the circular restricted 3-body problem (CR3BP). In order
to speed up the procedure, it is coupled with recent ana-
lytical results in the linear theory of the primer vector

Ls m

Notations The velocity increment at; will be de-
noted byAV (v;). {bi}i=1..n IS @ sequence of vari-
ablesb;, ¢ = 1,---,N, andsgn(z) is the sign func-
tion of the variablez. The prime denotes differentiation
with respect to the true anomaly O, and1,, de-
note respectively the null matrix of dimensiopsx m
and the identity matrix of dimensiom. Letr € N*
and (p,q) € (R x {oo})?2 suchthat:1 < p < oo F
and + ¢ = 1. Classically,C([vo, vs],R") is the Ba-
nach space of continuous functiofis: [vy,vf] — R”
equipped with the normif|l,= sup ||f(v)|4. Denote

g. 1: Libration points geometry in the corotating frame

[l.i Non-linearequationsof motion

vo<v<vy Defining the normalized mass parameter
by £1 ([0, v¢], R") the normed linear space of Lebesgue mo
integrable functions fromjvy, v¢] to R” with the norm e (2]
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as the mass ratio of the primary system (also defined adDefining the small perturbation of a nearby trajectory

the non dimensional distance of; to B), it is readily around an equilibrium poink;, wherei € {1,...,5}, the
obtained that: linearized autonomous equations of the relative motion of
Rims m around the Libration poinL; are then given in state-
= e —Ry, [3] space form as:
LT X(v) = AX(v), [10]
le
vy = o =R ). [4] wherex” = [ 6z &y 6z 62/ 6y &2 |and
Based on a Lagrangian formulation of the CR3TBP and 0 0 01 0 O
changing the independent variable from the titie the 0 0 0 0 10
true anomalyv of the primary system, the non-linear , 0 0 0 0 0 1
equations of motion of the third body. expressed in | 1=Uze  —Usy 0 0 2 0|’
cartesian coordinates:, y, z) in the rotating frame are —Uzy 1=Uyy 0 -2 0 0
given by23: 0 0 ~U,. 0 0 0
. . [11]
o~ _BA-p+ Ry Rl — RO - p)
[121]]? l[72? 3 3
R3(1 — R
+2y + [5] U.. = (3 Q) + = = [12]
"L, TaL;
1—p)R3y  upR3y Upe = U,, —
y// _ 7( _{L>3 7,“_’ 372x/+y, [6] T X )
121 (|22 31— R (wr, — R1L—p)?
5
Jo— (1—-p)R>2 . pR?z [7] rlL;
A SuBee, + Rp)” [13]
TS,
where|| 71 || and|| 72 || are the distances from the third body 2L
to respectivelyn; andms, ()’ is the derivative with re- 5
spect to the true anomaly and2 = w. A normalized Uy = 3 -pR (mL% — RO —p)yri
form (R = 1 andw = 1) of these equations may be found "L,
in a more recent referente 3uR?(zr, + Rp)yr, [14]
5 K
ILii Linearizedequationsroundthelibration points "2L;

Itis well known that the dynamical system represented ,, . 3(1—pR%E,  3uR’yi, [15]
by Equations [5]-[7] exhibits five equilibrium points, the oo T oy ry
so-called libration points, which are stationary point8wi
respect to the rotating system. The negligible mass and
placed at these points with zero initial velocity will re- _ 5, 9
main there if there is no external perturbation. All five ML = \/(T/Li R+ [16]

equilibrium points lie in the: — y plane and two families _ _ Y 2
of libration points are distinguished. Thellinear points 2L = \/(T/Li R =w)* yi. 7]
L;-L3 for whichy = 0 andz = 0, satisfy the following  The dynamical matrix is a time-invariant matrix and
equation: its associated transition matrdx(v, 1) for Equation [11]
is given byexp(A(v — 1vp)). Note that thex — y in-

