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Abstract: The main contribution of this paper is the design of robust H∞ proportional-integral
(PI) observer for fault detection, isolation and magnitude estimation, applied for uncertain linear
time-invariant (LTI) system. It is based on a combination of PI observer and H∞ norm in order
to deal with system uncertainty and disturbance attenuation. This multi-objective problem is
tackled by the solution of linear matrix inequality (LMI) feasibility problem, obtained from
the analysis of estimation errors and the use of majoration lemma. The application to a real
suspension system is then presented to highlight the performances of the proposed observer.

Keywords: Observers, Fault diagnosis, Fault detection, Uncertain linear systems, Semi-active
suspension, Robust estimation.

1. INTRODUCTION

In the observer design, the parametric uncertainty, which
has negative effects on system stability and observation
performance, is always an attractive topic for research
(see Jabbari and Benson (1992)). To solve this kind of
time-varying and bounded uncertainty, most methods are
based on the linear matrix inequality (LMI) optimiza-
tion, obtained from the Lyapunov stability function. In
Nouailletas et al. (2007), the observer design problem was
addressed by applying the projection lemma and the Schur
complement to linear discrete-time linear switched system
with uncertainties.

As system is also adversely affected by the system dis-
turbance, H∞ observer has been developed to attenuate
the perturbation effect on the estimation. In Lu and Ho
(2004), a robust H∞ observer design for nonlinear discrete
systems with time-delay and parameter uncertainties was
proposed. Another nonlinearH∞ observer design was then
introduced by using LMI optimization for a class of Lips-
chitz nonlinear uncertain systems in Abbaszadeh and Mar-
quez (2007), in which the majoration lemma (see Wang
et al. (1992)) was applied to deal with system uncertain-
ties. Afterwards, extensive work has been carried out for
nonlinear discrete-time uncertain systems in Abbaszadeh
and Marquez (2008) and uncertain discrete-time nonlinear
delay systems in Delshad et al. (2012).
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In addition, there is always a static error between the sys-
tem state and its estimation. To overcome this drawback,
proportional-integral (PI) observer was firstly introduced
by Wojciechowski (1978) for the single-input-single-output
system. The synthesis of robustness performance, para-
metric uncertainty and perturbation was proposed for PI
observer by Shafai and Carroll (1985). The application of
PI observer to estimate the system states and faults was
then presented in Marx et al. (2003) for the descriptor
system. In Farhat and Koenig (2015), the authors intro-
duced a robust PI observer in order to detect the faults of
switched system by applying the LMI optimization; how-
ever, their work can only be applied to the uncertainties
existing in state-matrix A.

As a result, there is a need for the reconciliation of previous
methods to overcome fault estimation problems. Hence,
the robust H∞ PI observer design is introduced in this
study with the following contributions:

• The observer stability is solved base on only one
LMI optimization problem by using the majoration
lemma, and thus promoting a flexible solution for
observer design by modifying the majoration factor;

• Fault estimation result is robust against the system
uncertainties existing in the matrices of states and
outputs.

The application of robust H∞ PI observer to suspension
system is also presented. To cope with system uncertainties
and disturbances, the proposed observer design is applied
to fault estimation of chassis-tire displacement position.



The paper is organized as follows. Firstly, the problem
formulation is presented in Section 2. In Section 3, under
fault occurrence, the observer design problem against
system uncertainties is solved by using LMI optimization.
The diagnosis system for suspension is presented in Section
4. In Section 5, the modelling for suspension system is
introduced and an experimental validation is realized with
the existence of actuator and sensor faults. Finally, the
conclusion with remarks and future work are presented in
Section 6.

Notations: Rn and Rm×n respectively represent the n-
dimensional Euclidean space and the set of all m × n real
matrices; XT is the transpose of matrix X; X > 0 is the
real symmetric positive definite matrix; 0 and I denote the
zeros and identity matrix with appropriate dimensions; the
symbol (∗) denotes the transposed block in the symmetric
position; and we denote He{A} = A+AT .

