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Abstract

In the context of robust shape optimization, the estimation cost of some physical models is reduced10

by the use of a response surface. The multi objective methodology for robust optimization that
requires the partitioning of the Pareto front (minimization of the function and the robustness cri-
terion) has already been developed. However, the efficient estimation of the robustness criterion
in the context of time-consuming simulation has not been much explored. We propose a robust
optimization procedure based on the prediction of the function and its derivatives by a kriging. The15

usual moment 2 is replaced by an approximated version using Taylor theorem. A Pareto front of the
robust solutions is generated by a genetic algorithm named NSGA-II. This algorithm gives a Pareto
front in an reasonable time of calculation.
We detail seven relevant strategies and compare them for the same budget in two test functions (2D
and 6D). In each case, we compare the results when the derivatives are observed and not.20

Keywords. Gaussian process regression, robustness criterion, multi-objective optimization

1 Introduction
Complex physical phenomena are more and more studied through numerical simulations. These nu-
merical models are able to mimic real experiments with a high accuracy. They predict the physical25

measures of interest (outputs) very precisely. Then, numerical simulations are used as a replacement for
real experiments because they are less costly in primary materials. Sometimes, the solutions of the op-
timization problem could be sensitive to inputs’ perturbations. For example, these perturbations are due
to random fluctuations during production. A solution of a multi-objective optimization problem is then
looked for where the first objective is the function itself and the second is a robustness criterion. These30

two objectives are assumed to be antagonistic. The issue of robust optimization (RO) is to find a Pareto
∗melina.ribaud@gmail.com
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front that makes a balance between the optimization of the function and the impact of input perturba-
tions (uncertainties). As the simulations given by the numerical code are often time-consuming, only a
few simulations are then affordable. So we cannot exploit intensively the computer code to provide the
robust optimum.35

In the context of costly simulations, the optimization procedure is often run on a kriging model that
statistically approximates the computer code (kriging-based black-box optimization). Choosing where
to sample the output in the input space to reach the optimum as fast as possible is a big issue. [Jones
et al., 1998] developed the Efficient Global Optimization (EGO) algorithm that exploits the Expected40

Improvement (EI) criterion. However, the EGO algorithm is not an answer to the robust optimization
problem because uncertainties are not taken into account.

Uncertainties can be of different kinds. They have to be well identified to make the robust optimization
accurate. [Lelièvre et al., 2016] propose a classification of different approaches that deal with uncertain-45

ties in the context of reliability, optimization and robustness. In order to provide this survey, they sort
uncertainties in two main groups: uncertainties that "are primitively linked to the environment and con-
dition of use" and uncertainties that "are those connected with the production/manufacturing process".

In literature, we can find a sample of works that handle robust optimization with the first type of uncer-50

tainties. The aim is to find x such that f(x,u) is optimal with u the vector of the uncertain variables
(cf [Janusevskis and Le Riche, 2013], [Marzat et al., 2013], [Apley et al., 2006] and [ur Rehman et al.,
2014]). For example, [Janusevskis and Le Riche, 2013] propose a way to make a robust optimization
based on a metamodel. They develop a Gaussian process (GP) model in the joint space (x,u) that takes
into account the uncertainty of the u-group of inputs. They define an adapted expected improvement55

and they maximize this criterion to enrich the design sequentially. [Marzat et al., 2013] propose an al-
gorithm that make a Kriging Based Robust Optimization (KBRO) considering the worst-case. At each
step i, they conduct two EGO. A first EGO is performed on the design space to found xi that minimize
f(x,ui). At the first iteration, they randomly choose ui in the uncertain space. Then a second EGO is
performed on the uncertain space to found ui that minimizes f(xi,u). They return f(xi,ui) at the last60

iteration. In all these methods, the variables are clearly separated in two classes (design and uncertain)
and the design is enriched sequentially.

In our context, we consider that the inputs we want to optimize deal with a little perturbation on which.
The aim is to optimize the function f(x + H) where x are the design variables and H are the pertur-65

bations. This case is related to the second type of uncertainties described by [Lelièvre et al., 2016] (see
section 4.3). [ur Rehman et al., 2014] propose an algorithm close to the EGO to answer to this problem.
They add a previous optimization that localizes the worst-case on the response surface,minxmaxH ŷ(x+

H) where ŷ is the kriging prediction. Then, they maximize the EI calculated with the worst case instead
of the local minimum for the reference value. This solution is a first step to the robust optimization issue70

because the only difference with the EGO is the reference value on the EI. In addition, it provides only
one point that makes a balance between the function to be optimized and the inputs’ perturbations to be
minimized. The entire Pareto front is not explored.
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In our work we propose a multi-objective strategy to detect the whole set of robust solutions. The first75

objective is the function itself while the second objective is the robustness criterion which needs to be
described. The robustness quantification of a solution is challenging, [Göhler et al., 2016], [Gabrel
et al., 2014] and [Coco et al., 2014] give some overviews of different robustness criteria. Our industrial
partners quantify the variability of a solution by the local variance of the output in the neighborhood of
a solution(see e.g. [Apley et al., 2006] and [Troian et al., 2016]). One aim of this paper is to propose an80

accurate estimation of this local variance.

That is why, the robustness criterion we look for is based on Taylor development as proposed by [Dar-
lington et al., 1999]. But [Darlington et al., 1999] do not provide a RO in the context of time-consuming
simulations. In our article, the RO is coupled with a kriging. Once the criterion defined, we perform a85

kriging-based multi-objectif optimization on both the function and the robustness criterion. We choose
the function instead of the mean because the inputs perturbation have already been taken into account
in the robustness criterion. In addition, we are interested in the optimum and not the optimum in mean.

[Pronzato and Éric Thierry, 2003] study the behavior of the mean and the variance of the function com-90

puted with the Taylor Theorem. They prove that the kriging variance has a huge influence on the two
moments and it is highly recommended to take into account this variance to make an efficient KBRO.
All the KBRO strategies we develop take into account the kriging variance.

Since the Taylor theorem needs the values of derivatives, co-kriging is well adapted (see e.g [Le Gratiet,95

2013]). This model is an extension of the kriging model. More precisely kriging is an interpolation
technique which aims at predicting the output using an adapted underlying correlation function (see e.g
[Santner et al., 2003]). The co-kriging method consists in exploiting the natural covariance structure
between the GP model of the function and all the derivatives. This structure is described in [Rasmussen
and Williams, 2006]. The observation of the derivatives are not necessary to predict them, we only need100

observations of the function. However, all the observed derivatives are good to know to improve the
prediction quality.