3 3
= (C DI plt . g] plane and out-of-plane motions are completely decoupled.
2 2 [ ]
(z+ Rp)?  (z— R(1—p)) SinceU.. > 0, the out-of-plane motion is an harmonic
Thetriangularor equilateral pointd. 4, Ls are defined oscillator with pulsation/U. , while the in-plane trajecto-
by z = 0 and: ries may be bounded or not depending.oand the initial
conditions.
3 (9]
y = =%°R. Ill. A PRIMER VECTOR APPROACH

A typical geometrical configuration of all libration points The primer vector theory is the historical name given
is given in Figure 1. to an indirect approach to the design of fuel-optimal
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space trajectories. The seminal results dates back toBmeblem 3.2. (Minimum norm moment problem) Find
fifties and the beginning of the sixties with the works(t) € £ ([0, v¢], R") solution of the minimum norm
of Lawdert® 4which have been rigorously confirmed bynoment problem:
Neustadt in linedr and nonlinea settings right after. In v
this paper, since we are interested by designing minimum- .
fuel transfer trajectories around the libration pointdyon Hif ||U||} p=if /VO )l [20]
its Iinegr version is used gnd described. The main lines of /V’ Y (o)u(o)do = ¢, vy, vy fixed.
the review of the theoretical background of the proposed o
results are based on the referehce
It is well-known that Problem 3.2 may not reach its

lILi Problemstatemenéndits momentcounterpart optimal solution due to concentration effects (see the ref-

Designing minimum-fuel transfer trajectories arounerencé') . It is then necessary to resort to a relax-
the libration points in the CR3BP setting naturally boilgtion scheme by embedding the spake,([vo, v¢], R")
down to solving the following linear optimal control probin the dual spac&*([vy, v¢],R") of the Banach space

lem: C([vo, vs], R").
Problem 3.1. (Optimal cgntrol problem) _ lILii A relaxedproblemandits SICPformulation
t[:rgdp?ogleﬁr#p([m vs], R%) solution of the optimal con- 2176 solutions of the original Problem 3.2 may

be obtained as the solutions of the following relaxed mo-
ment problem.

vy
= inf [ )l
st. X'(v) = AX(v) + Bu(v), [18]
X( 0) = Xp, X(l/f) = Xf € R"™,
Vv e [w,vy], vo, vy fixed,

Problem 3.3. (Relaxed moment problem)
Determineg € BV ([vg, v¢], R™) solution of the following
problem:

inf lglleo p= meUPZHg vi) = g(Wi-1)llp;

whereB” = [ O¢,_,)x» 1. |. The state vector di- [21]
mension and the number of inputs in [10] are denoted .t / Y (v)dg(v) = c.
andr, respectively withm = 2, » = 1 for the out-of-plane
case anth = 4, r = 2 for the in-plane case. The value of
the integep actually depends on the geometric configura- P, = {vo = 11 < va,---,< v, = vy} is any finite
tion of the thrusters. For a steerable thrustes; 2, while partition of [y, v¢]. It is shown irt” that the infimum of
for 6 ungimbaled identical thrusteps = 1. Problem 3.3 is reached and that it is equal to the infimum

Following the approach froi , Problem 3.1 is now of Problem 3.2, denoted byin what follows. The asso-
transformed into an equivalent problem of moment [gjation between the spad&V ([vy, v¢], R") and the dual
integrating equation [18]. Let us define a fundamefi*([vo, v¢], R") of the spac€([vy, v¢], R") defined in the

