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Abstract—This paper introduces an estimator of the signal-
to-noise ratio in the framework where a noisy source emits the
same signal a number n of times. The estimator has the structure
of a U -statistic from which derives many desirable properties :
it is unbiased, consistent and, being a Rao-Blackwellisation of
existing proposals, is closer to optimal variance-wise. However,
its variance is numerically difficult to evaluate and two approxi-
mations are obtained to facilitate its use in practice. These allow
to quantify the improvement in variance, which is found to be
substantial as the estimator needs roughly one third of the data
previously required to perform similarly. Moreover, a simulation
shows that the estimator is approximately normally distributed
for n as small as 10, which allows for accurate inference. The
estimator is then applied to data arising in a cryptanalysis, where
the numerical security of a cryptoprocessor is tested against a
side-channel attack. This problem is a representative of situations
where the signal-to-noise ratio must be precisely estimated for
small n. We derive a rigorous data-driven approach that is shown
to much enhance the efficiency of standard side-channel attacks.

Index Terms—Asymptotic normality, Cryptanalysis, Side-
channel attack, Signal-to-noise ratio, U -statistic.

I. INTRODUCTION

We assume the following framework: a received signal
M = (M1, ...,MT )′ (the prime denotes transposition) is
observed at various time points t in the range {1, ..., T}.
This received signal consists of an unknown deterministic
signal τ = (τ1, ..., τT )′ perturbed by a random noise η =
(η1, . . . , ηT )′. Hence the model is

M = τ + η. (1)

We assume that the signal can be centered, i.e.
∑
t τt = 0,

and that η obeys the T -dimensional multinormal distribution,
η ∼ NT (0, σ2

ηI) with expectation 0 and covariance matrix
σ2
ηI, where I denotes the T -dimensional identity matrix. The

signal-to-noise ratio is defined as

SNR = τ ′τ/(Tσ2
η). (2)

In our context, we further assume the same signal τ of
fixed length T is emitted n times, each time perturbed by
a different random noise η. Also T > 2 for reasons to
be explained in Section ??. This context is encountered in
particular in cryptanalysis and more precisely in side-channel
attacks (SCA) on cryptoprocessors (Diop et al. [?]), which
is our motivating application. In SCA, a plaintext is sent for

encryption to a cryptoprocessor, which mingles it with a secret
key and produces the signal τ . An attacker tries to spy on this
signal but gets to observe a version M of τ perturbed with
random noise η. The experiment can be replicated n times,
thus generating M i = τ + ηi, i = 1, ..., n where nothing can
be assumed about τ beyond its centering. For more details,
see Section ??.

Estimating the SNR is an important and difficult problem
in signal processing. Here, we introduce the estimator

ŜNR =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

h(M i,M j), (3)

where

h(M i,M j) =
(T − 2) ‖M i +M j‖2

2T ‖M i −M j‖2
− 1

2
, (4)

and ‖·‖2 is the squared Euclidean norm. We establish its
stochastic behavior and show that ŜNR has theoretical and
practical advantages over competitors, e.g. those of Diop et al.
[?], Simon and Dolinar [?] and Coppola et al. [?]. In particular,
we show it is unbiased and approximately normal for n as
small as 10. We also show that (??) derives from an application
of the Rao-Blackwell theorem so its variance is improved
with respect to the competitors. This variance is however
numerically difficult to evaluate and two simplified expressions
are obtained. A comparison shows that these are close to the
exact values and that our estimator requires roughly three times
less data to perform similarly as these competitors. These
advantages allow to establish accurate confidence intervals and
derive powerful statistical tests pertaining to the SNR. Then,
ŜNR is applied to data arising in a cryptanalysis, where the
numerical security of a cryptoprocessor is tested against a side-
channel attack. This problem is a representative of situations
where the SNR must be precisely estimated for small n. We
derive a rigorous and principled data-driven approach that is
shown to much enhance the efficiency of standard side-channel
attacks.

