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Abstract

The present article is concerned with global subelliptic estimates for Kramers-

Fokker-Planck operators with polynomials of degree less than or equal to two. The

constants appearing in those estimates are accurately formulated in terms of the coef-

ficients, especially when those are large.
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1 Introduction and main results

In this work, we consider the Kramers-Fokker-Planck operator given by

KV = p.∂q − ∂qV (q).∂p +
1

2
(−∆p + p2), (q, p) ∈ R

2d , (1.1)

where q denotes the space variable, p denotes the velocity variable, x.y =
d∑

j=1

xjyj , x
2 =

d∑
j=1

x2
j

and the potential V (q) =
∑

|α|≤2

Vαq
α is a real-valued polynomial function on Rd with d◦V = 2 .

After making an orthogonal change of variables one may assume that its Hessian matrix is

Hess V =




ν1 0 . . . 0
0 ν2 . . . 0
...

...
. . .

...
0 0 . . . νd


 .

The constant term V0 does not appear in KV and can be set to 0 and we distinguish two
cases:

• If Hess V is non-degenerate, a translation in q reduces the problem to

V (q) =

d∑

i=1

νi
2
q2i . (1.2)

• If Hess V is degenerate, a good choice of orthonormal basis gives:

V (q) = λ1q1 +

d∑

i=2

νi
2
q2i , (1.3)

where λ1 is invariantly defined as min
q∈Rd

|∇ V (q)| ≥ 0 .

As established in [HeNi], the non-selfadjoint operator KV is maximal accretive when
endowed with the domain D(KV ) =

{
u ∈ L2(R2d), KV u ∈ L2(R2d)

}
. The question about

the compactness of the resolvent combined with subelliptic estimates is intimately related
with the return to the equilibrium or exponential decay estimates. As pointed out in [HerNi]
and [HeNi], the analysis of KV is also strongly related to the one of the Witten Laplacian

∆
(0)
V = −∆q + |∇V (q)|2 − ∆V (q) for which maximal hypoelliptic techniques developed by

Helffer and Nourrigat in [HeNo] provide accurate criteria for general polynomial potentials
V (q) .

Within this maximal hypoelliptic analysis of ∆
(0)
V there is a recurrent interplay between

qualitative estimates and quantitative estimates in terms of the size of the coefficients of the
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polynomial V (q) . The general idea is that the study of the operator ∆
(0)
V as q → ∞ when

V is a degree r polynomial, is reduced to a quantitative version of subelliptic estimates for
∆

(0)

τṼ
, where Ṽ belongs to some family of polynomials related to V with degree less than r ,

and τ is a large parameter.
“Quantitative estimates” means that we consider subelliptic estimates with a good and

optimal control of the constant with respect to the parameter τ . Remember also that the
compactness of the resolvent on ∆

(0)
V obtained by maximal hypoelliptic techniques , relies on

the fact that no polynomial Ṽ of the family associated with V admits a local minimum. It
shows in particular that the compactness of the resolvent of ∆

(0)
+V and ∆

(0)
−V differ and the first

non trivial example comes with the potential ±V (q1, q2) = ±q21q
2
2 in R2 . For the Kramers-

Fokker-Planck operator KV , no sufficient condition until the recent work by W.X. Li [Li2]
exhibited such a different behavior.

We hope to develop the same strategy for the non self-adjoint operator KV as for the
Witten Laplacian ∆

(0)
V , namely try to get the optimal subelliptic estimates for some class

of polynomial functions V (q) , by making use of quantitative estimates for some lower de-
gree polynomials. The case d◦V ≤ 2 for which the Weyl symbol of KV is a polynomial of
degree ≤ 2 in the variable (q, p, ξq, ξp) allows a lot of exact analytic calcultations and was al-
ready deeply studied in [Hor][Sjo][HiPr][Vio][Vio2][AlVi]. Nevertheless exploiting those exact
analytic expressions for the semigroup kernel or symbol (Mehler’s type formulas) or for the
spectrum does not solve completely the question of optimal quantitative subelliptic estimates
for the non self-adjoint operator KV . The semiclassical regime which can be handled quite
accurately via symbolic calculus gives results after rescaling essentially when the transport

part p.∂q − ∂qV (q).∂p is small compared to the diffusive–friction part −∆p+p2

2
.

Actually, we are mainly interested in the other regime where the Hamiltonian dynamics
is stronger than the diffusive and friction part. The difficulty then appears clearly, because
understanding the operator KV requires the understanding of the Hamiltonian dynamics
associated with p.∂q − ∂qV (q).∂p which, for a general polynomial V exhibits a rich variety of
phenomena, and which, for a polynomial of degree ≤ 2, already contains the three types of
dynamics: a) elliptic (bounded trajectories when V is a positive definite quadratic form); b)
hyperbolic (trajectories escaping exponentially quickly in time to infinity when V is a negative
definite quadratic form); and c) parabolic (trajectories escaping polynomially quickly in time
to infinity when V is linear).

At a more fundamental level, understanding the operator KV when the transport term is
dominant also proceeds in the same direction as Bismut’s program: in [Bis1], Bismut intro-
duced his hypoelliptic Laplacian in order to interpolate Morse theory (in the high diffusion-
friction regime via the Witten Laplacian) and the topology of loop spaces (dominant trans-
port term). The difficult part with a dominant transport term was understood only for the
geodesic flow on symmetric spaces making use of the specific algebraic structure in [Bis2].

With this respect our simpler case also requires a better understanding of the underlying
algebra, and it appeared that after using the general FBI-techniques the Kramers-Fokker-
Planck evolution with quadratic potentials, even in dimension d = 1 , is reduced to some linear
dynamics on C4 which are easily computed after elucidating some quaternionic structure.
In this specific case, this also completes the unfruitful attempts in [HeNi], Section 9.1, to

3



exhibit some useful nilpotent Lie algebra structure for Kramers-Fokker-Planck operators.
Actually, quaternions and Pauli matrices are related to the su(2) Lie algebra, so the Lie
algebra structure decomposition useful to the analysis of Kramers-Fokker-Planck operators
with polynomial potentials is certainly not nilpotent.

Denoting

Op =
1

2
(D2

p + p2)

and
XV = p.∂q − ∂qV (q).∂p,

we can rewrite the Kramers-Fokker-Planck operator KV defined in (1.2) as KV = XV +Op.
In this work, we are mainly based on recent publications by Hitrik, Pravda-Starov, Viola, and
Aleman [AlVi], [Vio2], and [HPV2] which deal with operators having polynomial symbols of
degree less than or equal to two.

Notations:

Tr+ =
∑

νi>0

νi ,

Tr− = −
∑

νi≤0

νi ,

A = max{(1 + Tr+)
2/3, 1 + Tr−}

B = max{λ4/3
1 ,

1 + Tr−
log(2 + Tr−)2

},

The main goal of this work is the following subelliptic estimates.

Theorem 1.1. Let V (q) be a potential as in (1.2) or (1.3). Then there exists a constant
c > 0 that does not depend on V such that the subelliptic estimate with a remainder term

||KV u||2L2(R2d) + A||u||2L2(R2d) ≥ c
(
||Opu||2L2(R2d) + ||XV u||2L2(R2d)

)
(1.4)

holds for all u ∈ D(KV ).

Theorem 1.2. Let V (q) as in (1.2) or (1.3). Then there is a constant c > 0 independent of
the polynomial V so that the subelliptic estimate without a remainder

||KV u||2L2(R2d) ≥
c

1 + A
B

(
||Opu||2L2(R2d) + ||XV u||2L2(R2d)

)

holds for all u ∈ D(KV ), under the condition Tr− + λ1 6= 0.

Remark 1.2.1. In view of the comparison with compactness criteria for Witten Laplacians
with polynomial potentials (see [HeNi]), note that the condition Tr− + λ1 6= 0 imposed in
Theorem 1.2 is equivalent to the fact that the potential V does not have a local minimum.