tal matrix p(v) for Equation [10] (i.e. ®(v,1y) = Riesz Representation Theorem and the use of a duality
o()p~t(v)) and the matrixY(v) = ¢ '(v)B = principle based on the extension form of the Hahn-Banach
[ 51(v) - yn(v) |7 € R, then: theoren® are the basic elements for the next result, orig-
inally given int” in its complete form and partially #
¢ = o v X(vs) — o )Xo fpr particularoptﬁmization problems. Here, we follow the
v . lines developed in the textbook of [16, Chapter 5] .
¢ " (0)B(o)u(o)do 19
; [19] Theorem 1. Lety;(-) € C([vo,vy],R"),Vi=1,-
/ Y (o)u(o)do. q = =25 the conjugate index and suppose that
It is important to notice for the remainder of the analy-p — {g € BV([vo, vyl / Y (v)dg(v
sis that for the specific matricd$(v) encountered in the
studied problemy; (v) - - - y,,(v) are linearly independent. [22]

elements of([v, ], R"). This will be assumed in the!S @ NON empty set then
rest of the paper. It follows from [19] that Problem 3.1 . B Ty 23
can be equivalently written as: = _f,rélgllg”t“’p_ ||YT?3)aAXHqg1 o (23]
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In addition, letg and A be optimal solutions of [23], wheres;(?;) are given by:

A = Ar max ¢\ and letg(v) = Niyi(v) = . . N N
9y <1 ] yv) ; bi) Bi(0;) =Y yis(95)sen(ys(95)), whenp = 1,

YT(v)X € R". Then the optimaj is such that: or =1

/ XY W) = swp 15O Tles  24] BB = D i)l (25)]7 sen (i (55)),
vo vo<v<v s=
! whenl < p1< 00,
(28]

The two problems defined in Eq. [23] may be considorall j =1,---, N.

ered as dual through the equality of the optimal values of This theorem states important results that have been
their respective objectives and the relation between thgifown for a while in the aerospace community but whose
solutions thanks to the condition in Eq. [24]. This resultgjue has not been completely exploited to derive effi-
in a significant simplification: The infinite-dimensionagient numerical algorithms for impulsive maneuvers de-
optimization Problem 3.3 has been converted to a seaggdh. First, it says that the optimal controlled trajectory
of an optimal vectoA in a finite-dimensional vector spacggy the minimum-fuel linearized optimal control problem
submitted to a continuum of constraints, yielding a semis purely impulsive and that the number of impulses is
infinite convex problem (SICP): upper-limited byn which is the dimension of the fixed

Problem 3.4. (SICP problem) Find: € R" solution of final conditions of the optimal control problem.

Remark 1. Itis also shown i#’ that a sequence of func-
f=min —c'\ tionsu.(-) € L1 ,([vo, v¢],R") convergesto a linear com-
AER™ [25] . ’ . . .
T < bination of §(-) functions corresponding to the function
Y7 ()Alg< 1. .
g(-) with equal norms. LeAV (2;) = g(¥;) — g(v; ),
ethen roughly speaking, this may be described by:

Note thatz = —7. Once its solution is obtained, th
relation [24] between the functigy(-) element of the Ba- N
nach spacé([v, vf], R") and the optimal vectok is par- uc(v) — > AV(%)d(0;—v), e>0.  [29]
ticularly important to get back to the optimal bounded j=1

variation solution of the relaxed Problem 3.3 as shown jRgeed, the initial optimal control problem amounts
the following result from’ . to find the sequences of optimal impulse loca-
tions {#},_, .. and optimal impulse vectors

Theorem 2. Let y;(-) € C([vo,v¢],R"), i = 1,...,n N o L
and\ € R™ be an optimal solution of Problem (25). De—{AV(V’)}i:L“wN verifying the boundary equation:

fine the setd’s = {¥ € [vy,v¢] : |gs(P)|= 1} andT = N

N o _ c=Y Y()AV (). 30
{9 € ol Io0l= max 15011} Note 2, Y (e)aV (@) 0]
thatI" = U,I's for p = 1. There is an optimal solu-
tion g(-) € BV ([vo, v¢], R") of the relaxed Problem 3.3
which is a step function with at mostpoints of discon-
tinuity ; e I', j = 1,---, N < n. Its jumps are given

The vectom, (v) = YT (v)A involved in [25] is noth-
'ing but the primer vector initially defined in the seminal
work of Lawder . In this reference, the primer vec-

