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GENERAL SELF-SIMILARITY PROPERTIES FOR MARKOV PROCESSES
AND EXPONENTIAL FUNCTIONALS OF LÉVY PROCESSES

GRÉGOIRE VÉCHAMBRE

Abstract. In this work, we are interested in Markov processes that satisfy self-similarity
properties of a very general form (we call them general self-similar Markov processes, or gssMp’s
for short) and we prove a generalized Lamperti representation for these processes. More precisely
we show that, in dimension 1, a gssMp can be represented as a function of a time-changed
Lévy process, which shows some kind of universality for the classical Lamperti representation
in dimension 1. In dimension 2, we show that a gssMp can be represented in term of the
exponential functional of a bivariate Lévy process, and we can see that processes which can
be represented as functions of time-changed Lévy processes form a strict subclass of gssMp’s in
dimension 2. In other words, we show that the classical Lamperti representation is not universal
in dimension 2. We also study the case of more general state spaces and show that, under some
conditions, we can exhibit a topological group structure on the state space of a gssMp which
allows to write a Lamperti type representation for the gssMp in term of a Lévy process on this
group.

1. Introduction

We consider X, a strongly Markovian càd-làg process on a locally compact separable metric
space E, and we will assume that X satisfies some self-similarity properties. For y ∈ E, let us
denote Xy for the process X starting from y. We denote by Py the law of the process Xy.

We do not assume that X is a Feller process (this restriction would not be natural for the
processes we are considering) so, even if for simplicity we do not authorize instantaneous killing
for Xy, Xy may have finite life-time if, in finite time, every compact subset of E containing y
has been left by Xy. Let us denote by ζ(Xy) the life-time of Xy, that can possibly be finite or
infinite. In the case where P(ζ(Xy) < +∞) > 0 we consider the usual compactification E ∪ {∆}
of E by adding a cemetery point ∆ of which the neighborhoods are Kc ∪ {∆}, where K goes
along compact sets of E, and we put Xy(t) = ∆ for all t ≥ ζ(Xy). Because of the definition
of ζ(Xy), we have that ∆ is an absorbing state for Xy and can only be reached continuously.
Thanks to this, we systematically consider that our processes are defined on the time interval
[0,+∞[. Note that any homeomorphism f of E is naturally extended to an homeomorphism of
E ∪{∆} by imposing f(∆) = ∆. When we compose our processes by homeomorphisms on E we
implicitly consider the extension of the homeomorphisms to E ∪ {∆}, if necessary.

Classically, a strongly Markovian càd-làg process X on ]0,+∞[ is called a positive self-similar
Markovian process (pssMp) if there is α ∈ R such that

∀y > 0, λ > 0, (Xλy(t), t ≥ 0)
L
=
(

λXy(λ
−αt), t ≥ 0

)

, (1.1)

that is, the process starting from λy is equal in law to a scaled version of the process starting
from y. In the above we use the convention λ∆ = ∆. These processes appear as the scaling limits
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of Markov processes (see Lamperti [8]) and in many examples of processes built from stable Lévy
processes (stable Lévy processes conditioned to stay positive, stable Lévy processes killed when
entering ]−∞, 0[, norm of an isotropic d-dimensional stable Lévy processes,...). A famous result
of Lamperti [9] characterizes and gives a representation, the so-called Lamperti representation,
of a pssMp as the exponential of a time-changed Lévy process.

In the recent decades, some generalizations to pssMp’s have been introduced. Real self-similar
Markovian processes (rssMp’s) are strongly Markovian càd-làg processes on R for which 0 is an
absorbing state and that satisfy (1.1) for all y ∈ R \ {0}, λ > 0. It is known that a rssMp can
be represented in term of a time-changed Markov additive process. This representation is called
Lamperti-Kiu representation. It is attributed to Kiu [6], a complete proof is given in [4].

More generally, self-similar Markovian processes on Rd, commonly denoted ssMp’s, are strongly
Markovian càd-làg processes on Rd that satisfy (1.1) for all y ∈ Rd \ {0}, λ > 0. The generalized
Lamperti-Kiu representation allows to express a ssMp in term of a time-changed Markov additive
process that is a little more complicated than the one in the case of a rssMp. This representation
is attributed to Kiu [6], a complete proof is given in [1], see also [5]. See Pardo, Rivero [10]
and Kyprianou [7] for recent and complete accounts on pssMp’s and rssMp’s (for [10]), and on
pssMp’s, rssMp’s and ssMp’s (for [7]).

1.1. General self-similar Markov processes. We are interested in self-similarity properties
that are the most general possible and in characterizing and representing the processes that
satisfy such self-similarity properties. (1.1) says that the process starting from the point λy is
equal in law to the process starting from the point y, linearly time-changed by (t 7−→ λ−αt)
and space-changed by composition of the linear function (z 7−→ λz). It is an open problem
to determine the processes that satisfy self-similarity properties given by more general space-
time-changes. The linearity of the time change can not be relaxed in the context of homogenous
Markov processes. In order to define more general self-similarity relations, we thus allow arbitrary
time-changes as long as they are linear and arbitrary space-changes. We thus define a general
notion of self-similarity in the following way:

Definition 1.1 (gssMp, invariance components). We say that a strongly Markovian càd-làg
process X on a locally compact separable metric space E is a general self-similar Markovian

process (gssMp) if for some point y0 ∈ E we have

∀y ∈ E, (Xy(t), t ≥ 0)
L
= (fy (Xy0(cyt)) , t ≥ 0) , (1.2)

where (fy, y ∈ E) is a family of homeomorphisms of E such that (y, x) 7−→ fy(x) and (y, x) 7−→
f−1
y (x) are continuous from E×E to E, and where (cy, y ∈ E) is a family of positive constants

such that y 7−→ cy is continuous from E to R∗
+. Then, we say that ((fy, cy), y ∈ E) is a family

of invariance components for X, relatively to the reference point y0.

Remark 1.2. Note that, in the above definition, for the case where the processes involved reach
the cemetery point ∆ in finite time, we have assumed that (1.2) holds for the extension of fy(.)
to E ∪ {∆} defined by fy(∆) = ∆. It is not difficult to see that the extensions to E × E ∪ {∆}
of the functions (y, x) 7−→ fy(x) and (y, x) 7−→ f−1

y (x) are continuous.