Then, the function and its robustness criterion are accessible through the co-kriging model. A muti-
obtjective optimization is performed to provide solutions. [Wagner et al., 2010] make an overview105

of different multi-objective (MO) algorithms based on a kriging model: the aggregation methods (see
[Knowles, 2006], [Liu et al., 2007] and [Zhang et al., 2010]), the Hypervolume methods (see [Ponweiser
et al., 2008] and [Emmerich et al., 2011]), the maximin method (see [Svenson and Santner, 2016]), the
uncertainty reduction method (see [Picheny, 2015]) and the MO method (see [Jeong and Obayashi,
2005]). [Henkenjohann and Kunert, 2007] shows that the aggregation methods are not efficient with a110

complex Pareto front. The hypervolume, maximin and uncertainty reduction algorithms need to make
the multi-objective optimization on GP processes. As the robustness criterion we develop is not anymore
Gaussian, it could be costly to adapt these methods in our case. We choose to develop some optimization
procedures inspired by the MO EI introduced by [Jeong and Obayashi, 2005]. They propose to modify
the reference value of the EI and they maximize the EI with a multi-objective algorithm. The MO EI is115

computed for each objective functions.
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The article is structured as follows. Our robustness kriging-based criterion is introduced in section 2. In
section 3, we introduce the estimation of our criterion in a context of a Gaussian process metamodeling.
We present the general multi-objective scheme in section 4. The multi-objective optimization procedure120

is described in section 5. And finally, in section 6, we study the behavior of our methodology on two
test cases.

2 Robustness criterion
The global aim of this article is to conduct a robust optimization of a two times differentiable function

f : D ⊂ Rp −→ [a; b] ⊂ R
x 7−→ f(x)

(1)

To catch the robustness of f around a design point we consider a local variance, that’s to say the vari-125

ance of f in the neighborhood of the given point. However, we cannot compute the variance on the real
function because it is too expensive. This section gives an approximation of this local variance that can
easily be predicted in the context of a Gaussian process model of f .

Letx ∈ D, an observation point. The variance of the function f aroundx is written vf (x) = V ar (f(x+H))

where H represents fluctuations that can appear during fabrication. We consider that the production er-
ror H follows a Gaussian law. Then H ∼ N (0Rd ,∆2) where ∆2 is defined by:

∆2 =


δ21 0 . . . 0

0 δ22
. . . 0

... . . . . . . ...
0 . . . 0 δ2p


Variances δ1, . . . , δp associated to each input are not necessary the same and are given by the experts.130

A point x1 ∈ D is considered less robust than a point x2 ∈ D if vf (x1) > vf (x
2). In Figure 1,

the minimum on the right (circles) is less robust than the one on the left (triangles). Let h1, . . . ,hN ,
hj ∈ Rp, j = 1, . . . , N be N realizations of H. The empirical estimation of the variance vf (x) is:

v̂f (x) =
1

N − 1

N∑
j=1

(
f(x+ hj)− f̄(x)

)2 (2)

where f̄(x) = 1
N

∑N
j=1

(
f(x+ hj)

)
is the empirical mean (first moment). The estimation of the vari-135

ance around only one point needs N calls to f .
In order to have a good estimation, N should satisfy the following inequality :

N ≥

z1−α/2

√
µ4 − S2

f

|en|

2

(3)

where S2
f = 1

N

∑N
j=1

(
f(x+ hj)− f̄(x)

)2, µ = E[f(x+H)], µ4 = E[(f(x+H)− µ)4], z1−α/2 is
the quantile of risk α of the standard normal distribution and |en| is the precision chosen by the user.
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Figure 1: Illustration of the robustness. The figure on the left shows a function in one dimension with
two optima, the right one (circles) is the less robust. The figure on the right shows the variability of the
points simulated by the same Gaussian law around the two optima.

The demonstration is in appendix A. N is often too large. To overcome this difficulty, we propose to140

use the Taylor approximation introduced by [Darlington et al., 1999] to quantify the robustness.

For all h ∈ Rp, one has:

f(x+ h) = f(x) +∇f (x) · h+
1

2
h′Hf (x)h+ o(∥h∥2)

where ∇f is the gradient of f and Hf the Hessian matrix of f . We introduce:

f̃(x+ h) = f(x) +∇f (x) · h+
1

2
h′Hf (x)h

Then, we define the robustness criterion by the following approximation of the local variance :

RCf (x) = V ar
(
f̃(x+H)

)
An analytical form of this expression can be calculated (see [Beyer and Sendhoff, 2007]) and is given
by the following expression:

RCf (x) = tr
(
∇f∇′

f∆
2
)
+

1

2
tr
(
H.2

f (δ
2
1 , . . . , δ

2
p)(δ

2
1 , . . . , δ

2
p)

′) (4)

where tr is the matrix trace. If the output of a simulation provides the results of the function and the
first derivatives, RCf criterion can be computed with only one call to the computer code. However in145

the context of costly simulations RO cannot be directly done on f and RCf .
In the next section we present how with a kriging approach these quantities can be predicted.

3 Kriging prediction of the robustness criterion
As it can be seen in Equation (4), the robustness criterion depends on the first and second derivatives.
A Gaussian process metamodel is well suited to this context in the sense that all derivatives can easily150

be predicted from that model. In this section, we present the co-kriging model and the predictions of
the two objectives used in the robust optimization.
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3.1 Co-kriging Model
This subsection is divided in two main parts. First, we present the general model for the function and its
derivatives. Secondly, we introduce the kriging equations of prediction.155

3.1.1 General model

We introduce a Gaussian Process (GP) to model the function, its first and second derivatives.

Let (Y (x))x∈D be a process with covariance function k(x, x̃), ∀(x, x̃) ∈ D ×D. This process is dif-
ferentiable in mean square at point (x, x̃) if and only if ∂2k

∂xi∂x̃j
(x, x̃) exists ∀i, j ∈ {1, . . . , p} and finite

at point (x, x̃) = (t, t). In addition we have:

cov

(
Y (x),

∂Y (x̃)

∂x̃j

)
=

∂k(x, x̃)

∂x̃j

cov

(
∂Y (x)

∂xi
,
∂Y (x̃)

∂x̃j

)
=

∂2k(x, x̃)

∂xi∂x̃j

We denote by (Yxi(x))x∈D =
(

∂Y
∂xi

(x)
)
x∈D

the process (Y (x))x∈D differentiated in direction i and by(
Yxi,xj (x)

)
x∈D =

(
∂2Y

∂xi∂xj
(x)
)
x∈D

two times differentiated process in direction i, j.160

Let p be the number of input variables. Then each observation x is a vector with p coordinates, such
that x = (x1, . . . , xp), x ∈ D. The outputs (function and derivatives) at point xk ∈ D are denoted by
yk ∈ R, ykxi

