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Seven-Parameter Linear 
Viscoelastic Model Applied to 
Acoustical Damping Materials

In this paper, linear viscoelastic rheological properties of acoustical damping materials are 
predicted. A rheological model, based on a mechanical element approach, is pre-sented. It 
consists of a combination of two springs, two parabolic elements, and one dash-pot 
(2S2P1D). This model is applied to different acoustical damping materials. Its specificity 
comes from the fact that elements might be linked to structural and physical features. 
Parameters might be experimentally determined by tests. Application of the 2S2P1D 
linear viscoelastic model can adequately predict the behavior of acoustical damping 
materials with good accuracy. If the material verifies the time–temperature superposition 
principle (TTSP), the proposed model can predict the behavior on a wide frequency range, 
even with a small number of available data. 

1 Introduction

Nowadays, acoustical foams [1–4] and acoustical composite
materials [5] are widely used for sound and vibration damping in
building or automotive applications. To suppress vibrations,
viscoelastic materials are usually placed on the surfaces of struc-
tures. To predict the responses of the damped structure and to
design it, it is important to know the properties of the foams in
the frequency range relevant to their application, so in a wide
frequency range for acoustic applications.

Biot’s theory [6,7] is used to describe the dynamic behavior of
porous medium when the skeleton is set in motion. This theory
uses the viscoelastic properties of the solid phase.

Moreover, it must be underlined that the viscoelastic properties
of these acoustic foams are strongly frequency and temperature
dependent as emphasized by lots of experimental works on the
subject [8–14]. To describe the frequency and temperature
dependence efficiently, computerized numerical methods require
a mathematical model on the dynamic properties.

To experimentally determine those viscoelastic properties of
acoustical foams, different techniques are used and explained in
literature. They are mainly based on mass–spring resonance [11],
standing wave resonance of a longitudinally excited rod with end
mass [11], or based on nonresonant techniques [12,15]. An exten-
sion of certain measurements on a wide frequency range can be
performed by using the TTSP as done by Ref. [16]. So, a theoreti-
cal modelization of the viscoelastic behavior of foams is needed
to enhance the frequency range.

For all those reasons, a mathematical form of frequency
dependences of dynamic properties is required. Modeling the
viscoelastic behavior is an old problem not only in damping poly-
mer materials but also in the field of bituminous materials

[17–19]. Empirical models have been used [20,21], but the disad-
vantages of empirical models are that they are not related to the
general constitutive equation of viscoelastic materials and it is dif-
ficult to understand the physics. Moreover, to apply a mathemati-
cal model to damping material, the model parameters should be
easily estimated through experiments. In many existing models,
those parameters are determined using curve-fitting procedures
and are not necessarily linked to physical parameters, which could
be estimated by other means (e.g., a static parameter).

Recently, a five-parameter fractional-derivative model [22] has
been used to describe the dynamic behavior of viscoelastic materi-
als such as polymeric damping material. The specificity of this
model is due to the fact that the relevant constitutive equation
contains time derivatives of stress and strain at different orders; so
under certain conditions, this model is physically meaningful. The
fractional-derivative model has become a powerful solution that
describes the frequency-dependent dynamic characteristics of
damping materials [23–25]. Even if the physical meaning of each
parameter is defined, it is underlined in Ref. [22] that for some
parameters “the precise meaning of [them] is not known yet” and
we can only relate them to the high- or low-frequency behavior.
Especially, at high frequencies, the modulus tends to infinity and
not to a finite value. Then, complex algorithms based on nonlinear
optimization and suboptimal methods may be used to estimate the
parameters of foams modeled by a fractional-derivative model
[26]. Kim and Lee [27] propose efficient identification method
using different optimization techniques. Kim and Lee [23] propose
an identification procedure using a finite element model of an
unconstrained beam, a gradient-base numerical search algorithm,
and a sensitivity analysis. Even if the algorithms can be very robust,
efficient, and can reduce considerably the experiments, the physical
meaning of parameters is lost, and it is difficult to link an optimized
parameter to physical meaning.

Recently, the authors of Refs. [28–36] developed a rheological
model based on a mechanical element approach for modeling the
linear viscoelastic behavior of bitumens and asphalts, called
2S2P1D model. This model consists of a combination of two
springs, two parabolic elements, and one dashpot. It seems useful
to consider the simple behavior of analogical models constructed
from mechanical elements to model linear viscoelastic behavior.
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Thanks to the 2S2P1D model, it is possible to obtain a physical
model with physical parameters, which can be determined experi-
mentally by other methods. The advantage of this approach is that
the elements might be relatable to structural features. The
2S2P1D analogical model has a continuous spectrum, i.e., can be
represented by an infinite number of Kelvin–Voigt elements in
serie or Maxwell elements in parallel [37].

The aim of this paper is to show that the 2S2P1D linear
viscoelastic model can be applied to acoustical damping materials
with success. The objective of this paper is to show that a mathe-
matical form with a physical meaning can be used to describe the
linear viscoelastic behavior of acoustical foams with physical
parameters.