Remark 1.3. The continuity of the applications (y, x) 7−→ fy(x) and (y, x) 7−→ f−1
y (x), assumed

in Definition 1.1, is equivalent to the continuity of the applications y 7−→ fy(.) and y 7−→ f−1
y (.)

from E to C0(E,E) (respectively E to C0(E ∪ {∆}, E ∪ {∆}) for the case where it is needed to
consider the extension to E ∪ {∆}), the set of continuous functions from E to E (respectively
from E ∪ {∆} to E ∪ {∆}) equipped with the natural topology of uniform convergence on every
compact sets of E (respectively uniform convergence on E ∪ {∆}).
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As mentioned above, natural examples of ssMp’s can be built from stable Lévy processes. For
example the norm of an isotropic stable Lévy process in Rd is a pssMp, a stable Lévy process
in Rd is itself a ssMp, etc... For gssMp’s, natural examples of these processes can be built from
exponential functionals of Lévy processes. For example, let (ξ1, ξ2, ξ3) be a Lévy process in R3,
and for any y = (y1, y2, y3) ∈ R3, let us define

Xy(t) :=

(

y1 + ξ1(t), y2 + ey1
∫ t

0
eξ1(s−)dξ2(s), y3 + e2y1

∫ t

0
e2ξ1(s−)dξ3(s)

)

.

Then X is a gssMp in R3 and a family of invariance components ((fy, cy), y ∈ R3), with respect
to the reference point (0, 0, 0), is given by

∀x = (x1, x2, x3) ∈ R
3, fy(x) =

(

y1 + x1, y2 + ey1x2, y3 + e2y1x3
)

and cy = 1.

As we will see, exponential functionals of Lévy processes play a very important role in the context
of gssMp’s and, at least in dimension 2, they even allow to represent all gssMp’s that satisfy
some regularity conditions. More generally, it seems that the methods that we develop in this
paper could be applied to study some complicated processes built from exponential functionals
of Lévy processes.

A natural problem is to characterize the generalized self-similar Markovian processes that
satisfy Definition 1.1. 1) Can they all, similarly to pssMp’s, be represented as a function of a
time-changed Lévy process ? In other words, do they satisfy some kind of Lamperti representation
? If not, 2 ) how can Lamperti representation be generalized ? The object of the present paper is
to characterize gssMp’s that satisfy some reasonable assumptions and to provide a Lamperti type
representation for them. In particular we will see that the answer to 1) is positive in dimension
1 and negative in dimension 2. In dimension 2, there are two cases: the case of processes that
can be represented as a function of a time-changed Lévy process, and another case for which
we provided a generalized Lamperti representation in term of an exponential functional of a
bivariate Lévy process. The two cases are unified in one general representation. We also provide
a Lamperti type representation for gssMp’s when the state space E is a differential manifold. We
mention in Subsection 1.5 what kind of results can be expected in dimension greater or equal to
3.

gsssMp’s can be seen as a generalization of pssMp’s, but in a completely different direction
than ssMp’s. Indeed, there are two important differences between ssMp’s and the gssMp’s that
we have just defined. On one hand the assumption of self-similarity that we make is very strong
and says that the processes, starting from any point, can be obtained from the process starting
at y0. Such a property is not true in general for rssMp’s and ssMp’s, but it is for pssMp’s, and we
will see that it implies some similarities between gssMp’s and pssMp’s like the appearance of Lévy
processes in the representation of these processes, while Markov additive processes appear in the
representation of rssMp’s and ssMp’s, or the fact that the life-time of the process is always the
exponential functional of a Lévy process. On the other hand, the type of self-similarity that we
assume is much more general than a scaling property. In particular, the higher the dimension is,
the more complicated may the "structure" of the self-similarity be. We will see that in dimension
1 this structure is always simple, which leads us to extend Lamperti representation to gssMp’s
of dimension 1 that satisfy some regularity assumptions. In dimension 2, there are two possible
structures, and they can be unified in a generalized Lamperti representation where the Lévy
process is replaced by a process involving the exponential functional of a bivariate Lévy process.
For higher dimensions, there are even more possible structures, as explained in Subsection 1.5.

Let us first mention some simple consequences of Definition 1.1.

Combination with Strong Markov Property: For any starting point z, if X̃y0 ∼ Py0 is
independent from Xz and S is a stopping time for Xz, then, according to the strong Markov
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property at S and Definition 1.1 we have

(Xz(S + t), t ≥ 0)
L
=
(

fXz(S)

(

X̃y0(cXz(S)t)
)

, t ≥ 0
)

.

Stability by homeomorphism: Let E and F be locally compact separable metric spaces,
andX be a gssMp on E with invariance components ((fy, cy), y ∈ E), relatively to some reference
point y0. Then, if h : E −→ F is an homeomorphism, we have that h(X) is a gssMp on F with
invariance components ((h◦fh−1(z) ◦h

−1, ch−1(z)), z ∈ F ), relatively to the reference point h(y0).

Change of reference point: For a gssMp, the reference point y0 can be chosen arbitrary.
Indeed, let X be a gssMp and let ((fy, cy), y ∈ E) be a family of invariance components for X,
relatively to some reference point y1. Let y2 be any other point in E, then it is easy to see that
((fy ◦ f

−1
y2 , cy/cy2), y ∈ E) is a family of invariance components for X, relatively to the reference

point y2.

Non-uniqueness of invariance components: For a given reference point y0 there is not,
in general, unicity for the choice of the family of invariance components. Indeed, let X be a
gssMp and let ((fy, cy), y ∈ E) be a family of invariance components for X, relatively to some
reference point y0. If there is an homeomorphism Ψ from E to E and a constant λ such that

(Xy0(t), t ≥ 0)
L
= (Ψ (Xy0(λt)) , t ≥ 0) , (1.3)

then clearly ((fy◦Ψ, cyλ), y ∈ E) is also a family of invariance components forX, relatively to the
reference point y0. Note that it is also possible to let Ψ and λ vary smoothly relatively to y in the
set of (Ψ, λ) that satisfy (1.3), to produce a family of invariance components ((fy ◦Ψy, cyλy), y ∈
E). In particular, the set of all possible families of invariance components of a gssMp can possibly
be quite complicated. Among all possible choices of families of invariance components it will be
convenient to work with those that satisfy some nice properties. In the logic of Remark 1.2,
note that in (1.3) (and also in (1.5) below, and everywhere where such equalities in law for
processes appear), for the case where the processes involved reach the cemetery point ∆ in
finite time, we actually consider the extension of Ψ (respectively h) to E ∪ {∆} that satisfies
Ψ(∆) = ∆ (respectively h(∆) = ∆), but the extension of Ψ (respectively h) is still denoted by
Ψ (respectively h) for simplicity.

