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In the robust shape optimization context, the evaluation cost of numerical models is reduced by the use of a response surface. Multi-objective methodologies for robust optimization that consist in simultaneously minimizing the expectation and variance of a function have already been developed to answer to this question. However, ecient estimation in the framework of time-consuming simulation has not been completely explored.

In this paper, a robust optimization procedure based on Taylor expansion, kriging prediction and a genetic NSGA-II algorithm is proposed. The two objectives are the Taylor expansion of expectation and variance. The kriging technique is chosen to surrogate the function and its derivatives. Afterwards, NSGA-II is performed on kriging response surfaces or kriging expected improvements to construct a Pareto front. One point or a batch of points is chosen carefully to enrich the learning set of the model. When the budget is reached the non-dominated points provide designs that make compromises between optimization and robustness. Seven relevant strategies based on this main procedure are detailed and compared in two test functions (2D and 6D). In each case, the results are compared when the derivatives are observed and when they are not. The procedure is also applied to an industrial case study where the objective is to optimize the shape of a motor fan.

Introduction

Complex physical phenomena are increasingly studied through numerical simulations. These numerical models are able to mimic real experiments with a high degree of accuracy. They predict the physical measures of interest (outputs) very precisely, though computational cost tends to explode even on state of the art super-computers. One main use of these simulations is to solve optimization problems. This work focuses on cases where the optimized solution is sensitive to input perturbations. For example, these perturbations are due to random dimensional uctuations during production. A robust solution is then sought. To solve the robust optimization problem, one way is to introduce a multi-objective optimization formulation where the rst objective is the expectation and the second the variance. These two objectives are often antagonistic. The issue of robust optimization is then to nd a Pareto front that strikes the right balance between the optimization of the function and the impact of input perturbations (uncertainties). As the simulations provided by the numerical code are often time-consuming, only a few of them are then aordable. So, the computer code cannot be intensively exploited to provide the robust optimum. In this case, the optimization procedure is often run on a kriging model (see e.g. [START_REF] Santner | The design and analysis of computer experiments[END_REF]) that statistically approximates the computer code (kriging-based black-box optimization). Choosing where to sample the output in the input space to reach the optimum as fast as possible is of special interest. The authors in [START_REF] Donald R Jones | Ecient global optimization of expensive black-box functions[END_REF] developed the Ecient Global Optimization (EGO) algorithm that exploits the Expected Improvement (EI) criterion. However, the EGO algorithm is not an answer to the robust optimization problem because uncertainties are not taken into account.

The literature contains a sample of works that handle robust optimization. Methodologies depend on the kind of uncertainties. The authors in [START_REF] Lelièvre | On the consideration of uncertainty in design: optimization -reliability -robustness[END_REF] propose two classes of uncertainties: uncertainties that "are primitively linked to the environment and condition of use" and uncertainties that "are connected with the production/manufacturing process". In the rst type of uncertainties, the aim is to nd x such that f (x, U) is minimal where U is a random vector (cf [START_REF] Janusevskis | Simultaneous kriging-based estimation and optimization of mean response[END_REF], [START_REF] Marzat | Worst-case global optimization of black-box functions through kriging and relaxation[END_REF], [START_REF] Daniel W Apley | Understanding the eects of model uncertainty in robust design with computer experiments[END_REF] and [START_REF] Samee Ur Rehman | Ecient kriging-based robust optimization of unconstrained problems[END_REF]). The authors in [START_REF] Janusevskis | Simultaneous kriging-based estimation and optimization of mean response[END_REF] propose to minimize the expectation of f (x, U) with a Gaussian process-based methodology. The authors in [START_REF] Marzat | Worst-case global optimization of black-box functions through kriging and relaxation[END_REF] propose an algorithm that minimizes the worst-case. In [START_REF] Samee Ur Rehman | Ecient kriging-based robust optimization of unconstrained problems[END_REF] a mono-objective solution based on the worst-case on the response surface is proposed. In all these sequential methods, the variables are clearly separated into two classes (design and uncertain) and the robust criterion is summed up either by the expectation or the worst-case.

In our context, the aim is to nd x such that f (x + H) is minimal with H a random vector accounting for perturbations such as manufacturing uncertainties. We introduce a multi-objective strategy to detect the whole set of robust solutions. The rst objective is to quantify a level of the function in a neighborhood of a solution. The local expectation, E[f (x + H)] is then considered. The second objective aims at measuring the robustness of a solution. [START_REF] Moritz Göhler | Robustness metrics: Consolidating the multiple approaches to quantify robustness[END_REF], [START_REF] Gabrel | Recent advances in robust optimization: An overview[END_REF] and [START_REF] Almeida Coco | Robust optimization criteria: state-of-the-art and new issues[END_REF] give some overviews of dierent robustness criteria. As our industrial partners quantify the robustness of a solution by the local variance of the output (see e.g. [START_REF] Daniel W Apley | Understanding the eects of model uncertainty in robust design with computer experiments[END_REF] and [START_REF] Troian | Methodology for the design of the geometry of a cavity and its absorption coecients as random design variables under vibroacoustic criteria[END_REF]), the second objective is V ar[f (x + H)].

In a context of a black-box optimization, these two objectives are computed by Monte-Carlo method which is unaordable in practice even using a metamodel. In this paper, proxies based on the Taylor expansion as introduced by ( [START_REF] Darlington | An algorithm for constrained nonlinear optimization under uncertainty[END_REF]), are proposed. These proxies are easily computed, their expression are analytical and involve the rst and second derivatives. In the context of time-consuming simulations, these criteria are predicted by kriging. Kriging, form which the covariance structure between the GP model of the function and all the derivatives results, is well adapted . This structure is described in [START_REF] Edward Rasmussen | Gaussian processes for machine learning[END_REF] and used again by [START_REF] Le | Multi-delity Gaussian process regression for computer experiments[END_REF].