The two previous Theorems are both consequences of the following result.
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Proposition 1.3. There exists a constant c > 0 such that

d∑

i=1

‖|Dqi|e−t(KV +
√
A)‖L(L2(R2d)) + ‖|∂qiV (qi)|e−t(KV +

√
A)‖L(L2(R2d)) ≤

c

t
3
2

for all t > 0.
Moreover, if Tr− + λ1 6= 0,

‖K−1
V ‖L(L2(R2d)) ≤

∫ +∞

0

||e−tKV ||L(L2(R2d))dt ≤
c√
B

Acknowledgements

Joe Viola is grateful for the support of the Région Pays de la Loire through the project EONE
(Evolution des Opérateurs Non-Elliptiques).

2 Reduction to a one-dimensional problem

Interpolation results of Lunardi (see [Lun]) show that the first inequality of Proposition 1.3
combined with the fact that

|Re〈[Op, XV ]u, u〉| ≤ Cǫ(|| |Dq|
2
3u||2 + || |∂qV (q)| 23u||2) + ǫ||Opu||2

for all u ∈ D(KV ) (where ǫ > 0 is small enough), implies the subelliptic estimates given in
Theorem 1.1. Theorem 1.2 is then a consequence of Theorem 1.1 and the second inequality
of Proposition 1.3.
Details are given below.

Proof of Proposition 1.3. Since this result is expressed in terms of the semigroup, it can be
studied by a separation of variables for a potential of the form (1.2) or (1.3). Actually e−tKV

is a commutative product of contraction semigroups, and it suffices to write

d∑

i=1

||Mie
−t(KV +

√
A)||L(L2(R2d)) ≤

d∑

i=1

||Mie
−t(KV (qi)

+αi)||L(L2(R2)) Mi = |Dqi| orMi = |∂qiV (q)| ,

where V (qi) denotes the one-dimensional potential in the qi variable, with V (q1) =
ν1q21
2

or

V (q1) = λ1q1 , V (qi) =
νiq

2
i

2
for i ≥ 2 , αi = |νi|1/2 if νi < 0 , αi = ν

1/3
i if νi > 0 and αi = 0

if ∂2
qi
V = 0 . The second estimate of Proposition 1.3 is even simpler. Hence Proposition 1.3

will be the result of a careful analysis of the three one-dimensional potentials V (q) = ±νq2

2
,

ν > 0 , and V (q) = λ1q , λ1 ∈ R , developed in the next sections.
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Proof of Theorem 1.1. In this proof we use nearly the same notations as in [Lun] (Corol-
lary 5.13 and Remark 5.11). Set

T (t) = e−t(
√
A+KV ),

L2 = L2(R2d),

E = {u ∈ L2(R2d), qu, ∂qu ∈ L2(R2d)}

where E is equipped with the norm

||u||2E =
d∑

i=1

‖|Dqi|u‖2L2(R2d) + ‖|∂qiV (qi)|u‖2L2(R2d) + ||u||2L2(R2d) .

Applying Lemma 3.4 and Proposition 3.1, we obtain by separation of variables

||T (t)||L(L2,E) ≤
c

t
3
2

for all t > 0 .

If m = 3 and β = 1
2
, then one has the following embedding of real interpolation spaces

(
L2, D

(
(
√
A+KV )

3
))

θ
2
,p
⊂
(
L2, E

)
θ,p

for all θ ∈ (0, 1), p ∈ [1,+∞]. In particular for θ = 2
3
,

[L2, E] 2
3
= (L2, E) 2

3
,2 = {u ∈ L2, |Dqi|

2
3u ∈ L2, |∂qiV (qi)|

2
3u ∈ L2 for all 1 ≤ i ≤ d} ,

where the complex interpolation space [L2, E] 2
3
is equipped with the norm

||u||[L2,E] 2
3

=
d∑

i=1

(
|| |Dqi|

2
3u||2L2(R2d) + || |∂qiV (qi)|

2
3u||2L2(R2d)

)
+ ||u||2L2(R2d) .

Moreover,
(
L2, D

(
(
√
A+KV )

3
))

1
3
,2
= D(

√
A+KV ) (since L

2 is a Hilbert space and (
√
A+

KV ) is a maximal accretive operator).
Thus

D(
√
A+KV ) ⊂ {u ∈ L2, |Dqi|

2
3u ∈ L2, |∂qiV (qi)|

2
3u ∈ L2 for all 1 ≤ i ≤ d} .

Hence there exists a constant c > 0 such that

d∑

i=1

(
|| |Dqi|

2
3u||2 + || |∂qiV (qi)|

2
3u||2L2

)
≤ c||(

√
A+KV )u||2L2 (2.1)

holds for all u ∈ D(KV ).
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Write for u ∈ D(KV ),

||(
√
A+KV )u||2L2 = ||(

√
A+ Op)u||2L2 + ||XV u||2L2 + 2Re〈[Op, XV ]u, u〉 , (2.2)

so

|2Re〈[Op, XV ]u, u〉| ≤
d∑

i=1

∣∣∣Re〈u,
(
DpiDqi + pi∂qiV (q)

)
u〉
∣∣∣

≤
d∑

i=1

|Re〈u, (DpiDqi)u〉|+ |Re〈u, pi∂qiV (q)u〉|

≤
d∑

i=1

〈u, |pi||∂qiV (q)|u〉+ 〈u, |Dpi||Dqi|u〉

≤
d∑

i=1

ǫ〈u, |pi|4u〉+ cǫ〈u, |∂qiV (q)| 43u〉+ ǫ〈u, |Dpi|4u〉+ cǫ〈u, |Dqi|
4
3u〉

(2.3)

≤ c
(
ǫ||Opu||2L2 + cǫ||(

√
A+KV )u||2L2

)
,

where (2.3) is due to the Young inequality ts ≤ 1
4
t4 + 3

4
t
3
4 for all t, s ≥ 0 and the last line is

a consequence of (2.1).
Therefore, combining the last inequality with (2.2), we obtain

||(
√
A+KV )u||2L2 ≥ ||(

√
A+Op)u||2L2 + ||XV u||2L2 − c

[
ǫ||Opu||2L2 + cǫ||(

√
A +KV )u||2L2

]

≥ (1− cǫ)||(
√
A+Op)u||2L2 + ||XV u||2L2 − ccǫ||(

√
A +KV )u||2L2

for all u ∈ D(KV ). To complete the proof, it is enough to use the fact that

2
(
A||u||2L2 + ||KV u||2L2

)
≥ ||(

√
A+KV )u||2L2

for all u ∈ D(KV ).

Proof of Theorem 1.2. If Tr−+λ1 6= 0, by Proposition 1.3, there exists a constant c > 0 such
that

‖K−1
V ‖L(L2(R2d)) =

∥∥∥∥
∫ +∞

0

e−tKV dt

∥∥∥∥
L(L2(R2d))

≤
∫ +∞

0

||e−tKV ||L(L2(R2d))dt

≤ c√
B

.

Consequently, for all u ∈ D(KV ),

||u||2L2(R2d) ≤
c

B
||KV ||2L2(R2d) .
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Combining the above inequality, along with (1.4), one gets immediately the global subelliptic
estimates

||KV u||2L2(R2d) ≥
c

1 + A
B

(
||Opu||2L2(R2d) + ||XV u||2L2(R2d)

)

for all u ∈ D(KV ).