The paper is organized as follows. Section ?? recalls some
useful statistical results. Section ?? derives the theoretical
properties of ŜNR and presents the two approximations.
Section ?? explains how accurate statistical inference can be
produced about the SNR. Section ?? investigates the variance
improvement of our estimator. Side-channel attacks (SCA)
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on cryptoprocessors, the motivating application of the present
work, are explained in Section ??. A new data-driven ŜNR-
based SCA is presented to illustrates the usefulness of the
methods of the paper. A conclusion closes the paper.

II. PRELIMINARY STATISTICAL RESULTS

A. Stochastic behavior of a U -statistic

An expression of the form (??) is a U -statistic. The function
h(·, ·) is its kernel and is of order 2. Many theoretical results
about the stochastic behavior of U -statistics are listed in
Chapter 5 of Serfling [?]. In particular, let Un be a U -statistic
of order 2 whose variance exists and such that (hereafter E(X)
and V(X) denote the expectation and variance of the random
quantity X)

E(h(M i,M j)) = θ. (5)

Then Un is an unbiased estimator of θ, i.e. E(Un) = θ.
Moreover, setting h1(m1) = E [h(m1,M2)] (here m1 is a
fixed value of M1) with h̃1(m1) = h1(m1)− θ, we have

V(Un) =
2

n(n− 1)

[
2(n− 2)ζ21 + ζ22

]
, (6)

where ζ21 = E(h̃21(M1)) and ζ22 = V(h(M1,M2)). Impor-
tant for statistical inference is the fact that if ζ1 > 0, Un
is approximately normally distributed with expectation θ and
variance V(Un), whose dominant term is 4ζ21/n.

B. Stochastic behavior of quadratic forms in normally dis-
tributed random vectors.

We recall that if Z ∼ NT (0, σ2I), then ‖Z + µ‖2 /σ2

has the non-central chi-square distribution χ2
T (µ′µ/σ2) with

T degrees of freedom. We also recall for convenience the
following well-known theorem.

Theorem 1. Let W1 ∼χ2
d1

(δ2) and W2 ∼ χ2
d2

(0) be in-
dependent random variables. Then F = (d2W1)/(d1W2)
∼ F d1d2(δ2), the non-central Fisher distribution with degrees of
freedom (d1, d2) and non-centrality parameter δ2. Moreover

E(F ) =
d2(d1 + δ2)

d1(d2 − 2)
, if d2 > 2, (7)

V(F ) =
2d22

[
(d1 + δ2)2 + (d1 + 2δ2)(d2 − 2)

]
d21(d2 − 4)(d2 − 2)2

if d2 > 4.

(8)
Finally E(F ) and V(F ) exists when d2 > 2 and d4 > 4
respectively.

III. STOCHASTIC BEHAVIOR OF THE ESTIMATOR

A. Bias

Write V (ηi,ηj) =
∥∥ηi + ηj + 2τ

∥∥2 / ∥∥ηi − ηj∥∥2 and
rewrite h(M i,M j) = h(ηi,ηj) = (T−2)

2T V (η1,η2) − 1
2 ,

h1(M i) = h1(ηi), etc. It is easy to see that

(
ηi − ηj

ηi + ηj + 2τ

)
∼ N2T

((
0

2τ

)
, 2σ2

η

(
I 0
0 I

))
.

(9)

From Section ??,
∥∥ηi − ηj∥∥2 is distributed as a 2σ2

ηχ
2
T (0)

while
∥∥ηi + ηj + 2τ

∥∥2 has for distribution a 2σ2
ηχ

2
T (2ρ),

upon introducing the notation ρ = τ ′τ/σ2
η = T×SNR. Thus,

V (ηi,ηj) is distributed as χ2
T (2ρ) /χ2

T (0), where the two
χ2 are independent. From Theorem ??, this is the stochastic
representation of a non-central Fisher distribution with both
degrees of freedom equal to T and non-centrality parameter
2ρ. Using (??) shows that ŜNR is unbiased when T > 2.