2. PROBLEM FORMULATION

Consider the following uncertain faulty LTI system:{
ẋ = (A+ ∆A)x+Bu+ Edd+ Eff

y = (C + ∆C)x+Du+ Fdd+ Fff
(1)

where : x ∈ Rnx is the state vector; y ∈ Rny is the measure-
ment output vector; u ∈ Rnu is the input vector; d ∈ Rnd

is the disturbance vector; f ∈ Rnf is the fault vector to
detect and estimate. Matrices A, B, C, D, Ed, Ef , Fd,
and Ff are all known constant matrices with appropriate
dimensions, which correspond to the nominal system. The
terms ∆A and ∆C are time-varying parameter matrices
corresponding to uncertainty of nominal system. They can
be represented as: {

∆A = Ma∆aNa
∆C = Mc∆cNc

(2)

In which, Ma ∈ Rnx×n1a , Na ∈ Rn2a×nx , Mc ∈ Rny×n1c ,
and Nc ∈ Rn2c×nx are known real constant matrices.
∆a ∈ Rn1a×n2a , ∆c ∈ Rn1c×n2c are unknown real-valued
matrices satisfying that ∆T

a∆a ≤ In2a
and ∆T

c ∆c ≤ In2c
.

The observer design for (1) is presented in the section 3.

3. ROBUST PI H∞ OBSERVER

Assumption 1. As discussed in Marx et al. (2003) and
Hamdi et al. (2012), the faults are considered to be
bounded and supposed to be in low frequency domain, i.e.,
ḟ ' 0. In fact, most system faults, such as an actuator jam,
a hardover, and offsets in sensor outputs, exist in this zone
(see Isermann (2006), and Alwi et al. (2011)).

To estimate the fault, an augmented state is considered,
so the PI H∞ observer has the representation:

˙̂x = Ax̂+Bu+ LP (y − ŷ) + Ef f̂
˙̂
f = LI(y − ŷ)

ŷ = Cx̂+Du+ Ff f̂

(3)

where LP and LI are the proportional and integral gains
of the PI observer, respectively.

The state estimation error ex and fault estimation error
ef are defined as:

{
ex = x− x̂
ef = f − f̂

(4)

Using (1) and (3), the dynamics of estimation errors are
given by:

ėx = ẋ− ˙̂x = (A− LPC)ex + (Ef − LPFf )ef
+ (Ed − LPFd)d+ (∆Ax− LP∆C)x (5)

ėf = ḟ − ˙̂
f = −LICex − LIFfef − LIFdd− LI∆Cx (6)

In matrix form:[
ėx
ėf

]
=

([
A Ef
0 0

]
−
[
LP
LI

]
[C Ff ]

)[
ex
ef

]
+([

Ed
0

]
−
[
LP
LI

]
Fd

)
d+

([
∆A
0

]
−
[
LP
LI

]
∆C

)
x (7)

By defining that: e =

[
ex
ef

]
, Ī = [Inx 0nx×nf ], x̂a =

[
x̂

f̂

]
,

Map =

[
Ma

0nf×n1a

]
, Aa =

[
A Ef
0 0

]
, La =

[
LP
LI

]
, Ba =

[
B
0

]
Eda =

[
Ed

0nf×nd

]
, Ca = [C Ff ], Caf =

[
0nx

Inf

]
,

and using the transformation:

[
∆A

0nf×nx

]
= Map∆aNa.