∈ R and ykxi,xj
∈ R, where i ∈ {1, . . . , p}, j ∈ {i, . . . , p} and k ∈ {1, . . . , n}. We note

the collection of outputs y, yxi and yxi,xj such that :

y = (y1, . . . , yn)′

yxi = (y1xi
, . . . , ynxi

)′

yxi,xj = (y1xi,xj
, . . . , ynxi,xj

)′

Let d = 1+3p
2 +

p2

2 . In kriging context, (yk, ykx1
, . . . , ykxp

, ykx1,x1
, . . . , ykxi,xj

, . . . , ykxp,xp
), k ∈ {1, . . . , n}

is assumed to be a realization of the following d dimensional GP:

Z(x) = (Y (x), Yx1(x), . . . , Yxp(x), Yx1,x1(x), . . . , Yxi,xj (x), . . . , Yxp,xp(x)), 1 ≤ i ≤ p, i ≤ j ≤ p

at points x1, . . . ,xn where xk ∈ D, k ∈ {1, . . . , n}, such that :

Y (x) = µ+ η(x)

Yxi(x) = ηxi(x)

Yxi,xj (x) = ηxi,xj (x)

6



where µ ∈ R is the trend, the process (η(x))x∈D is a centered GP with a stationary covariance function
that depends on a vector of range parameters θ ∈ Rp

+ such that Cov(η(x), η(x)) = kθ(x − x̃) =

σ2rθ(x − x̃), ∀(x, x̃) ∈ D × D. In this paper the trend µ and the variance σ2 are assumed to be
constants.165

The process vector is then modeled as follow:

Z(x) = m+ ϵ(x) (5)

where m = (µ, 0, . . . , 0)′ ∈ Rd is the trend vector, the process (ϵ(x))x∈D is the vector of d centered
Gaussian processes i.e.

ϵ(x) = (η(x), η(x)x1 , . . . , η(x)xp , η(x)x1,x1 , . . . , η(x)xi,xj , . . . , η(x)xp,xp), 1 ≤ i ≤ p, i ≤ j ≤ p

3.1.2 Kriging predictions

The co-kriging model presented by [Le Gratiet, 2013] is used to surrogate the function itself and its
derivatives. The problem is to predict Z considering observations of z at points x1, ..., xn. But, the
entire vector z is not always observable. Let uobs ⊂ {1, . . . , d} be the components that are observable.170

For exemple only the fonction and its first derivatives can be affordable. In the same way it is not always
necessary to predict the whole vector z. Let upred ⊂ {1, . . . , d} be the components that are to be
predicted.
The kriging mean is then given by the following equation :

ẑupred
(x) = m+ cθ(x)

′Σ−1
θ (zuobs

−m′F), ẑupred
(x) ∈ Rdpred (6)

where zuobs
= (z1uobs

, . . . , znuobs
) the observation vector, 1 ∈ uobs and dobs = #uobs. ẑupred

(x) is the175

prediction vector and dpred = #upred. The mean square error (MSE) at point x ∈ D is given by :

ŝ2upred
(x) = Σθ(x,x)−

(
f ′ cθ(x)

′
)(0 F′

F Σθ

)−1(
f

cθ(x)

)
(7)

where ŝ2upred
(x) ∈ Mdpred×dpred , F = (E

dobs×dpred
1,1 , . . . , E

dobs×dpred
1,1 )′ ∈ Mndobs×dpred and f =

E
dpred×dpred
1,1 with En1×n2

1,1 the canonical matrix of size n1 × n2.
Σθ is the covariance matrix of size ndobs × ndobs given by :

Σθ =


Σx1,x1(uobs, uobs) . . . Σx1,xn(uobs, uobs)

... . . . ...
Σxn,x1(uobs, uobs) . . . Σxn,xn(uobs, uobs)


where

Σx,x̃ =


ΣY,Y ΣY,Yx̃j

ΣY,Yx̃j x̃k
ΣY,Y

x̃2
j

ΣYxi ,Y
ΣYxi ,Yx̃j

ΣYxi ,Yx̃j x̃k
ΣYxi ,Yx̃2

j

ΣYxixl
,Y ΣYxixl

,Yx̃j
ΣYxixl

,Yx̃j x̃k
ΣYxixl

,Y
x̃2
j

ΣY
x2
i
,Y ΣY

x2
i
,Yx̃j

ΣY
x2
i
,Yx̃j x̃k

ΣY
x2
i
,Y

x̃2
j
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i, j, k, l ∈ {1, . . . p} with l > i and k > j. For instance ΣYxi ,Yx̃j
= cov(Yxi , Yx̃j ) = cov(ηxi , ηx̃j ) =

∂2k(x−x̃)
∂xi∂x̃j

. cθ(x) ∈ Mndobs×dpred is the covariance matrix between Zupred
(x) and the observations.

Σθ(x,x) ∈ Mdpred×dpred is the covariance of Zupred
(x).

3.2 Prediction of f180

The prediction of the real function f is given by the co-kriging model and corresponds to the first coor-
dinate of the vector ẑupred

(x) in Equation (6) when 1 ∈ upred written:

ẑupred
(x) = (ŷ(x), . . .)

where ŷ is the prediction of the function f .

3.3 Prediction of RCf

We propose to predict our robustness criterion by the co-kriging metamodel. The prediction ẑupred
is

used instead of the function to compute the criterion. The prediction of RCf (x) is given by:

RCŷ(x) = tr
(
∇ŷ∇′

ŷ∆
2
)
+

1

2
tr
(
H.2

ŷ (δ
2
1 , . . . , δ

2
p)

′(δ21 , . . . , δ
2
p)
)

(8)

where∇ŷ is the vector


ŷx1

...
ŷxp

 and is the prediction of the gradient. Hŷ is the matrix


ŷx1,x1 . . . ŷx1,xp

... . . . ...
ŷxp,x1 . . . ŷxp,xp

185

and corresponds to the prediction of the hessian matrix. ∇ŷ and Hŷ are obtained from different compo-
nents of ẑupred.

3.4 Illustration with the six-hump Camel function
The studied function is the six-Hump Camel function, defined by:

f(x) =

(
4− 2.1x21 +

x41
3

)
x21 + x1x2 +

(
−4 + 4x22

)
x22, x ∈ [−2; 2]× [−1; 1]

We consider for the kriging model a kernel which is anisotropic:

cov (Y (x), Y (x̃)) = k(x− x̃) = σ2
p∏

j=1

ρθj
(
|xj − x′j |

)
, θ = (θ1, . . . , θp) ∈ Rp

+ (9)

where ρθj is a correlation function which only depends on the one dimensional range parameter θj , see
e.g [Santner et al., 2003] and [Stein, 1999]. The anisotropic kernel contains as many parameters as the
number of variables p. We use a Matern 5/2 kernel because the output is supposed to be two times
continuously differentiable:

∀θ ∈ R+, ∀h ∈ R+, ρθ(h) =

(
1 +

√
5|h|
θ

+
5h2

3θ2

)
exp

(
−
√
5|h|
θ

)
.

