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Abstract10

In the robust shape optimization’s context, the evaluation cost of numerical models is reduced by the
use of a response surface. Multi-objective methodologies for robust optimization that consist in si-
multaneously minimizing the function and a robustness criterion (the second moment) have already
been developed. However, the efficient estimation of the robustness criterion in the framework of
time-consuming simulation has not been much explored. A robust optimization procedure based15

on the prediction of the function and its derivatives by kriging is proposed. The second moment
is replaced by an approximated version using Taylor expansion. A Pareto front is generated by a
genetic algorithm named NSGA-II with a reasonable time of calculation.
Seven relevant strategies are detailed and compared with the same budget in two test functions (2D
and 6D). In each case, we compare the results when the derivatives are observed and not. The pro-20

cedure is also applied to an industrial case study where the objective is to optimize the shape of a
motor fan.

Keywords. Robust Optimization, Gaussian process modelling, Multi-objective optimization, Tay-
lor expansion, Expected Improvement.25

1 Introduction
Complex physical phenomena are more and more studied through numerical simulations. These numer-
ical models are able to mimic real experiments with a high accuracy. They predict the physical measures
of interest (outputs) very precisely, but suffer form a heavy calculation cost. One main use of these sim-
ulations is to answer to optimization problem. This work focuses on cases where the optimized solution30

∗celine.helbert@ec-lyon.fr

1



is sensitive to inputs perturbations. For example, these perturbations are due to random fluctuations dur-
ing production. A robust solution is then looked for. To solve the robust optimization problem, one way
is to introduce a multi-objective optimization formulation where the first objective is the function itself
and the second is a robustness criterion. These two objectives are often antagonistic. The issue of robust
optimization is then to find a Pareto front that makes a balance between the optimization of the function35

and the impact of input perturbations (uncertainties). As the simulations given by the numerical code
are often time-consuming, only a few simulations are then affordable. So, the computer code cannot be
intensively exploited to provide the robust optimum. In this case, the optimization procedure is often
run on a kriging model (see e.g [1]) that statistically approximates the computer code (kriging-based
black-box optimization). Choosing where to sample the output in the input space to reach the optimum40

as fast as possible is a big issue. The authors in [2] developed the Efficient Global Optimization (EGO)
algorithm that exploits the Expected Improvement (EI) criterion. However, the EGO algorithm is not
an answer to the robust optimization problem because uncertainties are not taken into account.

In literature, a sample of works that handle robust optimization can be found. Methodologies depend of45

the kind of uncertainties. The authors in [3] propose two classes of uncertainties : uncertainties that "are
primitively linked to the environment and condition of use" and uncertainties that "are those connected
with the production/manufacturing process". In the first type of uncertainties, the aim is to find x such
that f(x,U) is minimal with U a random vector (cf [4], [5], [6] and [7]). The authors in [4] propose to
minimize the expectation of f(x,U) with a Gaussian process based methodology. The authors in [5]50

propose an algorithm that minimizes the worst-case. In all these sequential methods, the variables are
clearly separated in two classes (design and uncertain) and the robust criterion is summed up either by
the expectation or the worst-case.

In our context, manufacturing uncertainties are considered. The aim is to optimize the function f(x+H)55

where x are the design variables and H the perturbations. In [7] a mono-objective solution based on the
worst-case on the response surface is proposed. In our work, we introduce a multi-objective strategy to
detect the whole set of robust solutions. The first objective is the function itself (not the mean nor the
worst-case) while the second objective is a robustness criterion which needs to be described.

60

The quantification of the robustness is challenging. [8], [9] and [10] give some overviews of different
robustness criteria. Our industrial partners quantify the variability of a solution by the local variance of
the output in a neighborhood of the solution (see e.g. [6] and [11]). Nevertheless the local variance is
difficult to catch. A simpler formulation based on Taylor expansion as proposed by [12] is proposed. In
the context of time consuming simulations, the criterion is predicted by kriging. Kriging is well adapted,65

since it can exploit the covariance structure between the GPmodel of the function and all the derivatives.
This structure is described in [13] and used again by [14].

Then, the function and its robustness criterion are accessible through kriging. A multi-objective opti-
mization is performed to provide solutions. In litterarure, several approaches (see [15] for an overview)70

mixing a GP modelling and multi-objective optimization are proposed: the aggregation methods (see
[16], [17] and [18]), the Hypervolumemethods (see [19], [20] and [21]), the maximin method (see [22]),
the uncertainty reduction method (see [23])). [24] shows that the aggregation methods are not efficient
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with a complex Pareto front. The hypervolume, maximin and uncertainty reduction algorithms need to
make the multi-objective optimization on Gaussian processes. As the developed robustness criterion is75

not anymore Gaussian, it could be costly to adapt these methods in our case. Some optimization proce-
dures inspired by [25] are proposed. These procedures consist in applying an evolutionary algorithm on
the kriging predictions and taking into account kriging variance as suggested by [26].

The article is structured as follows. Our robustness kriging-based criterion is introduced in section 2. In80

section 3, the context of a Gaussian process metamodelling is introduced. The general multi-objective
optimization scheme is presented in section 4 and the different enrichment strategies in section 5. The
quality criteria to compare Pareto fronts are given in section 6. Finally, in section 7, the behavior of our
methodology is studied on two toy functions and on an industrial test case.

2 Robustness criterion85

The aim of this article is to conduct a robust optimization of a two times differentiable function

f : D ⊂ Rp −→ [a; b] ⊂ R
x 7−→ f(x)

(1)

where p is the number of input variables, i.e. x = (x1, . . . , xp).