3 Subelliptic estimates with remainder for non-degenerate

one-dimensional potentials

The operator KV with a potential V (q) = ∓νq2

2
= −e2iα νq2

2
(where ν > 0 is a parameter and

α ∈ {0, π
2
}), is unitarily equivalent to

Kν,α =
1

2
(−∂2

p + p2) +
(
eiα

√
ν
)
e−iα

(
p∂q + e2iαq∂p

)

= Op + zXα

where z := eiα
√
ν and Xα := i(e−iαpDq+eiαqDp). Actually introducing the possibly complex

parameter z allows us to use the same computations for both cases because they involve entire
functions of z ∈ C . On the other hand, some identities make sense only when α ∈

{
0, π

2

}
,

particularly those involving Oq (the harmonic oscillator in q) or the symplectic product.
Below we sum up the cases to be studied:

V (q) α z
−νq2

2
0

√
ν

+νq2

2
π
2

i
√
ν

In this one dimensional case, we use the following notations:

Oq =
1

2
(D2

q + q2) , Oeiαq =
1

2
(e−2iαD2

q + e2iαq2) , Op =
1

2
(D2

p + p2) ,

Xα = i(e−iαpDq + eiαqDp) , Yα = i(eiαpq − e−iαDqDp) ,

where α ∈
{
0, π

2

}
and Oeiαq = e2iαOq in the final applications.

The Hamilton map written as a matrix equals

HQ :=




q′′
ξx q′′

ξξ

−q′′
xx −q′′

xξ


 ,

where q(q, p, ξq, ξp) is the Weyl-symbol of the operator Q, meaning Q = qw(q, p,Dq, Dp) =
qw(x,Dx) , x = (q, p):

Qu(x) =

∫

R4d

ei(x−x′).ξq

(
x+ x′

2
, ξ

)
u(x′)

dξ

(2π)2d
dx′ .
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Noticing that Op, Oq, Oeiαq , Xα, Yα and Kν,α have quadratic symbols, the corresponding
Hamilton maps are written accordingly HOp, HOq , HOeiαq

, HXα, HYα and HKν,α . Let E :=
HO

eiαq−Op, I := H−Oeiαq−Op, J := H−Xα, and K := HYα denote respectively the Hamiltonian
matrices associated to the operators Oeiαq − Op, −Oeiαq − Op, −Xα and Yα. Then one has

E =




0 0 e−2iα 0
0 0 0 −1

−e2iα 0 0 0
0 1 0 0


 , I =




0 0 −e−2iα 0
0 0 0 −1

e2iα 0 0 0
0 1 0 0


 ,

J =




0 −ie−iα 0 0
−ieiα 0 0 0
0 0 0 ieiα

0 0 ie−iα 0


 , K =




0 0 0 −ie−iα

0 0 −ie−iα 0
0 −ieiα 0 0

−ieiα 0 0 0


 .

Note that E commutes with I, J,K and IJ = K with the relations

E2 = I2 = J2 = K2 = −1 for all α ∈ R , (3.1)

and E = E, I = I, J = −e2iαJ,K = −e2iαK when α ∈ {0, π/2} . (3.2)

These relations, IJ = K, and (3.1) ensure that (1, I, J,K) can be considered algebraically
as a basis of (bi-)quaternions. Note in particular that

HOp = −1

2
(E + I) , HXα = −J

HYα = K , HKν,α = −1

2
(E + I + 2zJ)

for all α ∈ R, while the relations
(

0 −IdR2

IdR2 0

)
= sin(α)E + cos(α)I , HOq =

e2iα

2
(E − I)

hold for α ∈ {0, π
2
} .

The commutation property with the matrix E can be interpreted as follows at the operator

level: consider the two commutators
[
Op, Xα

]
= iYα and

[
Oeiαq, Xα

]
= iYα. Then the

operator Oeiαq−Op commutes with Op and Xα . Once this reduction is done, the quaternionic
structure can be guessed as well from the operator level after computing all the commutators
of Op, Oeiαq,Xα and Yα .

3.1 General estimate when V (q) = ±νq
2

2
, ν > 0

Proposition 3.1. Let ν > 0 be a parameter and α ∈
{
0, π

2

}
. There exists a constant C > 0,

independent of ν, such that

||
√
ν Oq e

−t(Kν,α+
√
ν)||L(L2(R2) ≤

C

t
3
2

holds for all t > 0.
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Lemma 3.2. One can find a function δ0(t) > 0 , specified below in (3.8)(3.9), defined in
[0,+∞[ such that for all δ(t) ∈ [0, δ0(t)[

||eδ(t)Oqe−tKν,α ||L(L2(R2)) ≤ 1

is satisfied for all t > 0.

Proof. The exact classical quantum correspondence, valid forQj = qwj , j = 1, 2, 3, when qj are
complex-valued quadratic forms with associated Hamilton maps HQj

and positive Hamilton
flows expHQj

(see[Hor][Vio]), says that

expHQ1 expHQ2 = expHQ3 ⇐⇒ e−iQ1e−iQ2 = ±e−iQ3 .

We will determine conditions such that the canonical transformation

expHiδ(t)Oq expH−itKν,α

is strictly positive in the sense defined in (3.5). Working from the Hamilton flow, one can
therefore compute exactly ([Vio2], Proposition 4.8) a compact operator of the form e−iQ2 for
Q2 quadratic such that

e−δ(t)Oqe−iQ2 = e−iδ(t)(i−1Oq)e−iQ2 = ±e−it(i−1Kν,α) = ±e−tKν,α

Applying this equality to the dense set of linear combinations of Hermite functions, this
shows that e−tKν,α takes L2(R2) to the domain of eδ(t)Oq with the estimate

‖eδ(t)Oqe−tKν,α‖ = ‖e−iQ2‖ ≤ 1.

We will compute
eiδ(t)HOq e−itHKν,α

which will be done by using biquatertionic expressions. The compactness of e−iQ2 , and the
fact that its norm is bounded by 1, is a consequence of the positivity condition (3.5) which
will be checked explicitly.

Set, for all t ≥ 0, κ(t) = e−itHKν,α and κ0(δ) = eiδ(t)HOq , and consider the canonical
transformation

κ(t) := e−itHKν,α = ei
t
2
(E+I+2zJ)

for all t ≥ 0. Let n1 denote

n1 =
√

N(I + 2zJ) =
√
1 + 4z2 6= 0 when z 6= ± i

2

such that v̂ = I+2zJ
n1

satisfies v̂2 = −1 .
Using the fact that E commutes with I and J , and the formula (A.1) ,

κ(t) = ei
t
2
Eei

t
2
n1v̂ = ei

t
2
E
(
ch(

tn1

2
) + i

sh( tn1

2
)

n1
(I + 2zJ)

)

=: ei
t
2
E
(
C(t) + i S(t)(I + 2zJ)

)
. (3.3)

10



The functions R ∋ t 7→ C(t) and R ∋ t 7→ S(t) do not depend on the choice of the square
root

√
1 + 4z2 , because ch is an even function and sh an odd function. Moreover, they are

real when z ∈ R ∪ iR , which corresponds to z = eiα
√
ν , α ∈

{
0, π

2

}
.

On the other hand,

κ0(δ) = e−iδ(t)HOq = e
i
2
δ(t)e2iαEe−

i
2
δ(t)e2iαI

= e
i
2
δ(t)e2iαE

(
ch(

δ(t)

2
e2iα)− i sh(

δ(t)

2
e2iα)I

)
. (3.4)

When σ =

(
0 −Id
Id 0

)
denotes the matrix of the symplectic form on R2×2 , the equality

σ = sin(α)E + cos(α)I holds when α ∈
{
0, π

2

}
(and only in those cases modπ). As

established in [Vio2], it is possible to write eδ(t)Oqe−tKν,α = e−iQ2 with Q2 = qw2 , with e−iQ2

a compact operator , when the canonical transformation κ0κ satisfies the strict positivity
condition

i
[
σ
(
κ0κz, κ0κz

)
− σ

(
z, z
)]

> 0 for all z ∈ C
4 \ {0} . (3.5)

This condition is equivalent to the condition that the Hermitian matrix

i
(
(κ0κ)

∗σκ0κ− σ
)
= i
(
κ∗κ∗

0σκ0κ− σ
)
= i
(
κ∗κ0σκ0κ− σ

)
,

is positive definite, or equivalently that

κ0(iσ)κ0 − (κ∗)−1(iσ)(κ)−1 = κ0(δ)(iσ)κ0(δ)− κ∗(−t)(iσ)κ(−t)

is positive definite.
Since E commutes with I, J and K, the spectral decomposition of E allows us to study

2-by-2 matrices instead of 4-by-4 matrices: T ∗
±(iE)T± = ±Id , where

T± =
1√
2




1 0
0 1

∓ie±2iα 0
0 ±i


 , T ∗

±T± =

(
1 0
0 1

)
.