An important part of this work consists in showing the existence of what we will call good
invariance components. For this, some assumptions on E and X are needed. For y ∈ E, let
Supp(Xy) denote the support of Xy in E:

Supp(Xy) :=
⋃

t≥0

Supp(Xy(t)) (1.4)

= {z ∈ E, s.t. ∀ǫ > 0,∃t ≥ 0 for which P(Xy(t) ∈ B(z, ǫ)) > 0} .

By reducing E if necessary, we can assume that E = Supp(Xy0). Therefore, we define the
following assumption

Assumption 1.
E = Supp(Xy0).

Because of the use of continuity arguments it is often convenient to assume that E is con-
nected. Moreover, when E is connected, Assumption 1 is implied by a simple assumption of
non-degeneracy:

Assumption 2.

∃y ∈ E s.t. y ∈
˚̂

Supp(Xy).
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Assumption 2 can be motivated by the need to avoid some degenerate cases, for example
arithmetic processes on E = R. The fact that Assumption 2 implies Assumption 1 is proved
in Lemma 7.1 of Section 7. We also need to take into account the symmetries of X. For any
y ∈ E let us define Sym(Xy) ⊂ C0(E,E) to be the group of symmetries of Xy, i.e. the group of
homeomorphisms that leave invariant the law of Xy:

Sym(Xy) :=
{

h ∈ Hom(E), Xy
L
= h(Xy)

}

. (1.5)

If ((fy, cy), y ∈ E) is a family of invariance components for X, relatively to some reference point
y0, then it is easy to see that we have Sym(Xy) = fy ◦ Sym(Xy0) ◦ f

−1
y . Note that, if y 7−→ hy

is a continuous application from E to Sym(Xy0) ⊂ C0(E,E), then ((fy ◦hy, cy), y ∈ E) is still a
family of invariance components forX, relatively the reference point y0 (the required assumptions
of continuity are satisfied because of Remark 1.3). Therefore, the symmetries of X can interfere
with the self-similarity property, in the sens that they can make the set of families of invariance
components very complicated. In order to avoid too much problems, we will often need to prove
or assume that Sym(Xy0) is discrete (as a subset of C0(E,E) equipped with the topology of
uniform convergence on every compact sets). Note that, since Sym(Xy) = fy ◦Sym(Xy0) ◦ f

−1
y ,

"Sym(Xy0) is discrete" is always equivalent to "Sym(Xy) is discrete for some y ∈ E". It will be
shown in Lemma 7.2 of Section 7 that, under Assumption 1, "Sym(Xy0) is discrete" is always
true in dimension 1.

Finally, we need assumptions of regularity in order to obtain the existence of what we will call
good invariance components. When the state space E is equipped with a differential structure of
class Ck, we can define Ck invariance components in the following way:

Definition 1.4 (Ck invariance components, Ck-gssMp). For k ≥ 1, let X be a gssMp on a Ck-
differentiable manifold M. Let ((fy, cy), y ∈ M) be a family of invariance components for X,

relatively to some reference point y0. We say that ((fy, cy), y ∈ E) is a family of Ck invariance

components if the applications ((y, x) 7−→ fy(x)), ((y, x) 7−→ f−1
y (x)), and (y 7−→ cy) are of

class Ck.

If a gssMp X on a Ck-differentiable manifold M admits a family of Ck invariance components,
then X is said to be a Ck-general self-similar Markovian process (Ck-gssMp).

Note that the procedure of "change of reference point" described above transforms a family
of Ck invariance components into a family of Ck invariance components. In the remainder, when
we consider a Ck-gssMp on an open interval I ⊂ R (respectively on an open simply connected
domain D ⊂ R2), it is implicit that the differential structure on I (respectively on D) is the
natural one, arising from the fact that it is an open subset of R (respectively of R2), and it
induces the usual differentiation on R (respectively on R2).

1.2. General results. We now state Lamperti type representations for gssMp’s in dimension
1 and 2. In dimension 1, it turns out that Ck-gssMp’s can be expressed as the image by some
function of a time-changed Lévy process (or equivalently as the image by some function of a
pssMp). This shows some kind of universality for Lamperti representation, since it is shared by
Ck-gssMp’s in dimension 1, no matter what is the shape of their invariance components.

Recall that the starting point of a Lévy process on R (or more generally on a group) is always
0 (respectively the neutral element of the group).

In dimension 1 our result is the following:

Theorem 1.5 (Dimension 1). For k ≥ 1, let X be a Ck-gssMp on I, an open interval of R.
Let us fix a point y0 ∈ I to be the reference point. We assume that either Assumption 1 or
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Assumption 2 is satisfied for E = I. Then, there is a Ck-diffeomorphism ψ : R −→ I, a real Lévy
process ξ and α ∈ R such that if we set

∀t ∈ [0,+∞], ϕ(t) :=

∫ t

0
eαξ(s)ds, (1.6)

then

ζ(Xy0) = ϕ(+∞) =

∫ +∞

0
eαξ(s)ds (1.7)

and

∀ 0 ≤ t < ϕ(+∞), Xy0(t) = ψ
(

ξ
(

ϕ−1(t)
))

. (1.8)

Reciprocally, for an open interval I ⊂ R, an homeomorphism ψ : R −→ I, a real Lévy process

ξ, and α ∈ R, let us fix y ∈ I and define ∀t ∈ [0,+∞], ϕy(t) :=
∫ t
0 e

α(ψ−1(y)+ξ(s))ds and ∀0 ≤ t <

ϕy(+∞),Xy(t) := ψ(ψ−1(y) + ξ(ϕ−1
y (t))). If ϕy(+∞) < +∞ then ∀t ≥ ϕy(+∞),Xy(t) := ∆,

where ∆ is a cemetery point. Then we have ζ(Xy) = ϕy(+∞) a.s. and X is a gssMp on I. A
family of invariance components ((fy, cy), y ∈ I), relatively to the reference point ψ(0), is given

by fy(.) := ψ(ψ−1(y) + ψ−1(.)) and cy := e−αψ
−1(y).