In this work, the robustness of f around a design point is assumed to be a local variance. More precisely,
if x ∈ D is an observation point, the variability of function f around x is supposed to be catched by
vf (x) = V ar (f(x + H)) where H represents fluctuations that can appear during fabrication. The
production errorH follows a centred Gaussian distribution. ThenH ∼ N (0Rd ,∆2)where∆2 is defined
by:

∆2 =


δ21 0 . . . 0

0 δ22
. . . 0

... . . . . . . ...
0 . . . 0 δ2p


Variances δ1, . . . , δp associated to each input are not necessary the same and are given by experts.

90

A point x1 ∈ D is considered less robust than a point x2 ∈ D if vf (x1) > vf (x2). In Figure 1,
the minimum on the right (circles) is less robust than the one on the left (triangles). Let h1, . . . ,hN ,
hj ∈ Rp, j = 1, . . . , N be N realizations of H. The empirical estimation of the variance vf (x) is:

v̂f (x) =
1

N − 1

N∑
j=1

(
f(x + hj)− f̄(x)

)2 (2)

where f̄(x) = 1
N

∑N
j=1

(
f(x + hj)

)
is the empirical mean (first moment). The estimation of the vari-

ance around only one point needs N calls to f .95

To obtain an estimation of vf (x) with an error lower than ε > 0 with a probability 1 − α, N should
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Figure 1: Illustration of the robustness. The figure on the left shows a function in one dimension with
two optima, the right one (circles) is the less robust. The figure on the right shows the variability of the
points simulated by the same Gaussian law around the two optima.

satisfy the following inequality :

N ≥

z21−α/2 µ̂4 −
(
s2f

)2
ε2

 (3)

where s2f and µ̂4 are estimations of the second and the fourth central moment, z1−α/2 is the quantile
of risk α/2 of the standard normal distribution. In practice N is too high to allow the empirical as-
sessment of the variance on f . To overcome this problem, the robustness is quantified using a Taylor100

approximation, as proposed for example in [12].

For all h ∈ Rp, one has:

f(x + h) = f(x) +∇f (x) · h +
1

2
h′Hf (x)h + o(‖h‖2)

where∇f is the gradient of f and Hf the Hessian matrix of f . Let

f̃(x + h) = f(x) +∇f (x) · h +
1

2
h′Hf (x)h

Then, the robustness criterion is defined by the following approximation of the local variance :

RCf (x) = V ar
(
f̃(x + H)

)
An analytical form of this expression is given by the following expression (see [27]):

RCf (x) = tr
(
∇f (x)∇f (x)′∆2

)
+

1

2
tr
(
H.2
f (x)(δ21 , . . . , δ

2
p)(δ

2
1 , . . . , δ

2
p)
′) (4)

where tr is the matrix trace. If the output of a simulation provides the results of the function and the
first derivatives, RCf criterion can be computed with only one call to the computer code. However in
the context of costly simulations, a robust optimization cannot be directly done on f and RCf .105

The next section presents how with a kriging approach these quantities can be predicted.
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3 Gaussian process modelling for the function and its derivatives
As it can be seen in Equation (4), the robustness criterion depends on the first and second derivatives of
f. A Gaussian process metamodel (see [14]) is well suited to this context in the sense that all derivatives
can easily be predicted. In this section, the model, the predictions are presented and illustrated on a toy110

example.

3.1 Kriging Model

Let a function f supposed as a realization of a Gaussian process (Y (x))x∈D with a constant mean, µ,
and with a stationary covariance function k(x, x̃) = σ2rθ(x − x̃), ∀(x, x̃) ∈ D ×D. This process is
assumed to be two-times differentiable in mean square at point (x, x̃).115

We denote by (Yxi(x))x∈D =
(
∂Y
∂xi

(x)
)
x∈D

the first-order partial derivative of (Y (x))x∈D with respect

to xi and by
(
Yxi,xj (x)

)
x∈D =

(
∂2Y
∂xi∂xj

(x)
)
x∈D

the second-order partial derivative of (Y (x))x∈D with
respect to xi and xj .

All the covariance structures between the process and its derivatives are then well known and are given
by :

cov

(
Y (x),

∂Y (x̃)

∂x̃j

)
=
∂k(x, x̃)

∂x̃j
,

cov

(
∂Y (x)

∂xi
,
∂Y (x̃)

∂x̃j

)
=
∂2k(x, x̃)

∂xi∂x̃j
/

Let (x1, . . . , xn) be the initial design of experiments, where xk ∈ D, 1 ≤ k ≤ n. The evaluation of
the function (resp. first and second derivatives) at point xk is denoted by yk ∈ R (resp. ykxi ∈ R and
ykxi,xj ∈ R), where i ∈ {1, . . . , p}, j ∈ {i, . . . , p} and k ∈ {1, . . . , n}. The collection of outputs y, yxi
and yxi,xj is such that :

y = (y1, . . . , yn)′

yxi = (y1xi , . . . , y
n
xi)
′

yxi,xj = (y1xi,xj , . . . , y
n
xi,xj )

′

(yk, ykx1 , . . . , y
k
xp , y

k
x1,x1 , . . . , y

k
xi,xj , . . . , y

k
xp,xp), k ∈ {1, . . . , n} is then a realization of the following

d = 1 + 3p
2 + p2

2 dimensional GP:

Z(x) = (Y (x), Yx1(x), . . . , Yxp(x), Yx1,x1(x), . . . , Yxi,xj (x), . . . , Yxp,xp(x))′, 1 ≤ i ≤ p, i ≤ j ≤ p

at points x1, . . . ,xn.120

3.2 Kriging predictions
The problem is to predict Z considering observations at points x1, . . . ,xn. But, the entire vector Z is
not always observable. Let uobs ⊂ {1, . . . , d} be the components that are observable. For example,
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only the function and its first derivatives can be affordable. In the same way it is not always necessary
to predict the whole vector Z. Let upred ⊂ {1, . . . , d} be the components that need to be predicted.125

In the following we suppose that 1 ∈ uobs andwe denote fobs = (1, 0Rdobs−1 , . . . , 1, 0Rdobs−1)′ ∈ Rndobs ,
dobs = #uobs and fpred = (1, 0Rdpred−1)′ ∈ Rdpred , dpred = #upred. The kriging mean is then given
by the following equation :

ẑupred(x) = µ̂fpred + cθ(x)′Σ−1θ (zuobs − µ̂fobs), ẑupred(x) ∈ Rdpred (5)

where zuobs =


z1obs
...

znobs

 the observation vector. ẑupred(x) is the prediction vector and

µ̂ = (f ′obsΣ
−1
θ fobs)

−1f ′obsΣ
−1
θ zuobs .

