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Abstract The numerical modelling of forming processes involving the flow of
foams requires taking into account the different problem scales. Thus, in indus-
trial applications a macroscopic approach is suitable, whereas the macroscopic
flow parameters depend on the cellular structure: cell size, shape, orienta-
tion, etc. Moreover, the shape and orientation of the cells are induced by the
flow. A fully microscopic description remains useful to understand the foam
behaviour and the topological changes induced by the cell elongation or distor-
tion, however, from an industrial point of view, microscopic simulations remain
challenging to address practical applications involving flows in complex 3D ge-
ometries. In this paper, we propose a viscoelastic flow model where the foam
microstructure is represented from suitable microstructure descriptors whose
evolution is governed by the macroscopic flow kinematics.
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1 Introduction

Aqueous foams are concentrated dispersions of gas bubbles in a surfactant
solution. Their structures are organized over a large range of length scales and
complex flows take place at different scales [6].

The proposal of macroscopic constitutive equations allows for the efficient
modelling and simulation of industrial processes involving the flow of foams
[4,1]. Usually, such descriptions remain however too phenomenological, and
even though they predict accurately the flow kinematics, microstructure in-
formation remains often unaccessible. On the opposite side, fully microscopic
simulations allow for very detailed descriptions of the foam microstructural
evolution [2]. However such approaches fail to address scenarios of industrial
interest that usually involve the flow of foams in very large and complex 3D
geometries.

The macroscopic flow model is expected to depend on the cellular structure:
cell size, shape and orientation, as well as on the fluid rheology and the surface
tension. Moreover, cell shape and orientation are induced by the flow. This
microscopic information could be introduced into a macroscopic flow model
by using standard upscaling and homogenization techniques. Thus inspired by
[7], at some locations in the domain in which an effective homogeneous fluid
flows, we could attach a representative volume containing several cells, whose
size, shape and orientation depend on the considered location. Now, a detailed
microscopic calculation could be carried out in order to determine the effective
fluid rheology. However, such a route, widely and successfully considered in a
variety of fields, remains expensive from a computational point of view despite
some attempts at combining it with advanced model reduction techniques [12].

The most appealing description consists of a macroscopic flow model mak-
ing use of some conformational variables describing the main microstructural
features, as widely considered in the field of multiscale polymer modelling [11,
3]. Thus, in [10] the authors study flows during foaming, considering cell evo-
lutions but without addressing the shape orientation and then, the induced
anisotropy. Richer microstructure descriptions can be obtained by using a
set of configurational coordinates, from which a conformation tensor can be
derived and a macroscopic constitutive equation established. This route was
successfully considered in [13]. In the present work, we propose an alternative
simpler microstructure description and its coupling with the macroscopic flow.

Remark. In the sequel, we consider the following tensor products, where Ein-
stein’s summation convention is assumed:

– if a and b are first-order tensors, the single contraction · reads (a·b) = aj bj
();
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– if a and b are first-order tensors, the dyadic product ⊗ reads (a⊗ b)jk =
aj bk;

– if a and b are respectively second and first-order tensors, the single con-
traction · reads (a · b)j = ajm bm;

– if a and b are second-order tensors, the single contraction · reads (a·b)jk =
ajm bmk;

– if a and b are second-order tensors, the double contraction : reads (a :
b) = ajk bkj .

2 Cell conformation

A very simple description of a 3D cell consists of a deformable ellipsoid (with
constant volume) ranging from the spherical shape to the infinite aspect ratio
ellipsoid (rod). Such an ellipsoid could be represented by means of three or-
thogonal extensible springs, with reference length 2L0 and stiffness K. In the
sequel, we restrict our analysis to 2D scenarios (by considering ellipses instead
of ellipsoids) but the derived models and their numerical solution procedures
can be straightforwardly extended to 3D.

First, we consider the kinematics of a single linear elastic dumbbell as
starting point for elaborating the cell conformation.

