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2 Università di Siena, Italy

Abstract. We consider the problem of feature selection, and we propose a new
information-theoretic algorithm for ordering the features according to their rele-
vance for classification. The novelty of our proposal consists in adopting Rényi
min-entropy instead of the commonly used Shannon entropy. In particular, we
adopt a notion of conditional min-entropy that has been recently proposed in
the field of security and privacy, and that avoids the anomalies of previously-
attempted definitions. This notion is strictly related to the Bayes error, which is a
promising property for achieving accuracy in the classification. We evaluate our
method on 2 classifiers and 3 datasets, and we show that it compares favorably
with the corresponding one based on Shannon entropy.

1 Introduction

The identification of the “best” features for classification is a problem of increasing
importance in machine learning. The size of available datasets is becoming larger and
larger, both in terms of samples and in terms of features of the samples, and keeping the
dimensionality of the data under control is necessary for avoiding an explosion of the
training complexity and for the accuracy of the classification [11, 10, 13].

The known methods for reducing the dimensionality can be divided in two cate-
gories: those which transform the feature space by reshaping the original features into
new ones (feature extraction), and those which select a subset of the features (feature
selection). The second category can in turn be divided in three groups: the wrapper, the
embedded, and the filter methods. The last group has the advantage of being classifier-
independent, more robust with respect to the risk of overfitting, and more amenable to a
principled approach. In particular, several proposals for feature selection have success-
fully applied concepts and techniques from information theory [2, 20, 9, 15, 4, 19, 3].
The idea is that the smaller is the conditional (aka residual) entropy of the classes given
a certain set of features, the more likely the classification of a sample is to be correct.
Finding a good set of features corresponds therefore to identifying a set of features, as
small as possible, for which such conditional entropy is below a certain threshold.

In this paper, we focus on the filter approach and we propose a new information-
theoretical method for feature selection. The novelty of our proposal consists in the
use of Rényi min-entropy H∞ rather than Shannon entropy. As far as we know, all the
previous proposals are based on Shannon entropy, with the notable exception of [8]
who considered the Rényi entropies. However [8] reported experimental results only on
other orders of Rényi entropies. We will discuss more that work in Section 5.
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One reason why Rényi min-entropy has not been used more widely may be that
what is needed for feature selection is its conditional version, and Rényi did not define
it. There have been various attempts to define the conditional min-entropy, but they were
unsuccessful because they led to anomalies. For instance, [5] defined the conditional
min-entropy of X given Y along the lines of conditional Shannon entropy, namely as
the expected value of the entropy of X for each given value of Y . Such definition,
however, violates the data processing inequality. In particular knowing the value of Y
could increase the entropy of X rather than diminishing it.

Recently, however, some advances in the fields of security and privacy have revived
the interest for the Rényi min-entropy. The reason is that it models a basic notion of
attacker: the (one-try) eavesdropper. Such attacker tries to infer a secret (e.g., a key, a
password, etc.) from the observable behavior of the system, with the limitation that he
can try only once. Naturally, a rational attacker will try to minimize the probability of
error, so he will pick the secret with the highest probability given what he has observed.
Note the similarity with the classification problem, where we choose a class on the basis
of the observed feautures, trying to minimize the probability of mis-classification.

Driven by the motivation of providing an information-theoretic interpretation of
the eavesdropper operational behavior, [17] proposed a definition of conditional min-
entropy H∞(X|Y ) which is consistent with the rest of the theory, models all the ex-
pected properties of an eavesdropper, and corresponds closely to the Bayes risk of
guessing the wrong secret. (The formal definition of H∞(X|Y ) will be given in Sec-
tion 2.) It is then natural to investigate whether this new notion can be successfully
applied also to the problem of feature selection.