Letting

Ẽ := T ∗
±ET± = ∓iId =

(
∓i 0
0 ∓i

)
, Ĩ := T ∗

±IT± =

(
±i 0
0 ∓i

)
,

J̃ := T ∗
±JT± =

(
0 −ie−iα

−ieiα 0

)
, K̃ := T ∗

±KT± =

(
0 ±e−iα

∓eiα 0

)
,

we get

T ∗
±κ0(δ)(iσ)κ0(δ)T± = e±δ(t)e2iα

[
± sin(α)c(t)− s(t) cos(α) + i

(
cos(α)c(t)∓ sin(α)s(t)

)
Ĩ
]
,

(3.6)
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where c(t) = ch(δ(t)e2iα) and s(t) = sh(δ(t)e2iα) . Similarly,

T ∗
±κ

∗(−t)(iσ)κ(−t)T± = e∓t
[
± sin(α)

(
C2(t) + (1− (2z)2)S2(t)

)
− 2 cos(α)C(t)S(t)

+ i cos(α)
(
C2(t) + (1− (2z)2)S2(t)

)
Ĩ ∓ 2i sin(α)C(t)S(t)Ĩ

+ 4zi cos(α)S2(t)J̃ ∓ 4z sin(α)S2(t)K̃
]
.

(3.7)

Taking into account (3.6) and (3.7),

T ∗
±κ0(δ)(iσ)κ0(δ)T± − T ∗

±κ
∗(−t)(iσ)κ(−t)T± = ±e±δ(t)e2iα

(
sin(α)c(t)∓ cos(α)s(t)

)

+ e∓t
(
∓ sin(α)(1 + 2S2) + 2 cos(α)CS

)

+ i
[
e±δ(t)e2iα

(
cos(α)c(t)∓ sin(α)s(t)

)

− e∓t
(
cos(α)(1 + 2S2(t))∓ 2 sin(α)C(t)S(t)

)]
Ĩ

− 4zie∓t cos(α)S2(t)J̃ ± 4ze∓t sin(α)S2(t)K̃

=e∓t
(
a + bĨ + cJ̃ + dK̃

)
.

The determinant of the Hermitian matrix e±t
(
T ∗
±κ0(δ)(iσ)κ0(δ)T±−T ∗

±κ
∗(−t)(iσ)κ(−t)T±

)

is equal to

a2 + b2 + c2 + d2 = 1− e±t(2 + 4S2 − e±t)∓ e±t(1− e±2δ(t)e2iα)
(
2CS ∓ (1 + 2S2 − e±t)

)
.

Let δ0(t) > 0 be the function which cancels the determinant, or equivalently for which one
has, for all t > 0,

2
(
2S2 − (ch(t)− 1)

)
= ∓(1− e±2δ(t)e2iα )

(
2CS + sh(t)∓

(
2S2 − (ch(t)− 1)

))
.

After some computation, we find that this function is independent of the sign in the
expression above and is given by

δ0(t) =
e−2iα

2
ln
(
1− 2A(t)

2C(t)S(t) + sh(t) + A(t)

)
, (3.8)

where A(t) :=
(
2S2(t)− (ch(t)− 1)

)
. (3.9)

We know that, when δ = 0 and α ∈ {0, π
2
}, the Hamilton flow κ(t) is positive because

e−tKν,0 is a compact operator (see [HeNi][HiPr]). By connectedness of the set of positive
definite hermitian matrices and because the result holds for δ(t) = 0, the flow κ0(δ)κ(t) is a

12



positive canonical transformation so long as the determinant is positive on [0, δ]. Therefore
δ(t) ∈ [0, δ0(t)[ implies

||eδ(t)Oqe−tKν,α||L(L2(R2)) ≤ 1 ,

because any such compact Schrödinger evolution has norm less than 1 (see [Vio2]).

Proof of Proposition 3.1. When 0 < ǫ0 < 1 , there exists a constant c > 0 independent of ν
such that

δ0(t) ≥ cνt3

holds for all 0 < t ≤ t0 :=
ǫ0

1+|z| =
ǫ0

1+
√
ν
. This can be seen via the expansion

1

2
ln

(
1− 2A(t)

A(t) + 2C(t)S(t) + sh(t)

)
=

z2

12
t3 +O

(
(1 + |2z|2)2t5

)
,

which is uniform with respect to the parameter ν for all t ∈]0, t0] .
We write the quantity ||

√
ν Oqe

−t(Kν,α+
√
ν)||L(L2(R2)) in the form





||
√

ν
δ(t)

√
δ(t) Oq e

−δ(t)Oqeδ(t)Oqe−tKν,αe−t
√
ν ||L(L2(R2)) if 0 < t ≤ t0 ,

||√νe−t
√
ν
√
Oq e

−δ(t0)Oqeδ(t0)Oqe−t0Kν,αe−(t−t0)Kν,α||L(L2(R2)) if t ≥ t0 ,

where Lemma 3.2 is applied with δ(t) = δ0(t)
2

. For both cases we get the upper bounds





√
ν

δ(t)︸ ︷︷ ︸
≤

√
2

√
ct

3
2

||
√
δ(t)Oqe

−δ(t)Oq ||
︸ ︷︷ ︸

≤c

. ||eδ(t)Oqe−tKν,α ||︸ ︷︷ ︸
≤1

. e−t
√
ν

︸ ︷︷ ︸
≤1

if 0 < t ≤ t0 ,

(1 +
√
ν)

3
2 e−t

√
ν ||

√
ν

(1 +
√
ν)

3
2

√
Oqe

−δ(t0)Oq ||
︸ ︷︷ ︸

≤
√

ν

(1+
√

ν)
3
2
√

δ(t0)

. ||eδ(t0)Oqe−t0Kν,α||︸ ︷︷ ︸
≤1

. ||e−(t−t0)Kν,α||︸ ︷︷ ︸
≤e−

(t−t0)
2

if t ≥ t0 .

For the second case t ≥ t0 , we use

(1 +
√
ν)

3
2 e−t( t

2
+
√
ν) ×

√
ν

(1 +
√
ν)

3
2

√
δ(t0)

× e
t0
2 ≤ c0

t3/2
×

√
2ν

(1 +
√
ν)3/2

√
cν

ǫ30
(1+

√
ν)3

× e
ε0
2 ≤ c′0

t
3
2

.

This ends the proof of Proposition 3.1 and gives

||
√
ν(|Dq|+ |q|)e−t(Kν,α+

√
ν)||L2 ≤ C

t
3
2

(3.10)

for all t > 0.
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3.2 Improved remainder, case V (q) = νq
2

2
, ν ≫ 1

In this section we follow the explicit methods of Aleman and Viola in [Vio][AlVi]. Following
[HSV][HPV] it makes use of an FBI transform, which in this specific case is nothing but the
usual Bargmann transform

B2u(z) =
1

22/2π(3×2)/4

∫

R2

e−
(z−y)2−z2/2

2 u(y) dy

with B2 : L
2(R2, dy) → L2(C2; e−

|z|2
2 L(dz)) ∩ Hol(C2) unitary.

Lemma 3.3. For ν > 1
4
, the adjoint operator

K∗
ν,π

2
=

1

2
(−∂2

p + p2)−
√
ν
(
p∂q − q∂p

)
= Op −

√
νXπ

2

is tranformed via the Bargmann transform B2 into

B2(Kν,π
2
)∗B∗

2 = tzM∂z , M =

(
0 −√

ν√
ν 1

)
.

and
[B2(e

−tKν, π2 u)](z) = (B2u)(e
−tMz) .