2.1 Kinematics of an extensible rod

The extensible rod, of reference length 2L0 and assumed aligned in direction
p (p having a unit norm), is represented by an elastic spring of length 2L (in
the deformed state) and stiffness K equipped with two beads at its extremities
where hydrodynamic forces act. In the sequel, the word hydrodynamic refers
to the viscous drag force and not to the one considered in other works to
describe the effects of a bead kinematics on the others from the use of the
Oseen tensor. These forces scale with the fluid - bead relative velocity, the
former given by v0 + ∇v · pL and the latter by vG + ṗL + pL̇, where v0 is
the unperturbed fluid velocity at the rod center of gravity and vG the velocity
of the rod centre of gravity. A sketch of the rod and the forces acting on it is
depicted in Fig. 1.

The system is assumed inertialess, that implies the equilibrium of forces
and torques. The first implies FH(pL) + FH(−pL) = 0, leading to v0 = vG,
that is, the rod centre of gravity moves with the fluid.

Now, to prevent a resultant torque, force FH(pL) must align with p, i.e.
FH(pL) = λp, λ ∈ R. Thus, we have

FH(pL) = ξ(∇v · pL− ṗL− pL̇) = λp, (1)

that multiplying by p and taking into account that p ·p = 1 and consequently
p · ṗ = 0, yields

ξ(∇v : (p⊗ p)L− L̇) = λ, (2)
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Fig. 1 Extensible rod immersed in a flow.

expression that introduced into Eq. (1) reads

ξ(∇v · pL− ṗL− pL̇) = ξ(∇v : (p⊗ p)L− L̇)p, (3)

that leads to the rotary velocity ṗ

ṗ = ∇v · p−∇v : (p⊗ p)p, (4)

that is nothing else than the standard Jeffery expression for ellipsoids of infinite
aspect ratio (rods) [9].

Now, by equating the force acting on the beads λ with the one within the
spring, we have

2K(L− L0) = ξ(∇v : (p⊗ p)L− L̇), (5)

or

L̇ = −2K
ξ
(L− L0) +∇v : (p⊗ p)L). (6)

Thus, the kinematics of an elastic dumbbell of reference length 2L0 with
conformation at time t given by its orientation p and length 2L, read

{

ṗ = ∇v · p−∇v : (p⊗ p)p

L̇ = − 2K
ξ
(L− L0) +∇v : (p⊗ p)L)

. (7)

2.2 From rigid ellipses to orthogonal elastic bi-dumbells

In [5] it was proven that in order to represent a rigid ellipse whose kinematics
are given by the Jeffery equation it suffices to consider a rigid system composed
of two mutually orthogonal rods whose lengths correspond with the length of
the ellipse axes.
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In this case, if p refers to the direction of the ellipse largest axis, and

F = r2−1
r2+1 , with r the ellipse aspect ratio, we have

ṗ = Ω · p+ F (D · p−D : (p⊗ p)p) , (8)

where Ω and D are respectively the vorticity and the rate of strain tensors,
2Ω = ∇v − (∇v)T and 2D = ∇v + (∇v)T .

Now, we address the more general case in which both rigid rods are replaced
by two extensible and mutually perpendicular springs of reference lengths L0

1

and L0
2. In the sequel, the same reference lengths are assumed for both dumb-

bells, i.e. 2L0
1 = 2L0

2 = 2L0.
In the present configuration, and considering that as proven in our former

works the centre of gravity moves with the fluid, the hydrodynamic forces
applying at beads L1p1 and L2p2, F

H
1 and FH

2 read respectively

FH
1 = ξ(∇v · p1L1 − ṗ1L1 − p1L̇1), (9)

and

FH
2 = ξ(∇v · p2L2 − ṗ2L2 − p2L̇2), (10)

with p1 ⊥ p2, and with their orientation rates of change expressed from
{

ṗ1 = ω × p1

ṗ2 = ω × p2
. (11)

The angular momentum balance implies now

L2
1p1 × (∇v · p1 − ṗ1) + L2

2p2 × (∇v · p2 − ṗ2) = 0, (12)

which coincides with the expression obtained in the case of rigid rods [5],
proving the validity of the Jeffery equation in the case of orthogonal elastic
bi-dumbells.