We could state the problem of feature selection as finding a minimum-size subset S
of the whole set of features F such that the min-entropy H∞(C|S) of the classification
C given S is below a given threshold. Because of the correspondence with the Bayes
risk, this would mean that the set S is optimal (i.e, minimal) among the subsets for
which the Bayes classifier achieves the desired level of accuracy. However, is that the
construction of such an optimal S would be NP-hard. This is not due to the kind of
entropy that we choose, but simply to the fact that it is a combinatorial problem. In [12]
it was shown that the problem of feature selection can be modeled as search problem on
a decision tree, and it was argued that finding the optimal subtree which is able to cover
F is an NP-hard problem. The same intractability was claimed in [10] with respect to
wrappers and embedded methods, on the basis of the proof of [1].

We then adopt a greedy strategy to approximate the minimal subset of features:
following [4] and [19], we construct a sequence of subsets S0, S1, . . . , St, . . ., where
S0 = ∅ and at each subsequent step St+1 is obtained from St by adding the next feature
in order of relevance for the classification, taking into account the ones already selected.
In other words, we select the feature f such that H∞(C|St ∪ {f}) is minimal, and we
define St+1 as St ∪ {f}. The construction of this series should be interleaved with a
test on the accuracy of the intended classifier(s): when we obtain an ST that achieves
the desired level of accuracy, we can stop. The difference with respect to [4] and [19] is
that the relevance is measured by Rényi min-entropy rather than Shannon entropy.

Note that, because of the relation between the conditional min-entropy and the
Bayes risk, our method is locally optimal. Namely, for any other possible feature f ′
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(including the one that would be selected using Shannon entropy), the set St+1 is at
least as good as St ∪ {f ′} in terms of accuracy of the Bayes classifier (the ideal clas-
sifier giving the best accuracy). This does not necessarily mean that the set ST is the
smallest one: since we are not making an exhaustive search on all possible subsets of
F , and we add the features one by one, we may not find the “shortest path” to achieve
sufficient accuracy. The same applies to the analogous algorithms based on Shannon
entropy. Hence we have no guarantee that our method is better than that of [4] and [19],
nor vice versa. In the experiments we have performed, however, our method outper-
forms almost always the one based on Shannon entropy (cfr. Section 4).

2 Preliminaries

In this section we briefly review some basic notions from probability and information
theory. We refer to [7] for more details.

Let X,Y be discrete random variables with respectively n and m possible val-
ues: X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}. Let pX(·) and pY (·) indicate
the probability distribution associated to X and Y respectively, and let pY,X(·, ·) and
pY |X(·|·) indicate the joint and the conditional probability distributions, respectively.
Namely, pY,X(x, y) represents the probability thatX = x and Y = y, while pY |X(y|x)
represents the probability that Y = y given thatX = x. For simplicity, when clear from
the context, we will omit the subscript, and write for instance p(x) instead of pX(x).

Conditional and joint probabilities are related by the chain rule p(x, y) = p(x) p(y|x),
from which (by the commutativity of p(x, y)) we can derive the Bayes theorem:

p(x|y) = p(y|x) p(x)
p(y)

(1)

2.1 Rényi entropies, Shannon entropy, and mutual information

The Rényi entropies ([16]) are a family of functions representing the uncertainty asso-
ciated to a random variable. Each Rényi entropy is characterized by a non-negative real
number α (order), with α 6= 1, and is defined as

Hα(X)
def
=

1

1− α
log

(∑
i

p(xi)
α

)
If p(·) is uniform then all the Rényi entropies are equal to log |X|. Otherwise they

are weakly decreasing in α. Shannon and min-entropy are particular cases:

α→ 1 H1(X) = −
∑
x p(x) log p(x) Shannon entropy

α→∞ H∞(X) = − logmaxx p(x) min-entropy

Shannon conditional entropy of X given Y represents the average residual entropy
of X once the value of Y is known, and it is defined as

H1(Y |X)
def
=
∑
xy

p(x, y) log p(x|y) = H1(X,Y )−H1(Y ) (2)
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where H1(X,Y ) represents the entropy of the intersection of X and Y .
Shannon mutual information of X and Y represents the correlation of information

between X and Y , and it is defined as

I1(X;Y )
def
= H1(X)−H1(X|Y ) = H1(X) +H1(Y )−H1(X,Y ) (3)

It is possible to show that I1(X;Y ) ≥ 0, with I1(X;Y ) = 0 iff X and Y are indepen-
dent, and that I1(X;Y ) = I1(Y ;X).