B. The term ζ22

From (??), when T > 4,

ζ22 =
T 2 + 2ρ(ρ− 2) + T (4ρ− 1)

T (T − 4)
. (10)

C. The term ζ21

Let η̃1 denote the fixed value of the random η1 correspond-
ing to m1 and set x =τ ′η̃1, y =η̃′1η̃1. After completing the
square and using the notation Ψd(·; δ2) for the cumulative
distribution function of a χ2

d(δ
2), we get

P [V (η̃1,η2) ≤ v] =

P
[
‖η2 + η̃1 + 2τ‖2 ≤ v ‖η2 − η̃1‖

2
]

=

{
ΨT

(
b(v); δ2(v)

)
if v ≥ 1

1−ΨT

(
b(v); δ2(v)

)
if v < 1,

(11)

where

δ2(v) =
4

(1− v)2
(
ρ+ (1 + v)x+ (1 + v)2y/4

)
, (12)

b(v) =
4v

(1− v)2
(ρ+ 2x+ y) , (13)

after noticing that the term σ2
η appears solely through τ/ση

and η̃1/σn, so that scale invariance allows to set σ2
η = 1

without loss of generality.

Write V (η̃1) = E (V (η̃1,η2)). The positiveness of V (·, ·)
entails V (η̃1) =

´∞
0

P [V (η̃1,η2) ≤ v] dv which can in prin-
ciple be computed via (??). Moreover because E (h1(η1)) =
SNR, we have E (V (η1)) = (2ρ+ T )/(T − 2), so that

ζ21 =

(
T − 2

2T

)2

×[
E
(
V 2(η1)

)
− ((2ρ+ T )/(T − 2))

2
]
. (14)
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It is shown in the Appendix that

E
(
V 2(η1)

)
=

∞̂

0

√
ρyˆ

−√ρy
1ˆ

0

(1−ΨT

(
b(v); δ2(v)

)
dv +

∞̂

1

ΨT

(
b(v); δ2(v)

)
dv


2

×
Γ(T2 )

√
πΓ(T−12 )

(1− x2/ρy)(T−3)/2/
√
ρy × ψT (y; 0)dxdy.

(15)

This triple integral is difficult to evaluate numerically. A first
approximation is based on the following proposition whose
proof is in the Appendix.

Proposition 1.

V (η̃1) =
T + 4x+ y + 4ρ

T + y
+O(T−1/2). (16)

Injecting into E(h21(η1)) leads to the explicit expression :

ζ21 =
(T − 2)2

T 3
ρ

[2(ρ− 1)− 2eT/2(T (ρ− 1)− ρ)ET/2(T/2)−

TρeT/2
(
ET/2(T/2)

)2
] +O(T−1/2), (17)

where En(z) denotes the exponential integral function.
This approximation is only first order accurate and, for small

T , is degraded by the asymmetry of a non-central χ2. As
shown in the Appendix, a Cornish-Fisher expansion leads to :

Proposition 2. Let c = −23/(6
√
T ) . Then

V (η̃1) ' 1

(T + y)2 − 2c2(T + 2y)

{
c2(4y + 8x− 2T )

+ (T + y)(T + 4x+ y + 4ρ)

+ 4
[
c2(T 2 (2x+ y + ρ)(1 + y(4x+ y + 4ρ))

+ 2T
(
3x2 + y2 + 3yρ+ ρ2 + 4x(y + ρ)

)
−2c2

(
2yρ− 2x2 + T (2x+ y + ρ)

)]1/2}
. (18)

Injecting into E(h21(η1))) does not yield an explicit expres-
sion but turns out to be easy to evaluate numerically.

We numerically evaluate the accuracy of these two approx-
imations for ζ1. First the value of the triple integral defining
ζ1 is evaluated by 2000 Monte Carlo replications for various
values of T and SNR. Then the two approximations are
computed. The results appear in Table ??, where MC refers
to the Monte Carlo values of ζ1.