Introducing the Jeffery equation (8) with r = L1

L2

that implies F =
L2

1
−L2

2

L2

1
+L2

2

,

i.e.

ṗ1 = Ω · p1 + F
(

D · p1 −
(

pT
1 ·D · p1

)

p1

)

, (13)

into the expression of the hydrodynamic force acting on bead p1L1, we have

FH
1 = ξ(∇v · p1L1 − ṗ1L1 − p1L̇1) (14)

= ξ
(

∇v · p1L1 −Ω · p1L1 −F
(

D · p1L1 −
(

pT
1 ·D · p1

)

p1L1

)

− p1L̇1

)

(15)

= ξL1

(

(1−F)D · p1 + F
(

pT
1 ·D · p1

)

p1

)

− ξp1L̇1. (16)

2.3 Modelling incompressible ellipses from orthogonal elastic bi-dumbells

The projection of force FH
1 in the direction p1 is the one that causes the spring

extension, i.e.

2K(L1 − L0) + F I
1 = ξL1p

T
1 ·D · p1 − ξL̇1, (17)
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where the force F I
1 ensures the incompressibility constraint. Similar calcula-

tions lead to

2K(L2 − L0) + F I
2 = ξL2p

T
2 ·D · p2 − ξL̇2, (18)

where it was assumed that K1 = K2 = K.
Thus, the extension velocities read

L̇1 = −2K
ξ
(L1 − L0) + L1p

T
1 ·D · p1 −

1

ξ
F I
1 , (19)

and

L̇2 = −2K
ξ
(L2 − L0) + L2p

T
2 ·D · p2 −

1

ξ
F I
2 . (20)

Taking into account
{

pT
1 ·D · p1 = D : (p1 ⊗ p1)

pT
2 ·D · p2 = D : (p2 ⊗ p2)

, (21)

and the fact that, since p1 and p2 are mutually orthogonal, (p1 ⊗ p1) +
(p2 ⊗ p2) = I (with I the identity tensor), the incompressibility constraint
d
dt
(L1L2) = 0 reads

L̇1L2+L1L̇2 = −2K
ξ
(L1−L0)L2−

2K
ξ
(L2−L0)L1−F I

1

L2

ξ
−F I

2

L1

ξ
= 0,(22)

which simplifies to

L̇1L2 + L1L̇2 = −4K
ξ
L1L2 +

2K
ξ
L0(L1 + L2)− F I

1

L2

ξ
− F I

2

L1

ξ
= 0. (23)

Forces related to the incompressibility constraint are expected to contribute
isotropically to the resulting macroscopic stress, and then taken in the flow
incompressibility constraint. Thus, if we compute the contribution of F I

1 and
F I
2 to the stress by using the Kramers rule, we have

σ
I = F I

1 p1 ⊗L1p1 +F I
2 p2 ⊗L2p2 = F I

1L1(p1 ⊗p1)+F I
2L2(p2 ⊗p2),(24)

which suggests considering F I
1L1 = F I

2L2, since p1 ⊗ p1 + p2 ⊗ p2 = I.
Thus, considering F I

2 = F I
1

L1

L2

in Eq. (23), we have

F I
1

(

L2
1 + L2

2

ξL2

)

=
4K
ξ
L1L2 −

2K
ξ
L0(L1 + L2), (25)

or

F I
1 = 4K L1L

2
2

L2
1 + L2

2

− 2KL0(L1 + L2)L2

L2
1 + L2

2

, (26)

that vanishes for the relaxed case L1 = L2 = L0, i.e. F I
1 (L1 = L2 = L0) = 0

and consequently F I
2 (L1 = L2 = L0) = 0.