We choose a maximin latin hypercube learning set of 10 points. The test set is a space filling of 1500
points. In the first kriging, without the derivatives, the observations are y1, . . . , y10 where yi = f(xi).
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ŷ

Figure 2: Prediction plots for the Six-Hump Camel function: 10 points without observation of the
derivatives (on the left), 10 with 5 derivatives (on the middle) and 60 points without observation of
the derivatives (on the right).

In the second kriging, with the derivatives, the observations are z1, . . . , z10 where

zi =

(
f(xi),

∂f(xi)

∂x1
,
∂f(xi)

∂x2
,
∂2f(xi)

∂x1∂x2
,
∂2f(xi)

∂x21
,
∂2f(xi)

∂x22

)
.

In the third kriging, without the derivatives but with more observation points written y1, . . . , y60 where
yi = f(xi).190

As expected, Figure 2 shows that kriging with derivatives does much better than without in the case
of 10 points. If we consider that the computational cost of one derivative is the same as computing a
new point, kriging without derivatives is better. In industrial application, computing all derivatives is
cheaper than computing a new point.

4 Robust optimization procedure195

In this section, we present the robust optimization procedure that uses our robustness criterion (cf Equa-
tion (8)). The approach to solve this optimization problem in the context of time consuming simulations
is based on a classical black-box optimization scheme (see [Jones et al., 1998]). The robust optimization
problem is written as:

Find vectors x0 in a Pareto optimal sense such that

x0 = argmin
x∈Rp

{f(x), RCf (x)} (10)

The size of the initial sample set and the size of the batches are given by the user. The procedure is
divided in two main parts: step 1, 2, 3 and step 4, 5, 6. The first is the initial part for the design and
the Gaussian process. The second part solves the optimization problem using the metamodel and is

9



user

Set n, nup and budget Choose initial Sample X Compute observations z

Construct metamodelFind Pareto frontChoose interesting points

Update X and z

n < budgetReturn X and z

yes

no

Figure 3: The robust optimization procedure

iteratively repeated until the budget is reached. Step 1 generates the initial sample X of n points spread
in the p design variable space. An Optimized Latin Hypercube (OLH) is chosen. The observations of the200

function and its derivatives, when there are available, are computed in Step 2. In Step 3 the co-kriging
metamodel is estimated based on the observations. Step 4 searches for non-dominated solutions of a
kriging-based multi-objective problem using the optimizer NSGA II see e.g. [Deb et al., 2002]. Step 5
aims at choosing the best batch of points among the Pareto front. These points are added to the design
X in Step 6 and the simulation is run on these new points. The response surface f is then updated with205

the new observations. Figure 3 shows the general scheme.
Several choices are possible for Step 4 and Step 5. The next section describes them.

5 Sequential procedure for the acquisition of new points
We have developed seven enrichment strategies based on three main MO optimization problems using
the previous criterion. For the first problem, a NSGA II algorithm is applied to the prediction of the210

function and to the prediction of the robustness criterion (cf Equation (6) and (8)). Once the Pareto
front is found, points are chosen using the kriging variance. That’s the enrichment step. A problem
could appear during the Pareto front construction if kriging predictions turn out to be of poor quality.
Some interesting areas can be missed. That is why, we introduce a second approach. The multiobjective
optimization is conducted on the EI of the function and the robustness criterion. In this case the kriging215

variance is already taken into account during the optimization. Then several points are chosen among
the Pareto front through different criteria. Selecting the good points from the Pareto front is not easy, so
we introduce a last approach using qEI. This criterion measures the improvement of a batch of points.
This strategy takes into account the kriging variance in the MO and add points by batch. The best point
in the qEI space is selected in the Pareto front and corresponds to a set of q points in the design space.220

Before doing this, we recall some results on EI.
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5.1 Background
In the EGO algorithm, the expected improvement (EI) criterion measures the improvement of a point x
in the minimization of function f and is used to add new points to the learning set. The expression of
the EI (cf [Jones et al., 1998]) at point x is:

EI(x) = E
[
(min(y(X))− Y (x))+ |Y (X) = y

]
where min(y(X)) = min(y1, . . . , yn).
The analytical expression of the EI for a Gaussian process is given by:

EI(x) = (min(y(X))− ŷ(x)Φ

(
min(y(X))− ŷ(x)

ŝ

)
+ ŝϕ

(
min(y(X))− ŷ(x)

ŝ

)
where ŷ(x) is the kriging mean, ŝ(x) is the kriging standard deviation, Φ and ϕ are the cdf and pdf of
the standard normal law.225

In our case, we perform a multi-objective optimization on f and RCf . Then, to evaluate an EI on RCf

we need to define the process (RCY (x))x∈D. From Equation 4 the process is:

RCY (x) = tr



Yx1(x)

...
Yxp(x)

(Yx1(x) . . . Yxp(x)
)

δ21
. . .

δ2p




+
1

2
tr



Y 2
x1,x1

(x) . . . Y 2
x1,xp

(x)
... . . . ...

Y 2
xp,x1

(x) . . . Y 2
xp,xp

(x)



δ21
...
δ2p

(δ21 . . . δ2p

)
=

p∑
i=1

Yxi(x)
2δ2i +

1

2

p∑
i=1

p∑
j=1

Y 2
xi,xj

(x)δ2i δ
2
j

(11)

We can not conduct the multi-objective optimization on two independent EI. That is why,in [Jeong and
Obayashi, 2005] the authors change the reference value of the EI to adapt it to the multi-objective case.
We recall thaty = (y1 = f(x1), . . . , yn = f(xn)). LetRCy =

(
RCy1 = RCf (x

1), . . . , RCyn = RCf (x
n)
)

be the evaluation of the robustness criterion on the design points. The multi-objective EI are:

EIy(x) = E
[
(max(y(X∗))− Y (x))+ |zuobs

]
EIRCy(x) = E

[
(max(RCy(X∗))−RCY (x))

+ |zuobs

]
where X∗ is the set of non-dominated points for the objectives {y,RCy} of the learning set X.
Remark:230

• A solution x1 dominates another solution x2 for the m objectives g1, . . . , gm if and only if ∀i ∈
{1, . . . ,m} gi(x

1) ≤ gi(x
2) and ∃i ∈ {1, . . . ,m} gi(x

1) < gi(x
2). Among a set of solution X,

the non-dominated set X∗ (Pareto front) are those that are not dominated by any member of the
set X.

• When the derivatives used to compute the robustness criterion are not observed we replace them235
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by the kriging prediction in max(RCy(X∗)).