The mean square error (MSE) at point x ∈ D is given by :

ŝ2upred(x) = Σθ(x,x)−
(
fpred cθ(x)

)( 0 f ′obs
fobs Σθ

)−1(
f ′pred
cθ(x)

)
, ŝ2upred(x) ∈Mdpred×dpred

where Σθ is the covariance matrix of size ndobs × ndobs given by :

Σθ =


Σx1,x1(uobs, uobs) . . . Σx1,xn(uobs, uobs)

... . . . ...
Σxn,x1(uobs, uobs) . . . Σxn,xn(uobs, uobs)


and

Σx,x̃ =


ΣY,Y ΣY,Yx̃j

ΣY,Yx̃j x̃k
ΣY,Y

x̃2
j

ΣYxi ,Y
ΣYxi ,Yx̃j

ΣYxi ,Yx̃j x̃k
ΣYxi ,Yx̃2

j

ΣYxixl ,Y
ΣYxixl ,Yx̃j

ΣYxixl ,Yx̃j x̃k
ΣYxixl ,Yx̃2

j

ΣY
x2
i
,Y ΣY

x2
i
,Yx̃j

ΣY
x2
i
,Yx̃j x̃k

ΣY
x2
i
,Y

x̃2
j


i, j, k, l ∈ {1, . . . p} with l > i and k > j. For instance ΣYxi ,Yx̃j

= cov(Yxi , Yx̃j ) = cov(ηxi , ηx̃j ) =130

∂2k(x−x̃)
∂xi∂x̃j

. The matrix cθ(x) ∈ Mndobs×dpred is the covariance matrix between Zupred(x) and the ob-
servations and the matrix Σθ(x,x) ∈Mdpred×dpred is the variance of Zupred(x).

3.3 Illustration with the six-hump Camel function
In this section different kriging-based response surfaces conditioning or not on derivatives are compared.
The chosen toy function is the six-Hump Camel function defined by:

f(x) =

(
4− 2.1x21 +

x41
3

)
x21 + x1x2 +

(
−4 + 4x22

)
x22, x ∈ [−2; 2]× [−1; 1]
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Figure 2: Prediction plots for the six-hump Camel function: 10 points without observation of the deriva-
tives (on the left), 10 points with 5 derivatives (on the middle) and 60 points without observation of the
derivatives (on the right).

The kriging covariance kernel is a tensor product one:

cov (Y (x), Y (x̃)) = k(x− x̃) = σ2
p∏
j=1

ρθj
(
|xj − x′j |

)
, θ = (θ1, . . . , θp) ∈ Rp+ (6)

where ρθj is a correlation function which only depends on the one dimensional range parameter θj , see
e.g [1] and [28]. AMatern 5/2 kernel is used because the output is supposed to be two times continuously
differentiable:

∀θ ∈ R+,∀h ∈ R+, ρθ(h) =

(
1 +

√
5|h|
θ

+
5h2

3θ2

)
exp

(
−
√

5|h|
θ

)
.

The kriging predictive quality has been compared in different learning situations :

• 10 learning points where f is observed (left part of Figure 2)135

• 10 learning points where f and all the derivatives are observed (middle part of Figure 2)

• 60 learning points where f is observed (right part of Figure 2)

The learning sets composed of 10 or 60 points are maximin latin hypercube samplings. The test set
is a latin hypercube sampling of 1500 points. As expected, the left and middle parts of Figure 2 show
that kriging with derivatives performs much better than without. If computing one derivative costs as140

much as computing a new point, it can be observed on the right part of Figure 2 that kriging without
derivatives does better. But in industrial applications, computing derivatives is often more affordable.
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4 Robust optimization procedure
In this section, the robust optimization procedure that uses our criterion (see Equation (8)) is presented.
The robust optimization problem is written as:

Find the Pareto set X0, solution of the following multi-objective optimization

min
x∈Rp
{f(x), RCf (x)} (7)

The approach to solve it in the context of time consuming simulations is based on a classical black-box
optimization scheme (see [2]). The optimization scheme (see Figure 3) is based on the following steps :145

• Initialization. The costly function and possibly its derivatives are evaluated on a well chosen
initial design of experiments. A krigingmodel is adjusted on this first set of outputs. Two response
surfaces { ˆobjf (x)} and { ˆobjRCf

(x)} related to the two objectives {f(x)} and {RCf (x)} are
predicted.
Remarks : in the different case studies, the chosen initial design is a Maximin Latin Hypercube150

Sampling (Maximin HLS) (see [29]).

• Loop until the budget is reached

1. Multi-objective optimization. A multi-objective global optimization method is applied to
solve minx∈Rp{ ˆobjf (x), ˆobjRCf

(x)}. A Pareto front is identified.
Remarks : NSGA II algorithm is chosen for its good performances to find complex Pareto155

fronts.

2. Enrichment. A set of q points is selected from the Pareto front. The function and possibly
its derivatives are evaluated on these new points. The Gaussian process model and the two
response surfaces are updated.