This paper is divided into two parts. First, the 2S2P1D linear
viscoelastic model is presented. The physical meaning of this
model is described. The differences with the classical fractional-
derivative models are shown. Second, the model is applied to
three different materials. First, a polymeric damping material
[22,38] is considered. Even if this first damping material is not an
acoustical material, it has been chosen here to validate the
2S2P1D model as done by Ref. [22] for the five-parameter
fractional-derivative model. The same data have been used. The
data are covering about ten decades. Second, the model is applied
to an open-cell polyurethane foam [39] used as acoustic insulator.
For this material, the complex shear modulus data were obtained
by using a quasi-static method. In this case, the TTSP may be
used. Then, the 2S2P1D model is applied to a polyvinyl chloride-
based viscoelastic material where experimental data have been
obtained by a modified Oberst beam method [40]. In this case,
few experimental data are available (only the three or four first
resonance peaks of the Oberst beam for each isotherm can be
used). This last case is chosen to show the ability of the proposed
model to predict the viscoelastic behavior of damping material
even if few experimental data are available.

In these three cases, the 2S2P1D model shows its ability to
predict the viscoelastic behavior on a wide frequency range with a
good accuracy.

2 2S2P1D Linear Viscoelastic Model

Before describing the proposed 2S2P1D linear viscoelastic
model, we present other viscoelastic models generally used in
acoustical fields. This allows to see the differences introduced in
the proposed model. This section is mainly based on a mechanical
element approach, which is one of the originality of this paper
since it has not been done previously in acoustical field.

Among the existing models for simulating linear viscoelastic
behavior of acoustical damping materials, the four-parameter
fractional Zener model has been found to be efficient to predict
frequency variations with symmetrical loss factor peak. The
mechanical representation of such a model is shown in Fig. 1.

The complex modulus is given by the following expression:

G�ðjxsÞ ¼ G00 þ
G0 � G00

1þ ðjxsÞ�a (1)

where s is the relaxation time, the parameters G0 and G00 have
modulus dimension and 0 < a < 1. G00 is naturally the static
modulus and G0 is the glassy modulus.

It comes from the following constitutive equation:

rðtÞ þ sa
da

dta
rðtÞ ¼ G00eðtÞ þ G0s

a d
a

dta
eðtÞ (2)

where rðtÞ is the stress, eðtÞ is the strain, and t is the time.
To take into account asymmetrical loss factor peak and the

high-frequency behavior of polymeric damping materials, the
authors of Ref. [22] have introduced a five-parameter fractional
model. The complex modulus for the five-parameter model is
given by the following expression:

G�ðjxsÞ ¼ G00 þ ðG1 � G00Þ
ðjxsÞa

1þ ðjxsÞb
(3)

where 0 < b < a < 1.
It comes from the following constitutive equation:

rðtÞ þ sb
db

dtb
rðtÞ ¼ G00eðtÞ þ G1sb

db

dtb
eðtÞ

þ ðG1 � G00Þs
a d

a

dta
eðtÞ (4)

As underlined by the authors of Ref. [22], G00 is naturally the
static modulus and G1 is related to the high-frequency behavior
of the dynamic modulus, but “here, in contrast to the four-
parameter model, G1 is not the limit value (when x ! 1) of the
complex modulus” [22].

In the present paper, we want to have a mechanical element
approach, which is why we decide to obtain the mechanical repre-
sentation of this model as shown in Fig. 2.

With this representation, we can see that a spring is missing in
series with the two parabolic elements to obtain a parameter,
which will be a limit value of the modulus when x ! 1.

Moreover, as underlined by Ref. [22], in relation to the high-
frequency behavior, it should be noted that the five-parameter
model is not intended to be used beyond a certain frequency, and
this model is aimed to be used within a frequency range where
the asymmetry of the loss peak and the peculiar high-frequency
behavior of some polymeric materials can be observed.

To avoid mentioned drawbacks, other existing models can be
used. In the field of pavement materials, bituminous mixes reveal
to be viscoelastic materials if small strain and low number of
cycles are applied. The authors of Refs. [28–30] have introduced a
general model, which consists of a generalization of the
Huet–Sayegh model [19]. This model is called 2S2P1D and is
based on a simple combination of physical elements. This model
is derived from the Huet–Sayegh model [19]. (For the
Huet–Sayegh model, a second parabolic element is added in serie

Fig. 1 Mechanical representation of the fractional Zener model
Fig. 2 Mechanical representation of the five-parameter
fractional-derivative model
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in the branch where there is already a parabolic element in the
Zener model.) The Huet–Sayegh model [19] has been adapted by
adding a linear dashpot in serie with the two parabolic elements
and the spring of rigidity G0 � G00 (cf. Fig. 3).

Like the Huet–Sayegh model, the 2S2P1D model has a continu-
ous spectrum (i.e., can be represented by an infinity of
Kelvin–Voigt elements in serie or Maxwell elements in parallel).

At a given temperature, the introduced 2S2P1D model has
seven constants and its complex modulus is given by the follow-
ing expression:

G�ðjxsÞ ¼ G00 þ
G0 � G00

1þ dðjxsÞ�k þ ðjxsÞ�h þ ðjxbsÞ�1
(5)

with j being the complex number defined by j2 ¼ �1, x is the pul-
sation ¼ 2pf (f is the frequency), k and h are the exponents such
as 0 < k < h < 1, d is a constant, G00 is the static modulus
when x ! 0, G0 is the glassy modulus when x ! 1, and g is
the Newtonian viscosity (cf. Fig. 3). g ¼ ðG0 � G00Þbs; b is
dimensionless.

s is a characteristic time, which value varies only with tempera-
ture. It accounts for TTSP

sðTÞ ¼ aTðTÞ � s0 (6)

where aTðTÞ is the shift factor at temperature T and s0 ¼ sðTrefÞ
is determined at the reference temperature Tref .