As expected, the 1st order approximation is less accurate,
but can be useful when T≥ 25 . The 2nd order approximation
offers much improvement in all investigated cases.

IV. INFERENCE FOR SNR
Summing up, ŜNR is an unbiased and consistent estimator

of SNR approximately distributed as

N

(
SNR, σ̂2

SNR =
2

n(n− 1)

[
2(n− 2)ζ̂21 + ζ̂22

])
, (19)

where ζ̂1, ζ̂2 are obtained by plugging in the value of ŜNR
in (??) and (??).

Statistical inference about SNR derives from (??). Let zα
denote the α-th quantile of the N(0, 1) distribution. A two-
sided confidence interval of approximate level 1− α is

ŜNR± z1−α/2σ̂SNR. (20)

Similarly the null hypothesis H0 : SNR ≤ θ0 can be rejected
at approximate level α in favor of H1 : SNR > θ0 when

Zn =
(ŜNR− θ0)

σ̂SNR
> z1−α/2. (21)

Adaptation to other inference problems is obvious. The only
point that remains to clarify regards the accuracy of the risks
associated with these inferential procedures.

To investigate this, a simulation study was performed. For
the pairs (SNR, T ) listed in Table ??, samples of size n = 10
and 20 where taken according to model (??). 95% confidence
intervals (??) were computed using the 1st and 2nd order
approximation and their coverage probabilities obtained from
5000 replications. Results appear in Table ?? and show that
the true coverage probabilities are close to nominal for n as
small as 10 when SNR ≥ 1 and the 2nd order approximation
is used. When SNR<1, these approximations are less precise
because the distribution of ŜNR is bounded to the left. The
1st order approximation performs close to nominal when
T ≥ 25. In view of these results, we recommend the 2nd

order approximation while the explicit and convenient 1st

order approximation can be used when T ≥ 25.

V. IMPROVEMENT IN VARIANCE

Another unbiased estimator of SNR is

ŜNRi,i+1 =
2

n

n∑
i=1
i:odd

h(M i,M i+1), (22)

which is a variant of proposals in e.g. Diop et al. [?] or
Simon and Dolimar [?]. The central limit theorem ensures that
the confidence interval ŜNRi,i+1±z1−α/2

√
2ζ̂2/
√
n also has

approximate level 1− α.
Computationally, ŜNRi,i+1 and its other linear (e.g. a

single sum of terms) variants are easier to work with, but
inferior to ŜNR . First, they are not invariant to the pairs
taken in h(·, ·), a serious flaw, and their variance is larger than
that of ŜNR. To see this, note that the set of all M i, ranked
by their first component, is a sufficient statistic. From general
results on U -statistic (see Serfling [?], Theorem, p.176), ŜNR
in (??) is the expectation of h(M i,M j) conditioned on this
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TABLE I
VALUES OF ζ1 BY MONTE-CARLO (MC) SIMULATIONS (2000 REPLICATIONS) ALONG WITH THOSE OBTAINED FROM THE 1st AND 2nd ORDER

APPROXIMATIONS, FOR VARIOUS VALUES OF T AND SNR.

SNR Approx. 0.1 1.0 5.0 10.0 25.0 50.0 100.0 200.0
MC 0.132 0.551 1.877 3.660 8.636 16.78 33.38 65.86

T = 5 2nd 0.149 0.555 1.883 3.476 8.221 16.12 32.90 63.47
1st 0.083 0.311 1.078 2.000 4.752 9.332 18.49 36.80
MC 0.106 0.403 1.379 2.555 6.041 11.84 23.61 46.79

T = 10 2nd 0.105 0.394 1.340 2.476 5.860 11.49 22.75 45.26
1st 0.080 0.303 1.042 1.933 4.592 9.017 17.86 35.56
MC 0.066 0.248 0.851 1.585 3.747 7.316 14.64 28.99