As the two objectives are accessible through kriging, a multi-objective optimization is performed to provide set of optimal solutions. In the literature, several approaches (see [START_REF] Wagner | On expectedimprovement criteria for model-based multi-objective optimization[END_REF] for an overview) mixing a GP modeling and multi-objective optimization are proposed: the aggregation methods (see [START_REF] Knowles | Parego: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[END_REF], [START_REF] Liu | On the performance of metamodel assisted moea/d[END_REF] and [START_REF] Zhang | Expensive multiobjective optimization by moea/d with gaussian process model[END_REF]), the hypervolume methods (see [START_REF] Ponweiser | Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection[END_REF], [START_REF] Binois | Uncertainty quantication on pareto fronts and high-dimensional strategies in bayesian optimization, with applications in multi-objective automotive design[END_REF] and [START_REF] Michael Tm Emmerich | Hypervolume-based expected improvement: Monotonicity properties and exact computation[END_REF]), the maximin method (see [START_REF] Svenson | Multiobjective optimization of expensive-to-evaluate deterministic computer simulator models[END_REF]) and the uncertainty reduction method (see [START_REF] Picheny | Multiobjective optimization using gaussian process emulators via stepwise uncertainty reduction[END_REF]). [START_REF] Henkenjohann | An ecient sequential optimization approach based on the multivariate expected improvement criterion[END_REF] shows that the aggregation methods are not ecient with a complex Pareto front. The hypervolume, maximin and uncertainty reduction algorithms has to perform multi-objective optimization on Gaussian processes. As the developed robustness criterion is no longer Gaussian, it could be costly to adapt these methods in our case. Some optimization procedures inspired by [START_REF] Jeong | Ecient global optimization (ego) for multi-objective problem and data mining[END_REF] are proposed. These procedures consist in applying an evolutionary algorithm on the kriging predictions and in taking into account kriging variance as suggested by [START_REF] Pronzato | Robust design with nonparametric models: prediction of secondorder characteristics of process variability by kriging1[END_REF].

The paper is structured as follows. First the proxies of the two objectives are introduced in section 2. Then in section 3, the context of a Gaussian process metamodeling is presented. The general multiobjective optimization scheme is developed in section 4, and the dierent enrichment strategies in section 5. The quality criteria for comparing Pareto fronts are given in section 6. Finally, in section 7, the behavior of our methodology is studied on two toy functions and on an industrial test case.

2 Two proxies for the rst moments of the function Mass production involves manufacturing operations generating uncertainties on part properties, such as geometrical dimensions, material properties and so on. Part design accepts such uncertainties within a specied range, provided as tolerances, for the whole system to work when the considered part is integrated. Taking into account uncertainties into an optimization scheme needs the construction of specic criteria which quantify the local sensitivity to variabilities. A natural approach is to optimize jointly the local expectation and variance of the output. Let f be the studied function (a two-times dierentiable function)

f : D ⊂ R p -→ [a; b] ⊂ R x -→ f (x) (1) 
where p is the number of input variables, i.e. x = (x 1 , . . . , x p ). At a point x ∈ D, the quantities of interest -local expectation and variance -are E (f (x + H)) and V ar (f (x + H)) where H, representing the production errors, is a centered Gaussian vector with the covariance matrix ∆ dened by:

∆ =        δ 2 1 0 . . . 0 0 δ 2 2 . . . 0 . . . . . . . . . . . . 0 . . . 0 δ 2 p       
.

In a black box context, the evaluation of E (f (x + H)) and V ar (f (x + H)) requires a lot of calls to function f . In this paper we propose to consider a second order Taylor's approximation of function f , denoted f and its associated expectation and variance. The objectives to be optimized are then :

a Level Criterion of function f (LC f ) :

LC f (x) =E f (x + H) = f (x) + 1 2 tr ((H f (x)∆)) (2) 
a Robustness Criterion of function f (RC f ) :

RC f (x) =V ar f (x + H) = tr ∇ f (x)∇ f (x) ∆ + 1 2 tr (H f (x)∆) 2 (3) 
where ∇ f is the gradient of f , H f the Hessian matrix of f , tr is the matrix trace.

LC f is to be minimized or maximized according to what is expected for function f . RC f is to be minimized. This criterion is composed of two terms. The rst part involves the gradient of f (rst derivatives) and the second the Hessian matrix (second derivatives). Minimizing this criterion implies causing the gradient and the Hessian to vanish. This leads to at local extrema. The associated designs are insensitive to production uctuations. This criterion does not allow discrimination between maxima and minima or between two maxima. This is why we perform a multi-objective optimization on LC f and RC f .

Remarks:

If the simulator provides the rst derivatives with the output itself, the LC f and RC f criteria can be computed with only one call to the computer code.

In the context of costly simulations, a robust optimization cannot be directly performed on LC f and RC f . The next section presents how these quantities can be predicted using a kriging approach.

3 Gaussian process modeling for the function and its derivatives

As can be seen in Equations ( 2) and (3), the criteria to be optimized depend on the rst and second derivatives of f . A Gaussian process metamodel (see [START_REF] Le | Multi-delity Gaussian process regression for computer experiments[END_REF]) is well suited to this context in the sense that all derivatives can easily be predicted. In this section, the model and the predictions are presented and illustrated on a toy example.

Kriging Model

Let us assume function f to be a realization of a Gaussian process (Y (x)) x∈D with a constant mean, µ, and with a stationary covariance function k(x, x) = σ 2 r θ (x -x), ∀(x, x) ∈ D × D. This process is assumed to be two-times dierentiable in mean square at point (x, x).

We denote by (Y

x i (x)) x∈D = ∂Y ∂x i (x)
x∈D the rst-order partial derivative of (Y (x)) x∈D with respect to x i , and by

Y x i ,x j (x) x∈D = ∂ 2 Y ∂x i ∂x j (x)
x∈D the second-order partial derivative of (Y (x)) x∈D with respect to x i and x j .