• The link between RCY (x) and Z(x) being not linear, the process (RCY (x))x∈D is not Gaussian
anymore. EIRCy is then estimated by a Monte Carlo method.

The EI makes a good balance between exploration and minimization but it computes the improvement
of a single point. The multi-point EI (q-EI) developed by [Ginsbourger et al., 2010] is used to measure
the improvement of q points X = (xn+1, . . . ,xn+q)′.

qEI(X) = EI(xn+1, . . . ,xn+q)

= E
[(
min(y(X))−min(Y (xn+1), . . . , Y (xn+q))

)+ |zuobs

]
In a multi-objective problem the q-EI are:

qEIy(X) = E
[(
max(y(X∗))−min(Y (xn+1), . . . , Y (xn+q))

)+ |zuobs

]
qEIRCy(X) = E

[(
max(RCy(X∗))−min(RCY (x

n+1), . . . , RCY (x
n+q))

)+ |zuobs

]

5.2 Multi-objective optimization on the kriging predictor
The kriging prediction ŷ and the robustness criterion RCŷ are used instead of the real function f and the
robustness criterion RCf in the first group of strategies. The optimization problem of Step 4 is written
as:

Find vectors x0 in a Pareto optimal sense such that

x0 = argmin
x∈Rp

{ŷ, RCŷ}

The NSGA II is used to compute the Pareto front. Five enrichment approaches to select q points from240

the Pareto front have been benchmarked and are described below (Step 5):

1. MyAlea: ⌊ q2⌋
1 points are selected randomly on the Pareto front and q− ⌊ q2⌋ points are randomly

chosen in the parameter space.

2. MyEI: −EIy as well as −EIRCy are computed for each point of the Pareto front. A k-means
clustering using the method of [Hartigan and Wong, 1979] is applied to the non-dominated points245

of {−EIy,−EIRCy} to provide q clusters. Then the q clusters’ medoids are added to the design.

3. MyqEI: a simulated annealing algorithm gives the set of q points among the Pareto front that min-
imizes the function −qEIy − qEIRCy .

Two sequential approaches presented in [Ginsbourger et al., 2010] can be used as the replacement250

of the q-EI to measure the improvement of q points: the Kriging Believer and the Constant Liar.

4. MyKB: q points are sequentially selected from the Pareto front based on the Kriging Beliver
strategy. The −EIy and −EIRCy are computed on the Pareto front, then a point x1

0 is randomly
1⌊.⌋ is the floor function
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chosen from the EI Pareto front and added. ŷ(x1
0) is then considered known and is assumed to be

equal to ŷ(x1
0). Another computation of −EIy and −EIRCy provides one more point based on255

the same strategy up to the q requested points.

5. MyCL: q points are sequentially selected based on the Constant Liar strategy. The −EIy and
−EIRCy are computed on the Pareto front, then a point x1

0 is randomly chosen from the EI Pareto
front and added. y(x1

0) is then considered known and is assumed to be equal to min y(X∗). An-
other computation of −EIy and −EIRCy provides one more point based on the same strategy up260

to the q requested points.

The problem with this group of strategies is that the kriging variance is not taken into account dur-
ing the multi-objective optimization. Some interesting areas can be missed because the methods
will always add points in the same place except for the MyAlea strategy. The second approach265

solves this issue by conducting the MO optimization directly on the EI.

5.3 Multi-objective optimization on the expected improvement
criterion

In the second group of strategies, the multi-objective optimization is performed on the EI of the
output and of the robustness criterion. This approach takes into account the kriging variance from
the beginning of the procedure. The multi-objective problem that is computed in Step 4 is the
following:

Find vectors x0 in a Pareto optimal sense such that

x0 = argmin
x∈D

{−EIy,−EIRCy}

The Pareto front is found by the NSGA II algorithm. For this approach, one enrichment strategy270

is proposed to add one point in Step 5 and is the following:

6. MEIyAlea: a point is randomly chosen and sequentially added until the total budget is reached.

This strategy add point sequentially (q = 1) not anymore by batch (q > 1).
275

The last group is introduced to overcome this remark. The qEI is used instead of the EI to measure
the improvement of a batch of points instead of one point.

5.4 Multi-objective optimization on the multi-point expected
improvement criterion

In order to take into account the kriging variance in the optimization and to add points by batch,
we modify the objectives. The multi-objective optimization is performed on the qEI of the outputs
kriging prediction and of the robustness criterion. Step 4 searches for non-dominated points of

13



Method Minimization Interesting points Updates

MyAlea y,RCy Random points on the Pareto front and the parameters space Batch
MyEIClust y,RCy Cluster on EIy and EIRCy Batch
MyqEI y,RCy annealing algorithm on qEIy and qEIRCy Batch
MyKB y,RCy Kriging believer Batch
MyCL y,RCy Constant liar Batch

MEIyAlea EIy, EIRCy Random point on the Pareto front Seq

MqEIyAlea qEIy, qEIRCy Random point on the Pareto front Batch

Table 1: Minimization problems and methods to choose the interesting points.

the following problem:

Find vectors x0 in a Pareto optimal sense such that

x0 = argmin
x∈D⊂Rp×q

{−qEIy,−qEIRCy}

This optimization scheme is of size p×q, which limits its use. One enrichment approach has been280

benchmarked and is described below to add q points in Step 5.

7. MqEIyAlea : for each Pareto front from Step 4, one point is randomly extracted from the qEI
space, this point will provide q points in the parameter space for the next optimization step.

The seven methods to choose interesting points in Step 5 are summarized in the Table 1.
285

6 Applications
In order to compare the seven strategies, several measures exist to quantify the quality of a Pareto front
(cf [Van Veldhuizen, 1999], [Schott, 1995], [Deb et al., 2002] and [Zitzler and Thiele, 1999]). We decide
to focus on two of them that are the most popular. Let f = (f1, . . . , fm) be the objective functions, P
the theoretical Pareto front and X∗ the empirical Pareto front where N = #P . The chosen performance290

metrics are:

• Inverted Generational distance (IGD) see [Van Veldhuizen, 1999]:

IGD(X∗) =

√√√√ 1

N

N∑
i=1

di

where di = minx∈X∗(∥f(xi)− f(x)∥2), f(xi) ∈ P . This metric evaluates the distance between
the empirical and the theoretical Pareto front. A small value is better.

• Hypervolume (HV) see [Zitzler and Thiele, 1999]. The Figure 4 shows the Hypervolume (HV) of
a Pareto front. [Fonseca et al., 2006] introduce an algorithm to compute this volume. We compare295

the empirical HV to the theoretical.