Rényi did not define conditional entropy and mutual information for generic α. Only
recently, thanks to its applications in security and privacy, there has been interest in
“completing the theory”, and [17] proposed the following definition for the conditional
min-entropy:

H∞(X|Y )
def
= − log

∑
y

max
x

(p(y|x)p(x)) (4)

It is possible to show that this definition closely corresponds to the Bayes risk, i.e.,
the expected error when we try to guess the exact value of X , once we know that of Y ,
formally the Bayes risk of X given Y is defined as:

B(X |Y )
def
= 1−

∑
y

p(y) max
x

p(x|y) (5)

The “mutual information” is defined as:

I∞(X;Y )
def
= H∞(X)−H∞(X|Y ) (6)

It is possible to show that I∞(X;Y ) ≥ 0, and that I∞(X;Y ) = 0 if X and Y are
independent (the reverse is not necessarily true). It is important to note that, contrary to
Shannon mutual information, I∞ is not symmetric.

The conditional mutual information is defined as

I∞(X;Y |Z) def
= H∞(X|Z)−H∞(X|Y, Z) (7)

and analogously for Shannon conditional mutual information.

3 Our proposed algorithm

Let F be the set of features at our disposal, and let C be the set of classes. Our algo-
rithm is based on forward feature selection and dependency maximization: it constructs
a monotonically increasing sequence {St}t≥0 of subsets of F , and, at each step, the
subset St+1 is obtained from St by adding the next feature in order of importance (i.e.,
the informative contribution to classification), taking into account the information al-
ready provided by St. The measure of the “order of importance” is based on conditional
min-entropy. The construction of the sequence is assumed to be done interactively with
a test on the accuracy achieved by the current subset, using one or more classifiers. This
test will provide the stopping condition: once we obtain the desired level of accuracy,
the algorithm stops and gives as result the current subset ST . Of course, achieving a
level of accuracy 1− ε is only possible if B(C | F ) ≤ ε.
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Definition 1. The series {St}t≥0 and {f t}t≥1 are inductively defined as follows:

S0 def
= ∅

f t+1 def
= argminf∈F\StH∞(C | f, St)

St+1 def
= St ∪ {f t+1}

The algorithms in [4] and [19] are analogous, except that they use Shannon entropy.
They also define f t+1 based on the maximization of mutual information instead of the
minimization of conditional entropy, but this is irrelevant. In fact

I∞(C; f | St) = H∞(C | St)−H∞(C | f, St)

hence maximizing I∞(C; f | St) with respect to f is the same as minimizing H∞(C |
f, St) with respect to f . The same holds for Shannon entropy.

Our algorithm is locally optimal, in the sense stated by the following proposition:

Proposition 1. At every step, the set St+1 minimizes the Bayes risk of the classification
among those which are of the form St ∪ {f}, namely:

∀f ∈ F B(C | St+1) ≤ B(C | St ∪ {f})

Proof. Let v, v, v′ represent generic value tuples and values of St, f and f t+1, respec-
tively. Let c represent the generic value of C. By definition, H∞(C | St+1) ≤ H∞(C |
St ∪ {f}), for every f ∈ F . From (4) we then obtain∑

v,v

max
c

(p(v, v|c)p(c)) ≤
∑
v,v′

max
c

(p(v, v′|c)p(c))

Using the Bayes theorem (1), we get∑
v,v

p(v, v)max
c
p(c|v) ≤

∑
v,v′

p(v, v′)max
c
p(v, v′|c)

Then, from the definition (5) we deduce

B(C | St ∪ {f t+1}) ≤ B(C | St ∪ {f})

In the following sections we analyze some extended examples to illustrate how the
algorithm works, and also compare the resulting sequence with the one produced by the
algorithm of [4] and [19].