) tor p,(v) is defined as the velocity adjoint vector aris-
by: ing from applying the Pontryagin Maximum Principle to
optimal trajectory problems or Lagrangian duality a% in
where the vectok is the optimal Lagrange multiplier. For
an optimal impulsive trajectory, the primer vectgn(v)
Go(03) = Go(77) = v, | (93 Lsgn (5 (7)) must satisfy the well-known Lawden’s necessary and suf-
v;hejr11 - ; <JOO ¥ilgeins SN f!C|e_nt opt|maI|_ty condltpns recalled ?n. In summary,

’ [26] finding the optimal solution to the primal problem is an
; o A . . . indirect way of solving the original trajectory problem.
ors=1,---,r anda,, solutions of the linear system: L .

As a result, efficient algorithms to solve the former are

N extremely valuable. The next section proposes a new pro-
Z Bi(0j)as, = ciy i=1,--+,n [27] cedure based on a discretization algorithm for the solution
Jj=1

9s(75) — gs(05) = ap;sgn(ys(D5))xr,, ap; >0,
whenp = 1,
or

of the semi-infinite programming Problem 3.4,
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IV. A MODERN NUMERICAL APPROACH the optimal solution of 3.4. In this paper, following
. incentives from exchange methd8sind ideas fror,

& heuristic improvement is made by also removing all

Jegtorles arou_nd Lagrangg points is analogous to the d3tes whose corresponding constraint is not saturated.
lution of the circular linearized rendezvous 2-body proli)r—] other words. © — e 0,IYT - AW)=
yIi+1 — [z : q—

lem! . Actually, the out-of-plane dynamics being a harl—} U{afgma%se[ ]HYT N0 ()]l ). Also used i°
Vo,V : '

m‘;r:;l Ot.sggllz[r?; %Semeégltz)etﬁggnggl S.Oéunt's n;?r:gi; this modification leads to a reduction of the number of
IS yu : : gV y Frussing constraints involved in Problems 4.1 or 4.2. This is sum-

AS forn = 2, '.t can be SOI.VEd numengally as in Arze'marized in the algorithm below written in pseudo-code.
lier et af . Basically, the primer vector is obtained itera-

tively by solving a sequence of convex problem&R#t. Inout: int o — XY initial
An improved heuristic version is proposed in this paper. NPUt- INtervalo = [0, v¢], matrix¥ (v), initial
conditione, accuracy

Moreover, by relying on properties of the 1 asdnorms, e ) cal solut f
concatenating the projected in-plane and out-of-plane op-OF“p“t- #** andA' numerical solution of Pb. 3.4
timal solution yields the optimal solution far = 3 when

p = 1. Taking advantage of this property makes for a
faster resolution under the complete dynamics. This sec-
tion details the main results at the basis of the algorithm
used to compute the minimum-fuel sequence of impulsive

14 0;

Convergence < False,

Og + {90;91} C Os.tby— 61 75 km;

while Convergence=Falsdo

Find \() solution of discretized problem:

maneuvers.
The general, numerical approach proposet and W _ inf T

based on discretization methods or exchange methods re- H T R ©

minds the numerical solution of the Chebyshev approxi- st [[YT(0)M,< 1 foralldy, € ©;

mation probler®® . It intends as solving a series of con-
vex problems 3.4 for which the feasible set described by |  copyergence = (maX|Y(9)T)\(i) q—1 > 5>
infinitely many constraints is replaced by a discrete ap- S

proximation involving a finite set of constraints defined | if Convergence=Falsthen
on a given gridd; of locations in the intervdly, v¢]. For R ¥
p = 1, the discretized version of 3.4 boils down to a linear 0,0, U {arg [max|YT(9))\(i) |q} } :
program: beo ™
o 0, + ©; — {9k| 1V (0:)"AD | < 1 — g} ;
Problem 4.1. Discretized SICPH = 1) end
max ¢l -\ end
A ‘ return p(9, \(®)
st —1< YT AW)|;<1,Vvreov, j=1,...,n, HE A