All the covariance structures between the process and its derivatives are then well-known and are given by:

cov Y (x), ∂Y (x) ∂ xj = ∂k(x, x) ∂ xj , cov ∂Y (x) ∂x i , ∂Y (x) ∂ xj = ∂ 2 k(x, x) ∂x i ∂ xj
Let (x 1 , . . . , x n ) be the initial design of experiments, where x k ∈ D, 1 ≤ k ≤ n. The evaluation of the function (resp. rst and second derivatives) at point x k is denoted by y k ∈ R (resp. y k x i ∈ R and y k

x i ,x j ∈ R), where i ∈ {1, . . . , p}, j ∈ {i, . . . , p} and k ∈ {1, . . . , n}. The collection of outputs y, y x i and y x i ,x j is such that: y = (y 1 , . . . , y n )

y x i = (y 1 x i , . . . , y n x i ) y x i ,x j = (y 1 x i ,x j , . . . , y n x i ,x j ) (y k , y k x 1 , . . . , y k xp , y k x 1 ,x 1 , . . . , y k x i ,x j , . . . , y k xp,xp ), k ∈ {1, . . . , n} is then a realization of the following d = 1 + 3p 2 + p 2 2 dimensional GP: Z(x) = (Y (x), Y x 1 (x), . . . , Y xp (x), Y x 1 ,x 1 (x), . . . , Y x i ,x j (x), . . . , Y xp,xp (x)) , 1 ≤ i ≤ p, i ≤ j ≤ p at points x 1 , . . . , x n .

Kriging predictions of the output and its derivatives

The problem is to predict Z considering observations at points x 1 , . . . , x n . However, the entire vector Z is not always observable. Let u obs ⊂ {1, . . . , d} be the components that are observable. For example, only the function and its rst derivatives can be aordable. Likewise, it is not always necessary to predict the whole vector Z. Let u pred ⊂ {1, . . . , d} be the components that need to be predicted.

In the following we assume that 1 ∈ u obs and we denote e obs = (1, 0 R d obs -1 , . . . , 1, 0 R d obs -1 ) ∈ R nd obs , d obs = #u obs and e pred = (1, 0

R d pred -1 ) ∈ R d pred , d pred = #u pred .
The kriging mean is then given by the following equation:

z u pred (x) = µe pred + c θ (x) Σ -1 θ (z u obs -µe obs ), z u pred (x) ∈ R d pred (4) 
where The mean square error (MSE) at point x ∈ D is given by:

z u obs =     z 1 obs . . .
s 2 u pred (x) = Σ θ (x, x) -e pred c θ (x) 0 e obs e obs Σ θ -1 e pred c θ (x) , s 2 u pred (x) ∈ M d pred ×d pred
where Σ θ is the covariance matrix of size nd obs × nd obs given by : 

Σ θ =     Σ x 1 ,
Σ x,x =         Σ Y,Y Σ Y,Y xj Σ Y,Y xj xk Σ Y,Y x2 j Σ Yx i ,Y Σ Yx i ,Y xj Σ Yx i ,Y xj xk Σ Yx i ,Y x2 j Σ Yx i x l ,Y Σ Yx i x l ,Y xj Σ Yx i x l ,Y xj xk Σ Yx i x l ,Y x2 j Σ Y x 2 i ,Y Σ Y x 2 i ,Y xj Σ Y x 2 i ,Y xj xk Σ Y x 2 i ,Y x2 j        
i, j, k, l ∈ {1, . . . p} where l > i and k > j. For instance

Σ Yx i ,Y xj = cov(Y x i , Y xj ) = cov(η x i , η xj ) = ∂ 2 k(x-x) ∂x i ∂ xj
. The matrix c θ (x) ∈ M nd obs ×d pred is the covariance matrix between Z u pred (x) and the observations, while the matrix Σ θ (x, x) ∈ M d pred ×d pred is the variance of Z u pred (x). 

f (x) = 4 -2.1x 2 1 + x 4 1 3 x 2 1 + x 1 x 2 + -4 + 4x 2 2 x 2 2 , x ∈ [-2; 2] × [-1; 1]
The kriging covariance kernel is a tensor product one:

cov (Y (x), Y (x)) = k(x -x) = σ 2 p j=1 ρ θ j |x j -x j | , θ = (θ 1 , . . . , θ p ) ∈ R p + (5) 
where ρ θ j is a correlation function which only depends on the one dimensional range parameter θ j , see e.g. [START_REF] Santner | The design and analysis of computer experiments[END_REF] and [START_REF] Michael | Interpolation of spatial data[END_REF]. A Matern 5/2 kernel is used because the output is assumed to be two-times continuously dierentiable:

∀θ ∈ R + , ∀h ∈ R + , ρ θ (h) = 1 + √ 5|h| θ + 5h 2 3θ 2 exp - √ 5|h| θ .
Kriging predictive quality has been compared in dierent learning situations:

10 learning points where f is observed (left part of Figure 1)

10 learning points where f and all the derivatives are observed (middle part of Figure 1)

60 learning points where f is observed (right part of Figure 1)

The learning sets composed of 10 or 60 points are maximin latin hypercube samplings. The test set is a 150 latin hypercube sampling of 1500 points. As expected, the left and middle parts of Figure 1 show that kriging with derivatives performs much better than without. While computing one derivative costs as much as computing a new point, the right part of Figure 1 shows that kriging without derivatives does better. However in industrial applications, computing derivatives is often more aordable.

Robust optimization procedure

The proposed robust optimization procedure based on the two criteria introduced above (see Equations ( 2) and ( 3)) is as follows:

Find the Pareto set X 0 , the solution of the following multi-objective optimization

min x∈R p {LC f (x), RC f (x)} (6)
The approach to solve it in the context of time-consuming simulations is based on a classical black-box optimization scheme (see [START_REF] Donald R Jones | Ecient global optimization of expensive black-box functions[END_REF]). The optimization scheme is based on the following steps:

Initialization. The costly function and possibly its derivatives are evaluated on a well-chosen initial design of experiments. A kriging model is adjusted on this rst set of outputs. Two response

surfaces { ô bj LC f (x)} and { ô bj RC f (x)} related to the two objectives {LC f (x)} and {RC f (x)} are predicted.
Remarks: in the dierent case studies, the chosen initial design is a maximin Latin Hypercube Sampling (maximin HLS) (see [START_REF] Dupuy | Dicedesign and diceeval: Two r packages for design and analysis of computer experiments[END_REF]).