The dynamics of estimated errors can be rewritten as:

ė = (Aa − LaCa)e+ (Eda − LaFd)d
+ (Map∆aNaĪ − LaMc∆cNcĪ)(e+ x̂a) (8)

Remark 1: x = ex + x̂ = Ī(e+ x̂a)

From (3), the observer states can be represented as:
˙̂x = (Ax̂+ Ef f̂) + (LPCex + LPFfef ) +Bu

+LP∆Cx+ LPFdd
˙̂
f = (LICex + LIFfef ) + LIFdd+ LI∆Cx

(9)

In other words,

˙̂xa = Aax̂a + LaCae+ LaFdd+Bau+ La∆CĪ(e+ x̂a)
(10)

The dynamic of observer is illustrated by:

˙̂xa = (Aa + LaMc∆cNcĪ)x̂a
+(LaCa + LaMc∆cNcĪ)e+Bau+ LaFdd

ė = (Aa − LaCa +Map∆aNaĪ − LaMc∆cNcĪ)e

+(Map∆aNaĪ − LaMc∆cNcĪ)x̂a
+(Eda − LaFd)d

ef = Cafe

(11)

Some remarks on LMI and inequality problems are pre-
sented by the following lemmas:

Lemma 1. (Majoration lemma) (see Wang et al. (1992))

If there exists FTF ≤ I, for given matrices X and Y with
appropriate dimensions, the following statement is always
true with an arbitrary scalar σ > 0:

XFY + Y TFTXT ≤ σXXT + σ−1Y TY (12)



In other words, He{XFY } ≤ σXXT + σ−1Y TY

Lemma 2. (Schur complement) (see Boyd et al. (1994))

Let Q ≤ 0, S and R be given matrices, the following
statements are equivalents:[

Q R
RT S

]
≤ 0

Q−RS−1RT ≤ 0

(13)

As usual (see Marx et al. (2003)), the main objective
of robust PI H∞ observer is to minimize the effect of
disturbances on the fault estimation error ef , which can
be rewritten as:

min
γ>0
‖Sefd‖∞ = min

γ>0

‖ef‖2
‖d‖2

≤ γ (14)

The sufficient stability for the PI observer and the distur-
bance attenuation objective (14) can only be achieved if
the following condition is satisfied:

V̇ + eTf ef − γ2dT d ≤ 0 (15)

where the candidate Lyapunov function is chosen as: V =
V1 +V2 = eTPe+ x̂Ta Px̂a (P > 0) (see Farhat and Koenig
(2015)).

Theorem 1. System (11) is robust stable, if there exist a
symmetric positive definite matrix P, a matrix Q, a scalar
γ and given positive scalars σ1, σ2, σ3, σ4, σ5 and σ6 such
that the following LMI is satisfied:

Ω11 Ω12 0 Ω14 PMap QMc 0
(∗) Ω22 Ω23 Ω24 0 0 QMc

(∗) (∗) 0 0 0 0 0
(∗) (∗) (∗) Ω44 0 0 0
(∗) (∗) (∗) (∗) Ω55 0 0
(∗) (∗) (∗) (∗) (∗) Ω66 0
(∗) (∗) (∗) (∗) (∗) (∗) Ω77

 ≤ 0 (16)

where Ω11 = He{PAa+QCa}+CTafCaf+σ−11 ĪTNT
a NaĪ+

(σ−12 + σ−16 )ĪTNT
c NcĪ, Ω12 = −CTa QT , Ω14 = PEda +

QFd, Ω22 = PAa + ATa P + σ−13 ĪTNT
a NaĪ + (σ−14 +

σ−15 )ĪTNT
c NcĪ, Ω23 = PBa, Ω24 = −QFd, Ω44 = −γ2.I,

Ω55 = −(σ1 + σ3)−1, Ω66 = −(σ2 + σ4)−1, and Ω77 =
−(σ5 + σ6)−1.

The gains of the PI observer (3) can be calculated by:[
LP
LI

]
= La = −P−1Q (17)

Remark 2: Without the system uncertainty and distur-
bance, Ω11 presents the stability of matrix (Aa−LaCa) in
the sense of Lyapunov, and therefore the estimation errors
e→ 0 when t→∞.