In dimension 2, it turns out that the class of Ck-gssMp’s is larger than (i.e. contains strictly)
the class of processes that can be expressed as the image by some function of a time-changed
two-dimensional Lévy process (i.e. processes that satisfy a classical Lamperti representation).
Ck-gssMp’s are identified with the class of processes that can be expressed as the image by some
function of a time-changed process built from the exponential functional of a bivariate Lévy
process, and this class contains, as a subclass, processes that can be expressed as the image by
some function of a time-changed two-dimensional Lévy process. For i ∈ {1, 2}, let πi(x) denote
the linear projection of an element x ∈ R2 to its ith coordinate. Our result is the following:

Theorem 1.6 (Dimension 2). For k ≥ 2, let X be a Ck-gssMp on D, an open simply connected
domain of R2. Let us fix a point y0 ∈ D to be the reference point. We assume that either
Assumption 1 or Assumption 2 is satisfied for E = D and that Sym(Xy0) is discrete. Then,

there is a Ck-diffeomorphism ψ : R2 −→ D, a Lévy process (ξ, η) on R2, and α, β ∈ R such that
if we set

∀t ∈ [0,+∞], ϕ(t) :=

∫ t

0
eαξ(s)ds, (1.9)

then

ζ(Xy0) = ϕ(+∞) =

∫ +∞

0
eαξ(s)ds (1.10)

and

∀ 0 ≤ t < ϕ(+∞), Xy0(t) = ψ

(

ξ
(

ϕ−1(t)
)

,

∫ ϕ−1(t)

0
eβξ(s−)dη(s)

)

. (1.11)

Reciprocally, for an open simply connected domain D ⊂ R2, an homeomorphism ψ : R2 −→ D,
a R2-valued Lévy process (ξ, η), and α, β ∈ R, let us fix y ∈ D and define ∀t ∈ [0,+∞], ϕy(t) :=
∫ t
0 e

α(π1(ψ−1(y))+ξ(s))ds, and ∀ 0 ≤ t < ϕy(+∞),

Xy(t) := ψ

(

π1(ψ
−1(y)) + ξ(ϕ−1

y (t)), π2(ψ
−1(y)) +

∫ ϕ−1
y (t)

0
eβ(π1(ψ

−1(y))+ξ(s−))dη(s)

)

.
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If ϕy(+∞) < +∞ then ∀t ≥ ϕy(+∞),Xy(t) := ∆, where ∆ is a cemetery point. Then we
have ζ(Xy) = ϕy(+∞) a.s. and X is a gssMp on D. A family of invariance components
((fy, cy), y ∈ D), relatively to the reference point ψ(0, 0), is given by fy(.) := ψ(π1(ψ

−1(y) +

ψ−1(.)), π2(ψ
−1(y) + eβπ1(ψ

−1(y))ψ−1(.))) and cy := e−απ1(ψ
−1(y)).

In the above theorem, a gssMp is expressed as a function of a time-changed process of the
form (ξ(.),

∫ .
0 e

βξ(s−)dη(s)), where (ξ, η) is a two-dimensional Lévy process and β ∈ R. The
particular case where β = 0 corresponds to the case where X can be expressed as a function of
a time-changed two-dimensional Lévy process.

Remark 1.7. In the above two theorems, α plays a similar role as the self-similarity index in
Lamperti representation, and in the case of a pssMp, our α even coincides with the classical
self-similarity index, as it will be seen in Subsection 1.6. It is possible to have α = 0 which
corresponds to the case where the change of time ϕ−1(.) is trivial.

For a Ck-gssMp in a more general setting, when the state space is equipped with a differential
structure, we can establish a generalized Lamperti representation that involves Lévy processes.
This can seem surprising since there is no natural meaning for a Lévy process on a general state
space. However, we show that the state space can be equipped with a structure of Lie group
such that the Ck-gssMp is represented in term of a left Lévy process on this Lie group (in the
remainder, when we work on a non-commutative group, we only deal with left Lévy processes
and we call these simply Lévy processes). Our result is the following.

Theorem 1.8. For k ≥ 1, let X be a Ck-gssMp on a connected Ck-differentiable manifold M.
Let us fix a point y0 ∈ M to be the reference point. We assume that either Assumption 1 or
Assumption 2 is satisfied for E = M and that Sym(Xy0) is discrete. Then, there is an intern

composition law ⋆ on M and a Ck-function h : M −→ R+ such that

• (M, ⋆) is a Ck-Lie group with neutral element y0 ;
• h is a Ck-Lie group homomorphism from (M, ⋆) to (R∗

+,×) ;
• There is a Lévy process L (starting from y0) on (M, ⋆) such that, if we define ∀t ∈

[0,+∞], ϕ(t) :=
∫ t
0 1/h(L(s))ds then ζ(Xy0) = ϕ(+∞) and

∀ 0 ≤ t < ϕ(+∞), Xy0(t) = L
(

ϕ−1(t)
)

. (1.12)

Moreover, note that if we let ξ(.) := log(1/h(L(.))), then ξ is a real Lévy process and we have

ζ(Xy0) =
∫ +∞
0 eξ(s)ds.

The above theorem says that, under some assumptions, Ck-gssMp’s can be identified as time-
changed Lévy processes on the state space equipped with some group structure. This can be seen
as a generalization of Lamperti representation for general state spaces. Indeed, since exponentials
of Lévy processes on (R,+) coincide with Lévy processes on (R∗

+,×), the classical Lamperti
representation can be reformulated in the following way:

Theorem 1.9 (Reformulated classical Lamperti representation). Let X be a pssMp of index
α ∈ R. Let us define the continuous group homomorphism h from (R∗

+,×) to (R∗
+,×) by h(x) =

x−α. Then, there is a Lévy process L (starting from 1) on (R∗
+,×) such that, if we define

∀t ∈ [0,+∞], ϕ(t) :=
∫ t
0 1/h(L(s))ds then ζ(X1) = ϕ(+∞) and

∀ 0 ≤ t < ϕ(+∞), X1(t) = L
(

ϕ−1(t)
)

. (1.13)

Remark 1.10. Thanks to the above reformulation of Lamperti representation we see that, in
Theorem 1.8, the group homomorphism h generalizes the self-similarity index from Lamperti
representation, and the α from Theorems 1.5 and 1.6. It is possible to have h ≡ 1 (this means
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α = 0 in the case of a pssMp) which corresponds to the case where the change of time, ϕ−1(.), is
trivial, in that case Xy0 is a Lévy process on M, equipped with the group structure constructed
by the theorem.

The interest of Theorem 1.8 is that, not only the state space is quite general, but, besides
regularity assumption, we do not assume any particular form for the invariance components,
that is, for the type of self-similarity satisfied by the gssMp. It is not difficult to prove that the
reciprocal of Theorem 1.8 is true: time-changed Lévy processes on topological groups give rise
to gssMp’s. We state this in the following proposition.