The aim of this section is to define the two response surfaces to be optimized. Next section focuses on160

different stategies to select good points from the Pareto front.

Three different response surfaces have been studied to run the multi-objective methodology. The first
approach consists in optimizing the predicted version of the function and the robustness criterion. This
approach, quite crude, is denoted by the "plug in" approach in the following and is described below. The
second one is based on the famous Expected Improvement quantity in order to take into account predic-165

tion uncertainty. The third one is the most complex : it optimizes the multipoint Expected Improvement
versions of {f(x)} and {RCf (x)}.

4.1 The "plug in" response surfaces
Recall that ẑ(x) from Equation (5) is

ẑ(x) =
(
ŷ(x), . . . , ŷxp,xp(x)

)′
The prediction of the true function f is given by the first coordinate of the vector ẑ(x).
The prediction of RCf (x) is defined by:170

RCŷ(x) = tr
(
∇ŷ(x)∇ŷ(x)′∆2

)
+

1

2
tr
(
H.2
ŷ (x)(δ21 , . . . , δ

2
p)
′(δ21 , . . . , δ

2
p)
)

(8)
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Update X and z

n < budgetReturn X and z

yes

no

Figure 3: The robust optimization procedure.

where∇ŷ is the vector


ŷx1
...
ŷxp

 and is the prediction of the gradient. Hŷ is thematrix


ŷx1,x1 . . . ŷx1,xp

... . . . ...
ŷxp,x1 . . . ŷxp,xp


and corresponds to the prediction of the Hessian matrix. ∇ŷ and Hŷ are obtained from different com-
ponents of ẑ(x).

The "plug in" formulation is then :

Find the Pareto set X0, solution of the following multi-objective optimization

min
x∈Rp
{ŷ(x), RCŷ(x)} (9)

Remarks :175

• The definition of the predicted robustness criterion corresponds to the definition of Equation (4)
where the derivatives have been replaced by their prediction.

• These response surfaces are easy to compute. NSGA II on these quantities is run faslty. But pre-
diction uncertainty is not taken into account at this stage.

180

4.2 The "Expected improvement" response surfaces
Unlike the previous case, in this approach we take into account the kriging variance in the optimization
scheme. The best way to do it is to optimize the expected improvement.
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In the EGO algorithm, the expected improvement (EI) criterion measures the improvement of a point x
in the minimization of function f and is used to add new points to the learning set. The expression of
the EI (cf [2]) at point x is:

EI(x) = E
[
(min(y(X))− Y (x))+ |Y (X) = y

]
where min(y(X)) = min(y1, . . . , yn).
The analytical expression of the EI for a Gaussian process is given by:

EI(x) = (min(y(X)− ŷ(x))Φ

(
min(y(X))− ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
min(y(X))− ŷ(x)

ŝ(x)

)
where ŷ(x) is the kriging mean, ŝ(x) is the kriging standard deviation, Φ and φ are the cdf and pdf of
the standard normal law.185

In our case, these formulas have to be adapted :

i ) to the robustness criterion,

ii ) to a larger set of observations that can possibly include derivatives,

iii ) to a multi-objective optimization context.190

To answer to i ) we need to define the process (RCY (x))x∈D. From Equation 4 the process is naturally
defined by:

RCY (x) = tr
(
∇Y (x)∇Y (x)′∆2

)
+

1

2
tr
(
H.2
Y (x)(δ21 , . . . , δ

2
p)
′(δ21 , . . . , δ

2
p)
)

(10)

where∇Y is the vector


Yx1
...
Yxp

 and HY is the matrix


Yx1,x1 . . . Yx1,xp

... . . . ...
Yxp,x1 . . . Yxp,xp

.

To answer to point ii ) , conditional expectation are considered over observations of vector z that includes
derivatives when they are available.195

Eventually to answer to iii ) the authors in [25] show that, in the context of multi-objective optimization,
the usual reference value which is the current observed minimum is too constraining. To still allowing
improvement, this reference value is rather taken as the worst value on the current Pareto front. The
expressions of the EI for f and RCf are then the following:

EIy(x) = E
[
(max(y(X∗))− Y (x))+ |Z(X) = zuobs

]
EIRCy(x) = E

[
(max(RCy(X∗))−RCY (x))+ |Z(X) = zuobs

]
where X∗ is the set of non-dominated points for the objectives {y,RCy} of the learning set X.
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The "Expected improvement" formulation is then :

Find the Pareto set X0, solution of the following multi-objective optimization

min
x∈Rp
{EIy(x), EIRCy(x)} (11)

Remarks:

• A solution x1 dominates another solution x2 for the m objectives g1, . . . , gm if and only if ∀i ∈
{1, . . . ,m} gi(x1) ≤ gi(x

2) and ∃i ∈ {1, . . . ,m} gi(x1) < gi(x
2). Among a set of solution X,200

the non-dominated set X∗ (Pareto front) are those that are not dominated by any member of the
set X.

• When the derivatives used to compute the robustness criterion are not observed we replace them
by the kriging prediction in max(RCy(X∗)).

• The link between RCY (x) and Z(x) being not linear, the process (RCY (x))x∈D is not Gaussian205

anymore. EIRCy is then estimated by a Monte Carlo method.