3.1 An example in which Rényi min-entropy gives a better feature selection than
Shannon entropy
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f0

0, 1, 2, 3 4, 5, 6, 7, 8, 9

(a) Selection with Shannon.

f1

0 1 2, 3, 4, 5, 6, 7, 8, 9

(b) Selection with Rényi.

Fig. 2. Classes separation after the selection of the first feature.

Class f0 f1 f2 f3 f4 f5
0 A C F I L O
1 A D F I L O
2 A E G I L O
3 A E H I L O
4 B E F J L O
5 B E F K L O
6 B E F I M O
7 B E F I N O
8 B E F I L P
9 B E F I L Q

Fig. 1. The dataset

Let us consider the dataset in Fig. 1, containing ten records
labeled each by a different class, and characterized by six
features (columns f1, . . . , f5). We note that column f0 sep-
arates the classes in two sets of four and six elements re-
spectively, while all the other columns are characterized by
having two values, each of which univocally identify one
class, while the third value is associated to all the remain-
ing classes. For instance, in column f1 value A univocally
identifies the record of class 0, value B univocally identi-
fies the record of class 1, and all the other records have the
same value along that column, i.e. C.

The last five features combined completely identify all
classes, without the need of the first one. On the other hand,
the last five features are also necessary to completely iden-
tify all classes, they cannot be replaced by f0 (i.e., f0 with
whatever combination of other four or less features is not
sufficient to completely identify all classes.) In fact, each pair of records which are
separated by one of the features f1, . . . , f5, have the same value in column f0.

If we apply the discussed feature selection method and we look for the feature that
minimizes H(Class|fi) for i ∈ {0, . . . , 5} we obtain that:

– The first feature selected by the Shannon entropy is f0, in fact H1(Class|f0) ≈
2.35 andH1(Class|f 6=0) = 2.4. (The notation f 6=0 stands for any of the fi’s except
f0.) In general, indeed, with Shannon entropy the method tends to choose a feature
which splits the classes in a way as balanced as possible. The situation after the
selection of the feature f0 is shown in Fig. 2(a).

– The first feature selected by the Rényi min entropy is either f1 or f2 or f3 or f4 or
f5, in factH∞(Class|f0) ≈ 2.32 andH∞(Class|f 6=0) ≈ 1.74. In general, indeed,
with Rényi min-entropy the method tends to choose a feature which divides the
classes in as many sets as possible. The situation after the selection of the feature
f1 is shown in Fig. 2(b).

Going ahead with the algorithm, with Shannon entropy we will select one by one all
the other features, and as already discussed we will need all of them to completely iden-
tify all classes. Hence at the end the method with Shannon entropy will return all the six
features (to achieve perfect classification). On the other hand, with Rényi min entropy
we will select all the remaining features except f0 to obtain the perfect discrimination.
In fact, at any stage the selection of f0 would allow to split the remaining classes in
at most two sets, while any other feature not yet considered will split the remaining



Feature selection with Rényi min-entropy 7

f1

0 1

f2

2 3 4, 5, 6
7, 8, 9

H∞(Class|f1f2) = 1.

f1

0 1

f0

2, 3 4, 5, 6
7, 8, 9

H∞(Class|f1f0) ≈ 1.32.

f4

0 1

f0

0, 1
2, 3

6, 7
8, 9

H∞(Class|f4f0) ≈ 1.32.

Fig. 3. Selection of the second feature with Rényi.

classes in three sets. As already hinted, with Rényi we choose the feature that allows
to split the remaining classes in the highest number of sets, hence we never select f0.

f1

0 1

f2

2 3

f3

4 5

f4

6 7

f5

8 9

Fig. 4. Sequence of class splitting with Rényi.

For instance, if we have already se-
lected f1, we have H∞(Class|f1f0) ≈
1.32 while H∞(Class|f1f6=0) = 1.
If we have already selected f4, we
have H∞(Class|f4f0) ≈ 1.32 while
H∞(Class|f4f 6=0) = 1. See Fig. 3.