This section compares the strategies in two test functions. The first one is the six-hump Camel in two
dimensions. We apply the seven strategies in two cases: the observations of the function and the deriva-
tives are available and only the observations of the function are available. The second test function is the
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Figure 4: Hypervolume: the diamond represent the individuals of the empirical Pareto front X∗. The
black circle is the Nadir point of the set X∗.

Hartmann in six dimensions. We divided the case in same way than the previous function: observations300

of the functions and the derivatives then only observations of the function. In the same way as previ-
ously we consider that derivatives are affordable on one hand; on the other hand that only the function is
available. For the sake of efficiency only three of the best strategies are applied on Hartmann function.

6.1 Six-hump Camel function: 2D
In this application, we consider the six-hump Camel function. The two input variables are supposed to
suffer uncertainties modeled with a Gaussian law with a standard deviation of δj = 0.05

4 (max(xj) −
min(xj)), j = {1, 2}. Then:

(x+H) ∼ N

(
x,

(
δ21 0

0 δ22

))

The Figure 5 shows that the algorithms have to found four areas.
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Figure 5: Pareto front of the six-hump Camel function in the objectives space (left) and in the parameters
space (right)

As we aim at performing a robust optimization, the function and all the first and second derivatives are
to be predicted. The set of predicted indexes is upred = {1, . . . , 6} that corresponds to the processes

15
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Figure 6: Six-hump Camel function with derivatives observations. Evolution of the Pareto metrics with
the number of points compute for all the methods over 100 different runs of the algorithm. The HV
value of the theoretical front is represented by the doted line.

vector:

Zupred
= (Y, Yx1 , Yx2 , Yx1,x2 , Yx1,x1 , Yx2,x2)

6.1.1 Derivatives’ observations305

In this first part of the study we consider that the function and all derivatives are available at each eval-
uated point. uobs = {1, . . . , 6} that corresponds to the processes vector:

Zuobs
= (Y, Yx1 , Yx2 , Yx1,x2 , Yx1,x1 , Yx2,x2)

The initial sample set is composed of 5 points. Nine updates of 5 points are added for a total budget of 54
points. The optimization scheme is performed 100 times with different initial learning sets to compare
the seven strategies.

Results are provided in Figure 6 and Table 2. In the table, we compare the methods with the computation310

time and the number of areas found after 54 evaluations. In the figure the methods are compared through
two Pareto front performances metrics.

Our analysis is as follow: the MyKB and MyCL are the two most efficient strategies in terms of metrics,
areas found and computation times. Then MyqEI, MEIClust and MqEIyAlea gives good results for the315

metrics and the areas. Even if the MyqEI is quite better in metrics and MqEIyAlea in areas. Finally
MyAlea and MEIyAlea are the worst efficient metrics in areas and metrics. In addition, MEIyAlea and
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Method Updates Computation time Nb areas

MyAlea Batch 2 min 1.83
MyEIClust Batch 2 min 2.73
MyqEI Batch 6 min 30 sec 2.85
MyKB Batch 3 min 3.77
MyCL Batch 3 min 3.68

MEIyAlea Seq 1 h 1.61

MqEIyAlea Batch 3 h 30 min 3.06

Table 2: Summarize of the results obtained with the seven strategies on 100 simulation on the six-hump
Camel function with derivatives observation. The theoretical number of areas is 4.
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Figure 7: Boxplots of the metrics computed for the three best methods over 100 simulations for the
six-hump Camel function with derivative observations.

MqEIyAlea are really time consuming. Then, the best methods selected to be used for robust optimiza-
tion of limited budget application are MyqEI, MyCL and MyKB, which fully exploit batch computation
of EI without excessive computational cost. Figure 7 shows the boxplots of these three methods for each320

distance. We can see on this figure that the MyqEI method gives in mean the worst results. It comes
from the annealing simulation of the strategy that is difficult to tune.

6.1.2 No derivatives’ observations

The aim of this section is to analyze the behavior of the seven strategies when the derivatives observations
are not available.
The indexes set is uobs = {1} and upred = {1, . . . , 6} that corresponds to the processes vectors:

Zuobs
= Y

Zupred
= (Y, Yx1 , Yx2 , Yx1,x2 , Yx1,x1 , Yx2,x2)

The initial sample set is still a space filling of 5 points. Because available information is poorer than
in the previous section more points need to be added to allow the detection of the front. That’s why325
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Figure 8: Six-hump Camel function without derivatives observations. Evolution of the Pareto metrics
with the number of points compute for all the methods over 100 different runs of the algorithm. The HV
value of the theoretical front is represented by the doted line.

35 updates of 5 points are performed until a total budget of 324 points. The optimization scheme is
performed 100 times with different initial learning sets to compare the seven strategies.
Results are provided in Figure 8 and Table 3. Our analysis is as follow : the six hump Camel function is

Method Updates Computation time Nb areas

MyAlea Batch 18 min 2.98
MyEIClust Batch 11 min 1.94
MyqEI Batch 58 min 2.53
MyCL Batch 15 min 2.58
MyKB Batch 15 min 1.91

MEIyAlea Seq 5 h 47 min 1.15

MqEIyAlea Batch 15h17 min 3.57

Table 3: Summarize of the results obtained with the seven strategies on 100 simulation on the six-hump
Camel function without derivatives observation. The theoretical number of areas is 4.

difficult to approximate without the information on derivatives. The MyAlea strategy that does not used
too much kriging informations to enrich the set gives the best results. In this context, it is a good thing to330

not entirely trust kriging. The MyqEI and MqEIyAlea strategies provide quite good results because they
use the qEI criterion that takes into account the improvement provided by a batch of points of the front.
However, MqEIyAlea is too time consuming. The MyCL strategy that does not trust the response surface
gives quite good results too, contrary to the MyKB. Finally, the MyEIClust and MEIyAlea stategies that
use the EI criterion provide poor results. Even, if the MyEIClust strategy is quite better thanks to the335

clustering used to enrich the set. The best strategy is MyAlea but we also retain MyqEI and MyCL in
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order to test them in higher dimension.

6.2 Hartmann function: 6D
In this section, we benchmark the three best strategies identified in Section 6.1.1 in higher dimension
(6D). The kriging model uses the anisotropic kernel with the Matern5_2 covariance function. The func-
tion studied is the Hartmann six-dimensional defined by:

f(x) = −
4∑

i=1

αiexp

−
6∑

j=1

Aij(xj − Pij)
2

x21, x ∈ [0; 1]2

with α = (1, 1.2, 3, 3.2)′,

A =


10 3 17 3.5 1.7 18

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14


and

P = 10−4


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381


We consider that the random variables are x4 and x5 and follow a Gaussian law with a standard deviation
of δj = 0.05

4 (max(xj)−min(xj)), j = {4, 5}.340

We consider two cases : in the first one we have access to the observations of the function and the
derivatives associated to the perturbations variables and in the second one we have only access to the
observations of the function.