Thus, finally the governing equations for the orthogonal elastic bi-dumbbell
representing an incompressible ellipse read:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ṗ1 = Ω · p1 +
L2

1
−L2

2

L2

1
+L2

2

D · p1 − L2

1
−L2

2

L2

1
+L2

2

(

pT
1 ·D · p1

)

p1

L̇1 = − 2K
ξ
(L1 − L0)− 1

ξ
F I
1 + L1p

T
1 ·D · p1

L̇2 = −L2

L1

L̇1

F I
1 = 4K L1L

2

2

L2

1
+L2

2

− 2KL0(L1+L2)L2

L2

1
+L2

2

F I
2 = F I

1
L1

L2

. (27)
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2.4 Conformation descriptor

When considering control volumes (small enough with respect to the flow but
large enough with respect to the cell size) in a flowing foam, it can be observed
that the cells in each control volume have similar shapes and orientations. In
that case, the cell population in each volume element can be described using
p1 and L1 (when L0 is assumed known).

The contribution of a cell to the stress using the Kramers rule can be
obtained from the elastic forces. The contribution due to the incompressibility
constraint being isotropic, it can be aggregated to the pressure term. Thus,
the conformation contribution σ

c results

σ
c = 2K(L1 − L0)p1 ⊗ L1p1 + 2K(L2 − L0)p2 ⊗ L2p2 (28)

= 2K(L1 − L0)L1(p1 ⊗ p1) + 2K(L2 − L0)L2(p2 ⊗ p2) (29)

= 2K (ΔL1L1(p1 ⊗ p1) +ΔL2L2(p2 ⊗ p2)) , (30)

that vanishes in the relaxed configuration L1 = L2 = L0, with ΔL1 = 0 and
ΔL2 = 0.

In these circumstances, the simplest choice for the conformation tensor
consists of the second-order symmetric tensor c defined from

c = ΔL1L1(p1 ⊗ p1) +ΔL2L2(p2 ⊗ p2). (31)

It is important to note that the conformation does not involve an aver-
aging process affecting the different cells inside the control volume because
we assumed that all of them share almost the same conformation. However,
as it is usual in the modelling of suspensions, this hypothesis could easily be
relaxed and we would thus consider the average of different cell conformation,
as addressed in the micro-macro simulations by Keunings and coworkers using
the Lagrangian Particle Method – LPM – [8,11].

Even though many rheological behaviours could be associated to flowing
foams, this paper focuses on the consideration of induced anisotropy due to the
cell deformation. For this reason, and without loss of generality, we consider
in what follows the simplest rheological behaviour consisting of a Newtonian
behaviour complemented with an elastic contribution related to the cell defor-
mation. In any case, more complex bulk rheologies could be considered, as for
example the one related to a viscoplastic behaviour.

Thus, the macroscopic viscoelastic constitutive equation reads

σ = −pI+ 2ηD+ μc, (32)

where p is the pressure, that can be viewed as the Lagrange multiplier asso-
ciated with the macroscopic flow incompressibility constraints, η the effective
homogenized fluid viscosity, and μ the rheological parameter affecting the con-
tribution of the microscopic conformation that scales with K and the volume
concentration of cells.

The origin of the elasticity introduced into the conformation field evolu-
tion is related to the surface tension that resists the cell deformation from
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its spherical reference conformation. Topological changes can operate at the
elemental cell level. However, on average their net effect is to avoid too large
cellular distorsions. Thus, the coefficient μ should describe both the surface
tension as well as the microscopic topological changes. In the proposed model,
it remains purely phenomenological and should be identified from appropriate
rheological tests.

Even though the present model does not address relaxation mechanisms,
they could easily be incorporated by including a viscous component at the
spring-beads level.