At the end, the selection of fea-
tures using Rényi entropy will determine
the progressive splitting represented in
Fig. 4. The order of selection is not im-
portant: this particular example is con-
ceived so that the features f1, . . . , f5 can
be selected in any order, the residual en-
tropy is always the same.

Discussion It is easy to see that, in this example, the algorithm based on Rényi min-
entropy gives a better result not only at the end, but also at each step of the process.
Namely, at step t (cfr. Definition 1) the set St of features selected with Rényi min-
entropy gives a better classification (i.e., more accurate) than the set S′t that would be
selected using Shannon entropy. More precisely, we have B(C | St) < B(C | S′t).
In fact, as discussed above the set S′t contains necessarily the feature f0, while St

does not. Let St−1 be the set of features selected at previous step with Rényi min-
entropy, and f t the feature selected at step t (namely, St−1 = St \ {f t}). As argued
above, the order of selection of the features f1, . . . , f5 is irrelevant, hence we have
B(C | St−1) = B(C | S′t \ {f0}) and the algorithm could equivalently have selected
S′
t\{f0}. As argued above, the next feature to be selected, with Rényi, must be different

from f0. Hence by Proposition 1, and by the fact that the order of selection of f1, . . . ,
f5 is irrelevant, we have: B(C | St) = B(C | (S′t \ {f0}) ∪ {f t}) < B(C | S′t).

As a general observation, we can see that the method with Shannon tends to select
the feature that divides the classes in sets (one for each value of the feature) as bal-
anced as possible, while our method tends to select the feature that divides the classes
in as many sets as possible, regardless of the sets being balanced or not. In general,
both Shannon-based and Rényi-based methods try to minimize the height of the tree
representing the process of the splitting of the classes, but the first does it by trying to
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produce a tree as balanced as possible, while the second try to do it by producing a
tree as wide as possible. Which of the method is best, it depends on the correlation of
the features. Shannon works better when there are enough uncorrelated (or not much
correlated) features, so that the tree can be kept balanced while being constructed. Next
section shows an example of such situation. Rényi, on the contrary, is not so sensitive
to correlation and can work well also when the features are highly correlated, as it was
the case in the example of this section.

The experimental results in Section 4 show that, at least in the cases we have exper-
imented with, our method based on Rényi min-entropy outperforms the one based on
Shannon entropy. In general however the two methods are incomparable, and perhaps
a good practice would be to construct both sequences at the same time, so to obtain the
best result of the two.

3.2 An example in which Shannon entropy eventually gives a better feature
selection than Rényi min-entropy

Consider a dataset containing samples equally distributed among 32 classes, indexed
from 0 to 31. As usual, we denote by C the random variable ranging over the classes.
Assume that the data have 8 features divided in 2 types F and F ′, each of which con-
sisting of 4 features denoted as follows: F = {f1, f2, f3, f4} and F ′ = {f ′1, f ′2, f ′3, f ′4}.
Thus the total set of features is F ∪ F ′. The features fi, f ′i are also regarded as random
variables.

Assume that the features of type F , and their relation with C are as follows: Given
the binary representation of the classes b4b3b2b1b0, f1 consists of the bits b1b0, f2 con-
sists of the bits b2b1, f3 consists of the bits b3b2, and f4 consists of the bit b4 only. The
situation is represented by the figure below.

b4 b3 b2 b1 b0

f1f2f3f4

Concerning the features of type F ′, assume that each of them can range in a set of
9 values, and that these sets are mutually disjoint. We use the following notation:

for 1 ≤ i ≤ 4 f ′i = {vi} ∪ {vij | 0 ≤ j ≤ 7}

The association between the features of F ′ and the classes is represented in the follow-
ing figure:
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All the vij values allow to identify exactly one class. For instance, if in a certain
sample the f ′1 value is v10, it means that the sample can be univocally classified as
belonging to class 0. If the f ′2 value is v22, it belongs to class 9, etc. As for the vi’s, each
of them is associated to a set of 24 classes, with uniform distribution. For instance, the
value v1 is associated to classes 1, 2, 3, 5, . . . , 29, 30, 31.