Proof. Although it may be proved by a direct computation, it is instructive as an illustration
of the general method to follow the lines of [AlVi] or [Vio], Example 2.7. Remember that it
is made in essentially two steps : 1) Write the operator, up to an additive constant, in the
“supersymmetric” form t(Dx − A+x)B(Dx −A+x) after some real canonical transformation
in R

2d (here d = 2); 2) transform the supersymmetric form into itzMζ after some linear
complex canonical transformation associated with an FBI-transform.
Step 1: The two variables (q, p) are gathered in the notation x = (q, p) ∈ R2 , with dual
variable ξ = (ξq, ξp) ∈ R2 . The hamiltonian matrix associated to K∗

ν,π
2
is given by

HK∗
ν, π2

=




0 −i
√
ν 0 0

i
√
ν 0 0 1

0 0 0 −i
√
ν

0 −1 i
√
ν 0


 .

Set λǫ1,ǫ2 =
ǫ1i+ǫ2in1

2
the eigenvalues of HK∗

ν,π2

with their associated eigenvectors

tXǫ1,ǫ2 =
(
1,

iλǫ1,ǫ2√
ν

,
(λǫ1,ǫ2)

2 − ν

λǫ1,ǫ2

, i
(λǫ1,ǫ2)

2 − ν√
ν

)
,

where ǫ1, ǫ2 ∈ {±1}. In the case α = π
2
, one has n1 =

√
1− 4ν = i

√
4ν − 1 for ν > 1

4
.

As a first step we need to determine the following two spaces:

Λ− =
⊕

Im λ<0

ker(HK∗
ν, π2

− λI) =

{(
x

A−x

)
, x ∈ C

2

}
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and

Λ+ =
⊕

Im λ>0

ker(HK∗
ν,π2

− λI) =

{(
x

A+x

)
, x ∈ C

2

}
,

where A+ and A− are two matrices in M2(C) satisfying
tA± = A± and ±Im(A±) > 0.

The matrix A+ is given by A+ = B−1
1+B2+ where

B1+ =



1 −1−n1

2
√
ν

1 −1+n1

2
√
ν


 and B2+ =



i −i−in1

2
√
ν

i −i+in1

2
√
ν


 ,

so A+ = iId . Similarly, A− = B−1
1−B2− with

B1− =



1 1+n1

2
√
ν

1 1−n1

2
√
ν


 and B2− =



−i −i+in1

2
√
ν

−i −i−in1

2
√
ν


 ,

so A− = −iId . This means, after [Vio] formula (2.3), that the real canonical transformation
on R4 is nothing but the identity.

Hence it suffices to write K∗
ν,π

2
in the form

K∗
ν,π

2
= t(Dx −A+x)B(Dx −A−x) ,

for all x = (q, p) ∈ R2 , where the matrix B is found by identification of the two sides:

B =

(
0 −√

ν
2√

ν
2

1
2

)
.

Step 2: Once A+ and A− are known, the complex canonical transformation is given by

κ =

(
1 −i

−(1− iA+)
−1A+ (1− iA+)

−1

)
,

with associated quadratic phase ϕA+ : C2 × C2 → C

ϕA+(x, y) =
i(x− y)2

2
− 1

2

(
x, (1− iA+)

−1A+x
)
= i

[
(x− y)2

2
− x2

4

]
,

which is the one entering in the definition of the associated FBI transform (which is B2) .
The computation of B2K

∗
ν,π

2
B∗

2 then comes from Egorov’s theorem

K∗
ν,π

2
(κ−1Z) =t Ztκ−1

(
−A+

Id

)
B(−A−, Id)κ

−1Z = itzMζ

with M = (1− iA+)B = 2B =

(
0 −√

ν√
ν 1

)

The weight e−2φ(z)L(dz) occuring in the range of B2 is φ(z) =
|z|2
4

which is coherent with the

formulas (2.6) and (2.7) of [Vio] , φ(x) = 1
4

(
|x|2− txCx

)
because C = (1−iA+)

−1(1+iA+) =

0 .
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Lemma 3.4.

There exists a constant c > 0 independent of ν > 1, such that for all t > 0 and all

u ∈ L2(R2) , ut = e
−t(Kν, π2

+ν1/3)
u satisfies

ν

2

(
‖ut‖2L2(R2) + ‖Dqut‖2L2(R2) + ‖qut‖2L2(R2)

)
= ‖

√
ν(

−∂q + q√
2

)e
−t(Kν, π2

+ν
1
3 )
u‖2L2(R2) ≤

c

t3
‖u‖2L2(R2) .

(3.11)

Proof. Set aq =
∂q+q√

2
and a∗q =

−∂q+q√
2

so that aqa
∗
q = a∗qaq +1 = 1

2
(D2

q + q2 + 1) . The identity

ν‖a∗qe
−t(Kν, π2

+ν1/3)
u‖2L2(R2) = ν‖e−t(Kν, π2

+ν1/3)
u‖2L2(R2) + ν‖aqe−t(Kν, π2

+ν1/3)
u‖2L2

≤ νe−tν1/3‖u‖2L2(R2) + ν‖aqe−t(Kν, π2
+ν1/3)

u‖2L2

reduces the problem to that of estimating ‖√νaqe
−t(Kν, π2

+ν1/3)‖. By taking the adjoint, it
suffices to prove that

‖
√
νe

−t(K∗
ν, π2

+ν1/3)
a∗qf‖L2(R2) ≤

c

t
3
2

‖f‖L2(R2) (3.12)

is satisfied for all f ∈ L2(R2, dqdp) and for all t > 0 .
Conjugating by the Bargmann transformB2, the creation operatorB2a

∗
qB

∗
2 = B2(

−∂q+q√
2

)B∗
2 =

zq√
2
× is nothing but multiplication by the complex component zq in C

2 = Cq × Cp . The in-

equality (3.12) is therefore equivalent to

||
√
νe−t(Mz∂z+ν1/3)zqu||Hφ

≤ c

t
3
2

||u||Hφ
(3.13)

for all u ∈ Hφ = L2(C2, e−
|z|2
2 L(dz)) ∩ Hol(C2) , with φ(z) = |z|2

4
.

Let u ∈ Hφ , setting v(z) = zqu(z), one has e−tMz∂zv(z) = v(e−tMz) and it follows that

‖e−tMz∂zzqu‖2Hφ
=

∫

C2

|v(e−tMz)|2|(e−tMz)q|2e−2φ(z)L(dz)

= e2tTrM
∫

C2

|v(z′)|2|z′q|2e−φ(z′)e−2[φ(etMz′)−φ(z′)]L(dz′) .

So our problem is reduced to the proof of the existence of a constant c > 0 that does not
depend on ν such that

sup
z∈C2

|zq|2e
− 1

2

(
|etMz|2−|z|2

)
e−tν1/3 ≤ c

νt3

for all t > 0.
Let us start by checking that z 7→ φ(etMz) − φ(z) defines a positive definite hermitian

form for t > 0 .
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From the expression given in Lemma 3.3 , M is easily written in terms of Pauli’s matrices:

M =
1

2
Id− 1

2
σ3 − i

√
νσ2 ,

with σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

Recall that Pauli’s matrices are involutory:

σ2
1 = σ2

2 = σ2
3 = −iσ1σ2σ3 = Id ,

and that (Id,−iσ1,−iσ2,−iσ3) can be interpreted as a basis of (bi)quaternions.
Using formula (A.1), one has for all t > 0

etM = e
t
2

(
C(t) + 2S(t)(−1

2
σ3 − i

√
νσ2)

)
.

From this, we compute

(etM )∗etM = et
(
1 + 2S2(t)− 2C(t)S(t)σ3 − 4

√
νS2(t)σ1

)

= et(a+ v) ,

with a = 1 + 2S2(t) and v = −2C(t)S(t)σ3 − 4
√
νs21(t)σ1 .