Proof. Using the new variable Q = −PLa and Lyapunov
function V = V1 + V2 = eTPe+ x̂Ta Px̂a, we obtain:

V̇1 = He{eT (PAa +QCa)e}+He{eT (PEda +QFd)d}
+He{(eTPMap)∆a(NaĪe)}+He{(eTQMc)∆c(NcĪe)}
+He{(eTPMap)∆a(NaĪ x̂a)}
+He{(eTQMc)∆c(NcĪ x̂a)} (18)

Using the lemma 1 (12), ∀ σ1, σ2, σ3, σ4 > 0, the LMI (18)
can be majorated by the following inequality:

V̇1 ≤ He{eT (PAa +QCa)e}+He{eT (PEda +QFd)d}
+ eT (σ1PMapM

T
apP + σ−11 ĪTNT

a NaĪ)e

+ eT (σ2QMcM
T
c Q

T + σ−12 ĪTNT
c NcĪ)e

+ eT (σ3PMapM
T
apP )e+ x̂Ta (σ−13 ĪTNT

a NaĪ)x̂a

+ eT (σ4QMcM
T
c Q

T )e+ x̂Ta (σ−14 ĪTNT
c NcĪ)x̂a (19)

On the other hand,

V̇2 = He{x̂Ta PAax̂a − x̂TaQCae− x̂TaQFdd+ x̂Ta PBau}
+He{x̂Ta (−Q)Mc∆cNcĪ x̂a}+He{x̂Ta (−Q)Mc∆cNcĪe}

(20)

Using the lemma 1 (12), ∀ σ5, σ6 > 0, the LMI (20) can
be majorated by the following inequality:

V̇2 ≤ He{x̂Ta PAax̂a − x̂TaQCae− x̂TaQFdd+ x̂Ta PBau}
+ x̂Ta (σ5QMcM

T
c Q

T + σ−15 ĪTNT
c NcĪ)x̂a

+ x̂Ta (σ6QMcM
T
c Q

T )x̂a + eTσ−16 ĪTNT
c NcĪe (21)

Combining (19) and (21), the left side of (15) can be
expressed as:

V̇ + eTf ef − γ2dT d ≤
[
eT x̂Ta uT dT

]
Ω

 ex̂au
d

 (22)

In which,

Ω =

Ω′11 Ω12 0 Ω14

(∗) Ω′22 Ω23 Ω24

(∗) (∗) 0 0
(∗) (∗) (∗) Ω44

 (23)

Ω′11 = He{PAa +QCa}+ (σ1 + σ3)PMapM
T
apP

+ (σ2 + σ4)QMcM
T
c Q

T + σ−11 ĪTNT
a NaĪ

+ (σ−12 + σ−16 )ĪTNT
c NcĪ + CTafCaf (24)

Ω′22 = PAa +ATa P + (σ5 + σ6)QMcM
T
c Q

T

+ σ−13 ĪTNT
a NaĪ + (σ−14 + σ−15 )ĪTNT

c NcĪ (25)

The sufficient condition, for both the stability of observer
(3) and disturbance attenuation (14), holds if the right-

hand-side of (22) ≤ 0 ∀
[
eT x̂Ta uT dT

]T 6= 0. In other
words:

Ω =

Ω′11 Ω12 0 Ω14

(∗) Ω′22 Ω23 Ω24

(∗) (∗) 0 0
(∗) (∗) (∗) Ω44

 ≤ 0 (26)

Remark 3: If there exists numerical computation problem
due to zero element (3,3) in (26), the feedback control
u = −Kx̂a can be applied to avoid this problem.

Applying Schur complement (lemma 2) to Ω′11 and Ω′22,
the following LMI is obtained:



Ω11 Ω12 0 Ω14

(∗) Ω22 Ω23 Ω24

(∗) (∗) 0 0
(∗) (∗) (∗) Ω44


PMap QMc

0 0
0 0
0 0


(∗)

[
Ω55 0
0 Ω66

]



0

QMc

0
0
0
0


(∗) Ω77


≤ 0

(27)



From the above result, the sufficient condition for (15) is
that above LMI (27) must hold, which completes the proof.