Let us select the first feature f in order of importance for the classification. We will
consider at the same time our method, based on Rényi min-entropy, and the method of
[4] and [19]. In both cases, the aim is to choose f such that it maximizes the mutual
information Iα = Hα(C)−Hα(C | f), or equivalently, that minimizes the conditional
entropy Hα(C | f), where α is the entropy parameter (α = 1 for Shannon, α =∞ for
Rényi min-entropy).

For the features of type F we have:

H1(C | f1) = H1(C | f2) = H1(C | f3) = 3

while
H1(C | f4) = 4 > 3

On the other hand, with respect to the features of type F ′, we have

H1(C | f ′1) = H1(C | f ′2) = H1(C | f ′3) = H1(C | f ′4) ≈ 3.439 > 3

So, the first feature selected using Shannon entropy would be f1, f2 or f3. Let us assume
that we pick f1. Hence with Shannon the first set of the series is S1

1 = {f1}.
Let us now consider our method based on Rényi min-entropy. For the F feature the
conditional entropy is the same as for Shannon:

H∞(C | f1) = H∞(C | f2) = H∞(C | f3) = 3

H∞(C | f4) = 4 > 3

But for the F ′ features Rényi min-entropy gives a different value. In fact we get:

H∞(C | f ′1) = H∞(C | f ′2) = H∞(C | f ′3) = H∞(C | f ′4) ≈ 1.83 < 2
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So, the first feature selected using Rényi min entropy would be f ′1, f ′2, f ′3, or f ′4. Let us
assume that we pick f ′1. Hence with our method the first set of the series is S1

∞ = {f ′1}.
For the selection of the second feature, we have

H1(C | f1, f2) = H1(C | f1, f4) = 2

while
H1(C | f1, f3) = 1

H1(C | f1, f ′1) = H1(C | f1, f ′2) = H1(C | f1, f ′3) = H1(C | f1, f ′4) > 2

Hence the second feature with Shannon can only be f3, and thus the second set in the
sequence is S2

1 = {f1, f3}.
With Rényi min-entropy we have:

H∞(C | f ′1, f4) > H∞(C | f ′1, fi) for i = 1, 2, 3

H∞(C | f ′1, fi) > H∞(C | f ′1, f ′j) for i = 1, 2, 3 and j = 2, 3, 4

Hence with our method the second feature will be f ′2, f ′3, or f ′4. Let us assume that we
choose f ′2. Thus the second set of the series is S2

∞ = {f ′1, f ′2}.
Continuing our example, we can see that S3

1 = {f1, f3, f4}, and S3
∞ = {f ′1, f ′2, f ′i}

where i can be, equivalently, 3 or 4. At this point the method with Shannon can stop,
since the residual Shannon entropy of the classification is H1(C | S3

1) = 0, and also
the Bayes risk is B(C | S3

1) = 0, which is the optimal situation in the sense that
the classification is completely accurate. S3

∞ on the contrary is not enough to give a
completely accurate classification, for that we have to make a further step. We can see
that S4

∞ = F ′, and finally we have H∞(C | S4
∞) = 0.

Thus in this particular example we have that for small values of the threshold on
the accuracy our method gives better results. On the other hand, if we want to achieve
perfect accuracy (threshold 0) Shannon gives better results. This is not always the case
however: for example, if we consider the initial set of features to be F ∪ F ′, with
F = {f1}, with f1 and F ′ defined as before, we have that our method achieves perfect
accuracy at step 4, giving as result S4

∞ = F ′ as before, while with Shannon the method
would still select as first feature f1, and would achieve perfect accuracy only at step 5,
giving as result S5

1 = F ∪ F ′.

4 Evaluation

In this section we evaluate the method for feature selection that we have proposed, and
we compare it with the one based on Shannon entropy by [4] and [19].