2.5 Rheological behaviour

In order to study the rheological response of the proposed model, we carried
out a numerical study to obtain the loss and storage moduli of a foam. To
proceed, consider a periodic shear strain

γ(t) = γ0 sin(ωt) (33)

whose time derivative provides the evolution of the shear rate

γ̇(t) = γ0ω cos(ωt). (34)

In simple shear flow, the velocity gradient thus reads ∇v =

[

0 γ̇(t)
0 0

]

, and we

could use the model equations (27) to obtain the time evolution of the shape
and orientation of a cell subject to such an oscillatory flow. We can thus obtain
the time evolution c(t) of the conformation tensor introduced in the previous
section.

We can now decompose the off-diagonal component of tensor c(t), that is
c12(t) in its in-phase and out-of-phase contributions according to

c12(t) = c′12 sin(ωt) + c′′12 cos(ωt), (35)

where c′12 and c′′12 are analogous to the so-called storage (G′) and loss (G′′)
modulus respectively (they actually correspond to the storage and loss moduli
associated with the stress contribution σ

c).
Figure 2 shows the value of c′12 and c′′12 for an oscillation angular frequency

ranging from 0.1 to 100 rad/s. The parameters are ξ = 0.1, K = 1, L0 = 0.005
(metric system of units). We can recognize a Maxwell-like model, with the
classical slopes of 1 (G′′) and 2 (G′) at low frequency.

To obtain properly the storage (G′) and loss (G′′) moduli, we should also
consider the viscous component of the stress tensor. Thus the moduli are given
by

G′ =
σ′
12

γ0
= μ

c′12
γ0

(36)

G′′ =
σ′′
12

γ0
= 2ηω + μ

c′′12
γ0

. (37)
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Finally, we also conducted another rheological test to observe the behaviour
of the conformation tensor when a constant shear flow is brutally stopped.
As expected, we obtain an exponential relaxation of the tensor components
towards zero.

3 Macroscopic flow problem

Neglecting inertia, the macroscopic flow problem is defined as follows:
⎧

⎨

⎩

∇ · σ = 0

σ = −pI+ 2ηD+ μc

∇ · v = 0
, (38)

where σ is the Cauchy’s stress tensor, I the unit tensor and v the macroscopic
fluid velocity field. It can be noticed that the problem reduces to the standard
Stokes flow model as soon as μ = 0. Incompressibility is justified by the fact
that drainage is neglected.

The flow model must be complemented with the conformation expression

c = ΔL1L1(p1 ⊗ p1) +ΔL2L2(p2 ⊗ p2), (39)

whose evolution is governed by the microstructural model
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ṗ1 = Ω · p1 +
L2

1
−L2

2

L2

1
+L2

2

D · p1 − L2

1
−L2

2

L2

1
+L2

2

(

pT
1 ·D · p1

)

p1

L̇1 = − 2K
ξ
(L1 − L0)− 1

ξ
F I + L1p

T
1 ·D · p1

L̇2 = −L2

L1

L̇1

F I
1 = 4K L1L

2

2

L2

1
+L2

2

− 2KL0(L1+L2)L2

L2

1
+L2

2

F I
2 = F I

1
L1

L2

. (40)
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In order to solve the resulting flow model defined in Ω ⊂ R
2, appropriate

boundary conditions must be enforced at the domain boundary Γ ≡ ∂Ω
{

v = vg in ΓD

t = σ · n = tg in ΓN
, (41)

with ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅.

4 Numerical solution strategy

Cells are assumed represented at the initial time by a spherical conformation
tensor c = 0, since the cells are initially in the relaxed state, L1 = L2 = L0.

1. The associated Stokes problem is solved at time tn, from the microstruc-
tural term given at the previous time step μc(tn−1). The problem is solved
using a standard mixed velocity-pressure formulation using any finite ele-
ment satisfying the stability conditions, the so-called LBB conditions. In
the example reported later, we considered Q9/Q4 finite elements;

2. Then, from the just computed velocity field v(tn) the orientation and ex-
tension fields, p1(x, tn) and L1(x, tn) respectively, are updated by using a
first-order discontinuous Galerkin formulation;

3. Finally, the conformation tensor is updated c(tn).

These three steps are repeated until reaching the maximum simulation time
or the steady state.