T = 25 2nd 0.065 0.247 0.843 1.560 3.696 7.251 14.36 28.58
1st 0.059 0.224 0.766 1.420 3.372 6.619 13.11 26.10
MC 0.046 0.174 0.595 1.103 2.612 5.119 10.23 20.32

T = 50 2nd 0.046 0.174 0.594 1.100 2.607 5.115 10.13 20.16
1st 0.043 0.166 0.567 1.050 2.492 4.892 9.690 19.29

TABLE II
ACTUAL COVERAGE PROBABILITIES (BASED ON 5000 REPLICATIONS) OF 95% CONFIDENCE INTERVAL (??) USING THE 1st AND 2nd ORDER

APPROXIMATION FOR ζ1 .

SNR
T n Approx. 0.1 1 5 10 25 50 100 200

5
10 1st 94.6 90.2 90.9 91.8 91.2 91.3 90.8 91.6

2nd 98.9 96.6 94.7 95.1 94.5 95.4 95.2 95.1

20 1st 90.7 85.2 87.8 86.4 86.1 85.8 85.6 85.2
2nd 98.2 95.8 93.9 94.5 94.2 93.9 94.8 94.1

10
10 1st 89.9 89.4 91.2 91.7 90.1 91.9 91.3 90.8

2nd 98.1 96.8 95.8 94.9 94.2 95.0 94.4 94.3

20 1st 88.2 90.7 90.9 91.7 91.3 91.7 91.4 90.6
2nd 98.9 96.3 93.4 94.1 94.1 94.3 94.2 94.1

25
10 1st 92.2 93.6 94.4 94.1 93.4 93.5 92.9 92.8

2nd 98.0 96.4 94.9 94.5 94.9 95.1 94.7 95.0

20 1st 92.5 93.3 92.2 92.5 93.2 92.9 92.9 92.6
2nd 98.8 96.4 94.1 94.1 94.4 94.2 94.8 94.9

50
10 1st 94.1 93.8 93.6 94.1 94.3 94.0 94.4 94.4

2nd 97.7 96.4 94.5 94.7 95.0 94.8 95.4 95.2

20 1st 93.9 94.9 94.4 93.6 94.4 94.2 94.3 94.4
2nd 98.3 96.9 94.9 94.4 95.2 95.1 95.6 95.0

sufficient statistic. The Rao-Blackwell theorem ensures that
this conditional expectation has a smaller variance than linear
competitors and thus improves on them. We can quantify
this improvement in variance by exploiting expression (i) of
Lemma A in Serfling [?], p. 183, which yields :

V(ŜNR) ≈ 4ζ21
n
≤ 2ζ22

n
= V(ŜNRi,i+1). (23)

The ratio
√

2ζ1/ζ2 compares the length of confidence interval
(??) to that based on ŜNRi,i+1, It serves as a measure of the
relative efficiency of statistical inferences (confidence interval,
hypotheses test) based on ŜNR. Table ?? shows the values
of this ratio for the pairs (SNR, T ) in Table ??, with a ratio

of 0.5 indicating that a statistical procedure based on a linear
estimator requires a sample of size 4n to perform similarly to
one based on n received signal using ŜNR. The average of
the entries in this table is approximately 0.55 showing that,
overall, statistical inference based on ŜNR requires roughly
over three times less observations to perform similarly.

Note that other estimators of the SNR in the present context
have been proposed, notably some based on correlations (Ber-
shad and Rockmore [?]). Their stochastic behavior is largely
unknown and will not investigate here.

VI. APPLICATION TO SIDE CHANNEL ATTACKS

Cryptoprocessors perform the calculations ciphering sensi-
tive information. They apply algorithms that use secret keys
and if an opponent obtains the key, the ciphered information
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TABLE III
RATIO OF LENGTHS OF CONFIDENCE INTERVALS BASED ON ŜNR AND

ŜNRi,i+1 .