Finding the solution for the LMI (16) allows the estimation
the fault vector f . However, to improve H∞ performance,
there is a need for a diagnosis system, where each fault
can be detected and diagnosed separately.

4. DIAGNOSIS SYSTEM

To isolate and estimate the existing faults, a bank of
observers, each of which is sensitive to a certain fault and
capable of attenuating the influence of disturbance and
other faults’ existence, is proposed (see Chen et al. (1996)).
This procedure can be illustrated by Fig. 1 :

ith PI observer

y

u

wi = [dT , (fj)
T ]T

f̂i

Fig. 1. Fault estimation observer

where fi is the fault to detect corresponding to the ith

observer; f̂i is the fault estimation; d is the vector of
disturbance; fj is the vector of non-estimated faults and

wi =
[
dT (fj)

T
]T

is the exogenous input.

The representation
∑
i of the system LTI (1) corresponds

to the conception of the ith PI observer:∑
i

{
ẋ = (A+ ∆A)x+Bu+

[
Ed Efj

]
wi + Efifi

y = (C + ∆C)x+Du+
[
Fd Ffj

]
wi + Ffifi

(28)

where Ffi and Ffj are known matrices corresponding to
the faults fi and fj , respectively.

Based on the synthesis in (28), the H∞ objective in (14)
can be rewritten for the ith observer as:

min
γ>0
‖Sefiwi

‖∞ = min
γ>0

‖efi‖2
‖wi‖2

≤ γ (29)

where efi = fi− f̂i is fault estimation error of the fault fi.

In addition, it is worth noting that those are not perfect
decoupling because of the H∞-norm use. The relation
between the H∞ objective and each observer can be
illustrated by Table 1 which is based on the dedicated
observer scheme (DOS) in fault detection and isolation
(FDI) process (see Clark (1978)). The difference is that the
aim of each observer is to estimate a certain fault (actuator
or sensor fault) and attenuate its disturbances, whereas in
DOS, a certain fault is only detected and its residual needs
to decouple perfectly from its perturbation.

Table 1. Fault estimation and disturbance at-
tenuation table

Fault PI Observer 1 PI Observer j = 2 . . . n

f1 |Tf̂1f1 |w=0:bw1
= 1(0 dB) ‖Sefj

f1‖∞ ≤ γj
fj ‖Sef1fj ‖∞ ≤ γ1 |Tf̂jfj |w=0:bwj

= 1(0 dB)

d ‖Sef1d‖∞ ≤ γ1 ‖Sefj
d‖∞ ≤ γj

where Tf̂ifi = f̂i/fi is the complementary sensibility

function of f̂i and fi; Sefifj = efi/fj is the sensibility

function of efi and fj ; Sefid = efi/d is the sensibility
function of efi and d; and bwi is the bandwidth of fault fi.

Moreover, the H∞ performance can be improved for spe-
cific zones of frequency by applying specific filters to the

disturbance wi =
[
dT (fj)

T
]T

. More details on filter
design are presented in 5.4 and Koenig et al. (2016).

Wd :

{
ẋd = Adxd +Bdd̄

d = Cdxd +Ddd̄
(30)

Wfj :

{
ẋfj = Afjxfj +Bfj f̄j
fj = Cfjxfj +Dfj f̄j

(31)

where d̄ is the fictive disturbance of d; and f̄j is the fictive
non-estimated fault of fj .

The faulty system of (28) can be represented by d̄ and f̄j
as:

∑
i


ẋs = (As + ∆As)xs +Bsu+ Eds

[
d̄

f̄i

]
+ Efsfi

y = (Cs + ∆Cs)xs +Du+ Fds

[
d̄

f̄i

]
+ Ffsfi

(32)

where xs =

[
x
xd
xfj

]
, As =

A EdCd EfjCfj
0 Ad 0
0 0 Afj

,

∆As =

[
∆A 0 0
0 0 0
0 0 0

]
, Bs =

[
B
0
0

]
, Eds =

EdDd EfjDfj
Bd 0
0 Bfj

T ,

Efs =
[
ETfi 0 0

]T
, Cs =

[
C FdCd FfjCfj

]
,

∆Cs = [∆C 0 0], Fds =
[
FdDd FfjDfj

]
, and Ffs = Ffi .