It has to be emphasized that seven constants (d; k; h;G00;G0;b;
and s0) are needed to entirely determine the linear viscoelastic
behavior of the considered material, at a given temperature.

Furthermore, if the hypothesis of a linear viscoelastic thermo-
rheologically simple behavior can be applied to the considered
materials (which means that the TTSP holds), only the s parame-
ter depends on temperature.

If the TTSP holds, the shift factor at temperature T; aTðTÞ may
be determined by means of different laws. For example, it can be
determined by the Williams–Landel–Ferry empirical expression
[41] or by using the approximated Kramers–Kronig relations [42].
However, parameters of these laws are often determined by curve-
fitting [43] in order to best superimpose the isotherms and they
can have poor precision. In the present paper, we have determined
it along with the parameters of the viscoelastic model (as it is
done by some authors [44,45]). As underlined in Ref. [46], the cal-
culated shift coefficients with this last method have a physical
meaning since the viscoelastic model is supposed to verify some
conditions such as causality [47]. It should be underlined that
Ref. [46] calculated the shift coefficients by a method requiring ful-
fillment of the Kramers–Kronig relations conveying the causality
condition.

Like the fractional model, it is possible to obtain a constitutive
equation for the 2S2P1D model

rðtÞ þ b1
d

dt
rðtÞ þ b2

da1

dta1
rðtÞ þ b3

da2

dta2
rðtÞ

¼ a0eðtÞ þ a1
d

dt
eðtÞ þ a2

da1

dta1
eðtÞ þ a3

da2

dta2
eðtÞ (7)

where a1 ¼ 1� h; a2 ¼ 1� k (0 < a1 < a2 < 1). b1¼bs;
b2¼ dbsa1 ; b3¼bsa2 ; a0¼G00; a1¼G0b1; a2¼G00b2; a3¼G00b3.

This is the first time that the constitutive equation of the
2S2P1D model has been written. It allows to better understand
the interest of the proposed model. Indeed, the coefficient b1 of
the first derivative of r allows to take into account the viscosity
and the coefficient a1 of the first derivative of e allows to take into
account the viscosity and the glassy modulus when x ! 1.

Those two first derivatives were not present in the two previous
models (fractional Zener and five-parameter fractional models).

At low frequencies, the five-parameter fractional-derivative
model is equivalent to a parabolic element, whereas the 2S2P1D
model is equivalent to a dashpot element (and a spring in parallel).
Moreover, one spring is added in serie to the two parabolic
elements to obtain a physical meaning for high frequencies: the
modulus tends to a finite value G0 at high frequencies. Thanks to
the 2S2P1D model, it is possible to obtain a physical model with
physical parameters which can be determined experimentally by
other methods (for example, by using ultrasonic waves for the
determination of a parameter at high frequencies as performed in
Refs. [48–50]) and which have a precise physical meaning as
shown in Fig. 4. The advantage of this approach is that the
elements might be relatable to structural features.

From the results on acoustical damping materials, we will show
that this comprehensive model translates correctly the linear
viscoelastic behavior in the small strain domain for any range of
frequencies and temperatures.

We can identify the parameters by the following procedure.
If limit values are known by experimental tests or by identifica-

tion from asymptotic values and from the variation of the complex
modulus (it is possible to read off the model parameters directly
from the experimental data because the frequency curves are
smooth as illustrated in Fig. 4), they constitute the initial values of
the parameters to be optimized by the algorithm.

If experimental data do not cover a frequency range large
enough to observe the asymptotic behavior, we find initial param-
eters estimates that are closed to the optimal values. A good way
to do this is by simulations. Both the measured and calculated
curves are compared and the parameters are adjusted by hand until
the agreement between the two is reasonably good. Although this
will be a subjective judgment, it is sufficient to find a good start-
ing point for the algorithm refinement. Using those parameters
improve robustness of the algorithm. We use a more stable algo-
rithm than the Gauss–Newton algorithm allowing to find a solu-
tion even if the initial values are far from the optimal values.

The parameters are then optimized and refined by the following
procedure. We minimize the cost function Fcost, which is defined

Fig. 3 Mechanical representation of the 2S2P1D model. h and
k are the two parabolic creep elements.

Fig. 4 Complex modulus in Cole–Cole axes
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by (with Gmeas being the quantity measured and Gmodel being the
quantity output of the model)

Fcost ¼
X

f

jReðGmodelÞ�ReðGmeasÞj
2

jReðGmeasÞj
2

þ
jImðGmodelÞ� ImðGmeasÞj

2

jImðGmeasÞj
2

(8)

To obtain the minimum of this function, we can use classical
least-squares curve fitting algorithms. For example, we can use
the Levenberg–Marquardt method [51–53]. This method uses a
search direction that is a cross between the Gauss–Newton direc-
tion and the steepest descent direction. This local optimization
algorithm demonstrates great efficiency provided that initial
values enable to avoid being trapped in local minima and valleys.
So, the idea here is to find initial parameters (by comparisons
between calculations and experimental values) such that the initial
volatility is similar to the target volatility. Thus, a satisfying solu-
tion (either a global minimum or a good enough local minimum,
which is in the error range of measures) may be located in the
search space of the local optimization algorithm. This point has
been underlined in Ref. [54] for this kind of algorithm.