Loop until the budget is reached 1. Multi-objective optimization. A multi-objective global optimization method is applied to solve min x∈R p { ô bj LC f (x), ô bj RC f (x)}. A Pareto front is identied. Remarks: The NSGA II algorithm is chosen for its good performances in nding complex Pareto fronts. 2. Enrichment. A set of q points is selected from the Pareto front. The function and possibly its derivatives are evaluated on these new points. The Gaussian process model and the two response surfaces are updated.

The aim of this section is to dene the two response surfaces to be optimized. The next section focuses on dierent strategies for selecting good points from the Pareto front.

Three dierent response surfaces have been studied to run the multi-objective methodology. The rst approach consists in optimizing the predicted version of the criteria (level and robustness). This approach, quite crude, is denoted by the "plug in" approach in the following and is described below. The second approach is based on the famous Expected Improvement quantity in order to take into account prediction uncertainty. The third one is the most complex: it optimizes the multipoint Expected Improvement versions of {LC f (x)} and {RC f (x)}.

The "plug in" response surfaces

We remind you that z(x) from Equation ( 4) is

z(x) = y(x), . . . , y xp,xp (x)
The prediction of the Level Criterion LC f is given by

LC y (x) = y(x) + 1 2 tr H y (x)∆ = B z(x). (7) 
where B(1, 0, . . . , 0,

δ 2 1 2 , 0 . . . , 0, δ 2 p 2 , 0, . . . , 0, δ 2 p
2 , 0, . . . , 0). This formula corresponds to the exact conditional expectation since LC f is linear in the derivatives. The prediction of RC f (x) is dened by:

RC y (x) = tr ∇ y (x)∇ y (x) ∆ + 1 2 tr H y (x)∆ 2 (8) 
where ∇ y is the vector and corresponds to the prediction of the Hessian matrix. ∇ y and H y are obtained from dierent components of z(x).

    y x 1 . . . y xp    
The "plug in" formulation is then:

Find the Pareto set X 0 , the solution of the following multi-objective optimization

min x∈R p {LC y (x), RC y (x)} (9) 
Remarks:

The denition of the predicted robustness criterion corresponds to the denition of Equation ( 3) where the derivatives have been replaced by their prediction.

These response surfaces are easy to compute. While NSGA II runs quickly on these quantities, prediction uncertainty is not taken into account at this stage.

4.2

The "expected improvement" response surfaces Unlike the previous case, in this approach we take into account the kriging variance in the optimization scheme. The best way to do this is to optimize the expected improvement.

In the EGO algorithm, the expected improvement (EI) criterion measures the improvement of a point x in the minimization of function f and is used to add new points to the learning set. The expression of the EI (see [START_REF] Donald R Jones | Ecient global optimization of expensive black-box functions[END_REF]) at point x is:

EI(x) = E (min(y(X)) -Y (x)) + |Y (X) = y
where min(y(X)) = min(y 1 , . . . , y n ).

The analytical expression of the EI for a Gaussian process is given by:

EI(x) = (min(y(X) -y(x))Φ min(y(X)) -y(x) s(x) + s(x)φ min(y(X)) -y(x) s(x)
where y(x) is the kriging mean, s(x) is the kriging standard deviation, and Φ and φ are the cdf and pdf of the standard normal law.

In our case, these formulas have to be adapted: i ) to level and robustness criteria, ii ) to a larger set of observations that may include derivatives, iii ) to a multi-objective optimization context.

To answer to i, we need to dene the processes (LC Y (x)) x∈D and (RC Y (x)) x∈D . From Equations 2 and 3, the processes are naturally dened by:

LC Y (x) = Y (x) + 1 2 tr (H Y (x)∆) (10) RC Y (x) = tr ∇ Y (x)∇ Y (x) ∆ + 1 2 tr (H Y (x)∆) 2 (11) 
where ∇ Y is the vector

    Y x 1 . . . Y xp     and H Y is the matrix     Y x 1 ,x 1 . . . Y x 1 ,xp . . . . . . . . . Y xp,x 1 . . . Y xp,xp     .
To answer to point ii, conditional expectations are considered over observations of vector z that includes derivatives when they are available.

Finally to answer to iii, the authors in [START_REF] Jeong | Ecient global optimization (ego) for multi-objective problem and data mining[END_REF] show that, in the context of multi-objective optimization, the usual reference value, which is the current observed minimum, is too constraining. To continue to allow improvement, this reference value is rather taken as the worst value on the current Pareto front. The expressions of EI for LC f and RC f are then as follows:

EI LCy (x) = E (max(LC y (X * )) -LC Y (x)) + |Z(X) = z u obs EI RCy (x) = E (max(RC y (X * )) -RC Y (x)) + |Z(X) = z u obs
where X * is the set of non-dominated points for the objectives {LC y , RC y } of the learning set X.

The "expected improvement" formulation is then:

Find the Pareto set X 0 , the solution of the following multi-objective optimization

min x∈R p {EI LCy (x), EI RCy (x)} (12) 
Remarks:

A solution x 1 dominates another solution x 2 for the m objectives g 1 , . . . , g m if and only if ∀i ∈ {1, . . . , m} g i (x 1 ) ≤ g i (x 2 ) and ∃i ∈ {1, . . . , m} g i (x 1 ) < g i (x 2 ). Among a set of solutions X, the solutions of the non-dominated set X * (Pareto front) are those that are not dominated by any member of the set X.

When the derivatives used to compute the level and the robustness criteria are not observed, max(LC y (X * )) and max(RC y (X * )) are predicted by kriging.

As the process LC Y (x) is Gaussian, the expression of EI LCy is

EI LCy (x) = (max(LC y (X) -LC y (x))Φ max(LC y (X)) -LC y (x) s(x) + s(x)φ max(LC y (X)) -LC y (x) s(x)
where s(x) is the kriging variance.

As the link between RC Y (x) and Z(x) is not linear, the process (RC Y (x)) x∈D is not Gaussian anymore. EI RCy is then estimated by a Monte Carlo method.