The relation between the fault estimation and the distur-
bance is bounded by:

‖efi‖2
‖w̄i‖2

≤ γi ⇐⇒


‖efi‖2
‖d‖2

≤ γi|Wd|−1

‖efi‖2
‖fj‖2

≤ γi|Wfj |−1
(33)

where w̄i =
[
(d̄)T (f̄j)

T
]T

The proposed diagnosis system (32) will be applied to
vehicle suspension system in the next section.

5. APPLICATION TO VERTICAL CAR SYSTEM

5.1 Platform INOVE

In the GIPSA laboratory, Saint-Martin-d’Hres, France,
there exists platform INOVE (see Fig. 2), which is a 1:5-
scaled racing car including wheels, engine, steering and
breaking systems, semi-active suspensions and a system
of sensors (for instance position sensors, force sensors,
and accelerometers) for observation and control purposes.
Ground vibrations (road profiles) are controlled thanks to
4 linear brushless motors applying vertical displacement
to each wheel. The system is operated with the sampling
time of 5 ms (see Tudón-Mart́ınez et al. (2015)).



Fig. 2. SOBEN car of platform INOVE

5.2 Suspension modelling

The quarter-car, or the semi-active suspension in the
platform, can be modeled by a mass-spring-damper system
(see Fig. 3). In which: the sprung mass ms represents
a quarter of the chassis body and zs is the vertical
displacement around the equilibrium point of ms; the
sprung mass mus represents wheel/tire of the vehicle and
zus is the vertical displacement around the equilibrium
point of mus; the semi-active suspension is composed of a
spring with the stiffness coefficient ks and a controllable
damper with the damping coefficient c, in which cmin ≤
c ≤ cmax; the tire is modeled by a spring with the stiffness
coefficient kt; and the road profile zr is considered as
unknown input d for the suspension.

Fig. 3. The quarter-car model

The suspension dynamics are described by following equa-
tions (Savaresi et al. (2010)):{

msz̈s = −ks(zs − zus)− Fc
musz̈us = ks(zs − zus) + Fc − kt(zus − zr)

(34)

where Fc = cżdef is the damper force; zdef = zs − zus is
the displacement (deflection) between the chassis and the
tire position; and żdef is the deflection speed.

In order to obtain LTI model of suspension system, the
damper force Fc is decomposed into 2 components:

Fc = cżdef = c0żdef + u (35)

In which, u is the model input corresponding to the varying
part of semi-active damper force Fc; c0 is the nominal value
of damper, which corresponds to a passive damper when
there is no control input u.

Remark 4: In this paper, the linear modelling for suspen-
sion damper (35) is applied. Some discussions on nonlin-

earity of the damper can be found in Pletschen and Badur
(2014) and Pletschen and Diepold (2017).

According to Do et al. (2011), in case of semi-active
suspension, the authors chose c0 = (cmin + cmax)/2 as the
nominal damping value, so the control input u in (35) is
supposed to be limited in symmetric region [−u∗max, u∗max],
where u∗max = (cmax − cmin)żdef/2.

In the application section, 2 available outputs are used
in platform INOVE: zdef is the displacement between zs
and zus; and z̈us is the tire acceleration. As a result, there
may exist the following faults in LTI model (36): fzdef in
the displacement sensor zdef , fz̈us in the tire acceleration
sensor z̈us and fa in the damper actuator input u.