For each case, we have verified that taking different
“acceptable” initial values gives the same solution to be sure of
the local convergence.

3 Modeling of Acoustical Damping Materials

Three different materials are considered.
First, a polymeric damping material [22,38] is analyzed. Even

if this first damping material is not an acoustical material, it has
been chosen here to validate the 2S2P1D model as done by
Ref. [22] for the five-parameter fractional-derivative model. The

same data have been used. When the author of Ref. [22] intro-
duced his model, the first verification was done on this polymeric
damping material. That is why we decide to use the same material.
The data are covering about ten decades and the reliability of the
experimental data will allow to validate the tested model on a
wide frequency range.

Second, the model is applied to acoustical damping materials.
The aim here is to show that the 2S2P1D model can be applied to
acoustical damping materials with success. In the mean time, we
want to show that the 2S2P1D model can also predict the visco-
elastic behavior of acoustical foams even if few experimental data
are available, which is an originality of this paper. Thus, the
model is first applied to an open-cell polyurethane foam [39] used
as acoustical isolator. For this material, the complex shear modu-
lus data were obtained by using a quasi-static method and the
TTSP has to be used to predict the viscoelastic behavior on a wide
frequency range. Then, the 2S2P1D model is applied to a polyvi-
nyl chloride-based viscoelastic material where experimental data
(only the three or four first resonance peaks of the Oberst beam
can be used for each temperature) have been obtained by a modi-
fied Oberst beam method [40]. In this case, few experimental data
are available, and we will show that it is possible to predict the
viscoelastic behavior on a large frequency range.

3.1 Case of a Polymeric Damping Material. A polymeric
damping material [22,38] is considered. The experimental values
of the cyclic shear properties of the commercial available damp-
ing material are taken from Ref. [38] and are plotted in Fig. 5.
The cyclic properties were measured by the composite beam
method at several temperatures. As underlined in Ref. [22], “data
covering about ten decades of frequency were determined by
means of the frequency–temperature equivalence principle.” The

Fig. 5 Cyclic shear properties of a polymeric damping material: (a) master curve of norm of
G* (in Pa); (b) master curve of phase angle of G* (in degree); (c) complex modulus (in Pa) in
Cole–Cole axes; and (d) complex modulus (in Pa) in black space. The gray continuous line
represents the 2S2P1D model, the gray dashed line represents the five-parameter fractional-
derivative model, and the diamonds represent experimental measurements.
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low scatter and the smoothness of the reduced frequency curves
testify the reliability of the experimental data.

The 2S2P1D model is applied to this material. The initial
parameters can be easily determined directly from the experimen-
tal data (for example by taking the limit values) and optimized
then by the procedure described in Sec. 2. For this material, the
model parameters are given in Table 1.

As shown in Fig. 5, there is a good agreement between the
2S2P1D model and the experimental data over a wide frequency
range.

The author of Ref. [22] has already compare his model (five
parameters: G00 ¼ 5� 106 Pa, G1 ¼ 1:8� 108 Pa, a ¼ 0:605;
b ¼ 0:554; s ¼ 2:09� 10�4) to these data. The cost function
Fcost (presented in the previous function) for the five parameters
model is approximately the double of the optimized cost func-
tion for the 2S2P1D model (even if this cost function is small
for the two models). It should be noticed that this difference
can also be explained by the fact that the optimization process
is not the same in Ref. [22] and in the present paper. In the
present paper, we have optimized Fcost whereas a curve fitting
on Re(G*), Imag(G*) and on the loss factor was performed in
Ref. [22]. In the two cases, the mean of the relative error
between model and experimental results is less than 10%. The
2S2P1D model shows superior performance to the five-
parameter fractional-derivative model, but the number of parame-
ters is seven. It should be noticed that additional two coefficients
(one term in fractional derivative) in fractional-derivative model
may also show better performance.

3.2 Case of a Polyurethane Foam. Now, the model can be
applied to an open-cell polyurethane foam used as acoustic isola-
tor. The experimental data are taken from Ref. [39]. In Ref. [39],
four materials were studied. These materials have the same chemi-
cal composition, the same porosity, and the same mass density.
They only differ by their pore sizes. So here, we just consider one
of these foams (all the results for the other foams are similar
because the polymer, which composes skeleton, is identical for
these foams). The considered foam is named as Bulpren S20
foam. For this material, the complex shear modulus data were
obtained by using a quasi-static method on a small frequency
range and the TTSP has to be used to predict the viscoelastic
behavior on a wide frequency range.

In Ref. [39], measurements were repeated at various
temperatures above the glass transition of the polyurethane (Tg
¼ �25 �C). In the present paper, e.g., we use six isotherms: from
�21 �C to þ10 �C. Experimental data are plotted in Fig. 6.