4.1 Updating the conformation field

In the numerical experiments described below, we consider 2D flows defined
in 2D geometries Ω ⊂ R

2. In the 2D case, the unit vector p1 can be ex-
pressed by p1 = (cos θ, sin θ)T . By taking the time derivative, we get ṗ1 =
θ̇(− sin θ, cos θ)T . Using θ as orientation descriptor, the Jeffery equation can
be expressed as

θ̇(− sin θ, cos θ)T = G(θ,∇v, L1). (42)

Multiplying the previous expression by (− sin θ, cos θ), we obtain the scalar
equation

θ̇ = G(θ,∇v, L1), (43)

where the material derivative can be expressed in an Eulerian framework by
introducing the orientation field θ(x, t) whose evolution is governed by

∂θ

∂t
+ v · ∇θ = G(θ,∇v, L1). (44)

The scalar equation governing the evolution of the spring length can also
be written as

∂L1

∂t
+ v · ∇L1 = H(θ,∇v, L1). (45)
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Both equations (44) and (45) are purely advective, and thus appropriate
discretization taking into account their hyperbolic character must be used. We
make here the simplest choice, a first-order discontinuous Galerkin scheme,
that considers the generic variable P (θ or L1) constant in each element Ωe

belonging to the mesh M of Ω. The test function is assumed also constant in
each element, vanishing outside. The balance in element Ωe reads, taking into
account the flow incompressibility (∇ · v = 0):

∫

Ωe

∂P
∂t

dx+

∫

Ωe

∇ · (vP)dx =

∫

Ωe

J dx, (46)

where the source term J represents G or H depending on the considered
equation.

Using the divergence theorem, the second term of the left-hand side can
be written from the boundary flux, i.e.

∫

Ωe

∂P
∂t

dx+

∫

∂Ωe

Pv · n dx =

∫

Ωe

J dx, (47)

where n is the unit outward vector normal to the element boundary.

As P is not defined on ∂Ωe, we consider the element boundary decompo-
sition ∂Ωe = ∂+Ωe ∪ ∂−Ωe, where ∂−Ωe and ∂+Ωe represents the inflow and
outflow element boundaries, both defined from v · n < 0 and v · n > 0 re-
spectively. Then we assume that the property on the inflow boundary is given
by its value at the upstream element, i.e. P(x ∈ ∂−Ωe) = Pe− , whereas on
the outflow element boundary, it is given by the property at element Ωe, i.e.
P(x ∈ ∂+Ωe) = Pe.

4.2 Discussion

– In the flow model just proposed there is no size effects, which implies
that the characteristic length of cells must be small in relation to the one
characterizing the spatial variation of the macroscopic velocity field.

– The mesh considered for integrating the velocity field must be small enough
to capture all the macroscopic velocity field details.

– The mesh considered for calculating the conformation field must be small
enough for assuming cells in each element of the mesh described by the
conformation field inside the element, and it must be large enough for
assuming that it represents a population of cells. However, as soon as the
model is described in a continuous way, there is not contradiction with the
fact of considering elements smaller that the characteristic size of the cell
(in the case of polymer flows one can consider elements smaller that the
size of a molecule).
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Fig. 3 2D domain.

5 Numerical results

5.1 Uncoupled microstructure-flow calculations

In this section, we address some simple flows in order to evaluate the response
of the cells. The model is uncoupled in the sense that the flow induces cell de-
formation, but the cell conformation does not affect the flow kinematics. Thus,
even though some of the flows addressed here could exhibit rich kinematics in
practice, in what follows the uncoupled solution does not allow to capture such
a rich kinematics, as for example shear banding. Moreover, the only interest
of this section being the evolution of the cell deformation and its macroscopic
description, rheology is not considered in the analyses carried out.