4.3 The "Multipoint Expected improvement" response surfaces
The EI makes a good balance between exploration and minimization but it computes the improvement
of a single point. The multi-point EI (q-EI) is used to measure the improvement of q points X =

(xn+1, . . . ,xn+q)′ ([30]). In a multi-objective context the expressions of the q-EI are:

qEIy(X) = E
[(

max(y(X∗))−min(Y (xn+1), . . . , Y (xn+q))
)+ |zuobs]

qEIRCy(X) = E
[(

max(RCy(X∗))−min(RCY (xn+1), . . . , RCY (xn+q))
)+ |zuobs]

The "Multipoint Expected improvement" formulation is then :

Find the Pareto set X0, solution of the following multi-objective optimization

min
X∈Rp×q

{−qEIy(X),−qEIRCy(X)}

5 Sequential stategy for the enrichment
Seven enrichment strategies based on the three approaches described above have been developed. Once210

the Pareto front is found (NGSAII algorithm), points are chosen to enrich the set of observations. Dif-
ferent strategies can be studied. They are described below.

5.1 Enrichment for the "plug in" formulation
With this approach, it is not costly to find the Pareto front since the response surfaces are easily computed.
But the kriging variance has never been considered. If kriging predictions turn out to be of poor quality,215

some interesting areas can be missed. Hence the first stategy consists in choosing part of the points from
the Pareto front but also part of the points randomly in the parameter space. Other stategies consist in
using information from the kriging variance, for example through an expected improvement criterion.

More precisely five enrichment approaches have been benchmarked and are described below:
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1. MyAlea: b q2c
1 points are selected randomly on the Pareto front and q− b q2c points are randomly220

chosen in the parameter space.

2. MyEI: −EIy as well as −EIRCy are computed for each point of the Pareto front. A k-means
clustering using the method of [31] is applied to the non-dominated points of {−EIy,−EIRCy}
to provide q clusters. Then the q clusters’ medoids are added to the design.

3. MyqEI: a simulated annealing algorithm gives the set of q points among the Pareto front that225

minimizes the function −qEIy − qEIRCy .

Two sequential approaches presented in [30] can be used as the replacement of the q-EI to measure the
improvement of q points: the Kriging Believer and the Constant Liar.

4. MyKB: q points are sequentially selected from the Pareto front based on the Kriging Beliver
strategy. The −EIy and −EIRCy are computed on the Pareto front, then a point x1

0 is randomly230

chosen from the EI Pareto front and added. ŷ(x1
0) is then considered known and is assumed to be

equal to ŷ(x1
0). Another computation of −EIy and −EIRCy provides one more point based on

the same strategy up to the q requested points.

5. MyCL: q points are sequentially selected based on the Constant Liar strategy. The −EIy and
−EIRCy are computed on the Pareto front, then a point x1

0 is randomly chosen from the EI Pareto235

front and added. y(x1
0) is then considered known and is assumed to be equal to min y(X∗). An-

other computation of−EIy and−EIRCy provides one more point based on the same strategy up
to the q requested points.

The problem with this group of strategies is that kriging variance is not taken into account during the
multi-objective optimization. Except for the MyAlea strategy, some interesting areas can be missed.240

The second approach solves this issue by conducting the multi-objective optimization directly on the EI.

5.2 Enrichment for the "expected improvement" formulation
The multi-objective optimization is performed on the EI of the output and the robustness criterion. This
approach takes into account the kriging variance from the beginning of the procedure. For this approach,245

one enrichment strategy is proposed to add one point by one point:

6. MEIyAlea: a point is randomly chosen and sequentially added until the total budget is reached.

Because this strategy adds points sequentially one by one (q = 1) the last formulation is introduced to
add points by batch.

5.3 Enrichment for the "multi-point expected improvement" formulation250

One last enrichment approach is proposed to add q points simultaneously :

7. MqEIyAlea: one point is randomly extracted from the Pareto front, this point will provide q points
in the parameter space for the next optimization step.

The seven methods to perform the enrichment are summarized in Table 1.
1b.c is the floor function
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Method Minimization Interesting points Updates

MyAlea y,RCy Random points on the Pareto front and the parameters space Batch
MyEIClust y,RCy Cluster on EIy and EIRCy Batch
MyqEI y,RCy Annealing algorithm on qEIy and qEIRCy Batch
MyKB y,RCy Kriging believer Batch
MyCL y,RCy Constant liar Batch

MEIyAlea EIy, EIRCy
Random point on the Pareto front Seq

MqEIyAlea qEIy, qEIRCy
Random point on the Pareto front Batch

Table 1: Minimization problems and methods to choose the interesting points.

6 Quality criteria for Pareto fronts255

The seven strategies based on three different response surfaces are compared through the quality of the
found Pareto front. Several measures exist to quantify the quality of a Pareto front (cf [32], [33], [34]
and [35]). The Inverted Generational Distance (IGD) and the Hypervolume (HV) are selected here to
compare strategies. Let f = (f1, . . . , fm) be the objective functions, P the theoretical Pareto front and
X∗ the empirical Pareto front whereM = #P . The chosen performance metrics are:260

• Inverted Generational Distance (IGD) see [36]:

IGD(X∗) =

√√√√ 1

M

M∑
i=1

d2i

where di = minx∈X∗(‖f(xi)− f(x)‖2), f(xi) ∈ P . This metric evaluates the distance between
the empirical and the theoretical Pareto front. A small value is better.

• Hypervolume (HV) see [35]. Figure 4 shows the Hypervolume (HV) of a Pareto front. [37]
introduce an algorithm to compute this volume. The empirical HV is compared to the theoretical
one. The Hypervolume depends of the reference point. When it is possible the nadir point of the265

true Pareto front is used. Then the Hypervolume enables the comparaison of two empirical fronts.

Hypervolume

Nadir point

Figure 4: Diamonds represent the individuals of the empirical Pareto front X∗. The black circle is the
Nadir point of the set X∗.
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7 Applications
This section compares the strategies on two toy functions and one industrial test case. The toy function
are the six-hump Camel in two dimensions and the Hartmann in six dimensions. Two cases are consid-
ered depending on whether the derivatives are affordable or not. For the sake of efficiency only three of270

the best strategies are applied on Hartmann function and on the industrial test case. Along applications
NSGA II is performed with populations of a hundred points. Each generation is done with a crossed
probability of 1 and a mutation probability of 1

p , where p is the inputs’ number.