SNR 0.1 1.0 5.0 10.0 25.0 50.0 100.0 200.0
T = 5 0.18 0.32 0.33 0.34 0.33 0.37 0.33 0.33
T = 10 0.33 0.55 0.58 0.57 0.57 0.57 0.57 0.57
T = 25 0.36 0.62 0.66 0.66 0.66 0.66 0.66 0.65
T = 50 0.37 0.63 0.68 0.68 0.68 0.68 0.69 0.68

mV

t

Fig. 1. EM curves (n = 10) from an AES

can easily be transformed back into plaintext. When the cryp-
toprocessor is ciphering, the plaintext, mingled with the secret
key, gets converted into an analog signal τ . This conversion
can leak information about τ to be exploited by an opponent
to recover the key. This is referred to as a side-channel attack
(SCA) and constitutes one form of cryptanalysis. Among the
most successful SCA are those based on the electromagnetic
(EM) emanations as the cryptoprocessor manipulates the tex-
t/key combination.

EM-based SCA are easy to perform cryptanalyses because
the attacker can send the plaintext for encryption a number
n of times and observe, through an inexpensive sensor, the
emanated EM radiations at various time points. The resulting
EM curves M i, i = 1, ..., n, are modeled as in (??), where the
ηi are random noises arising from various causes. The process
is calibrated to provide a centered τ .

If the attacker can separate the noise from τ , parts of the
key can be recovered. To give an idea of how this can be
done, Figure ?? shows a sample of n = 10 EM curves M i (in
blue) while a cryptoprocessor was ciphering the same plaintext
with the AES algorithm. The black curve is the (unknown to
an attacker) signal τ . The AES algorithm involves so-called
“rounds” and the oscillations of the black curve are related
to the calculations performed during the last round using a
part of the secret key. The knowledge of these oscillations,
coupled with some other available informations, can reveal
the calculations being performed and thus that part of the key.
This indicates that a sophisticated SCA on the blue curves
could be successful in exploiting the leakage to recover the
key. The whole SCA process is however rather involved; we
refer the interested reader to e.g. Brier et al. [?] for details.

When dealing with noisy measurements, filtering is a
preprocessing technique that seeks to reduce the noise by

focussing on the frequencies that best carry the signal. In
general, a fruitful filtering requires some a priori knowledge
about the informative frequencies, otherwise these may get
filtered out. This is especially true in EM-based SCA where a
small change in the position of the sensor can drastically alter
the EM curves. In the present SCA context, as in many other
applications, such a priori knowledge is unfortunately often
unavailable.

Tiran et al. [?] have devised an approach to detect the
informative frequencies in a EM-based SCA. They theorize
a quantity they refer to as the Leakage-to-Noise Ratio (LNR)
= τ ′∗τ ∗/(Tσ

2
η), where τ ∗ is the part of τ that is informative

about the key. They argue that, in general, LNR ≤ SNR.
Then they translate by Fast Fourier (FF) transform the time
domain received signal M i of length T into the frequency
domain over an interval [FMIN , FMAX ] whose bounds are
chosen in relation with T . For the frequency interval of width
δf centered on f , they introduce the quantity LNRp(f) =
SNR(f)/f , where SNR(f) is the SNR computed from the
data at frequency f and the division by f penalizes the large
frequencies. Thus large values of LNRp(f) are indicative of
interesting frequencies. They evaluate from the FF transformed
M i a crude approximation of SNR(f) and retain only those
frequencies where the corresponding LNRp(f) is greater than
an ad hoc threshold. They set all others frequencies to zero and
translate back the results into the time domain to get filtered
signal that are then processed by a standard SCA to extract
the leaked information about the secret key.

Here we use ŜNR to supplement their approach with a bet-
ter estimate of LNRp(f) and exploit its stochastic properties
to derive a rigorous and data-driven way of identifying the
candidate frequencies to be retained. Our goal is to illustrate
that the efficiency of standard SCA can be enhanced by the
methods of the paper.