Proposition 1.11. Let (E, ⋆) be a topological group with neutral element denoted by e0, and
where E is a locally compact separable metric space. Let h be a continuous group homomorphism
from (E, ⋆) to (R∗

+,×), and L be a Lévy process on (E, ⋆). For a fixed y ∈ E let us define

∀t ∈ [0,+∞], ϕy(t) :=
1

h(y)

∫ t

0

1

h(L(s))
ds, (1.14)

and

∀ 0 ≤ t < ϕy(+∞), Xy(t) := y ⋆ L
(

ϕ−1
y (t)

)

. (1.15)

If ϕy(+∞) < +∞ then

∀t ≥ ϕy(+∞), Xy(t) := ∆,

where ∆ is a cemetery point. Then we have ζ(Xy) = ϕy(+∞) a.s. and X is a gssMp on E. A
family of invariance components ((fy, cy), y ∈ E) is given by fy(.) := y ⋆ . and cy := h(y), for
the reference point e0. Moreover, note that if we let ξ(.) := log(1/h(L(.))), then ξ is a real Lévy

process and we have ζ(Xy) =
1

h(y)

∫ +∞
0 eξ(s)ds.

Remark 1.12. In the representations (1.8), (1.11), (1.12), and (1.13) from the above theorems,

if one replaces ξ, (ξ(.),
∫ .
0 e

βξ(s−)dη(s)), L, and L by respectively ψ−1(y) + ξ,

(π1(ψ
−1(y))+ξ(.), π2(ψ

−1(y))+
∫ .
0 e

β(π1(ψ−1(y))+ξ(s−))dη(s)), y⋆L, and y×L (where, respectively,
y ∈ I, y ∈ D, y ∈ E, and y ∈ R∗

+), then one obtains a version of Xy.

Remark 1.13. An interesting consequence of our results is that, for any gssMp X to which one
of our theorems is applicable, the exit time of X from its domain, no matter how complicated this
domain is, is always equal in law to the exponential functional of a real Lévy process, just as in
the case of a pssMp (an heuristic explanation for this similarity is proposed a little after Remark
1.3). This may seem surprising since, according to (generalized) Kiu-Lamperti representation,
the life-time of a rssMp and more generally of a ssMp is in general not the exponential functional
of a Lévy process but of a Markov additive process (see for example the end of Sextion 3.2 in
[10]). Also, a pssMp that has finite life-time always leaves the domain ]0,+∞[ at {0} (when
α > 0) or at {+∞} (when α < 0). In the case of a gssMp, the way to leave the domain can be
very different, since the exit from the domain does not have to be made at a particular point of
the boundary. It is thus remarkable that the law of the exit time remains the same as in the case
of a pssMp. The results of the next subsection make explicite, in some cases, the decompositions
from the above theorems so in particular the Lévy process ξ, of which the exponential functional
is the the life-time of X, can be constructed explicitly from X and its good invariance components
(see Remarks 1.17 and 1.21 below).

The relation between pssMp’s and exponential functionals of Lévy processes has proved to
be quite fruitful to study the latter (see for example [11] and [12]). We believe that relating
exponential functionals to a larger class of processes, as we have done in the results of this
section, may also be interesting for the study of exponential functionals of Lévy processes.
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1.3. Good components and explicit results.

Definition 1.14 (Good invariance components). Let X be a gssMp on a locally compact separable
metric space E. Let ((fy, cy), y ∈ E) be a family of invariance components for X, relatively to
some reference point y0. We say that ((fy, cy), y ∈ E) are good invariance components if
they have the following properties:

fy0 = idE and cy0 = 1, (1.16)

∀y, z ∈ E, cfy(z) = cy × cz. (1.17)

For example we see that the invariance components defined in Proposition 1.11 and in the
reciprocals of Theorems 1.5-1.6, for the gssMp’sX defined there, are good invariance components.
As we will see, good invariance components are exactly those that can be naturally related to a
group structure on the state space E, as in Proposition 1.11. In the proofs of our results, making
appear a group structure on the state space is a key point to represent a gssMp in term of a Lévy
process, but for this we need to work with good invariance components. Therefore, the existence
of good invariance components has a theoretical interest, for example for the proofs of Theorems
1.5, 1.6 and 1.8, and on the other hand, having good invariance components is also useful to
get explicite relations between the invariance components and the representations of X given
in Theorems 1.5, 1.6 and 1.8. In particular, in the context of good invariance components, the
group structure appearing in Theorem 1.8 is constructed naturally in term of these components,
as we will see in Theorem 1.20.

Note that if X is a gssMp, and ((fy, cy), y ∈ E) is a family of invariance components for X,
relatively to some reference point y0, then ((fy ◦ f

−1
y0 , cy/cy0), y ∈ E) is a family of invariance

components for X, relatively to the reference point y0, and it satisfies (1.16). However, the
existence of a family of invariance components that satisfies (1.17) is much more difficult to
prove, and is established in the following proposition.

Proposition 1.15 (Existence of Ck good invariance components). For k ≥ 1, let X be a Ck-
gssMp on a connected Ck-differentiable manifold M and let y0 be an element of M. We assume
that either Assumption 1 or Assumption 2 is satisfied for E = M and that Sym(Xy0) is discrete.

Then X admits a family of Ck good invariance components relatively to the reference point y0.

Thanks to this proposition, we will often assume that a gssMp is given along with a family of
good invariance components.

For gssMp’s, given along with good invariance components, we have the following results that
can be thought of as explicit versions of Theorems 1.5, 1.6, and 1.8.

Theorem 1.16 (Explicit result in dimension 1). For k ≥ 1, let X be a Ck-gssMp on I, an open
interval of R, and let ((fy, cy), y ∈ I) be a family of Ck good invariance components for X,
relatively to some reference point y0 ∈ I. We assume that either Assumption 1 or Assumption 2
is satisfied for E = I. Let g : I −→ R and α ∈ R be defined via

∀y ∈ I, g(y) :=

∫ y

y0

1

f ′y(y0)
dy, α := − log(cg−1(1)), (1.18)

where f ′y denotes the derivative of the function fy : I −→ I. Then, g and α are well-defined, g

is a Ck-diffeomorphism from I to R, and there is a real Lévy process ξ such that if we set

∀t ∈ [0,+∞], ϕ(t) :=

∫ t

0
eαξ(s)ds, (1.19)
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then

ζ(Xy0) = ϕ(+∞) =

∫ +∞

0
eαξ(s)ds (1.20)

and

∀ 0 ≤ t < ϕ(+∞), Xy0(t) = g−1
(

ξ
(

ϕ−1(t)
))

. (1.21)

Remark 1.17. In the above theorem g is constructed directly from the family of good invariance
components of X and we see that the Lévy process ξ can be expressed as ξ(t) = g(Xy0(ϕ(t))).
Moreover, as we will justify in the end of the proof of the theorem, ϕ−1(t) has an alternative
expression in term of Xy0 and of the good invariance components: for all 0 ≤ t < ζ(Xy0),

ϕ−1(t) =
∫ t
0 cXy0 (u)

du. This, together with the expression ξ(t) = g(Xy0(ϕ(t))), allows to express

explicitly ξ in term of Xy0 and of the good invariance components, as mentioned in Remark 1.13.
Similarly, the ξ in Theorem 1.19 below can also be expressed explicitly in term of Xy0 and of the
good invariance components.