7.1 Six-hump Camel function: 2D
In this application, the six-hump Camel function is considered. The two input variables are affected by
uncertainties that aremodeledwith aGaussian distributionwith a standard deviation of δj = 0.05

4 (max(xj)−
min(xj)), j = {1, 2}. Then:

(x + H) ∼ N

(
x,

(
δ21 0

0 δ22

))

Figure 5 shows the four optimal areas for the robust optimization in the objectives and parameters space.
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Figure 5: Pareto front of the six-hump Camel function in the objectives space (left) and in the parameters
space (right).

In order to perform a robust optimization, the function and all the first and second derivatives need to be
predicted. The set of predicted indexes is upred = {1, . . . , 6} and corresponds to the following vector:

Zupred = (Y, Yx1 , Yx2 , Yx1,x2 , Yx1,x1 , Yx2,x2)

7.1.1 Derivatives’ observations275

In this first part of the study, the function and all derivatives are available at each evaluated point. The
set of observed indexes is uobs = {1, . . . , 6} that corresponds to the vector of processes:

Zuobs = (Y, Yx1 , Yx2 , Yx1,x2 , Yx1,x1 , Yx2,x2)
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Figure 6: Six-hump Camel function with derivatives’ observations. Evolution of the Pareto metrics with
the number of points compute for all the methods over 100 different runs of the algorithm. The HV value
of the theoretical front is represented by the dotted line.

The initial learning set is a maximin LHS of nine points. Nine updates of five points are added for a total
budget of 54 points. The optimization scheme is performed 100 times with different initial learning sets
to compare the seven strategies.

Method Updates Computation time Nb areas

MyAlea Batch 2 min 1.83
MyEIClust Batch 2 min 2.73
MyqEI Batch 6 min 30 sec 2.85
MyKB Batch 3 min 3.77
MyCL Batch 3 min 3.68

MEIyAlea Seq 1 h 1.61

MqEIyAlea Batch 3 h 30 min 3.06

Table 2: Summary of the results obtained with the seven strategies on 100 simulations on the six-hump
Camel function with derivatives’ observation. The true number of areas is 4.

Results are provided in Figure 6 and Table 2. In the table, two criteria are used to compare the methods:280

the computation time and the number of areas found after 54 evaluations. In the figure, the methods are
compared through two Pareto front performance metrics.

Our analysis is as follow: the MyKB and MyCL are the two most efficient strategies in terms of met-
rics, found areas and computation time. Then MyqEI, MEIClust and MqEIyAlea give good results for285

the metrics and the areas. Even if MyqEI is quite better in metrics and MqEIyAlea in areas. Finally
MyAlea and MEIyAlea are the worst efficient methods in areas and metrics. In addition, MEIyAlea and
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Figure 7: Boxplots of the metrics computed for the three best methods over 100 simulations for the
six-hump Camel function with derivative observations.

MqEIyAlea are really time consuming. Then, the best methods selected to be used for robust optimiza-
tion in limited budget applications areMyqEI, MyCL andMyKB, which fully exploit batch computation
of EI without excessive computational cost. Figure 7 shows the boxplots of these three methods for each290

distance. MyqEI gives the worst results in mean. It comes from the annealing simulation of the strategy
that is difficult to tune.

7.1.2 No derivatives’ observations

The aim of this section is to analyze the behavior of the seven strategies when the derivatives’ observa-
tions are not available.
The observed indexes set is uobs = {1} and the predicted indexes set is upred = {1, . . . , 6} that corre-
sponds to the processes vectors:

Zuobs = Y

Zupred = (Y, Yx1 , Yx2 , Yx1,x2 , Yx1,x1 , Yx2,x2)

The initial sample set is still a maximin LHS of 9 points. The available information is poorer, the
detection of the front need to add more points. That’s why 35 updates of 5 points are performed until295

a total budget of 324 points. The optimization scheme is performed 100 times with different initial
learning sets to compare the seven strategies.
Results are provided in Figure 8 and Table 3. Our analysis is as follow : the six hump Camel function is
difficult to be approximated without derivatives’ observations. MyAlea strategy which is partially based
on a random search gives the best results. In this context, too much reliance should not be placed upon300
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Figure 8: Six-hump Camel function without derivatives’ observations. Evolution of the Pareto metrics
with the number of points compute for all the methods over 100 different runs of the algorithm. The HV
value of the theoretical front is represented by the dotted line.

Method Updates Computation time Nb areas

MyAlea Batch 18 min 2.98
MyEIClust Batch 11 min 1.94
MyqEI Batch 58 min 2.53
MyCL Batch 15 min 2.58
MyKB Batch 15 min 1.91

MEIyAlea Seq 5 h 47 min 1.15

MqEIyAlea Batch 15h17 min 3.57

Table 3: Summary of the results obtained with the seven strategies on 100 simulation on the six-hump
Camel function without derivatives’ observation. The true number of areas is 4.

kriging. MyqEI and MqEIyAlea provide quite good results because they use the qEI criterion. This
takes into account the improvement provided by a batch of points of the front. However, MqEIyAlea is
too time consuming. TheMyCL strategy that does not trust the response surface gives quite good results
too, contrary to the MyKB. Finally, the MyEIClust and MEIyAlea strategies that use the EI criterion
provide poor results. Even, if the MyEIClust strategy is quite better thanks to the clustering used to305

enrich the set. The best strategy is MyAlea but MyqEI and MyCL are also retained in order to test them
in higher dimension.