The eigenvalues of (etM )∗etM are given by

λ± = et(a±
√
−N(v)) ,

whereN(v) = −
(
2C(t)S(t)

)2
−
(
4
√
νS2(t)

)2
= −4S2−4S4 < 0 owing to (4ν−1)S2+C2 = 1 ,

and where
√

−N(v) is the usual square root.

In order to prove that the hermitian form z 7→ φ(etMz)− φ(z) = tz̄
(
(etM )∗(etM )− Id

)
z

is positive definite, it suffices to check λ− > 1 for all t > 0, λ+ being clearly strictly larger
than 1 . The eigenvalue λ− equals

λ− = et(1 + (1 + S2)− 2|S|
√
1 + S2) = ete−2Argsh |S|

which is larger than 1 if and only if sh(t/2)− |S| > 0 or [sh(t/2)− S(t)][sh(t/2) + S(t)] > 0
because sh(t/2) > 0 . This is true since both factors vanish at t = 0 with a positive derivative
for t > 0 owing to ch(t/2) > 1 > ± cos( t

2

√
4ν − 1) .

Now denote

r1 =
√
4ν − 1 ; Qt(z) =

tz̄
[
(etM )∗(etM )− Id

]
z and St(z1, z2) =

tz̄1

[
(etM)∗(etM)− Id

]
z2
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for all z = (z1, z2) ∈ C×C. Writing zq = l(z) where l is a linear form with kernel ker l = Cep,(
C2 = Ceq⊕Cep where eq = (1, 0) and ep = (0, 1)

)
, we construct an orthonormal basis (e′q, ep)

for Qt with

e′q = eq −
St(ep, eq)

St(ep, ep)
ep =




1

4
√
ν S2(t)

(1−e−t)+2S2(t)+2S(t)C(t)


 ,

where 



St(ep, eq) = −4
√
ν et S2(t)

St(ep, ep) = et
[
(1− e−t) + 2S2(t) + 2S(t)C(t)

]
.

In this new basis, z = αe′q + βep then l(z) = α l(e′q) and Qt(z) = |α|2Qt(e
′
q) + |β|2Qt(ep).

This gives immediately

|zq|2e
−Qt(z)

2 = |α|2|l(e′q)|2e
−|α|2Qt(e

′
q)−|β|2Qt(ep)

2 .

and then

sup
z∈C2

|zq|2e
− 1

2

(
|etMz|2−|z|2

)
= sup

s∈R+

|l(e′q)|2e−
sQt(e

′
q)

2 =
2|l(e′q)|2
Qt(e′q)

sup
σ∈R+

σe−σ = c0
2|l(e′q)|2
Qt(e′q)

= c0
2

Qt(e′q)

where c0 = sup
σ∈R+

σe−σ and

Qt(e
′
q) = St(e

′
q, e

′
q) =

4
(
sh2( t

2
)− S2(t)

)

(1− e−t) + 2S2(t) + 2S(t)C(t)
.

Recall that, in the case α = π
2
and for ν > 1

4
, we define C(t) = cos( tr1

2
) and S(t) =

sin(
tr1
2

)

r1
.

All that remains is to control the following quotient for all t > 0:

1

Qt(e′q)
=

(1− e−t) + 2S(t)
(
S(t) + C(t)

)

4
[
sh2( t

2
)− S2(t)

] :=
N

D
.

• Starting with the case when t ≥ 4
r1
,

N = (1− e−t) + 2S(t)
(
S(t) + C(t)

)
≤ 1 +

4

r1
≤ 2 .

On the other hand,

|S(t)| ≤ 1

r1
≤ t

4
≤ 1

2
sh(

t

2
) implies D ≥ sh2(

t

2
) .
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Then

1

Qt(e′q)
≤ 2

sh2( t
2
)
≤ 2e−t

for all t ≥ 4
r1
.

• Now observe that for t ≤ 4
r1
, one has the following two expansions:

sh(
t

2
) + S(t) =

+∞∑

k=0

(−1)k(r2k1 + (−1)k)
t2k+1

22k+1(2k + 1)!

and

sh(
t

2
)− S(t) =

+∞∑

k=0

(−1)k(−r2k1 + (−1)k)
t2k+1

22k+1(2k + 1)!
.

Furthermore,

∣∣∣∣sh(
t

2
) + S(t)− t− r21 − 1

48
t3
∣∣∣∣ ≤

(r41 + 1)t5

25 × 120

which implies

1

t

(
sh(

t

2
) + S(t)

)
≥ 1− (r21 − 1)

48
t2 − r41 + 1

25 × 120
t4

≥ 1− 16

48
− 2× 44

25 × 120
≥ 1− 1

3
− 2

15
=

8

15
. (3.14)

Similarly,

∣∣∣ sh( t
2
)− S(t)− r21 + 1

48
t3
∣∣∣ ≤ (r41 − 1)t5

25 × 120
=

(r21 + 1)t3

48
× (r21 − 1)t3

4× 20

≤ (r21 + 1)t3

48

(r1t)
2

4× 20

≤ (r21 + 1)t3

48

1

5
,

which gives

sh(
t

2
)− S(t) ≥ (r21 + 1)t3

48
× 4

5
. (3.15)

Taking into account (3.14) and (3.15) we get

D ≥
(
sh(

t

2
) + S(t)

)(
sh(

t

2
)− S(t)

)
≥ t× 8

15
× (r21 + 1)t3

48
× 4

5
.
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On the other hand,

N = (1− e−t) + 2S(t)
(
S(t) + C(t)

)
= 2t+ (1− r21

6
)t3 − 1 + r21

24
t4 +O(r41t

5)

= t
(
2 + (1− r21

6
)t2 − 1 + r21

24
t3 +O((r1t)

4)
)
.

Hence N ≤ ct for all t ≤ 4
r1

and

1

Qt(e′q)
=

N

D
≤ c

νt3
for all t ≤ 4

r1
.

Thus there exists a constant c > 0 such that, for all u ∈ Hφ,

||e−tMz∂zzqu||2Hφ
≤
{ c

νt3
||u||2Hφ

for all t ≤ 4
r1

ce−t||u||2Hφ
for all t ≥ 4

r1

which is equivalent to

||e−tK∗
ν, π2 a∗qv||L2 ≤

{ c√
νt3

||v||L2 for all t ≤ 4
r1

ce−t||v||L2 for all t ≥ 4
r1

for all v ∈ D(Kν,π
2
).

From this, we deduce that

||aqe−t(ν
1
3 +Kν,π2

)
v||L2 ≤

{
c√
νt3

||v||L2 if t ≤ 4
r1

ce−ν
1
3 t||v||L2 if t ≥ 4

r1

for all v ∈ D(Kν,π
2
). When 0 < t ≤ 4

r1
, we clearly have

‖
√
νaqe

−t(ν
1
3 +Kν,π2

)‖L(L2(R2)) ≤
C

t
3
2

.

When t ≥ 4
r1
, we obtain the same result by writing

c
√
νe−ν

1
3 t =

c

t
3
2

(
ν

1
3 t
) 3

2
e−ν

1
3 t

and noting that the function s3/2e−s is bounded on [0,∞). This establishes the inequality
for all t > 0 and completes the proof of the lemma.
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4 Resolvent estimates when V (q) = −νq2

2
, ν ≫ 1

In this section, we use the same notations as in the previous one and we take α = 0. Giving
the exact norm of the semigroup e−tKν,0 allows us to control the resolvent of the operator
Kν,0. When doing so, a logarithmic factor appears, with optimality up to an exponent.

Lemma 4.1. For every t ≥ 0, one has

||e−tKν,0||L(L2(R2)) = e
−Argsh

(
S(t)

)

where

S(t) =
sh( tn1

2
)

n1
=

sh( t
√
4ν+1
2

)√
4ν + 1

.

Proof. Using (3.3) and (3.4), we directly compute that

(κ(t))−1 κ(t) := e−itHKν,0eitHKν,0 = eitE
(
a + bI − cJ

)(
a+ bI + cJ

)
,

with a = C(t), b = iS(t) and c = 2izS(t) .