Before stating the result in dimension 2, let us introduce the notion of commutative invariance
components.

Definition 1.18 (Commutative invariance components). Let X be a gssMp on a locally compact
separable metric space E. Let ((fy, cy), y ∈ E) be a family of invariance components for X, rel-
atively to some reference point y0. We say that ((fy, cy), y ∈ E) are commutative invariance

components if they have the following property:

∀y, z ∈ E, fy(z) = fz(y). (1.22)

Theorem 1.19 (Explicit result in dimension 2). For k ≥ 2, let X be a Ck-gssMp on D, an open
simply connected domain of R2, and let ((fy, cy), y ∈ D) be a family of Ck good invariance

components associated with X, relatively to some reference point y0 ∈ D. We assume that
either Assumption 1 or Assumption 2 is satisfied for E = D and that Sym(Xy0) is discrete.

• If ((fy, cy), y ∈ D) are commutative invariance components, then let Y0 be the gradient

at y0 of the application (y 7−→ cy). If Y0 6=

(

0
0

)

let M :=

(

π1(Y0) π2(Y0)
−π2(Y0) π1(Y0)

)

, if

Y0 =

(

0
0

)

let M be the identity 2 × 2 matrix. Finally, let g : D −→ R2 and α ∈ R be

defined via

∀y ∈ D, g(y) :=

∫ b

a
M.
[

Jfγ(s)(y0)
]−1

.γ′(s)ds, α := − log(cg−1(1,0)), (1.23)

where Jfz denotes the Jacobian matrix of the function fz(.) : D −→ D and where γ :
[a, b] −→ D is any path, locally C1, with γ(a) = y0 and γ(b) = y. Then, g and α are
well-defined, g is a Ck-diffeomorphism from D to R2, and there is a Lévy process (ξ, η)
on R2 such that if we set

∀t ∈ [0,+∞], ϕ(t) :=

∫ t

0
eαξ(s)ds, (1.24)

then

ζ(Xy0) = ϕ(+∞) =

∫ +∞

0
eαξ(s)ds (1.25)

and

∀ 0 ≤ t < ϕ(+∞), Xy0(t) = g−1
(

ξ
(

ϕ−1(t)
)

, η
(

ϕ−1(t)
))

. (1.26)
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• If ((fy, cy), y ∈ D) are not commutative invariance components, then let g : D −→ R2

be defined as in Lemma 4.4, and α := − log(cg−1(1,0)) ∈ R. Then, g and α are well-

defined, g is a Ck-diffeomorphism from D to R2, and there is a Lévy process (ξ, η) on R2

such that if we set

∀t ∈ [0,+∞], ϕ(t) :=

∫ t

0
eαξ(s)ds, (1.27)

then

ζ(Xy0) = ϕ(+∞) =

∫ +∞

0
eαξ(s)ds (1.28)

and

∀ 0 ≤ t < ϕ(+∞), Xy0(t) = g−1

(

ξ
(

ϕ−1(t)
)

,

∫ ϕ−1(t)

0
eξ(s−)dη(s)

)

. (1.29)

Theorem 1.20. Let X be a gssMp on a connected locally compact separable metric space E, and
let ((fy, cy), y ∈ E) be a family of good invariance components for X, relatively to some
reference point y0. We assume that either Assumption 1 or Assumption 2 is satisfied for E and
that Sym(Xy0) is discrete. Let us define an interne composition law ⋆ on E by y ⋆ x := fy(x).
Then:

• (E, ⋆) is a topological group with neutral element y0 ;
• (y 7−→ cy) is a continuous group homomorphism from (E, ⋆) to (R∗

+,×) ;
• There is a Lévy process L (starting from y0) on (E, ⋆) such that if we define ∀t ∈

[0,+∞], ϕ(t) :=
∫ t
0 1/cL(s)ds then ζ(Xy0) = ϕ(+∞) and

∀ 0 ≤ t < ϕ(+∞), Xy0(t) = L
(

ϕ−1(t)
)

. (1.30)

Let ξ(.) := log(1/cL(.)), then ξ is clearly a real Lévy process and we have ζ(Xy0) =
∫ +∞
0 eξ(s)ds.

If moreover, for k ≥ 1, E is a Ck-differentiable manifold and ((fy, cy), y ∈ E) are Ck good

invariance components, then (E, ⋆) is even a Ck-Lie group and (y 7−→ cy) is a Ck-Lie group
homomorphism.

Remark 1.21. As in Remark 1.17, let us mention that in the above theorem we see that the Lévy
process L can be expressed as L(t) = Xy0(ϕ(t)) and, as we will justify in the end of the proof
of the theorem, ϕ−1(t) has an alternative expression in term of Xy0 and of the good invariance

components: for all 0 ≤ t < ζ(Xy0), ϕ
−1(t) =

∫ t
0 cXy0(u)

du. This, together with the expression

ξ(.) := log(1/cL(.)), allows to express explicitly ξ in term of Xy0 and of the good invariance
components, as mentioned in Remark 1.13.

Recall that the family of invariance components defined in Proposition 1.11 always satisfies
Definition 1.14 so it is actually a family of good invariance components. Therefore, Proposition
1.11 can be seen as the reciprocal of the above theorem.

Remark 1.22. In the representations (1.21), (1.26), (1.29), and (1.30) from the above theorems,
if one replaces ξ, (ξ, η), (ξ(.),

∫ .
eξ(s−)dη(s)), and L by respectively ψ−1(y) + ξ, ψ−1(y) + (ξ, η),

(π1(ψ
−1(y)) + ξ(.), π2(ψ

−1(y)) +
∫ .
0 e

π1(ψ−1(y))+ξ(s−)dη(s)), and y ⋆ L (where, respectively, y ∈ I,
y ∈ D, y ∈ D and y ∈ E) then on obtains a version of Xy.