The "multi-point expected improvement" response surfaces

While the EI strikes a good balance between exploration and minimization, it computes the improvement of a single point. The multi-point EI (q-EI) is used to measure the improvement of q points X = (x n+1 , . . . , x n+q ) ( [START_REF] Ginsbourger | Kriging is well-suited to parallelize optimization[END_REF]). In a multi-objective context, the expressions of the q-EI are:

qEI LCy (X) = E max(LC y (X * )) -min(LC Y (x n+1 ), . . . , LC Y (x n+q )) + |z u obs qEI RCy (X) = E max(RC y (X * )) -min(RC Y (x n+1 ), . . . , RC Y (x n+q )) + |z u obs
where X * is the set of non-dominated points for the objectives {LC y , RC y } of the learning set X.

We note that q-EI involves min(LC Y (x n+1 ), . . . , LC Y (x n+q )) instead of LC Y (x n+1 ). The improvement is provided by the set of q points simultaneously chosen. Besides, in the context of multi-optimization, the reference value is the maximum of the Pareto front outputs.

The "multi-points expected improvement" formulation is then:

Find the Pareto set X 0 , the solution of the following multi-objective optimization min X∈R p×q {-qEI LCy (X), -qEI RCy (X)}

5 Sequential stategy for enrichment Seven enrichment strategies have been developed based on the three approaches described above. Once the Pareto front has been found (NGSAII algorithm), points are chosen to enrich the set of observations. Dierent strategies can be studied. They are described below.

Enrichment for the "plug in" formulation

With this approach, it is not costly to nd the Pareto front since the response surfaces are easily computed.

However, the kriging variance has never been considered. If kriging predictions turn out to be of poor quality, some interesting areas can be missed. Hence the rst strategy consists in choosing part of the points from the Pareto front but also part of the points randomly in the parameter space. Other strategies consist in using information from the kriging variance, for example through an expected improvement criterion.

More precisely, ve enrichment approaches have been benchmarked and are described below:

1. MyAlea:

q 2
1 points are selected randomly on the Pareto front, while q-q 2 points are randomly chosen in the parameter space.

2. MyEI: -EI LCy as well as -EI RCy are computed for each point of the Pareto front. A k-means clustering using the method in [START_REF] John | Algorithm as 136: A k-means clustering algorithm[END_REF] is applied to the non-dominated points of {-EI LCy , -EI RCy } to provide q clusters. Then the q clusters' medoids are added to the design.

3. MyqEI: a simulated annealing algorithm gives the set of q points among the Pareto front that minimizes the function -qEI LCy -qEI RCy .

Two sequential approaches presented in [START_REF] Ginsbourger | Kriging is well-suited to parallelize optimization[END_REF] can be used to replace the q-EI in order to measure the improvement of q points: the Kriging Believer and the Constant Liar.

4. MyKB: q points are sequentially selected from the Pareto front based on the Kriging Believer strategy. This strategy consists of the following steps: The -EI LCy and -EI RCy are computed on the Pareto front, then a point x 1 0 is randomly chosen from the EI Pareto front and added. z(x 1 0 ) is then considered known and is assumed to be equal to z(x 1 0 ). Another computation of -EI LCy and -EI RCy provides one more point based on the same strategy up to the q requested points. 5. MyCL: q points are sequentially selected based on the Constant Liar strategy. This strategy consists of the following steps: The -EI ) is then considered known and is assumed to be equal to min LC y (X * ) (resp. min RC y (X * )). Another computation of -EI LCy and -EI RCy provides one more point based on the same strategy up to the q requested points.

The problem with this group of strategies is that kriging variance is not taken into account during multiobjective optimization. Except if the MyAlea strategy is used, some interesting areas can be missed.

The second approach solves this issue by conducting multi-objective optimization directly on the EI.

Enrichment for the "expected improvement" formulation

Multi-objective optimization is performed on the EI of the output and the robustness criterion. This approach takes into account the kriging variance right from the start of the procedure. For this approach, one enrichment strategy is proposed to add one points one by one: 6. MEIyAlea: a point is randomly chosen and sequentially added until the total budget is reached.

Because this strategy adds points sequentially one by one (q = 1), the last formulation is introduced to add points by batch.

Enrichment for the "multi-point expected improvement" formulation

One last enrichment approach is proposed to add q points simultaneously:

7. MqEIyAlea: one point is randomly extracted from the Pareto front. This point will provide q points in the parameter space for the next optimization step.

The seven methods for performing the enrichment are summarized in Table 1.

Quality criteria for Pareto fronts

The seven strategies based on three dierent response surfaces are compared through the quality of the resulting Pareto front. Several measures exist to quantify the quality of a Pareto front (cf [START_REF] Allen | Multiobjective Evolutionary Algorithms: Classications, Analyses, and New Innovations[END_REF], [START_REF] Schott | Fault tolerant design using single and multicriteria genetic algorithm optimization[END_REF], [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF] and [START_REF] Zitzler | Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach[END_REF]). The Inverted Generational Distance (IGD) and the Hypervolume (HV) are selected here to compare strategies. Let f = (f 1 , . . . , f m ) be the objective function, P the theoretical Pareto front, and X * the empirical Pareto front where M = #P. The chosen performance metrics are: Inverted Generational Distance (IGD) see [START_REF] Coello | A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm[END_REF]:

IGD(X * ) = 1 M M i=1 d 2 i where d i = min x∈X * ( f (x i ) -f (x) 2 ), f (x i ) ∈ P.
This metric evaluates the distance between the empirical and the theoretical Pareto front. A small value is better.

Hypervolume (HV) see [START_REF] Zitzler | Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach[END_REF]. Figure 2 shows the Hypervolume (HV) of a Pareto front. In [START_REF] Fonseca | An improved dimension-sweep algorithm for the hypervolume indicator[END_REF] the authors introduce an algorithm to compute this volume. 

Applications

This section compares the strategies on two toy functions and one industrial test case. The toy functions are the six-hump Camel in two dimensions and the Hartmann in six dimensions. Two cases are considered depending on whether the derivatives are aordable or not. For eciency's sake, only three of the best strategies are applied on the Hartmann function and on the industrial test case. For these applications NSGA II is performed with populations of a hundred points. Each generation is computed with a crossed probability of 1 and a mutation probability of 1 p , where p is the number of inputs.