A reference temperature can be arbitrarily chosen. Then if the
TTSP can be applied to this material, the model can predict G* or
phase angle of G* to frequencies which are not accessible experi-
mentally up to 108Hz. In Ref. [39], the authors show that the
TTSP can be applied to this material. So, for this material, the
shift factor aTðTÞ must also be determined (along with the param-
eters of the viscoelastic model). The reference temperature
Tref ¼ þ10 �C is arbitrarily chosen. For this material, the 2S2P1D
model parameters are given in Table 2. Figure 7 shows that the
2S2P1D model is well adapted to predict the linear viscoelastic
behavior of this foam. Thanks to the TTSP, it is possible to obtain

Fig. 6 Cyclic shear properties of a polyurethane foam: (a) norm of G* (in Pa) for six
isotherms and (b) phase angle (in degree) of G* for six isotherms

Table 1 Parameter values of the polymeric damping material
determined for the 2S2P1D model

G00 (Pa) G0 (Pa) k h d b s

5� 106 2:85� 108 0.44 0.86 2.5 200 8� 10�4

Table 2 Parameter values of the open-cell polyurethane foam
determined for the 2S2P1D model (Tref 5 þ 10 �C)

G00 (Pa) G0 (Pa) k h d b s

1:65� 104 2:09� 106 0.215 0.22 79 2 0.0374
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the master-curve on a wide frequency range. This effect is well
predicted by the 2S2P1D model.

Even with a lower variation of phase angle of G�, it should be
noticed that the 2S2P1D model predicts the small variation of the
phase of G� with good accuracy. For this material, we can also
apply the five-parameter fractional-derivative model. After opti-
mization, the parameters of this model are: G00 ¼ 1:65� 104 Pa,
G1 ¼ 9:9� 105 Pa, a ¼ 0:21; b ¼ 0:5; and s ¼ 8� 10�10.

The accuracy of the two models is good, as shown in Fig. 7
where the simulations of the two models have been shown. For
example, the mean relative error between experimental results and
modelization of the norm of the shear modulus is 1.2% for the
2S2P1D model and 4.9% for the five-parameter fractional-
derivative model.

Nevertheless, it should be underlined that, even if the accuracy
is good, the five-parameter fractional-derivative model cannot
predict the slight increase of the phase at low frequencies, as
shown in Fig. 7. In the black space (d), we clearly see that it is
impossible to have an inflection of the curve at low frequencies
with only five parameters in the model. The experimental meas-
urements clearly show that when the modulus of G* is decreasing
at low frequencies, the phase is slightly increasing. This behavior
can only be modelized by using the 2S2P1D model, which has
more parameters. Indeed, the behavior of this foam, at low fre-
quencies, is influenced by the viscous response of the polymer
which composes the skeleton of this foam. The presence of the
dashpot (to take into account the Newtonian viscosity g) is essen-
tial at low frequencies to describe this kind of behavior. Without
this dashpot (like in the five-parameter fractional-derivative
model), the behavior at low frequencies is equivalent to a para-
bolic element and it is impossible to modelize the slight increase
of phase at low frequencies.

So, we have shown that the 2S2P1D model can be applied to
acoustical damping materials with success. In the mean time, we

want to show that the 2S2P1D model can also predict the visco-
elastic behavior of acoustical foams even if few experimental data
are available, that is why we consider another material.

3.3 Case of a Polyvinyl Chloride-Based Viscoelastic
Material. The 2S2P1D model has been applied to a polyvinyl
chloride-based viscoelastic material where experimental data
(only the three or four first resonance peaks of the Oberst beam
can be used for each temperature) have been obtained by a modi-
fied Oberst beam method [40]. This modified Oberst beam method
is an inexpensive and simple method to quickly determine the
Young’s modulus of viscoelastic materials. However, for a given
temperature, only the three or four first resonance modes of the
beam can be used, this explains why we only get three points for
each isotherm. However, the 2S2P1D model can be a good mean
to predict the behavior between those points. Even if small num-
ber of experimental data is available, this example shows that it is
possible to predict the behavior on a wide frequency range. So the
modified Oberst beam method becomes a powerful and simple
mean to experimentally determine the viscoelastic behavior of
acoustical damping materials.

With the modified Oberst beam method, measurements were
repeated for six temperatures: from þ5 �C to þ30 �C. Experimen-
tal data are plotted in Fig. 8.

Then, to see if the TTSP holds, we just plot the measurements
data in the Cole–Cole axes (Fig. 9(c)). In the Cole–Cole axes, the
measurements data form a single continuous master curve so the
TTSP holds. Thus, for this material, the shift factor aTðTÞ must
also be determined (along with the parameters of the viscoelastic
model). The reference temperature Tref ¼ þ5 �C is arbitrarily
chosen.

For this material, the 2S2P1D model parameters are given in
Table 3.

Fig. 7 Cyclic shear properties of a polyurethane foam: (a) master curve of norm of G* (in
Pa); (b) master curve of phase angle of G* (in degree); (c) complex modulus (in Pa) in
Cole–Cole axes; and (d) complex modulus (in Pa) in black space. The gray continuous line
represents the 2S2P1D model, the gray dashed line represents the five-parameter fractional-
derivative model, and the diamonds represent experimental measurements (Tref 5 þ 10 �C).
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Fig. 9 Young’s modulus properties of a polyvinyl chloride-based viscoelastic material: (a)
master curve of norm of E

* (in Pa); (b) master curve of phase angle of E
* (in degree); (c)

complex modulus (in Pa) in Cole–Cole axes; and (d) complex modulus (in Pa) in black space.
The gray continuous line represents the 2S2P1D model, the gray dashed line represents the
five-parameter fractional-derivative model, and the diamonds represent experimental meas-
urements (Tref 5 þ 5 �C).