7.2 Hartmann function: 6D
In this section, the three best strategies identified in Section 7.1.1 are benchmarked in higher dimension
(six). A Gaussian process model is built with a tensor product kernel with the Matern5_2 covariance
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function (see Equation 6). The studied function is the six-dimensional Hartmann function defined by:

f(x) = −
4∑
i=1

αiexp

− 6∑
j=1

Aij(xj − Pij)2
x21, x ∈ [0; 1]2

with α = (1, 1.2, 3, 3.2)′,

A =


10 3 17 3.5 1.7 18

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14


and

P = 10−4


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381


The random variables are x4 and x5 and follow a centred Gaussian distribution with a standard deviation
of δj = 0.05

4 (max(xj)−min(xj)), j = {4, 5}.310

Like previously, two cases are considered depending upon whether derivatives’ observations are pro-
vided or not.

7.2.1 Derivatives’ observations

The observed indexes set is uobs = upred = {1, 5, 6, 20, 26, 27} that corresponds to the vector of pro-
cesses:

Zuobs = Zupred = (Y, Yx4 , Yx5 , Yx4,x5 , Yx4,x4 , Yx5,x5)

The initial sample set is a maximin LHS composed of 18 points. Five updates are made and 18 points
are added by update for a total budget of 108 points. The best methods found in the previous test case315

with derivatives informations: MyqEI, MyCL and MyKB strategies are applied.

The left part of Figure 9 shows that the three methods converge to the true front. At step 2, MyqEI gives
the more advanced front. At the final step, the three methods perform very well (see the right part of
Figure 9). MyKB and MyCL take 10 minutes for the five steps when MyqEI takes 12 minutes.320

7.2.2 No derivatives’ observations

The indexes set is uobs = {1} and upred = {1, 5, 6, 20, 26, 27} that corresponds to the processes vector

Zuobs = Y

Zupred = (Y, Yx4 , Yx5 , Yx4,x5 , Yx4,x4 , Yx5,x5)
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Figure 9: On the left: Pareto fronts obtained during the optimization procedure of the three strategies
at initial step (step 0), middle step (step 2) and final step (step 5). On the right: evolution of the metrics
computed during the algorithm for all the methods over 100 simulations for the Hartmann function with
derivatives’ observations. The HV value of the theoretical front is represented by the dotted line.

The initial design is still a maximin LHS composed of 18 points. More updates are provided since
derivatives are not affordable. Here 35 updates of 18 points are sequentially computed until a total bud-
get of 648 points. The best methods identified previously: MyAlea, MyqEI and MyCL strategies are
applied.325

The left part of Figure 10 shows that the three methods converge to the true front. At step 5, all methods
have almost found the entire front. The bottom part of the front is difficult to localize even with 578

additional points. The right part of Figure 10 shows that the distance starts to converge to the expected
value in the 100 first points. For the IGD metric, the values are subject to little perturbations around330

the expected value zero. For the HV measure, the three methods converge to the theoretical value with
only 100 points that correspond to 6 updates. MyAlea takes 1h15min, MyqEI takes 1h40min andMyCL
takes 1h04min for the 35 steps.

7.3 Industrial test case
The chosen application is an automotive fan. In a cooling system, the fan is used to maintain a constant335

flow of air through the radiator. The shape of fans has constantly evoluated with time. It results from a
compromise between aerodynamics and acoustics performances. Over time, the geometry has become
more and more complex to satisfy increasingly stringent requirements. Consequently, the number of
parameters that describe the fan shape has really increased. Besides, due to complexity increase of the
numerical modelling, simulations become very time consuming. At last, the efficiency of produced fans340

is reduced because of uncertainties that result in disturbances on the geometrical inputs. Therefore, a
optimal use of the simulations are necessary to robustly optimized the design of a fan.
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Figure 10: On the left: Pareto fronts obtained during the optimization procedure of the three strategies
at initial step (step 0), step 5 and final step (step 35). On the right: evolution of the metrics during the
algorithm compute for all the methods in 100 simulations for the Hartmann function with no derivatives’
observation. The HV value of the theoretical front is represented by the dotted line.

Each fan blade is characterized by the chord length, the stagger and themaximal camber height (Hmax) at
five sections. Figure 11 shows a blade section with the parametrization. In the following, the parameters345

are noted x = (x1, . . . , x15) ∈ D. Among these inputs, only the three middle stagger are uncertain
(x7, x8, x9). They follow a normal distribution such that Xi ∼ N (xi, δ

2
i ), i = {7, 8, 9}. The variances

δ2i are given by the industrial experts (see Table 4). The first and second derivatives of the uncertain
variables are provided by the numerical code.

Input Chord length Stagger Hmax
Section 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Notation x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
Min 0.04 0.06 0.08 0.09 0.11 -50.67 -59.68 -65.87 -70.29 -73.58 3.82 3.82 3.82 2.86 1.91
Max 0.07 0.09 0.11 0.14 0.16 -45.85 -54 -59.59 -63.6 -66.57 5.73 5.73 5.73 4.29 2.86
δ 0 0 0 0 0 0 1.16 1.28 1.36 0 0 0 0 0 0

Table 4: Inputs of the numerical code. Hmax is the maximal camber height. These inputs are considered
at 5 different sections from section 1 to 5.

The initial sample set is a maximin LHS of 46 observations. Figure 12 shows the learning sample set350

in the true objectives space {η,RCη}. η represents the real costly efficiency function and RCη the
robustness criterion calculated on η given by the Equation (4). The total budget is composed of 136

points, 90 points are added to the initial design along 5 updates of 18 points. The three best methods
(MyCL, MyKB and MyqEI) used in Section 7.2.1 are selected to conduct the robust optimization.