Six-hump Camel function: 2D

In this application, the six-hump Camel function is considered. The two input variables are subject to manufacturing errors with δ j = 0.05 4 (max(x j ) -min(x j )), j = {1, 2}. Figure 3 shows the four optimal areas for robust optimization in the objective and parameter space.

In order to perform a robust optimization, the function and all the rst and second derivatives need to be predicted. The set of predicted indexes is u pred = {1, . . . , 6} and corresponds to the following vector: 

Z u pred = (Y, Y x 1 , Y x 2 , Y x 1 ,x 2 , Y x 1 ,x 1 , Y x 2 ,x 2 )

Derivative observations

In this rst part of the study, the function and all the derivatives are available at each evaluated point.

The set of observed indexes is u obs = {1, . . . , 6} that corresponds to the process vector:

Z u obs = (Y, Y x 1 , Y x 2 , Y x 1 ,x 2 , Y x 1 ,x 1 , Y x 2 ,x 2 )
The initial learning set is a maximin LHS of nine points. Nine updates of ve points are added for a total budget of 54 points. The optimization scheme is performed 100 times with dierent initial learning sets to compare the seven strategies. to an ecient exploration step. Figure 5 shows the boxplots of these three methods for each distance.

Method

MyqEI gives the worst results in HV metric. This is due to the annealing simulation of the strategy that is dicult to tune.

No derivative observations

The aim of this section is to analyze the behavior of the seven strategies when the derivative observations are not available.

The observed set of indexes is u obs = {1} , while the predicted set of indexes is u pred = {1, . . . , 6} that corresponds to the process vectors:

Z u obs = Y Z u pred = (Y, Y x 1 , Y x 2 , Y x 1 ,x 2 , Y x 1 ,x 1 , Y x 2 ,x 2 )
The initial sample set is still a maximin LHS of 9 points. The available information is poorer, and 315 detection of the front need to add more points. For this reason, 35 updates of 5 points are performed up to a total budget of 324 points. The optimization scheme is carried out 100 times with dierent initial learning sets to compare the seven strategies.

Results are provided in Figure 6 and Table 3 

Hartmann function: 6D

In this section, the three best strategies (MyqEI, MyKB and MyCL) identied in Section 7.1.1 are benchmarked in a higher dimension (six). A Gaussian process model is built with a tensor product kernel using the Matern5_2 covariance function (see Equation 5). The studied function is the six-dimensional Hartmann function dened by: 

f (x) = - 4 i=1 α i exp   - 6 j=1 A ij (x j -P ij ) 2   x 2 1 , x ∈ [0; 1] 2 where α = (1, 1.2, 3, 3.2) , A =      10 
    
The two input variables x 4 and x 5 are assumed to vary in the interval x j ±2δ j where δ j = 0.05 4 (max(x j )min(x j )), j = {1, 2}. As above, two cases are considered depending on whether or not derivative observations are provided. 

Derivative observations

The sets of indexes are u obs = u pred = {1, 5, 6, 20, 26, 27} which correspond to the process vectors:

Z u obs = Z u pred = (Y, Y x 4 , Y x 5 , Y x 4 ,x 5 , Y x 4 ,x 4 , Y x 5 ,x 5 )
The initial sample set is a maximin LHS composed of 18 points. Five updates are made and 18 points are added by update for a total budget of 108 points. The best methods found in the previous test case with derivative information, MyqEI, MyCL and MyKB strategies, are applied.
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The right part of Figure 7 shows that the three methods converge to the true front. MyqEI is the fastest.

On the simulation presented on the left part of Figure 7, it is the only method which nds at step 5 the all Pareto front. MyKB takes 8 minutes and MyCL takes 9 minutes for the ve steps when MyqEI takes 12 minutes. 

No derivative observations

The sets of indexes are u obs = {1} and u pred = {1, 5, 6, 20, 26, 27}. They correspond to the process vectors: Figure 8 shows that the three methods converge to the true front. At step 5, only one part of the front has been detected by two of the methods (MyCl and MyqEI). The top left part of the front is dicult to localize. On these simulation at step 35 it is reached (with 578 additional points). The right part of Figure 8 shows that the distance starts to converge to the expected value within the rst 100 points. For 350 the IGD metric, the values are subject to few perturbations around the expected value zero. For the HV measure, the three methods converge to the theoretical value with only 100 points that correspond to 6 updates. MyAlea takes 56 min, MyqEI takes 1h19 min, and MyCL takes 1h02min for the 35 steps.

Z u obs = Y Z u pred = (Y, Y x 4 , Y x 5 , Y x 4 ,x 5 , Y x 4 ,x 4 , Y x 5 ,x 5 )

Industrial test case 7.3.1 Context

The chosen application is a front motor cooling fan design. Within daily use, uncertainties under operating conditions are mainly due to external parameters. In automotive application, it would be the design of the car, its air entrance conditions, the size and shape of the engine, the temperature, humidity, etc.

As such part is usually provided by automotive supplier, these parameters are complete unknown, and the OEMs generally take the responsibility to validate their car as a system for all these conditions. However, in order to ensure the qualication of the product, the specication that are given are very strict and aims to compare fairly the fans between them. For instance, tests are made for a xed rotational speed on standard test rig (see [37]). Therefore, the remaining variabilities are coming from the geometrical changes and the measurement uncertainties.

The use of numerical simulation with a very well controlled workow (repeatability, mesh independency, controlled numerical convergence, etc.) help suppliers to reduce the measurement uncertainties.

The geometry changes are an actual issue with production process, which involves plastic injection with glass ber. It is well known in the state of the art that the plastic component that goes out of the mold does not have the same shape than the mold cavity. In particular, shrinking, warpage and residual stress distribution can yield plastic deformation, even long time after the production if we consider eect of temperature, humidity and aging. Sometimes, the blade modication is so important that the mold must be reworked, which is obviously an additional cost that could be saved with a robust optimization approach.

These phenomena are observed on fans for a long time, and previous experience with retro-engineering on used fans has allow suppliers to quantify the blade deformation: it can be easily converted into modication of the stagger angles, the chord, the camber, etc. However, the parameters that were selected in the present investigation are those which are varying the more, because the maximum freedom for change is located far from the hub and far from the ring (hub and ring are solid and massive cylinders that retains the blade at their attachments). If the robust optimization sorts out the more robust design according to these parameters which are at risk, it would without no doubt reduce the uncertainties due to supplier production process.