Note that
(
a+bI−cJ

)(
a+bI+cJ

)
= a2−b2+c2+v. Furthermore, a2+b2+c2 = 1 and

(a2−b2+c2)2+N(v) = 1. It follows thatN(v) = 1−(a2−b2+c2)2 = 1−(1−2b2)2 = 4b2(1−b2).
Denote sh(u) =

√
−b2, so

√
−N(v) = 2 sh(u) ch(u) = sh(2u).

The eigenvalues of (κ(t))−1 κ(t) are given by

1

µ1
= et(a2 − b2 + c2 +

√
−N(v))

µ1 = e−t(a2 − b2 + c2 −
√
−N(v))

1

µ2
= et(a2 − b2 + c2 −

√
−N(v))

µ2 = e−t(a2 − b2 + c2 +
√

−N(v)) .

Therefore (see [Vio2] Theorem 1.3),

||e−tKν,0||L(L2(R2)) = (µ1
1

µ2
)
1
4 = e−

1
2
Argsh(

√
−N(v)) = e−Argsh(

√
−b2) ,

where

−b2 =
(
S(t)

)2
=
(sh( tn1

2
)

n1

)2
.

Proposition 4.2. There exists some c > 0 such that, for all ν > c,

||K−1
ν,0 ||L(L2(R2)) ≤ c

log(ν)√
ν

.
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Proof. Observing that

||K−1
ν,0 ||L(L2(R2)) = ||

∫ +∞

0

e−tKν,0dt||L(L2(R2)) ≤
∫ +∞

0

||e−tKν,0||L(L2(R2))dt ,

we aim to obtain an upper bound of the right-hand side.
Using the exact norm of the semigroup generated by Kν,0, we write

∫ +∞

0

||e−tKν,0||L(L2(R2))dt =

∫ +∞

0

e
−Argsh

(
sh(

tn1
2 )

n1

)
dt =

∫ +∞

0

1

sh(
tn1
2

)

n1
+

√
1 +

(
sh(

tn1
2

)

n1

)2dt

=

∫ log(ν)

0

2du

sh(u) +
√
n2
1 + sh2(u)

+

∫ +∞

log(ν)

2du

sh(u) +
√

n2
1 + sh2(u)

≤ 2
( log(ν)

n1
+

∫ +∞

log(ν)

e−udu
)

≤ 2
( log(ν)

n1
+

1

ν

)
≤ c

log(ν)√
ν

.

This completes the proof.

4.1 Optimality with a logarithmic factor

Proposition 4.3.

One can find a function u ∈ L2(R2) such that

||Kν,0u||L2(R2) ≤ c

√
ν√

log(ν)
||u||L2(R2)

where c > 0 is a constant that does not depend on the parameter ν ≫ 1.

Proof. We recall here that

Kν,0 =
1

2
(−∂2

p + p2) +
√
ν
(
p∂q + q∂p

)
= Op +

√
νX0.

For all u ∈ D(Kν,0),

||Kν,0u||2L2(R2) ≤ 2
(
||Opu||2L2(R2) + ν||X0u||2L2(R2)

)
,

then to prove the Proposition we will look for a function u ∈ L2(R2) such that

||Opu||2L2(R2) + ν||X0u||2L2(R2)

||u||2L2(R2)

≤ c
ν

log(ν)
.
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Consider the Gaussian

ϕ(q, p) =
e−

(q2+p2)
2

√
π

and set

u(q, p) =
1

L

∫ L

0

esX0ϕds =
1

L

∫ L

0

ϕs(q, p)ds

where ϕs(q, p) = esX0ϕ(q, p) and L > 0 is a constant to be specified at the end of the proof.
One has

d

ds
ϕs = X0(ϕs) = (p∂q + q∂p)ϕs .

Let
(
q(t), p(t)

)
be the solution of the following system:





d
dt
q = p

d
dt
p = q

with (q(0), p(0)) = (q0, p0). The solution is given by





q(t) = ch(t)q0 + sh(t)p0

p(t) = sh(t)q0 + ch(t)p0

The function ϕs verifies

d

ds

(
ϕs(q(−s), p(−s))

)
=

∂

∂s
ϕs −

d

ds
q(−s)∂qϕs −

d

ds
p(−s)∂pϕs = 0

then

ϕs(q, p) = ϕ0(q(s), p(s)) = ϕ
(
ch(s)q + sh(s)p, sh(s)q + ch(s)p

)

=
1√
π
e−

(
ch(s)q+sh(s)p

)2

+

(
sh(s)q+ch(s)p

)2

2 .

For all p ∈ [0,+∞], ||ϕs||Lp = ||ϕ||Lp. In particular, ||ϕs||L2 = ||ϕ||L2 = 1 .
Let’s start by calculating ||X0u||L2(R2):

X0u =
1

L

∫ L

0

X0e
sX0ϕds =

1

L

∫ L

0

d

ds
ϕsds =

1

L
(ϕL − ϕ) .
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As a result,

||X0u||2L2(R2) =
1

L2
||ϕL − ϕ||2L2(R2) =

1

L2

(
||ϕL||2L2(R2)︸ ︷︷ ︸

=1

+ ||ϕ||2L2(R2)︸ ︷︷ ︸
=1

−2

∫

R2

ϕLϕ dqdp
)

=
2

L2

(
1−

∫

R2

ϕLϕ dqdp
)
.

We directly compute that

∫

R2

ϕL(q, p)ϕ(q, p)dqdp =
1

π

∫

R2

e−

(
ch(L)q+sh(L)p

)2

+

(
sh(L)q+ch(L)p

)2

2 e−
q2+p2

2 dqdp

=
1

π

∫

R2

e
− 1

2

[
2 ch2(L)q2+2 ch2(L)p2+4 sh(L) ch(L)qp

]
dqdp

=
1

π

∫

R2

e−
1
2
(q,p)A t(q,p)dqdp =

1

π

√
(2π)2

det(A)
=

1

ch(L)

where

A =




2 ch2(L) 2 ch(L) sh(L)

2 ch(L) sh(L) 2 ch2(L)


 .

Then

||X0u||2L2(R2) =
2

L2

(
1− 1

ch(L)

)
. (4.1)

Now, let’s find a lower bound for ||u||2L2(R2):

||u||2L2(R2) =
1

L2

∫ L

0

∫ L

0

Re〈ϕs1, ϕs2〉L2(R2)ds1ds2

=
2

L2

∫ L

0

[ ∫ L

s1

Re〈ϕs1, ϕs2〉L2(R2)ds2

]
ds1

=
s2=s1+s

2

L2

∫ L

0

[ ∫ L−s1

0

Re〈ϕs1, ϕs1+s〉L2(R2)ds
]
ds1 .

But

Re〈ϕs1+s, ϕs1〉L2(R2) = 〈es1X0ϕ, e(s1+s)X0ϕ〉L2(R2)

= 〈es1X0ϕ, esX0ϕ〉L2(R2)

=

∫

R2

ϕs(q, p)ϕ(q, p)dqdp =
1

ch(s)
.
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For L > 2 we obtain

||u||2L2(R2) =
2

L2

∫ L

0

[ ∫ L−s1

0

1

ch(s)
ds
]
ds1

≥ 2

L2

∫ L
2

0

[ ∫ L
2

0

1

ch(s)
ds
]
ds1 ≥

2

L2

∫ L
2

0

[ ∫ 1

0

1

ch(s)
ds
]
ds1

≥ c

L
. (4.2)

The final step is the upper bound of ||Opu||2L2(R2):

||Opu||2L2(R2) = ||Op

( 1
L

∫ L

0

ϕs(q, p)ds
)
||2L2(R2) ≤

1

L2

∫ L

0

||Opϕs||2L2(R2)ds .