Algorithm 1: Numerical procedure for solving Prob-

while for p = 2, it falls into the scope of Semi-Definite 1€m 3.4
Programming :
Once Algorithm 1 returns the near-optimal value\of
Problem 4.2. Discretized SICP( = 2) which gives the near-optimal primer vector, Theorem 2 is
T used to reconstruct the instantaneous velocity increments
m)E\%X ct A
1 YT . A\(v)

. V. RESULTS ANDDISCUSSION
Y~)\T(1/) 1, >0 Vveo,.

s.t.

The algorithm described in the previous Section

The key point in the method is that, by properly builchas been implemented in Python, making use of the
ing a sequence of se;, the solutions\*(*) of the dis- scipy.linprog routine for Linear Programming and cvx
cretized problems 4.1 or 4.2 will converge to the SO|UtiQ§b|Ver for Semi-Definite Programming_ The practica| re-
of 3.4. Its ef‘ficiency Strongly relies on the fact that Pro@uns presented thereafter concern fhelibration point
lems 4.1 and 4.2 can be solved efficiently by dedicatgglthe Earth-Moon system which is of particular interest
methods like simplex or interior-point methdds as the tentative location of a fuel-depot to be used by in-

It has been shown trthat the sequence of discretizegerplanetary spacecraft. The method is nonetheless ap-
sets©;11 = O;U{argmaxc,, , IV - M@ @)[l}  plicable to any Lagrange point in any binary system. A
verifies the necessary assumption$ afd converges to set of initial and final values for the transfer (in- and out-
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of-plane), reported in Tables 1, was generated randot
but could be chosen for specific purposes such as stat
keeping or transfer between Halo orbits. Comparisons
twofold: between 1 and 2-norm costs on the one hand
between indirect and direct approaches on the other hi ' vlrad)
For an a priori fixed number of impulsive maneuvers 08— : : : : : :
given locations, a convex problem (LP or SDP) is form Zosf

lated and solved numerically by discretizing the possil %K
locations of burns. Its solution is therefore suboptim 2 ol

depending strongly upon the number of impuléés . osl— :
Introducing slack variables, 1- and 2-norm minimizatic

Positions [km.]
5 838 8
~—
%

v [rad]

respectively boils down to a linear and semi-definite profig. 2: Positions, velocities and cost in the 1-norm case
gram. Due to the greater computational cost of the |at-

ter, the grid is chosen to be sparser here e.g. 1000 pc
against 10000. On the other hand, the indirect appro
uses the thinner version when checking the magnitude
the primer vector.

Table 1: Initial and final conditions

Primer vector components

520 (M) Oyo (M) 02 (M) =

8&o (MIS)  0yo (MIS) 02 (M/s)

Fig. 3: Optimal primer vector in the 1-norm case

7o (rad) i

3.322 6449.40 65117.03 22814.91
-0.0312 0.0392 0.2114

vy (rad) oay (M) oys (M) 027 (m)

4,737 59066.09 67728.64 84015.47

dxy (MIS) oyy (MIS) dz¢ (M/s)

-0.1087 0.1616 -0.1730

Figure 3 depicts the primer vector history fpr= 1 ’
whereas Figure 2 is for the fuel-consumption, the rel =

tive positions and velocities obtained via the indirect a| 2

proach. The corresponding trajectory is showed in Figu
4. The same plots fqgr = 2 are respectively on Figures 6,

20

R M- 10
Sy [km.] 0 oz [km.]