6.2.1 Derivatives’ observations

The indexes set is uobs = upred = {1, 5, 6, 20, 26, 27} that corresponds to the processes vector

Zuobs
= Zupred

= (Y, Yx4 , Yx5 , Y x4, x5, Yx4,x4 , Yx5,x5)

The initial sample set is composed of 18 points. Five updates are made and 18 points are added by345

update for a total budget of 108 points. We apply the best methods found in the previous test case with
derivatives informations: MyqEI, MyCL and MyKB strategies.

The left part of Figure 9 shows that the three methods converge to the real front. At step 2, MyqEI gives
the more advanced front. At final step the three methods give the same good results (see the right part350

of Figure 9). MyKB and MyCL take 10 min for the five steps when MyqEI takes 12 minutes.
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Figure 9: On the left: Pareto fronts obtained during the optimization procedure of the three strategies at
initial step (step 0), middle step (step 2) and final step (step 5). On the right: Evolution of the metrics
computed during the algorithm for all the methods over 100 simulations for the Hartmann function with
derivatives observations. The HV value of the theoretical front is represented by the doted line.

6.2.2 No derivatives’ observations

The indexes set is uobs = {1} and upred = {1, 5, 6, 20, 26, 27} that corresponds to the processes vector

Zuobs
= Y

Zupred
= (Y, Yx4 , Yx5 , Y x4, x5, Yx4,x4 , Yx5,x5)

Like in previous section the initial design is composed of 18 points. In the same way as for the six-hump
Camel more updates are added when derivatives are not affordable. Here 35 updates of 18 points are
sequentially computed until a total budget of 648 points. We apply the best methods identified in Section355

6.1.2: MyAlea, MyqEI and MyCL strategies.

The left part of Figure 10 shows that the three methods converge to the real front. At step 5, all methods
have almost found the entire front. The bottom part of the front is difficult to localize even with 578

additional points. The right part of Figure 10 shows that the distance starts to converge to the expected360

value in the 100 first points. Since then the distances are a little bit unstable. For the IGD metric, the
values are subject to little perturbations around the expected value zero, that is a good thing. For the
HV measure, we observe high perturbations of the volumes. This phenomenon is explained by the fact
that at some step a new area is explored and a new Nadir point appears. That is why, the volume can be
small at some iterations until the method converges toward the theoretical non-dominated points. Figure365

11 illustrates the case where a new reference point appears because the non-dominated set is updated.
MyAlea takes 1h15min, MyqEI takes 1h40min and MyCL takes 1h04min for the 35 steps.
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Figure 10: On the left: Pareto fronts obtained during the optimization procedure of the three strategies
at initial step (step 0), step 5 and final step (step 35). On the right: Evolution of the metrics during
the algorithm compute for all the methods in 100 simulations for the six-hump Camel function with no
derivatives observation. The HV value of the theoretical front is represented by the doted line.
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7 Conclusion
In this article, we propose a robust optimization procedure based on the prediction of the function and its
derivatives by a co-kriging model. First of all, we describe the robustness criterion based on the Taylor370

development. Then, the co-kriging model is introduced. Finaly, the robust optimization is performed on
both the function and the robustness criterion. A Pareto front of the robust solutions is generated by a
genetic algorithm named NSGA-II. We detail seven strategies and compare them for the same budget in
two test functions (2D and 6D). In each case, we compare the results when the derivatives are observed
and not.375

In conclusion, the results show that the efficiency of the strategies is linked to the regularity of the
function. Indeed, if the function is easy, the derivative observations are not essential and the strategies
like MyCL and MyqEI are relevant. Functions we find in the real life are often smooth. However, when
the function is more complicated like the six-hump Camel a most exploratory strategy like MyAlea is380

recommended. This strategy is easy to use because the understanding of the complex criterion like EI
or qEI is not necessary. The study we propose is a first work that reveal efficient strategies based on
kriging prediction rather than EI approaches.

Appendices

A Number of point for the estimation of RC1
385

Let x ∈ D ⊂ Rp, an observation point. Let H ∼ N (0Rp ,∆2) be the random variable such as x+H ∼
N (x,∆2) where ∆2 is defined by:

∆2 =


δ21 0 . . . 0

0 δ22
. . . 0

... . . . . . . ...
0 . . . 0 δ2p


Let

f : Rp −→ [a; b]

x 7−→ f(x)

be a 2 times differentiable bounded function, where a ∈ R and b ∈ R. Then all the moments of
f(x + H) exist. Let µ = E(f(x + H)) and f̄ = 1

n

∑n
i=1 f(x + hi) be the empirical estimator of µ.

Let vf = V ar(f(x+H)) and S2 = 1
n

∑n
i=1(f(x+ hi)− f̄(x+H))2 the empirical estimator of σ2.

Where h1, . . . ,hn are n realizations of the random variable X. The aim of this section is to find the
asymptotic law of the empirical estimator S2.
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We recall that

E(f̄) = µ

E(S2) =
n− 1

n
vf

In order to be as intelligible as possible f(xi + hi) is written fi.

We can notice that

S2 =
1

n

n∑
i=1

(fi − µ)− (f̄ − µ)2 (12)

Consider the vector (fi−µ)2, 1 ≤ i ≤ n. It is a vector of iid random variables. MoreoverE
[
(fi − µ)2

]
=

vf , V ar
[
(fi − µ)2

]
= E

[
(f − µ)4

]
− v2f = µ4 − v2f . Then the central limit theorem (CLT) implies:

√
n

(
1

n

n∑
i=1

(fi − µ)2 − vf ]

)
→ N (0, µ4 − v2f )

With Equation (12), we obtain that:

√
n(S2 − vf ) =

√
n

(
1

n

n∑
i=1

(fi − µ)− vf

)
−

√
n(f̄ − µ)2

The CLT applied to f̄ gives:

√
n
(
f̄ − µ

)
→ N (0, vf )

Law of large number, f̄ →p.s µ ⇒ f̄ →P µ then
√
n
(
f̄ − µ

)
→P 0 and

√
n
(
1
n

∑n
i=1(fi − µ)2 − vf

)
→

N (0, µ4 − v2f ) then by the theorem of Slutski
√
n
(
S2 − vf

)
→ N (0, µ4 − v2f )− 0.