Fig. 8 Young’s modulus properties of a polyvinyl chloride-based viscoelastic material:
(a) norm of E* (in Pa) for six isotherms and (b) phase angle (in degree) of E* for six
isotherms
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Figure 9 shows that by using few experimental data (only the
three resonance peaks of the Oberst beam can be used), the
2S2P1D model can supply physical information about the visco-
elastic behavior since it can predict the viscoelastic behavior with
a good precision. The low accuracy of phase of G� measurements
(which is deduced by structural damping coefficient measure-
ments) can explain the small differences between the theoretical
model and experimental values even if the global accuracy is
good.

For this material, we can also apply the five-parameter
fractional-derivative model. After optimization of the two models,
the mean relative error between experimental results and modeli-
zation of the norm of the Young modulus is 1.7% for the 2S2P1D
model and 3.7% for the five-parameter fractional-derivative
model.

4 Conclusions

A rheological model called 2S2P1D based on a mechanical ele-
ment approach and developed for bituminous materials has been
applied to model the linear viscoelastic behavior of different
acoustical damping materials. It consists of a combination of two
springs, two parabolic elements, and one dashpot. This model is
physically meaningful. In the case of the polymeric damping ma-
terial, the data are covering about ten decades and the reliability
of the experimental data allows to validate the tested model on a
wide frequency range.

The case of the polyurethane foam shows that the 2S2P1D
model can be used with the TTSP to predict the viscoelastic
behavior of open-cell foam on a wide frequency range. The pres-
ence of the dashpot (to take into account the Newtonian viscosity
g) is essential at low frequencies to describe the slight increase of
phase. Without this dashpot (like in the five-parameter fractional-
derivative model), the behavior at low frequencies is equivalent to
a parabolic element and it is impossible to modelize this slight
increase.

The last case shows that by using few experimental data (only
the three or four first resonance peaks of the modified Oberst
beam [40] can be used), the 2S2P1D model can supply physical
information about the viscoelastic behavior since it can predict the
viscoelastic behavior with a good accuracy.

To conclude, 2S2P1D linear viscoelastic model can predict the
behavior of acoustical damping materials with good accuracy on a
wide frequency range thanks to the TTSP even if small number of
experimental data are available.

It remains to study more precisely the variations of the physical
parameters of the model as a function of the parameters of the
foam such as the pore-size or the density.

Acknowledgment

This work was performed within the framework of the LABEX
CELYA (No. ANR-10-LABX-0060) of Universit�e de Lyon,
within the program “Investissements d’Avenir” (No. ANR-11-
IDEX-0007) operated by the French National Research Agency
(ANR).

References
[1] Zwikker, C., and Kosten, C., 1949, Sound Absorbing Materials, Elsevier,

Amsterdam.

[2] Allard, J., 1993, Propagation of Sound in Porous Media: Modelling Sound

Absorbing Materials, Elsevier, Essex, UK.

[3] Olny, X., Sgard, F., Perrot, C., and Panneton, R., 2004, “Microscopic

and Mesoscopic Approaches for Describing and Building Sound Absorbing

Porous Materials,” Proceedings of the Second TUL-ENTPE Workshop,

Szklarska Poreba, Poland, Mar. 3–6, pp. 187–206.

[4] Lind-Nordgren, E., and Gransson, P., 2010, “Optimising Open Porous Foam

for Acoustical and Vibrational Performance,” J. Sound Vib., 329(7),
pp. 753–767.

[5] Gourdon, E., and Seppi, M., 2010, “Extension of Double Porosity Model to

Porous Materials Containing Specific Porous Inclusions,” Acta Acust. Acust.,

96(2), pp. 275–291.
[6] Biot, M., 1956, “The Theory of Propagation of Elastic Waves in a Fluidsatured

Porous Solid. I. Low Frequency Range,” J. Acoust. Soc. Am., 28(2),
pp. 168–191.

[7] Biot, M., 1956, “The Theory of Propagation of Elastic Waves in a Fluidsatured

Porous Solid. II. Higher Frequency Range,” J. Acoust. Soc. Am., 28(2),
pp. 168–191.

[8] Capps, R., 1983, “Dynamic Young’s Moduli of Some Commercially Available

Polyurethanes,” J. Acoust. Soc. Am., 73(6), pp. 2000–2005.
[9] Oyadiji, S., and Tomlimson, G., 1985, “Determination of the Complex Moduli

of Viscoelastic Structural Elements by Resonance and Non-Resonance

Techniques,” J. Sound Vib., 101(3), pp. 277–298.
[10] Corsaro, R., and Sperling, L., 1990, Sound and Vibration Damping With Poly-

mers, American Chemical Society, Washington, DC.

[11] Pritz, T., 1994, “Dynamic Young’s Modulus and Loss Factor of Plastic Foams

for Impact Sound Isolation,” J. Sound Vib., 178(3), pp. 315–322.
[12] Mariez, E., Sahraoui, S., and Allard, J., 1996, “Elastic Constants of Polyur-

ethane Foams Skeleton for Biot Model,” 25th International Congress on Noise

Control Engineering (Inter-Noise 96), Liverpool, UK, July 30–Aug. 2, pp.

951–954.