For this, we develop a multiple testing procedure based on
(??) to test all pairs of hypotheses H0(f) : LNRp(f) ≤ λ0
vs H1(f) : LNRp(f) > λ0 in the grid of values f ∈
[FMIN , FMAX ]. The f values for which the tests reject H0(f)
are the candidate frequencies carrying leakage information.
Setting L̂NRp(f) = ŜNR(f)/f , the test statistic Z∗n(f) =

f × (L̂NRp(f) − λ0)/σ̂SNR is under H0(f) approximately
N(0, 1) and H0(f) gets rejected when Z∗n(f) > zα∗ where
α∗ is taken to control the risk of at least one false rejection
(a family-wise Type 1 error) in this multiple testing situation.

To show the efficiency of the above data-driven filtering
approach, an experiment was conducted in the following way.
Recall from Section ?? that with n = 10, asymptotic normality
offers a good approximation to the distribution of ŜNR.
In a preliminary study, two sets of n = 10 EM curves of
length T = 3000 were collected above an AES mapped
into a cryptoprocessor-emulating FPGA (field-programmable
gate array) device. The first set was collected with the EM
sensor positioned far from the FPGA surface in order to
obtain noisy data while the second set was collected with
the sensor much closer to get small noise measurements.
The ŜNR(f) values were then computed for the 499 fre-
quencies in [0.8MHz, 400MHz] by steps of 0.8MHz with
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δf = 0.8MHz. Here ŜNR(f) varies from 1.21 to 14781, so
it is reasonable to use the explicit first order approximation
for ζ21 given by (??). Also we took the standard α = 5%
with α∗ = 1−α/499, derived from the Bonferroni inequality.
Subject-matter considerations, coupled with the attractive equi-
librium between signal and noise, lead to the choice λ0 = 1.

Panel (a) of Figure ?? shows the evolutions of
√
L̂NRp(f)

(the square root is used for increased clarity) with f for
the noisy measurements while Panel (b) shows the same
for the small noise data. The black dots correspond to the
frequencies f where H0(f) has been rejected at level α∗. They
suggest that measurements should be filtered so as to retain
the frequencies in [0.8; 54MHz] ∪ [130MHz, 160MHz] ∪
[240MHz, 260MHz] for noisy measurements, while for
small noise, measurements should be filtered so as to
keep frequencies [0.8, 104MHz] ∪ [120MHz, 260MHz] ∪
[300MHz, 360MHz], if one aims at preserving the leakage
that can be exploited by the subsequent SCA.

With this knowledge gained from the filtering step, a full-
fledged SCA called a correlation power analysis (Brier et
al. [?]) was applied to 5000 new EM-curves observed from
the same apparatus and on their corresponding 5000 filtered
measurements as described above. This allowed to compute
the global Guessing Entropy (gGE), a figure of the merit of
an attack, which is used to compare the efficiency of the
SCA with and without filtering. The Guessing Entropy (GE)
gives the average position of the correct sub-key of 8 bits
in the ranking of the 256 possible sub-keys provided by the
SCA. If the rank of a sub-key is one, the SCA successfully
discloses the sub-key. The gGE is the average of the 16 GE
values obtained for each of the 16 sub-keys constituting the
whole 128 bits AES key. When gGE = 1, the whole key
has been correctly disclosed by the SCA. Note that in SCA,
the security of a ciphering device is typically evaluated using
information theoretic metrics such as the entropy, while actual
attacks are evaluated by empirical security metrics such as the
above guessing entropy. See Standaert et al. [?] for a complete
description of this and other information metrics and their
relationships in the context of SCA.

Figure ?? shows the evolutions of the gGE with the number
of processed curves for noisy and small noise data, with and
without application of our data-driven filtering method. With
small noise data, our method leads to a slight improvement
in the convergence rate toward success (e.g. gGE = 1.0 with
3200 measurements with filtering versus 4000 without) of the
SCA. For noisy data, the improvement is more significant.