To evaluate the effect of feature selection, some classification methods have to be
trained and tested on the selected data. We decided to use two different methods so to
avoid the dependency of the result on a particular algorithm. We chose two widely used
classifiers, which in many cases represent the state of the art in the machine learning
field, namely Support Vector Machines (SVM) and Artificial Neural Networks (ANN).

Even though the two methods are very different, they have in common that their ef-
ficiency is highly dependent on the choice of certain parameters. Therefore, it is worth
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spending some effort to identify the best values. Furthermore, we should take into ac-
count that the particular paradigm of SVM we chose only needs 2 parameters to be set,
while for ANN the number of parameters increases (at least 4).

It is very important to choose values as robust as possible for the parameters. It goes
without saying that the strategy used to pick the best parameter setting should be the
same for both Shannon entropy and Rényi min-entropy. On the other hand for SVM and
ANN we used two different hyper-parameter tuning algorithms, given that the number
and the nature of the parameters to be tuned for those classifiers is different.

In the case of SVM we tuned the cost parameter of the objective function for margin
maximization (C-SVM) and the parameter which models the shape of the RBF kernel’s
bell curve (γ). Grid-search and Random-search are quite time demanding algorithms for
the hyper-parameter tuning task but they’re also widely used and referenced in literature
when it comes to SVM. Following the guidelines in [6] and [14], we decided to use
Grid-search, which is quite suitable when we have to deal with only two parameters. In
particular we performed Grid-search including a 10 folds CV step.

Things are different with ANN because many more parameters are involved and
some of them change the topology of the network itself. Among the various strategies
to attack this problem we picked Bayesian Optimization [18]. This algorithm combines
steps of extensive search for a limited number of settings before inferring via Gaussian
Processes (GP) which is the best setting to try next (with respect to the mean and vari-
ance and compared to the best result obtained in the last iteration of the algorithm). In
particular we tried to fit the best model by optimizing the following parameters:

– number of hidden layers
– number of hidden neurons in each layer
– learning rate for the gradient descent algorithm
– size of batches to update the weight on network connections
– number of learning epochs

To this purpose, we included in the pipeline of our code the Spearmint Bayesian
optimization codebase. Spearmint, whose theoretical bases are explained in [18], calls
repeatedly an objective function to be optimized. In our case the objective function
contained some tensorflow machine learning code which run a 10 folds CV over a
dataset and the objective was to maximize the accuracy of validation. The idea was to
obtain a model able to generalize as much as possible using only the selected features
before testing on a dataset which had never been seen before.

We had to decide the stopping criterion, which is not provided by Spearmint itself.
For the sake of simplicity we decided to run it for a time lapse which has empirically
been proven to be sufficient in order to obtain results meaningful for comparison. A
possible improvement would be to keep running the same test (with the same number
of features) for a certain amount of time without resetting the computation history of
the package and only stop testing a particular configuration if the same results is output
as the best for k iterations in a row (for a given k).

Another factor, not directly connected to the different performances obtained with
different entropies, but which is of the highest importance for the optimization of ANN,
is the choice of the activation functions for the layers of neurons. In our work we have
been using ReLU activation function for all layers because it is well known as a function
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Fig. 5. Accuracy of the ANN and SVM classifiers on the BASEHOCK dataset

which works well for this aim, is quite easy to compute (the only operation involved is
the max) and avoids the sigmoid saturation issue.

4.1 Experiments

As already stated, at the i-th step of the feature selection algorithm we consider all the
features which have already been selected in the previous i− 1 step(s). For the sake of
limiting the execution time, we decided to consider only the first 50 selected features
with both metrics. We tried our pipeline on the following datasets:

– BASEHOCK dataset: 1993 instances, 4862 features, 2 classes. This dataset has
been obtained from the 20 newsgroup original dataset.

– SEMEION dataset: 1593 instances, 256 features, 10 classes. This is a dataset with
encoding of hand written characters.

– GISETTE dataset: 6000 instances, 5000 features, 2 classes. This is the discretized
version of the NIPS 2003 dataset which can be downloaded from the site of Profes-
sor Gavin Brown, Manchester University.