With Op =
1
2
(D2

p + p2), we want to compute

‖Opϕs‖L2(R2) = ‖e−sX0Ope
sX0ϕ0‖L2(R2)

(because e−sX0 is unitary and ϕs = esX0ϕ0).
For any u ∈ L2(R2), esX0u(q, p) = u(esM(q, p)) where

esM =

(
ch s sh s
sh s ch s

)
.

Egorov’s theorem gives that, for any symbol a(q, p, ξq, ξp),

e−sX0aw(q, p,Dq, Dp)e
sX0 = aw(e−sM(q, p), esM(Dq, Dp)).

In particular, writing Oq =
1
2
(D2

q + q2) as well,

e−sX0(p2 +D2
p)e

sX0 = (− sh(s)q + ch(s)p)2 + (sh(s)Dq + ch(s)Dp)
2

= sh2(s)q2 − 2 ch(s) sh(s)qp+ ch2(s)p2

+ sh2(s)D2
q + 2 ch(s) sh(s)DqDp + ch2(s)D2

p

= 2 ch2(s)Oq + 2 sh2(s)Op + 2 ch(s) sh(s)(DqDp − qp).

We have chosen ϕ0 an eigenfunction of both Op and Oq with eigenvalue 1
2
, and DqDpϕ0 =

−qpϕ0. Therefore

e−sX0Ope
sX0ϕ0 =

(
1

2
(ch2(s) + sh2(s))− 2 ch(s) sh(s)qp

)
ϕ0.

This can be interpreted as the sum of products of the first two orthornormal Hermite func-
tions: if

h0(x) = π−1/4e−x2/2, h1(x) =
√
2xh0(x),
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then ϕ0(q, p) = h0(q)h0(p) and

e−sX0Ope
sX0ϕ0 =

1

2
(ch2(s) + sh2(s))h0(q)h0(p)− ch(s) sh(s)h1(q)h1(p).

This type of tensor product forms an orthonormal family, so by the Pythagorean relation the
square of the norm can be computed as the sum of squares of the coefficients:

‖Opϕs‖2L2(R2) = ‖e−sX0Ope
sX0ϕ0‖2L2(R2) =

1

4
(ch2(s) + sh2(s))2 + ch2(s) sh2(s) =

1

4
ch(4s).

Thus we deduce that

||Opu||2L2 ≤ 1

L2

∫ L

0

e4sds =
1

4L2
(e4L − 1)

≤ 1

L2
e4L . (4.3)

The estimates in (4.1) and (4.2) taken with (4.3), allow us to establish that

||Kν,0u||2L2

||u||2L2

≤ ||Opu||2L2 + ν||X0u||2L2

||u||2L2

≤ c
e4L + ν

(
1− 1

ch(L)

)

L
.

Now letting L = log(ν)
4

, we get the desired inequality

||Kν,0u||2L2 ≤ c
ν

log(ν)
||u||2L2 .

5 Degenerate one-dimensional case

Lemma 5.1. Let λ1 ∈ R be parameter. Consider the operator K1 = p.∂q − λ1∂p +
1
2
(−∂2

p +
p2 − 1) with domain D(K1) = {u ∈ L2(R2), K1u ∈ L2(R2)}. There exists a constant c > 0
such that

||(D2
q + λ2

1)e
−t(K1+1)||L(L2(R2)) ≤

c

t3

for all t > 0.

Proof. For each ξq fixed, there is a metaplectic operator on L2(Rp) which, via conjugation,

takes ip.ξq − iλ1Dp to ip
√

ξ2q + λ2
1 while leaving Op invariant. Taking the direct integral of

this rotation (whose angle depends on ξq) gives a unitary equivalence between the operator
K1 and

K̂1 =
1

2

(
2ip
√

D2
q + λ2

1 + (−∂2
p + p2 − 1)

)
.

26



We also note that
√

D2
q + λ2

1 is left invariant by the rotation in the variables (p, ξp).

It is shown in [Vio2] that

||e−i(t1+it2)Pb ||L(L2(R)) = exp
(cos(t1)− ch(t2)

sh(t2)
b2
)

for all t1 ∈ R and all t2 < 0 , where Pb =
1
2

(
D2

x + x2 − 1 + 2ibx−b2
)
, b ∈ R. Applying this

result with t1 = 0, t2 = −t < 0 and b = b(ξq) =
√

ξ2q + λ2
1 , we obtain

‖
√
D2

q + λ2
1e

−tK̂1‖L(L2(R2)) ≤ sup
ξq∈R

‖b2e−t(Pb+
b2

2
)‖L(L2(R2)) = sup

ξq∈R
b2e−

t
2
b2e(

ch(t)−1
sh(t)

)b2 .

(We remark that this inequality can be strengthened to an equality by taking the tensor
product of explicit optimisers for the norm of e−tPb with functions in q localized in phase

space near the optimising ξq.) For all t ∈ [0, 1], denote fb(t) = b2e
( ch(t)−1

sh(t)
− t

2
)b2
, and u(t) =

ch(t)−1
sh(t)

− t
2
= th( t

2
)− t

2
< 0.

Since max
x∈R

xe−ax = e−a

a
when a > 0 , we get

b2t3 exp
(
u(t)b2

)
≤ −t3eu(t)

u(t)
=: F (t) .

The expansion u(t) = th( t
2
)− t

2
= −t3

24
+O(t4) yields limt→0 F (t) = 24 and the function F is

bounded on the interval [0, 1] . Replacing b2 with D2
q + λ2

1 , we conclude that, for t ∈ [0, 1] ,

||(D2
q + λ2

1)e
−t(K1+1)||L(L2(R2)) ≤

c

t3
.

For all t ≥ 1, just write with t0 =
1
2
,

||(D2
q + λ2

1)e
−t(K1+1)||L(L2(R2)) ≤ ||(D2

q + λ2
1)e

−t0K1||L(L2(R2))︸ ︷︷ ︸
≤ c

t0

||e−(t−t0)K1 ||L(L2(R2))︸ ︷︷ ︸
≤1

e−
t
2 ≤ c

t3
.

A Biquaternions

We define a biquaternion W as follows:

W = a + bi+ cj + dk

where a, b, c, d are complex numbers and i, j,k multiply according to the rules

i2 = j2 = k2 = ijk = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j .
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For convenience we use a vector notation for biquaternions as follows:

W = a + v , v = bi + cj+ dk .

The conjugate of a biquaternion W is given by

conj(W ) = a− bi− cj− dk .

The biquaternion ring BQ is isomorphic to the matrix ring M2(C). This can be seen via
the following map:

f : BQ → M2(C)

a+ bi + cj+ dk 7→ M =

(
a + bi c+ di
−c+ di a− bi

)
.

The “norm” N(W ) of a biquaternion W is

N(W ) = conj(W )W = det(M) = a2 + b2 + c2 + d2 .

Note that the norm is homogeneous of degree 2 and may take complex values. In particular,
a biquaternion W is invertible if and only if N(W ) 6= 0. In this case its inverse is given by

inv(W ) =
conj(W )

N(W )
.

Exponential and spectrum.

Let a+bi+cj+dk = a+v be a biquarternion such that N(v) 6= 0. In this case v̂ = v√
N(v)

verifies v̂2 = −1.
Hence write

ea+v = eaev = eaev̂
√

N(v)

ea
+∞∑

k=0

(v̂
√

N(v))k

k!

ea
( +∞∑

k=0

(−1)k(
√
N(v))2k

(2k)!
+

+∞∑

k=0

(−1)k(
√
N(v))2k+1

(2k + 1)!
v̂
)

= ea
(
cos(

√
N(v)) +

sin(
√

N(v))√
N(v))

v
)
. (A.1)

The above computation do not depend on the choice of
√

N(v) because cos is even and sin
is odd.
Finally the set of λ ∈ C such that (a+ v− λ) is non-invertible can be explicitly determined:

(a+ v− λ) is non-invertible if and only if 0 = N(a+ v−λ) = (a− λ)2+N(v) if and only

if λ ∈
{
a±

√
−N(v)

}
.
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