Numerical chain

We choose a low delity turbomachinery predimensioning tool named T urboConcept T M as main simulation part for the proposed design optimization .This code is developed and maintained by the Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA) at Ecole Centrale de Lyon. The principal equations of Aerothermodynamics used to construct T urboConcept T M are described in [START_REF] Ottavy | Cours de turbomachine à uide compressible[END_REF] and [START_REF] Ottavy | Basic design of fans and compressors -endwall ows and losses[END_REF].

It can be used according to two modes of execution. Theses are inverse design, a mode that nd the most suitable fan geometry for specic input operating conditions and that is described in appendix A of [START_REF] Rendu | Modélisation des écoulements transsoniques décollés pour l'étude des intéractions 550 uide-structure[END_REF],

and direct, a mode that calculates performance criteria associated with specic input fan geometry and specic input operating conditions.This second mode is used to perform robust optimization.

A fan blade is divided into ve sections of vane height. These are highlighted in red curves on Figure 9 on the right. A blade prole is parameterized according to three parameters of chord length, stagger and maximum camber (H max ). Their geometrical denition is represented in Figure 9 on the left. As a result, each fan blade is characterized by fteen geometrical parameters, namely ve chord, stagger 4. Among these inputs, only intermediate staggers (x 7 , x 8 , x 9 ) are subjected to manufacturing tolerances x i ±2δ i , i = {7, 8, 9}. The values of δ i are given by the industrial experts (see Table 4). The rst and second derivatives of the uncertain variables are provided by the numerical code. The operating conditions of the fan have been set to the specic values in Table 5. The performance criterion to be optimized is based on the static eciency of the fan, dened by:

η = Q × ∆P C × Ω (13) 
As the rotational speed Ω (rad.s -1 ) and the volume ow Q (m 3 .s -1 ) are xed, fan ecienty η (.) depends on two outputs of T urboConcept T M . The rst one is the delta of static pressure ∆P (P a)

between the output and the fan input. This pressure energy is provided by fan rotation and is necessary to counterbalance the pressure loss induced by the frictional forces acting on the uid as it ows through the radiator ns. The second one is the resistive torque C (N.m), corresponding to the moment of pressure and the viscous forces applied by the air on the fan.

Results

The initial sample set D 1 is a maximin LHS of 46 observations. Figure 10 shows the learning sample set in the true objective space {LC η , RC η }. LC η and RC η are the level and robustness criteria calculated on η given by Equation (2 and 3). The total budget is composed of 136 points, and 90 points are added to the initial design with 5 updates of 18 points. The three best methods (MyKB, MyqEI and MyCL) used in Section 7.2.1 are selected to perform robust optimization. As it can be seen MyKB, MyqEI and MyCL have well progressed betwwen the initial step (cf Figure 10) and the nal step (cf Figure 11). They gives interesting non-dominated points that are compromises between eciency and robustness. MyqEI provides the worst progress in the objective space, while MyKB gives the less dispersed areas and MyCL the most advanced and dispersed ones. These dierences stem form where strategies add points along updates. As it can be seen on Figure 13, all the points added by MyKB are in the same area (middle left). MyqEI adds points in dierent areas from the rst update but at the end, it has not nished the progression. MyCL progresses better than the others. Since the second update, it puts a point in the bottom right area. Table 6 shows that MyqEI is the fastest strategy. Indeed MyCL and MyKB need q-updates of the kriging model to select the batches.

The shapes of two of these compromises (see the big square and triangle on Figure 11) are represented on Figure 12. The initial number of points for the ve models is {46, 48, 48, 48, 49}, a dierence that stems from T urboConcept T M . Fifty points were launched but not all of them converged. Nevertheless, at the end 425 of the optimization all designs have 136 points. Figure 14 shows the ve sets of learning samples in the true objective space {LC η , RC η }. 

Conclusion

In this paper, an ecient kriging-based robust optimization procedure is proposed. The methodology is based on a multi-objective optimization of the two rst moments (expectation and variance). Proxies are given based on a Taylor expansion and for Gaussian errors. These expressions using derivatives have the advantage of being easily predicted under Gaussian process modeling. The introduced multi-objective strategies are iterative and based on two steps: a NSGA-II algorithm performed on kriging response surfaces or kriging expected improvements and relevant enrichment methods composed of one point or a batch of points carefully chosen on the Pareto front. Seven strategies have been compared on two toy functions. The study reveals that it is far more computer-wise ecient to optimize the plug in versions of kriging prediction rather than EI. When points are selected using kriging variance, the procedure detects all the diversity of the robust solutions. Finally, the methodology is applied on an industrial problem that consists in optimizing motor fan shape taking into account production uncertainties. Interesting shapes are provided to ensure robust optimization of turbomachinary eciency, which strike the right balance between eciency and robustness.

  vector. z u pred (x) is the prediction vector and 140 µ = (e obs Σ -1 θ e obs ) -1 e obs Σ -1 θ z u obs .

3. 3

 3 Gaussian processes conditionned by derivatives: illustration with the six-hump Camel function 145 In this section, dierent kriging-based response surfaces conditioning or not on derivatives are compared. The chosen toy function is the six-hump Camel function dened by:

Fi gure 1 :

 1 Prediction plots for the six-hump Camel function: 10 points without observation of the derivatives (on the left), 10 points with 5 derivatives (in the middle) and 60 points without observation of the derivatives (on the right).

Figure 2 :

 2 Figure 2: Diamonds represent the individuals of the empirical Pareto front X * . The black circle is the Nadir point of the set X * .

Figure 3 :

 3 Figure 3: Pareto front of the six-hump Camel function in the objective space (left) and in the parameter space (right).

Figure 4 :Figure 5 :Figure 6 :

 456 Figure 4: Six-hump Camel function with derivative observations. Evolution of the Pareto metrics with the number of points computed for all the methods over 100 dierent runs of the algorithm. The HV value of the theoretical front is represented by the dotted line.