In the numerical examples considered in this section a unit square is con-
sidered as depicted in Fig. 3. The initial (relaxed) conformation is given by a
zero conformation tensor c(x, t = 0) = 0.

Four different flows are considered: (i) a simple shear; (ii) a contraction
flow; (iii) the driven cavity flow problem and finally (iv) the flow around a
square obstacle. In all cases, the microstructure was computed on the basis of
the associated Stokes kinematics, i.e. considering the uncoupled flow associated
with μ = 0.

In order to quantify the way the flow behaviour (shear, rigid motion or
elongation) affects the microstructure evolution we consider a flow criterion.
For that purpose, first, we introduce the relative rate of rotation W from

W = ω −w, (48)

where ω is related to the flow vorticity Ω according to

Ω = ǫ · ω, (49)



A simple microstructural viscoelastic model for flowing foams 13

Fig. 4 Conformation evolution for different spring stiffness in a simple shear flow.

where ǫ is the third-order permutation tensor (also known as the Levi-Civita
tensor). The vector ω can also be written in terms of the curl of the velocity,

ω = −1

2
∇× v. (50)

The vector w in Eq. (48) represents the angular velocity of the eigenvectors
of the rate of strain tensor D.

A simple local descriptor of the type of flow can then be constructed from
the second invariant of D, γ̇ =

√
2D : D, and from the norm of W, ‖W‖,

according to

χ =
4‖W‖

γ̇ + 2‖W‖ . (51)

We have 0 ≤ χ ≤ 2, and more specifically

χ =

⎧

⎨

⎩

0 in planar extension,
1 in pure shear,
2 in rigid motion.

(52)

Figure 4 shows the evolution of the microstructure conformation for differ-
ent K in a pure shear with ξ = 0.1 and L0 = 0.005 (metric system of units).
The qualitative analysis performed here does not require a precise determina-
tion of these coefficients. As it can be noticed, the more stiffness the spring
has, the less deformation the conformation presents. In order to prove that
the conformation is not only accommodating a deformation but also that it is
rotating, we included a small cercle on the ellipsoid surface to appreciate the
way in which that point is evolving in time.

5.1.1 Simple shear flow

We consider V = 2 m · s−1 on the N-boundary, zero velocity on the S-boundary
and a linear velocity evolution on the E-boundary and W-boundaries. The
microstructure effects were introduced by using K = 1.

Figure 5 depicts the velocity field, that evolves almost linearly through the
domain thickness, as well as the flow criterion, that as expected corresponds
to a perfect shear behaviour. The pressure field is constant in the whole flow
domain.
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Fig. 5 Velocity field (left) and flow criterion (right) in a simple shear flow.

Fig. 6 Microstructure conformation in a simple shear flow.

Figure 6 shows the steady state conformation. Because of the shear, the
conformation is expected to rotate clockwise. The microstructure shows a sig-
nificant variation along the domain as a consequence of the different velocity
and constant shear rate.

5.1.2 Extrusion-like flow

In the present case, we consider again K = 1. A Poiseuille velocity profile
(parabolic) is enforced on the W-boundary (−2y(y−1), 0)T , whereas at the E-
boundary the fluid leaves the square domain throughout an exit where tension-
free boundary conditions are enforced.

Figure 7 depicts both components of the velocity field whereas Fig. 8 shows
the steady state conformation and the flow criterion. As it can be seen, the
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Fig. 7 Extrusion-like flow problem. Velocity field: (left) x-component and (right) y-
component.

Fig. 8 Conformation distribution (left) and flow criterion (right) in the extrusion-like flow.

largest conformation axis remains aligned with the streamlines. A pure exten-
sion is noticed along the symmetry axis in agreement with the flow criterion.

5.1.3 Driven cavity flow

The only difference with respect to the previously analyzed flow is that now a
unit horizontal velocity is applied on the top wall (N-boundary) that induces
the fluid flow within the cavity.