VII. CONCLUSION

This paper proposes a new unbiased estimator of the SNR.
Being a Rao-Blackwellisation, the estimator improved linear
competitors variance-wise. THis operator is idempotent so that
using it on ŜNR gives back the same estimator. However, one
intriguing possibility arises from the realization that one could
extend (??) to a third (fourth etc.) order unbiased U -statistic
that could yield further improved estimators of the SNR,
perhaps initiating a convergence process toward optimality.

More research is needed to evaluate the cost-benefit of this
idea.
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APPENDIX

We prove (??). In principle, the evaluation of E
(
V 2(η1)

)
requires a T -fold integration over the density of η1. But δ2(v)
and b(v) being functions of x, y solely we need only the joint
density f(X,Y )(x, y), where X = τ ′η1, Y = η′1η1 and, by
scale invariance, η1 ∼ NT (0, I). Now the marginal density of
Y is easily seen to be that of a χ2

T (0) :

T (y; 0) =
1

2T/2Γ(T2 )
yT/2−1e−y/2, y > 0.

As for the conditional density of (X | Y = y), we use the
following argument. The random vector η1 has the stochastic
representation η1 =

√
Y U, where U = η1/ ‖η1‖ and Y

and U are independent with U being a directional vector
uniformly distributed over the T -dimensional unit sphere.
Hence if t denotes the unit vector τ/ ‖τ‖, the event {X = x}
= {t′η1/ ‖η1‖ = x/(‖τ‖ ‖η1‖)} =

{
t′U = x/(‖τ‖

√
Y )
}

.
From this we get

f(X|Y )(x | y) = P
[
t′U = x/

√
ρY | Y = y

]
, (24)
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Fig. 3. Evolutions of the gGE for noisy and small noise data, with (solid)
and without (dashed) application of our data-driven SNR−based filtering
method.

Now the independence between Y and U allows getting rid
of the conditioning :

f(X|Y )(x | y) = P [t′U = x/
√
ρy] ,

while the uniformity of U yields for −√ρy < x <
√
ρy (see

Watson [?], p. 45, eq. 2.2.7),

P [t′U = x/
√
ρy] =

Γ(T2 )
√
πΓ(T−12 )

(1− x2/ρy)(T−3)/2/
√
ρy. (25)

Hence f(X,Y )(x, y) =

Γ(T2 )
√
πΓ(T−12 )

(1 − x2/ρy)(T−3)/2/
√
ρy × ψT (y; 0), (26)

over the domain y > 0,−√ρy < x <
√
ρy. The result follows

from collecting the above.
Next, we prove Propositions ?? and ??. A normalized non-
central χ2 approaches a N(0, 1) as its degree of freedom
increases. Here this translates into

ΨT

(
b(v); δ2(v)

)
' Φ

(
b(v)− (T + δ2(v))√

2(T + 2δ2(v))

)
, (27)

where T + δ2(v) and 2(T + 2δ2(v)) are respectively the
expectation and variance of the χ2

T (δ2(v)) and Φ(·) is the
CDF of the standard N(0, 1) distribution. Now the relation

Φ(0) = 1/2 suggest solving for v the equation

b(v)− (T + δ2(v)) = 0,

which leads to (??). As for Proposition 2, the asymmetry of
the χ2

T (δ2(v)) suggests solving for v the equation

b(v)− (T + δ2(v))√
2(T + 2δ2(v))

= c

for some constant c near 0 to be determined. Now, the two
terms Cornish-Fisher expansion of a χ2

T (δ2(v)) at 1/2 is
−κ/6 +O(T−1), where κ = 3

√
2(T + 3δ2(v))/ 3

√
T + 2δ2(v).

Analysis of κ shows that it is rather stable over a large range of
(SNR, T ) values and that c = −23/(6

√
T ) provides a good

compromise .
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