We implemented a bootstrap procedure (5 iterations on each dataset) to shuffle data
and make sure that the results do not depend on the particular split between training,
validation and test set. Each one of the 5 bootstrap iterations is a new and unrelated
experimental run. For each one of them a different training-test sets split was taken into
account. Features were selected analyzing the training set (the test set has never been
taken into account for this part of the work). After the feature selection was executed
according to both Shannon and Rényi min-entropy, we considered all the selected fea-
tures adding one at each time. So, for each bootstrap iteration we had 50 steps, and in
each step we added one of the selected features, we performed hyper-parameter tuning
with 10 folds CV, we trained the model with the best parameters on the whole train-
ing set and we tested it on the test set (which the model had never seen so far). This
procedure was performed both for SVM and ANN.

We computed the average performances over the 5 iterations and we got the results
showed in Figures 5, 6, and 7. As we can see, in all cases the feature selection method
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Fig. 6. Accuracy of the ANN and SVM classifiers on the GISETTE dataset
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Fig. 7. Accuracy of the ANN and SVM classifiers on the SEMEION dataset

using Rényi min-entropy usually gave better results than Shannon, especially with the
BASEHOCK dataset.

5 Related works

In the last two decades, thanks to the growing interest in machine learning, many meth-
ods have been setup to tackle the feature reduction problem. In this section we discuss
those closely related to our work, namely those which are based on information theory.
For a more complete overview we refer to [3], [19] and [4].

The approach most related to our proposal is that of [4] and [19]. We have already
discussed and compared their method with ours in the technical body of this paper.

As far as we know, Rényi min-entropy has only been used, in the context of feature
selection, by [8]. In the experiments they only show results for other Rényi entropies,
not for the min one. But they mention also Rényi min-entropy, though. The definition of
conditional min-entropy they consider, however, is that of [5]. This notion, as we have
already mentioned, has unnatural consequences. In particular, under this definition, a
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feature may increase the entropy of the classification instead of decreasing it. It is clear,
therefore, that basing a method on this notion of entropy could lead to strange results.

Two key concepts that have been widely used are relevance and redundancy. Rele-
vance refers to the importance for the classification of the feature under consideration
f t, and it is in general modeled as I(C; f t), where I represents Shannon mutual in-
formation. Redundancy represents how much the information of f t is already covered
by S. It is often modeled as I(f t, S). In general, we want to maximize relevance and
minimize redundancy.

One of the first algorithms ever implemented was proposed by [2] and it is called
MIFS algorithm. This algorithm is based on a greedy strategy. At the first iteration
step it selects the feature f 1 = argmaxfi∈F I(C; fi), and at step t it selects f t =
argmaxfi∈F\St-1 [I(C, fi)− β

∑
fs∈St-1 I(fi, fs)] where β is a parameter that controls

the weight of the redundancy part.
The mRMR approach (redundancy minimization and relevance maximization) pro-

posed by [15] is based on the same strategy as MIFS. However the redundancy term is
now substituted by its mean over the | S | elements of subset S so to avoid its value to
grow when new attributes are selected.

In both cases, if relevance outgrows redundancy, it might happen that many features
highly correlated and so highly redundant can still be selected. Moreover, a common
issue with these two methods is that they do not take into account the conditional mutual
information I(C, f t | S) for the choice of f t, the next feature to be selected.

More recent algorithms involve the ideas of joint mutual entropy I(C; fi, S) (JMI,
[3]) and conditional mutual entropy I(C; fi | S) (CMI, [9]) The deductive step for
choosing the next feature for [3] is f t = argmaxfi∈F\St-1

{
minfs∈St-1I(C; fi, fs)

}
,

while for [9] is f t = argmaxfi∈F\St-1
{
minfs∈St-1I(C; fi | fs)

}
. In both cases the

already selected features are taken into account one by one when compared to the new
feature to be selected f t. The correlation between JMI and CMI is easy to prove [20]:

I(C; fi, S) = H(C)−H(C | S) +H(C | S)−H(C | S) = I(C;S) + I(C; fi | S)
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