We obtain: √
(n)(S2 − vf ) −→L N (0, µ4 − v2f )

Asymptotically

S2 − vf√
µ4 − v2f/n

∼ N (0, 1)

Let z the quantile of the standard normal distribution of a risk α, then:

P

∣∣∣∣∣∣ S2 − vf√
µ4 − v2f/n

∣∣∣∣∣∣ ≤ z

 = 1− α
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The empirical estimator µ̂4 =
1
n

∑n
i=1(fi − f̄)4 of µ4 is plugged in the equation:

P

∣∣∣∣∣∣ S2 − vf√
µ̂4 − v4f/n

∣∣∣∣∣∣ ≤ z

 = 1− α

∣∣∣∣∣∣ S2 − vf√
µ̂4 − v2f/n

∣∣∣∣∣∣ ≤ z ⇔
(S2 − vf )

2

µ̂4 − v2f/n
≤ z

⇔ ((S2)2 − 2S2vf + v2f )−
z

n
(µ̂4 − v2f ) ≤ 0

⇔
(
1 +

z2

n

)
v2f − 2S2vf +

(
(S2)2 − z2µ̂4

n

)
≤ 0

∆ = (−2S2)2 − 4

(
1 +

z2

n

)(
S4 − z2µ̂4

n

)
= 4(S2)2 − 4(S2)2 +

4µ̂4z
2

n
− 4z2(S2)2

n
+

4z4µ̂4

n2

=
4z2

n

(
µ̂4

(
1 +

z2

n

)
− (S2)2

)

∆ > 0 if µ̂4

(
1 + z2

n

)
> (S2)2.

The square function is convex,
(
(f1 − f̄)2, . . . , (fn − f̄)2

)
is a real n-uplet and

∑n
i=1

1
n = 1. Thanks

to the Jensen Inequality (convexity):

1

n

n∑
i=1

(fi − f̄)4 ≥

(
1

n

n∑
i=1

(fi − f̄)2

)2

⇔ µ̂4 ≥ (S2)2

Then ∆ > 0 and

vf ∈

 2S2 −
√
∆

2
(
1 + z2

n

) ; 2S2 +
√
∆

2
(
1 + z2

n

)


2S2 −
√
∆

2
(
1 + z2

n

) =

2S2 −
√

4z2

n

(
µ̂4

(
1 + z2

n

)
− (S2)2

)
2
(
1 + z2

n

)
= S2 − z√

n

√
µ̂4 − (S2)2 + o

(
1

n

)

2S2 +
√
∆

2
(
1 + z2

n

) = S2 +
z√
n

√
µ̂4 − (S2)2 + o

(
1

n

)

24



Then approximatively,

vf ∈
[
S2 − z√

n

√
µ̂4 − (S2)2;S2 +

z√
n

√
µ̂4 − (S2)2

]
In order to obtain an approximation error lower or equal to en, we choose:

n >
z2

e2n
(µ̂4 − (S2)2)

B Taylor
Proposition 1. Let H ∼ N (0Rd ,∆2) where ∆2 = diag{δ1, . . . , δp} ∈ Mp×p and a function f : D ⊂
Rp → R to times differentiable. f̃ is the Taylor approximation trunked at the order two then:

V ar
(
f̃(x+H)

)
= tr

(
∇f∇′

f∆
2
)
+

1

2
tr
(
H.2

f (δ
2
1, . . . , δ

2
p)(δ

2
1 , . . . , δ

2
p)

′)
where ∇f ∈ Rp the vector of the gradient of f and Hf ∈ Mp,p the Hessian matrix and tr the matrix
trace.390

Proof. The Taylor approximation trunked at the order two is:

f̃(x+H) = f(x) +∇′
f (x)H +

1

2
H ′Hf (x)H

and

V ar
(
f̃(x+H)

)
= V ar

(
f(x) +∇′

fH+
1

2
H′HfH

)
= V ar

(
t∇fH+

1

2
tHHfH

)
= E

((
t∇fH+

1

2
tHHfH

)2
)

− E
(

t∇fH+
1

2
tHHfH

)2

= E
(
( t∇fH)2

)
+ E

(
t∇fH

tHHfH
)
+

1

4
E
(
( tHHfH)2

)
− E

(
t∇fH

)2 − E
(
tHHfH

)
E
(
t∇fH

)
− 1

4
E
(
tHHfH

)2
Let’s calculate each terms

1. E
[
∇′

fH
]
=
∑

i(∇f )iE [hi] = 0

2. E [H′HfH] =
∑

i

∑
j(Hf )i,jE [hihj ] =

∑
i(Hf )i,iδ

2
i = tr

(
Hf∆

2
)

3. E
[(

∇′
fH
)2]

=
∑

i

∑
j(∇f )i(∇f )jE [hihj ] =

∑
i(∇f )i(∇f )iδ

2
i = tr

(
∇f∇′

f∆
2
)

4. E
[(

(∇′
fH)′H ′HfH

)2]
=
∑

i

∑
j

∑
k(∇f )i(Hf )jkE [hihjhk] =

∑
i(∇f )i(Hf )iiE

[
h3
i

]
= 0395
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5.

E
[
(H ′HfH)2

]
=
∑
i

∑
j

∑
k

∑
l

(Hf )ij(Hf )klE [hihjhkhl]

=
∑
i

∑
k ̸=i

(Hf )ii(Hf )kkE
[
h2
ih

2
k

]
+ 2

∑
i

∑
j ̸=i

(Hf )ij(Hf )ijE
[
h2
ih

2
j

]
+
∑
i

(Hf )
2
iiE
[
h4
i

]
=
∑
i

∑
k ̸=i

(Hf )ii(Hf )kkδ
2
i δ

2
k + 2

∑
i

∑
j ̸=i

(Hf )ij(Hf )ijδ
2
i δ

2
j + 3

∑
i

(Hf )
2
iiδ

2
i

=
∑
i

∑
k

(Hf )ii(Hf )kkδ
2
i δ

2
k −

∑
i

(Hf )
2
iiδ

2
i + 2

∑
i

∑
j

(Hf )ij(Hf )ijδ
2
i δ

2
j

− 2
∑
i

(Hf )
2
iiδ

2
i + 3

∑
i

(Hf )
2
iiδ

2
i

= tr
(
Hf∆

2
)2

+ 2tr
(
H.2

f (δ
2
1, . . . , δ

2
p)(δ

2
1 , . . . , δ

2
p)

′)
Finally

V ar
(
f̃(x+H)

)
= tr

(
∇f∇′

f∆
2
)
+ 0 +

1

4
tr
(
Hf∆

2
)2 − 0− tr

(
Hf∆

2
)
× 0− 1

4
tr
(
Hf∆

2
)2

− 2

4
tr
(
H.2

f (δ
2
1 , . . . , δ

2
p)(δ

2
1, . . . , δ

2
p)

′)
= tr

(
∇f∇′

f∆
2
)
+

1

2
tr
(
H.2

f (δ
2
1, . . . , δ

2
p)(δ

2
1 , . . . , δ

2
p)

′)
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