Figure 9 depicts both components of the velocity field. Figure 10 shows
the conformation at a given time as well te steady state flow crieria. The
conformation evolves periodically and no steady state is reached.

5.1.4 Flow around an obstacle

In the present case, a unit horizontal velocity is enforced on the W-boundary,
with non-slip conditions on the top and bottom walls and a free boundary
condition is specified on the E-boundary. The domain contains in its center an
obstacle where non-slip boundary conditions are enforced.
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Fig. 9 Driven cavity flow problem. Velocity field: (left) x-components and (right) y-
component.

Fig. 10 Conformation (left) and flow criterion (right) in the driven cavity flow problem.

Fig. 11 Flow around an obstacle. Velocity field: (left) x-component and (right) y-
components.

Figure 11 depicts both components of the velocity field. The velocity field
presents two stagnation points located at the intersection between y = 0.5
and the obstacle. These stagnation points correspond with the maximum and
minimum pressures.
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Fig. 12 Conformation (left) and flow criterion (right) in the flow around an obstacle.

Figure 12 depicts the conformation and flow criteria. As it can be noticed,
elongation is specially present upstream and downstream, the shear being lo-
cated in the neighbourhood of the upper and lower sides of the obstacle, with
the expected effects on the microstructure conformation.

5.2 Coupled simulations

This section adresses a coupled simulation in which flow kinematics induces
microstructure evolution and the latter affects at its turn the flow kinematics.

Figure 13 shows two snapshots taken from films of flowing foams where
the flow and microstructures were assumed almost at steady-state. The mi-
crostructure of these snapshots will be used first to identify the model pa-
rameters and then to test the agreement between the computed and observed
microstructures. Of course, from the information of kinematics only, we can-
not conclude on rheological aspects but at least this serves to evaluate the
proposed model in terms of conformation evolution.

In order to extract from these images the conformation tensor, both images
were segmented (every pixel is transformed into either black or white) and
then cell boundaries were easily identified. From that, the centre of gravity
of each cell can easily be obtained as well as the conformation tensor. If Xe

i ,
i = 1, . . . , Qe are the points defining the wall of cell Ce, the centre of gravity
and the inertia tensor Je are obtained from

Xe
G =

1

Qe

Qe

∑

i=1

Xe
i (53)

and

Je =
1

Qe

Qe

∑

i=1

(Xe
i −Xe

G)⊗ (Xe
i −Xe

G) (54)

respectively.
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Fig. 13 Experimental snapshots (courtesy of F. Graner).

The numerical inertia tensor can be calculated as soon as p1 and L1 are
known (p2 and L2 derive from p1 and L1).

J = L2
1(p1 ⊗ p1) + L2

2(p2 ⊗ p2). (55)

In Fig. 14, the experimental ellipses related to Je are superimposed to the
cells, and also to the solution predicted by using the proposed model. The
model parameters K, ξ, η and μ are, as previously indicated, chosen in order
to obtain cell shapes close to those observed experimentally: (metric system of
units) K = 1, ξ = 0.1, η = 1 and μ = 0.1. L0 = 0.005 was identified from the
average cell surface observed experimentally. In absence of rheological data, we
noticed that many choices of those parameters lead to similar microstructures
and that the impact of those on the kinematics was almost negligible. Thus,
a proper rheological characterization seems compulsory to obtain an adequate
flow-microstructure coupling.

6 Conclusions

This work proposes a simple model for flowing foams, where the microstructure
is introduced from a conformation tensor that describes the structural elastic-
ity. The numerical predictions have been compared with some experimental
results proving the ability of the model to describe the effective kinematics as
well as the flow induced microstructure evolution.

More applicative analyses, in particular in the study of industrial processes,
require an appropriate rheological characterization and very probably the pro-
posal of appropriate rheometric devices. All these aspects will be addressed in
future works.
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Fig. 14 Experimental microstructure with the associated conformation superimposed (left)
and the associated numerical predictions (right).
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