5 and 7. Tables 2 and 3 contain the control laws respec- Fig. 4: Optimal 1-norm trajectory

tively for p = 1 and 2. The optimality of the solutions is

certified by the norm of the primer vector being always

less or equal to one, the latter occurring exclusively &&ble 3: Location and components of optimal impulses

times of burns.

forp=2, N*=2

v (rad) 3.928 4.737
Table 2: Location and components of optimal impulses AV, (m/s) -0.0181 -0.5677
forp =1, N* =4 AV, (m/s) 05173 0.4595
AV, (m/s) 01541 0.0165
v (rad) 3322 3987 4.030 4.737 |AV|2 (m/s) 0.5401  0.6850
AV, (m/s) 0.0126 O 0 -0.5540
2“;?/ g:g 8 8 1570 00'5530 8‘3617 The minimal 1- and 2-norm trajectories obtained via
Z : the indirect approach are visually very similar. The main
|AV]: (m/s) 0.0126 0.1570 0.5530 0.9158 itarence comes from the fact that the minimal 1-norm
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69t " International Astronautical Congress, Bremen, Germampy@ght (© 2018 by the authors. Published by the International Astitioal Federation with permission.

velocity. The fuel-optimal solution obtained fpr= 2 in
particular shows the advantage of an initial coasting arc.

ssitions [km.]

Pc

| | | | | | Table 4: Comparison between direct and indirect ap-
- - w E W s proaches fop =1

o | | | ‘ | | | ] Approach Cost (m/s) Computation time (s)
, ] Indirect 1.6384 0.8447
| Direct 1.6384 1.3974

[m/s]

Velocities

a4 36 38 7 a2 a4 TS
v [rad)

Fig. 5: Positions, velocities and cost in the 2-norm cast@Ple 5: Comparison between direct and indirect ap-
proaches fop = 2

|

Approach Cost (m/s) Computation time (s)
Indirect 1.2251 1.3731
Direct 1.2251 160.5454

Primer vector components
j\ T
| |

Objective functions and timings are reported for direct
; ;i and indirect approaches in Table 4 for the 1-norm and Ta-
5 1 ble 5 for the 2-norm. For the two cases, both approaches
] return an identical fuel-consumption. However, due to
" | L | | ] need for a fine locations grid for the possible burns, the
) vhed] " ) direct method requires in general a larger computing ef-

fort.

[lyll2

Fig. 6: Optimal primer vector in the 2-norm case
VI. CONCLUSIONS

In this paper, a modern approach to the linear primer
vector theory has been proposed for fuel-optimal trajecto-
ries near any Lagrange point, extending the previous work
of the authors with the linearized restricted elliptical 2-
body problem. It combines recent results that are both
analytical and numerical to provide the user with a fast,
efficient way of computing the optimal burns. Output of
a sequence of linear or semi-definite programs (depend-
oylm] < . ing on the geometrical configuration of the thrusters), the
. ] ] minimal consumption can be evaluated without the actual

Fig. 7: Optimal 2-norm trajectory need of calculating the maneuvers. The latter, which can-
not be achieved by a direct approach, turns this method
, into a powerful tool for mission analysis. Still, the conver
control has more burns i.e. four rather than two. Thtg%nce of the used algorithm remains an open problem to
can be explained by the fact that it is more efficient Wil 5¢,died in coming developments. Future work includes
p = 2 to minimize the number of maneuvers. Here ongq, considering the elliptical case i.e. the non-circular
can see that somehow the two middle impulses 6f 1 ganerajization of the Lagrange points. Perspectives are to
are merged into a single one for= 2. This also translatesniia|ize an indirect solving approach to the control prob

into an optimal solution for the 2-norm with o z€ro COMgy ynder the non-linear dynamics with the solution of
ponent, unlike for the 1-norm. Moreover, the mid-coursge jinearized version.

maneuvers exhibited by both minimal control laws is a
clear setback for the analytic yet generally sub-optimal
2-impulse method that consists in designing an initial ma-
neuver to achieve transfer in position at the final locatiofil] D. Arzelier, F. Bréhard, N. Deak, M. Joldes,
where the second and last impulse matches the desired C. Louembet, A. Rondepierre, and R. Serra. Lin-
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