[13] Dauchez, N., Etchessahar, M., and Sahraoui, S., 2002, “On Measurements of

Mechanical Properties of Sound Absorbing Materials,” Second Biot Conference

on Poromechanics, Grenoble, France, Aug. 26–28, pp. 627–632.

[14] Pritz, T., 1990, “Non-Linearity of Frame Dynamic Characteristics of Mineral

and Glass Wool Materials,” J. Sound Vib., 136(2), pp. 263–274.
[15] Panneton, R., and Langlois, C., 2001, “Polynomial Relation for the Mechanical

Characterization of Poroelastic Materials,” 17th International Congress of

Acoustics (ICA ’01), Rome, Italy, Sept. 2–7, Paper No. 4A.08.06.

[16] Etchessahar, M., Sahraoui, S., Benyahia, L., and Tassin, J., 2005, “Frequency

Dependence of Elastic Properties of Acoustic Foams,” J. Acoust. Soc. Am.,

117(1), pp. 1114–1121.
[17] Van der Poel, C., 1954, “A General System Describing the Viscoelastic Proper-

ties of Bitumens and Its Relation to Routinr Test Data,” J. Appl. Chem., 4(5),
pp. 231–236.

[18] Heukolem, W., and Klomp, J., 1964, “Road Design and Dynamic Loading,”

Proceedings of the Association of Asphalt Paving Technologists, Ann Arbor,

MI, Vol. 33, pp. 92–125.

[19] Sayegh, G., 1967, “Viscoelastic Properties of Bituminous Mixtures,” Second

International Conference on Structural Design of Asphalt Pavement, Ann

Arbor, MI, pp. 743–755.

[20] Havriliak, S., and Negami, S., 1967, “A Complex Plane Representation of

Dielectric and Mechanical Relaxation Processes in Some Polymers,” Polymer,

8, pp. 161–210.
[21] Hartmann, B., Lee, G. F., and Lee, J., 1994, “Loss Factor Height and

Width Limits for Polymer Relaxations,” J. Acoust. Soc. Am., 95(1),
pp. 226–233.

[22] Pritz, T., 2003, “Five-Parameter Fractional Derivative Model for Polymeric

Damping Materials,” J. Sound Vib., 265(5), pp. 935–952.
[23] Kim, S.-Y., and Lee, D.-H., 2009, “Identification of Fractional-Derivative-

Model Parameters of Viscoelastic Materials From Measured Frfs,” J. Sound

Vib., 324(3–5), pp. 570–586.
[24] ASTM, 2010, “Standard Test Method for Measuring Vibration-Damping Prop-

erties of Materials,” ASTM International, West Conshohocken, PA, ASTM

Standard E756-05(2010).

[25] Jones, D., 2001, Handbook of Viscoelastic Vibration Damping, Wiley,

New York.

[26] Deng, R., Davies, P., and Bajaj, A., 2003, “Flexible Polyurethane Foam Model-

ing and Identification of Viscoelastic Parameters for Automotive Seating

Applications,” J. Sound Vib., 262(3), pp. 391–417.
[27] Kim, S.-Y., and Lee, D.-H., 2009, “Identification of Fractional-Derivative-

Model Parameters of Viscoelastic Materials From Measured FRFs,” J. Sound

Vib., 324(3–5), pp. 570–586.
[28] Olard, F., and Di Benedetto, H., 2003, “General ‘2S2P1D’ Model and Relation

Between the Linear Viscoelastic Behaviours of Bituminous Binders and

Mixes,” Road Mater. Pavement Des., 4(2), pp. 185–224.
[29] Olard, F., Di Benedetto, H., and Vaniscote, J.-C., 2005, “Properties of

Bituminous Mixtures at Low Temperatures and Relations With Binder Charac-

teristics,” Mater. Struct., 38(1), pp. 121–126.
[30] Di Benedetto, H., Olard, F., Sauz�eat, C., and Delaporte, B., 2004, “Linear

Viscoelastic Behaviour of Bituminous Materials: From Binders to Mixes,”

Road Mater. Pavement Des., 5(Suppl. 1), pp. 163–202.
[31] Di Benedetto, H., Neifar, M., Sauz�eat, C., and Olard, F., 2007, “Three-

Dimensional Thermo-Viscoplastic Behaviour of Bituminous Materials: The

DBN Model,” Road Mater. Pavement Des., 8(2), pp. 285–316.
[32] Yin, H., Buttlar, W., Paulino, G., and Di Benedetto, H., 2008, “Assessment of

Existing Micro-Mechanical Models for Asphalt Mastics Considering Visco-

Table 3 Parameter values of the polyvinyl chloride-based
viscoelastic material determined for the 2S2P1D model
(Tref 5 þ 5 �C)

E00 (Pa) E0 (Pa) k h d b s0

5� 106 1:24� 109 0.45 0.77 5.6 16 9:8� 10�4

8



elastic Effects,” Road Mater. Pavement Des., 9(1), pp. 31–57.
[33] Delaporte, B., Di Benedetto, H., Chaverot, P., and Gauthier, G., 2009, “Linear

Viscoelastic Properties of Bituminous Materials Including New Products Made

With Ultrafine Particles,” Road Mater. Pavement Des., 10(1), pp. 7–38.
[34] Izzi, Y. M. N., Mounier, D., Ginoux, M., Mohd, H., Airey, G., and Di Benedetto,

H., 2013, “Modelling the Rheological Properties of Bituminous Binders Using the

2S2P1DModel,” Constr. Build. Mater., 38, pp. 395–406.
[35] Mangiafico, S., Di Benedetto, H., Sauz�eat, C., Olard, F., Pouget, S., and

Planque, L., 2014, “New Method to Obtain Viscoelastic Properties of Bitumi-

nen Blends From Pure and Rap Binder Constituents,” Road Mater. Pavement

Des., 15(2), pp. 312–329.
[36] Tapsoba, N., Sauz�eat, C., Di Benedetto, H., Baaj, H., and Ech, M., 2014,

“Behavior of Asphalt Mixtures Containing Rap and Shingles,” Road Mater.