Figure 7 :

 7 Figure 7: On the left: Pareto fronts obtained during the optimization procedure of the three strategies at the initial step (step 0), middle step (step 2) and nal step (step 5). On the right: evolution of the metrics computed during the algorithm for all the methods over 100 simulations for the Hartmann function with derivative observations. The HV value of the theoretical front is represented by the dotted line.
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Figure 8 :

 8 Figure 8: On the left: Pareto fronts obtained during the optimization procedure of the three strategies at the initial step (step 0), step 5 and nal step (step 35). On the right: evolution of the metrics during the algorithm computed for all the methods in 100 simulations for the Hartmann function with no derivative observation. The HV value of the theoretical front is represented by the dotted line.

Figure 9 :

 9 Figure 9: Blade section with the three input parameters on the left. Sections are represented on the right by the red lines along one blade. Section 1 is the closest to the disc and section 5 the most far away.

Figure 10 :

 10 Figure 10: The 46 initial observation points in the true objective space: opposite level criterion (-LC η ) and robustness criterion calculated on the eciency (RC η ).

Table 6 :

 6 Computation time for the three strategies, MyCL, MyKB and MyqEI. Four new optimization runs have been performed from new initial LHS designs (D 2 , D 3 , D 4 , D 5 ).

Figure 11 :

 11 Figure 11: Non-dominated points of the nal design for methods MyCL, MyKB and MyqEI in the true objective space: opposite level criterion (-LC η ) and robustness criterion calculated on the eciency (RC η ).

Figure 12 :

 12 Figure 12: The shape on the left corresponds to the square of Figure 11, while that on the right to the triangle.

Figure 15 Figure 13 :

 1513 Figure15shows that the ve dierent initial designs converge to the same Pareto front with the three methods. The choice of the optimized initial LHS has little impact on the nal result. Moreover, the MyCL method is the most reliable, as the ve Pareto fronts coincide perfectly.

Figure 14 :Figure 15 :

 1415 Figure 14: The initial observation points for ve LHS designs in the true objective space: opposite level criterion (-LC η ) and robustness criterion calculated on the eciency (RC η ).
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Table 1 :

 1 LCy and -EI RCy are computed on the Pareto front, then a Random points on the Pareto front and the parameter space Batch MyEIClust LC y , RC y Cluster on EI LCy and EI RCy Batch MyqEI LC y , RC y Annealing algorithm on qEI LCy and qEI RCy Batch MyKB LC y , RC y Constant liar Batch MEIyAlea EI LCy , EI RCy Random point on the Pareto front Seq MqEIyAlea qEI LCy , qEI RCy Random point on the Pareto front Batch Minimization problems and methods for choosing the interesting points. point x 1 0 is randomly chosen from the EI Pareto front and added. LC y (x 1 0 ) (resp. RC y (x 1 0

	Method	Minimization	Interesting points	Updates
	MyAlea	LC y , RC y		
	MyCL	LC y , RC y	Kriging believer	Batch

Table 2 :

 2 Summary of the results obtained with the seven strategies on 100 simulations on the six-hump Camel function with derivative observation. The true number of areas is 4. are provided in Figure4and Table2. In the table, two criteria are used to compare the methods: the computation time and the number of areas found after 54 evaluations. In the gure, the methods are compared through two Pareto front performance metrics.

	Updates Computation time Nb areas
	MyAlea MyEIClust Batch 2 min Batch 2 min MyqEI Batch 6 min 45 sec MyKB Batch 3 min MyCL Batch 3 min	2.60 2.96 3.22 3.19 3.28
	MEIyAlea Seq	1 h 21 min	1.83
	MqEIyAlea Batch 3 h 16 min	3.63
	Results		

Our analysis is as follows: MqEIyAlea is really time-consuming and the metrics IGD and HV have not yet converged even if the number of found areas is the highest. MEIyAlea gives the worst results in terms of metrics and found areas with a high computation time. Among the ve other methods, MyqEI, MyCL and MyKB give the best compromises in terms of metrics, areas and computation time.They are fast as they are based on the response surface which is easy to compute. They nd the dierent areas due

Table 3 :

 3 Summary of the results obtained with the seven strategies on 100 simulation on the six-hump Camel function without derivative observation. The true number of areas is 4.provides bad results by any criterion. The MyCL and MyKB, which exploit the kriging variance, also give good results. Finally, the MyEIClust, MyqEI and strategies that use the EI criterion provide less accurate results.The best strategy is MyAlea, but MyKB and MyCL are also retained to test them in a higher dimension.

	Method	Updates Computation time Nb areas
	MyAlea MyEIClust Batch 42 min Batch 14 min MyqEI Batch 1 h 08 MyCL Batch 19 min MyKB Batch 19 min	3.69 2.20 2.22 2.85 2.29
	MEIyAlea Seq	8 h 41	1.68
	MqEIyAlea Batch 26 h 47	3.94

. Our analysis is as follows: the six-hump Camel function is 320 dicult to approximate without derivative observations. MqEIyAlea gives the best results, but it is far too time-consuming. MyAlea strategy, which is partially based on a random search, gives comparable results. In this context, too much reliance should not be placed upon kriging. On the contrary, MEIyAlea

Table 4 :

 4 Inputs of the numerical code. H m ax is the maximal camber height. These inputs are considered at 5 dierent sections from sections 1 to 5. Volume ow rate Q (m 3 .s -1 ) 0.833

	Input		Chord length				Stagger					Hmax		
	Section	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
	Notation	x 1	x 2	x 3	x 4	x 5	x 6	x 7	x 8	x 9	x 10	x 11	x 12	x 13	x 14	x 15
	Min	0.04	0.06	0.08	0.09	0.11	-50.67	-59.68	-65.87	-70.29	-73.58	3.82	3.82	3.82	2.86	1.91
	Max	0.07	0.09	0.11	0.14	0.16	-45.85	-54	-59.59	-63.6	-66.57	5.73	5.73	5.73	4.29	2.86
	δ	0	0	0	0	0	0	1.16	1.28	1.36	0	0	0	0	0	0
					Physical parameter name		xed value					
					Rotation speed Ω (rad.s -1 )	277.5						

Table 5 :

 5 Fixed physical parameters and values

. is the oor function
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