The faulty LTI model has been considered for the study
as (Savaresi et al. (2010)):{

ẋ = Ax+Bu+ Edd+ Eff

y = Cx+Du+ Fdd+ Fff
(36)

In which, x = [zs żs zus żus]
T

is the state vector; y =

[zdef z̈us]
T

is the output vector; d is the road profile
zr considered as unknown input; u is the control input;

f =
[
fTa fTzdef fTz̈us

]T
is vector of faults;

A =


0 1 0 0

− ks
ms
− c0
ms

ks
ms

c0
ms

0 0 0 1
ks
mus

c0
mus

−kt+ ks
mus

− c0
mus

; Ed =

[
0 0 0

kt
mus

]T
;

C =

[
1 0 −1 0
ks
mus

c0
mus

−kt+ ks
mus

− c0
mus

]
; Fd =

[
0

kt
mus

]T
;

B =

[
0 − 1

ms
0

1

mus

]T
; D =

[
0

1

mus

]T
; Ef =

[B 0nx×ny]; Ff = [D Iny] .

The parameters of SOBEN car for a corner are presented
in the following table:

Table 2. Quarter-car parameters

Parameters Unit Value Description

ms kg 2.64 A quarter-car chassis mass
mus kg 0.485 Rear tire mass
ks N/m 1396 Suspension stiffness
cmin N.s/m 17.59 Minimum damping coefficient
cmax N.s/m 1028 Maximum damping coefficient
kt N/m 12270 Tire stiffness

5.3 System uncertainty

The damping coefficient c is varying from cmin to cmax, so
it has the uncertainty of ∆c0 = (cmax−cmin)/2 comparing
to the nominal value c0.

The effect of uncertainty on system dynamics are pre-
sented by the eigenvalues of (A + ∆A) with ∆A = 0
and with both cmin and cmax cases, as mentioned in
Fig. 4 which proves an important influence of damping
coefficient’s variation on the system dynamics. Therefore,
the application of robust observer is necessary to deal with
this uncertainty.
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Fig. 4. Dynamics of uncertain system

5.4 Frequency Analysis

Due to space limitation, only the solution to fzdef PI
observer, whose disturbances include the road profile d
and the non-estimated faults fa and fz̈us , is presented.

As previously defined in (30) and (31), the H∞ perfor-
mance can be improved by using filters (37) and (38),
which are based on idea of low-pass filter attenuating
input signal since a specific frequency. Therefore, the H∞
norm can be optimized for an active zone of frequency. For
example, the filter Wd allows the fictive road profile d̄ to be
attenuated since its cut-off frequency wd until its achieves
20log(Kd) (dB) of attenuation, so the H∞ performance
can be optimized in the domain from 0 to wd (the same
principle for filter Wf ).

Wd =
s

ωdKd
+ 1

s
ωd

+ 1
(37)

Wf = Wfa = Wfz̈us
=

s
ωfKf

+ 1
s
ωf

+ 1
(38)

According to assumption 1, the faults fa and fz̈us
are

supposed to exist in low frequency, given the domain from
0 to 2 Hz, and the working frequency of road profile d is
from 0 to 20 Hz (see Savaresi et al. (2010)). As a result,
wd = 20 Hz and wf = 2 Hz are chosen as the cut-off
frequencies of the filter Wd and filter Wf , respectively. The
gains Kd and Kf are chosen in order to obtain sufficient
attenuation, particularly in this study: Kd = Kf = 40
(32.04 dB).

Note: The dynamics of the PI observer can be modified by
the pole placement method. (see Boyd et al. (1994)).

By using Yalmip toolbox (Lofberg (2004)) and Sedumi
solver (Sturm (1999)), the optimal H∞ performance of
the PI observer is calculated: γzdef = 0.01. The gains of
PI observer are presented as followings:

LP =



0.1027 −2.2802e−5
27.9654 0, 0716
0.0054 −1.7345e−5
−150.3090 −0, 3731
−8.9604e−4 5.5338e−6
−1.0946e−7 2, 1441e−10
2.2390e−8 9.7757e−11

 (39)

LI = [2.4588 −2.1770e−4] (40)

The eigenvalues of (Aa − LaCa) are : {−1.74e3;−1.26e2;
− 8.84± 62.51i;−3.43;−1.9575;−12.57;−12.57} present a

stable dynamic. In other words, matrix (Aa − LaCa) is a
Hurwitz matrix as discussed in Remark 2.