Figure 13 shows that at the final step, MyCL,MyKB andMyqEI have added points in the same interesting355
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Figure 11: Blade section with the three input parameters on the left. Sections are represented on the
right by the red lines along one blade. Section 1 are the closest to the disc and section 5 the most far
away.
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Figure 12: The 46 initial observation points in the true objectives space: opposite efficiency (−η) and
robustness criterion calculated on the efficiency (RCη).

Update 1 2 3 4 5 Total

MyCL Time 0h18 0h30 0h 40 1h00 1h00 3h28
MyKB Time 0h18 0h31 0h 44 1h00 1h01 3h34
MyqEI Time 0h16 0h25 0h 36 0h48 1h00 3h05

Table 5: Computation time for the three strategies MyCL, MyKB and MyqEI.

area. MyCL provides the worst progress in the objectives’ space. MyqEI gives the most dispersed area
and MyKB the most progressed ones. These differences come from the way where strategies add points
along updates. As it can be seen on Figures 15 that the three methods progress in the same interesting
area. However, the MyqEI adds points in two different areas at the first update (on the middle and at the
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Figure 13: Non-dominated points of the final design for methods MyCL, MyKB and MyqEI in the true
objectives space: opposite efficiency (−η) and robustness criterion calculated on the efficiency (RCη).

bottom right), this explains why the MyqEI strategy gives the most dispersed front. MyCL and MyKB360

progress in the same way, MyCL more slowly however.

Table 5 shows that MyqEI is the fastest strategy. To conclude, the three strategies give the same inter-
esting non-dominated points that are compromises between efficiency and robustness. The shape of two
of these compromises (see big square and triangle on Figure 13) are represented on Figure 14.

Figure 14: The shape on the left corresponds to the square of Figure 13 and those on the right to the
triangle.

8 Conclusion365

In this article we propose an efficient kriging-based robust optimization procedure. The methodology
rests on a multi-objective optimization of the function and a robustness criterion simultaneously. The
robustness criterion is defined as a Taylor expansion of the local variance. This expression using deriva-
tives has the benefit of being easily predicted under Gaussian process modelling. The introduced multi-
objective strategies are iterative and based on two steps : a NSGA-II algorithm performed on predicted370

versions of the two objectives and a relevant enrichment composed of a batch of points well chosen from
the Pareto front. Seven strategies have been compared on two toy functions. The study reveals that it is
much more computerwise efficient to optimize the plug in versions of kriging prediction rather than EI.
In that case when the points are selected using kriging variance, the procedure detects all the diversity
of the robust solutions. Finally, the methodology is applied on an industrial problem that consists in375

optimizing the motor fan shape taking into account production uncertainties. Interesting shapes are pro-
vided to answer to the robust optimization of the turbomachinary efficiency, that are good compromise
between efficiency and robustness.
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Figure 15: Progression of the algorithm for the method MyCL (a), MyKB (b), MyqEI (c) in the true
objectives space: opposite efficiency (−η) and robustness criterion calculated on the efficiency (RCη).
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Appendices

A Number of points for the estimation of the empirical variance480

Let x ∈ D ⊂ Rp, an observation point. Let H ∼ N (0Rp ,∆2) be the random variable such as x + H ∼
N (x,∆2) where ∆2 is defined by:

∆2 =


δ21 0 . . . 0

0 δ22
. . . 0

... . . . . . . ...
0 . . . 0 δ2p


Let

f : Rp −→ [a; b]

x 7−→ f(x)

be a 2 times differentiable bounded function, where a ∈ R and b ∈ R. Then all the moments of
f(x + H) exist. Let introduce the moments µ = E(f(x + H)), vf = V ar(f(x + H)) and µ4 =

E
[
(f(x + H)− µ)4

]
. Let F̄ = 1

n

∑n
i=1 f(x + Hi) be the empirical estimator of µ where H1, . . . ,Hn

is an n sampling of the random variable H and S2 = 1
n

∑n
i=1(f(x+Hi)− F̄ )2 the empirical estimator

of vf . Classical results on convergence of moments estimators imply that:

√
n(S2 − vf ) −→L N (0, µ4 − v2f )

As the emprical estimator µ̂4 converges in probability to µ4, asymptotically

S2 − vf√
(µ̂4 − v2f )/n

∼ N (0, 1)

Let z the quantile of the standard normal distribution of a risk α, then:

P

(∣∣∣∣∣ S2 − vf√
(µ̂− vf )2/n

∣∣∣∣∣ ≤ z
)

= 1− α

To obtain a range on vf with probability 1− α, we have to solve the following inequality∣∣∣∣∣∣ S2 − vf√
(µ̂4 − v2f )/n

∣∣∣∣∣∣ ≤ z ⇔
(

1 +
z2

n

)
v2f − 2S2vf +

(
(S2)2 − z2µ̂4

n

)
≤ 0.

The discriminant ∆ = 4z2

n

(
µ̂4

(
1 + z2

n

)
− (S2)2

)
, is positive if µ̂4

(
1 + z2

n

)
> (S2)2.

The Jensen Inequality (convexity) implies that :

1

n

n∑
i=1

(f(x+H i)− F̄ )4 ≥

(
1

n

n∑
i=1

(f(x+H i)− f̄)2

)2

⇔ µ̂4 ≥ (S2)2
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Then ∆ > 0 and

vf ∈

 2S2 −
√

∆

2
(

1 + z2

n

) ;
2S2 +

√
∆

2
(

1 + z2

n

)


Using a Taylor approximation of order o
(
1
n

)
, we obtain that

vf ∈
[
S2 − z√

n

√
µ̂4 − (S2)2;S2 +

z√
n

√
µ̂4 − (S2)2

]
In order to obtain an approximation error lower or equal to ε, we choose:

n >
z2

ε2
(µ̂4 − (s2)2)

where s2 (resp. µ̂4) is a first estimation of the second (resp. the fourth) central moment.
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