As we said above, the results of this subsection are not only explicit versions of Theorems 1.5,
1.6 and 1.8, but they are also the main ingredients for their proofs. Indeed, as we will see, the
direct part of Theorem respectively 1.5, 1.6 and 1.8 follows from Proposition 1.15 together with
Theorem respectively 1.16, 1.19 and 1.20.



General self-similarity properties for Markovian processes 12

1.4. Sketch of proof and organization of the paper.

In the remaining part of this section we discuss the case of dimension greater or equal to 3
and then we present some examples and particular cases of gssMp’s, for which the results above
take a simple or nice form.

In Section 2 we prove some preliminary results that are crucial for the rest of the paper. More
precisely we prove Proposition 2.1 which is a compatibility relation that is satisfied by invariance
components of a gssMp. We then use that relation to prove Proposition 1.15 (the existence of
good invariance components).

In Section 3 we first prove Proposition 1.11. Then, we use the compatibility relation from
Proposition 2.1 to prove Proposition 3.1 which makes appear a group structure on the state
space of a gssMp X that admits good invariance components. Then, we prove Proposition
3.3 which identifies X with a time-changed Lévy process on its state space equipped with the
above-mentioned group structure. We then prove Theorems 1.20 and 1.8.

In Section 4 we construct some explicit Lie group isomorphisms between the Lie groups con-
structed in the previous section (when the state space is an open interval of R or an open simply
connected domain of R2) and some canonical Lie groups in dimension 1 and 2. Thanks to that, a
gssMp on an open interval of R, or on an open simply connected domain of R2, can be expressed
explicitly as a function of a time-changed Lévy process on one of these canonical groups.

In Section 5 we prove Proposition 5.1 that gives a convenient expression of Lévy processes
on the most complicated of these canonical Lie groups, in term of exponential functionals of
bivariate Lévy processes.

In Section 6 we put the pieces together to prove Theorems 1.16 and 1.19. Then, Theorems
1.5 and 1.6 follow from those theorems together with Proposition 1.15.

In Section 7 we prove some technical lemmas about the assumptions discussed in the end of
Subsection 1.1.

1.5. The case of dimension greater or equal to 3. We now briefly describe how the present
methodology can be generalized in order to obtain results analogous to Theorems 1.16, 1.5, 1.19
and 1.6 in dimension d ≥ 3.

In the case where the domain of a gssMp X is D, a simply connected open subset of Rd for
some d ≥ 3, one can still apply the same methodology: under some assumptions, Proposition 1.15
allows to build good invariance components and Theorem 1.20 to identify a Lie group structure
(D, ⋆) of dimension d on D for which X is a time-changed Lévy process. Then, one has to choose
a ’canonical’ representative for each isomorphism class of Lie group structure of dimension d,
to build an explicit isomorphism between (D, ⋆) and its representative (in particular one needs
to be able to identify the isomorphism class of (D, ⋆) from the good invariance components of
X) and to obtain a convenient expression for Lévy processes on each of these representative Lie
groups.

We thus see that in dimension d, there are as many possibilities as the number of Lie group
structures of dimension d, up to isomorphism. For d = 1 this number is 1 (which is why there is
only one case in Theorem 1.16), for d = 2 this number is 2 (which corresponds to the two cases
in Theorem 1.19).

1.6. Some examples and particular cases. A basic example is the one of a pssMp X with
index α ∈ R. In that case, the state space is the interval E =]0,+∞[. By definition of a pssMp of
index α, a family of invariance components ((fy, cy), y ∈]0,+∞[), with respect to the reference
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point 1, is given by fy(x) = yx and cy = y−α. It is immediate that this family of invariance
components is good (i.e. it satisfies Definition 1.14) and of class C∞. Then, the function g defined
in (1.18) is equal to log(.) and the real number α defined in (1.18) coincides with the similarity
index α of the pssMp X. The application of Theorem 1.16 yields that, provided that Assumption
1 or Assumption 2 is satisfied for E =]0,+∞[, we have

ζ(Xy0) = ϕ(+∞) and ∀ 0 ≤ t < ϕ(+∞), X1(t) = exp
(

ξ
(

ϕ−1(t)
))

,

where ξ is a real Lévy process and ϕ(t) :=
∫ t
0 e

αξ(s)ds. We have thus retrieved Lamperti’s
representation for X.

Another interesting particular case of gssMp’s is the case where the time-changes are trivial, i.e.
there exists a family of invariance components ((fy, cy), y ∈ E) for X such that ∀y ∈ E, cy = 1.

In this case the self-similarity relation simply becomes ∀y ∈ E,Xy
L
= fy(Xy0). Replacing fy by

fy ◦ f
−1
y0 if necessary, it is plain that the family ((fy, 1), y ∈ E) satisfies Definition 1.14, so it is

a family of good invariance components.

• When E = I, an open interval of R. If the family of good invariance components
((fy, 1), y ∈ I) is Ck for some k ≥ 1, and if Assumption 1 or Assumption 2 is satisfied for
E = I, then Theorem 1.16 applies, and the α defined in (1.18) clearly equals 0 so that
the time-change function is trivial : ϕ(t) = t. Therefore, Xy0 is only the image by g−1

(where g is defined in (1.18)) of a real Lévy process ξ.
• When E = D, an open simply connected domain of R2. If the family of good invariance

components ((fy, 1), y ∈ D) is Ck for some k ≥ 2, if Assumption 1 or Assumption 2 is
satisfied for E = D, and if Sym(Xy0) is discrete, then Theorem 1.19 applies, and the α
defined there equals 0 so that the time-change function is trivial : ϕ(t) = t. Therefore, if
((fy, 1), y ∈ D) are commutative, Xy0 is the image by g−1 (where g is defined in (1.23))
of (ξ, η), that is a Lévy process on R2. If ((fy, 1), y ∈ I) are not commutative, Xy0 is the

image by g−1 (where g is defined in Lemma 4.4) of (ξ(.),
∫ .
eξ(s−)dη(s)), where (ξ, η) is a

Lévy process on R2.
• In a more general context, if the assumptions of Theorem 1.20 are satisfied (E is con-

nected, Assumption 1 or Assumption 2 is satisfied, and Sym(Xy0) is discrete), then the
theorem applies and we see that the time-change function is trivial : ϕ(t) = t. Therefore
Xy0 is a Lévy process on E, equipped with the group structure defined in the theorem.