Pavement Des., 15(2), pp. 330–347.
[37] Tiouajni, S., Di Benedetto, H., Sauz�eat, C., and Pouget, S., 2011, “Approximation

of Linear Viscoelastic Model by Generalized Kelvin Voigt or Generalized Max-

well Models: Application to Bituminous Materials in the 3 Dimensional Case,”

Road Mater. Pavement Des., 12(4), pp. 897–719.
[38] Fowler, B., 1989, “Interactive Characterization and Data Base Storage of Com-

plex Modulus Data,” Proceedings of Damping ’89, West Palm Beach, FL, Feb.

8–10, Vol. 2, Paper No. FAA.

[39] Deverge, M., Benyahia, L., and Sahraoui, S., 2009, “Experimental Investigation

on Pore Size Effect on the Linear Viscoelastic Properties of Acoustic Foams,”

J. Acoust. Soc. Am., 126(3), pp. 93–96.
[40] Wojtowicki, J.-L., Jaouen, L., and Panneton, R., 2004, “New Approach for the

Measurement of Damping Properties of Materials Using the Oberst Beam,”

Rev. Sci. Instrum., 75(8), pp. 2569–2574.
[41] Williams, M., Landel, R., and Ferry, J., 1955, “The Temperature Dependence

of Relaxation Mechanisms in Amorphous Polymers and Other Glassforming

Liquids,” J. Am. Chem. Soc., 77(14), pp. 3701–3707.
[42] Booij, H., and Thoone, G., 1982, “Generalization of Kramerskronig Transforms

and Some Approximations of Relations Between Viscoelastic Quantities,”

Rheol. Acta, 21(1), pp. 15–24.

[43] Gergesova, M., Zupancic, B., Saprunov, I., and Emri, I., 2011, “The Closed

Form t-T-P Shifting (CFS) Algorithm,” J. Rheol., 55(1), pp. 1–16.
[44] Madigosky, W., Lee, G., and Niemiec, J., 2006, “A Method for Modeling Poly-

mer Viscoelastic Data and the Temperature Shift Function,” J. Acoust. Soc.

Am., 119(6), pp. 3760–3765.
[45] Guedes, R., 2011, “A Viscoelastic Model for a Biomedical Ultra-High Molecu-

lar Weight Polyethylene Using the Time-Temperature Superposition Principle,”

Polym. Test., 30(3), pp. 294–302.
[46] Rouleau, L., Deu, J.-F., Legay, A., and Lay, F. L., 2013, “Application of

Kramers–Kronig Relations to Time-Temperature Superposition for Viscoelastic

Materials,” Mech. Mater., 65, pp. 66–75.
[47] Pritz, T., 1999, “Verification of Local Kramers–Kronig Relations for Complex

Modulus by Means of Fractional Derivative Model,” J. Sound Vib., 228(5),
pp. 1145–1165.

[48] Di Benedetto, H., Sauz�eat, C., and Sohm, J., 2009, “Stiffness of Bituminous

Mixtures Using Ultrasonic Waves Propagation,” Road Mater. Pavement Des.,

10(4), pp. 789–814.
[49] Mounier, D., Di Benedetto, H., and Sauz�eat, C., 2012, “Determination of Bitu-

minous Mixtures Linear Properties Using Ultrasonic Wave Propagation,”

Constr. Build. Mater., 36, pp. 638–647.
[50] Gudmarsson, A., Ryden, N., Di Benedetto, H., Sauz�eat, C., Tapsoba, N., and

Birgisson, B., 2014, “Comparing Linear Viscoelastic Properties of Asphalt

Concrete Measured by Laboratory Seismic and Tension-Compression Tests,”

J. Nondestr. Eval., 33(4), pp. 571–582.
[51] Levenberg, K., 1944, “A Method for the Solution of Certain Problems in Least-

Squares,” Q. Appl. Math., 2, pp. 164–168.
[52] Marquardt, D., 1963, “An Algorithm for Least-Squares Estimation of Nonlinear

Parameters,” SIAM J. Appl. Math., 11(2), pp. 431–441.
[53] Mor�e, J., 1977, “The Levenberg–Marquardt Algorithm: Implementation and

Theory,” Numerical Analysis (Lecture Notes in Mathematics, Vol. 630), G. A.

Watson, ed., Springer-Verlag, Heidelberg, Germany, pp. 105–116.

[54] Gauthier, P., and Rivaille, P.-Y. H., 2009, “Fitting the Smile, Smart Parameters

for SABR and Heston,” Social Science Research Network, Rochester, NY.

9