The frequency analysis is illustrated below to evaluate
the sensitivity of the fault estimation error efzdef to its

disturbances. Fig. 5 shows efficient attenuation of the road
profile d (cm) impact on the fault estimation error efzdef .

It has a maximum at 9.85 Hz, which emphasizes the worst
case of −65.7 dB in its frequency range. In other words,
it reflects an impact of 0.06 cm on the fault estimation
error if road profile amplitude is 1 cm. The influence of
the actuator fault fa on fault estimation error decreases in
the range of 0 to 2 Hz, with great attenuation less than -
100 dB (see Fig. 6). With the magnitude less than -110 dB,
bode diagram in Fig. 7 shows that the fz̈us fault impact
is significantly attenuated. The higher the frequency, the
less fault impact on the estimation error. In general, all
above sensibilities satisfy the condition (33).

In Fig. 8, |Tf̂zdef fzdef | = 0 from 0 to 0.05 Hz, so the fault

fzdef can be well estimated if its bandwidth is less than
0.05 Hz.

5.5 Validation condition

The open-loop validation process is done during 30 sec-
onds.

Road profile d: is modeled as a smooth highway (road
profile type B) (see Fig. 9), according to International
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Organization for Standardization (ISO) 8608 classification
(see ISO (1995), and Tudón-Mart́ınez et al. (2015)).

Fault Scenario: Abrupt faults (stepwise) have been con-
sidered in the test. In terms of the sensor faults fzdef and
fz̈us

, step up signals are applied in order to model the
instant offsets.

fzdef =

{
0.03 if (1s ≤ t ≤ 7s)

0 otherwise
(m) (41)

fz̈us =

{
2 if (11s ≤ t ≤ 18s)

0 otherwise
(ms−2) (42)

In practice, the damper force Fc of semi-active suspension
is controlled by duty cycle fpwm, which is expressed as (Do
et al. (2010)):

Fig. 9. Road profile: smooth highway

Fc = c1żdef + k1zdef +Gcfpwmtanh(c2żdef + k2zdef )
(43)

= c0żdef + u (44)

where the parameters:Gc = 24.95[Ns/m], c1 = 20.78[Ns/m],
k1 = 186.33[N/m], c2 = 21.45[Ns/m], k2 = 13.30[N/m],
and 0.1 ≤ fpwm ≤ 0.35.

When actuator fault exists, i.e Fc = (c0)żdef + u + fa,
the relation between fa and non-faulty duty cycle fpwm is
adjusted by a gain κ:

Gcκfpwmtanh(c2żdef + k2zdef ) = (c0)żdef + u+ fa
− c1żdef − k1zdef (45)

As a result, the modification of κ allows the simulation of
actuator fault fa, which is defined as:

fa =

{
−0.6 if (22s ≤ t ≤ 27s)

0 otherwise
(N) (46)

5.6 Experimental result

The fault estimation of fzdef is presented in Fig. 10.
With the road profile disturbance, Fig. 10 shows that the
displacement fault fzdef is well estimated with the rising
time about 2 seconds. Moreover, the coupling problem
with other faults has negligible effects on fault estimation
thanks to H∞ application. The overshoot in fault estima-
tion can be modified by changing the dynamics of the PI
observer.

6. CONCLUSION

By applying the majoration lemma to theH∞ PI observer,
robust fault estimation problems have been structurally
formulated for LMI optimization whose solution can be
easily obtained by LMI solvers. Moreover, through fre-
quency analysis and the real application to the semi-
active suspension system, the proposed observer design
has proven its capacity to efficiently attenuate the dis-
turbances and deal with the system uncertainties, while
estimating the faults with satisfactory convergence proper-
ties. For future work, a far-reaching solution can be offered
to linear parameter-varying system, where the same idea
of boundedness can be applied. In addition, the fault
estimation results can provide useful information for fault
tolerant control application.
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