2. Compatibility relation and construction of good components

We now prove a key result that yields a compatibility relation satisfied by invariance compo-
nents of a gssMp. This result is important to establish Proposition 1.15 and then to make appear
the structure of group in Proposition 3.1. In the logic of Remark 1.2, note that in the next two
propositions, their proofs, and where they are applied, for the case where the processes involved
reach the cemetery point ∆ in finite time, we actually work with the extension of homeomor-
phisms to E ∪ {∆} that send the cemetery point ∆ on itself (but, for example, the extension of
fy(.) is still denoted by fy(.) for simplicity).

Proposition 2.1. Let E be a locally compact separable metric space, and let X be a gssMp on
E with invariance components ((fy, cy), y ∈ E) relatively to some reference point y0 ∈ E. We
assume that Assumption 1 is satisfied. Then we have

∀y1, y2 ∈ E, ffy1(y2)

(

Xy0(cfy1 (y2) × .)
)

L
= fy1 ◦ fy2 (Xy0(cy1 × cy2 × .)) .

Proof. Assume that X and ((fy, cy), y ∈ E) are as in the statement of the proposition. Let
y1, y2 ∈ E be arbitrary. By self-similarity we have Supp(Xy1) = fy1(Supp(Xy0)). Because of
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Assumption 1 Supp(Xy0) = E so, since fy1 is an homeomorphism, we get Supp(Xy1) = E. Let
us define a := fy1(y2) and fix ǫ > 0. Since a ∈ E = Supp(Xy1), and by definition of Supp(Xy1),
there exists sǫ ≥ 0 such that P (Xy1(sǫ) ∈ B(a, ǫ)) > 0. Let us fix such a sǫ ≥ 0. We consider
the process (Xy1(sǫ + t), t ≥ 0) conditionally on the event {Xy1(sǫ) ∈ B(a, ǫ)} that has positive

probability. Let X̃y0 and X̂y0 be independent with law Py0 , and be independent of Xy1 . On one
hand, by the Markov property at sǫ and the self-similarity we have

L
(

Xy1(sǫ + .)
∣

∣Xy1(sǫ) ∈ B(a, ǫ)
)

= L
(

fXy1(sǫ)

(

X̃y0(cXy1 (sǫ)
× .)

)

∣

∣Xy1(sǫ) ∈ B(a, ǫ)
)

. (2.31)

On the other hand, by applying the self-similarity at the starting point y1, and then the Markov
property at time cy1sǫ and the self-similarity at X̂y0(cy1sǫ), we have

L
(

Xy1(sǫ + .)
∣

∣Xy1(sǫ) ∈ B(a, ǫ)
)

=L
(

fy1

(

X̂y0(cy1 × (sǫ + .))
)

∣

∣fy1

(

X̂y0(cy1sǫ)
)

∈ B(a, ǫ)
)

=L
(

fy1

(

X̂y0(cy1 × (sǫ + .))
)

∣

∣X̂y0(cy1sǫ) ∈ f−1
y1 (B(a, ǫ))

)

=L
(

fy1 ◦ fX̂y0(cy1sǫ)

(

X̃y0(cy1 × cX̂y0 (cy1sǫ)
× .)

)

∣

∣X̂y0(cy1sǫ) ∈ f−1
y1 (B(a, ǫ))

)

. (2.32)

Let ǫ decrease to 0 via a countable sequence (for each of these ǫ we can chose an sǫ ≥ 0
such that P (Xy1(sǫ) ∈ B(a, ǫ)) > 0, and the above procedure shows that (2.31) and (2.32)

hold). In the right hand side of (2.31), we have the law of a function of the process X̃y0 and of
an independent random variable Aǫ where L(Aǫ) = L(Xy1(sǫ)|Xy1(sǫ) ∈ B(a, ǫ)). Clearly, Aǫ
converges in distribution to a when ǫ goes to 0. Using Slutsky’s Lemma and the continuity of
(y, x) 7−→ fy(x) and of y 7−→ cy assumed in Definition 1.1, we deduce that the right hand side

of (2.31) converges (in the sens of finite-dimensional distributions) to L(fa(X̃y0(ca × .))).

Similarly, in the right hand side of (2.32), we have the law of a function of the process X̃y0 and

of an independent random variable Bǫ where L(Bǫ) = L(X̂y0(cy1sǫ)|X̂y0(cy1sǫ) ∈ f−1
y1 (B(a, ǫ))).

By continuity of f−1
y1 , Bǫ converges in distribution to f−1

y1 (a) when ǫ goes to 0. Using Slutsky’s
Lemma and the continuity of (y, x) 7−→ fy(x) and of y 7−→ cy assumed in Definition 1.1, we
deduce that the right hand side of (2.32) converges (in the sens of finite-dimensional distributions)

to L(fy1 ◦ ff−1
y1

(a)(X̃y0(cy1 × cf−1
y1

(a) × .))).

Since the laws in (2.31) and (2.32) are equal, we can identify the limits of the right hand sides
of both expressions. We get

L
(

fa

(

X̃y0(ca × .)
))

= L
(

fy1 ◦ ff−1
y1

(a)

(

X̃y0(cy1 × cf−1
y1

(a) × .)
))

.

Then, recalling that a = fy1(y2) and X̃y0 follows the law Py0 , we obtain the asserted result.

�

We can now prove Proposition 1.15 that provides the existence of good invariance components.

Proof. of Proposition 1.15

For k ≥ 1, X is a Ck-gssMp. Then, let ((fy, cy), y ∈ M) be a family of Ck invariance

components relatively to the reference point y0 (a family of Ck invariance components exists
by definition of X being a Ck-gssMp, and the reference point can be set at y0 thanks to the
property of change of reference point mentioned in the Introduction, the change of reference
point indeed preserves the fact that the family of invariance components is Ck). Replacing, if
necessary, ((fy, cy), y ∈ M) by ((fy ◦ f

−1
y0 , cy/cy0), y ∈ M), we can assume that the family of
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invariance components satisfy (1.16). Let G be the subgroup of Hom(M) × R∗
+ that contains

the couples (Ψ, λ) ∈ Hom(M)×R∗
+ for which (1.3) is satisfied, and let H be the subgroup of R∗

+

defined by H := {λ ∈ R∗
+, ∃Ψ ∈ Hom(M) s.t. (Ψ, λ) ∈ G}. We have assumed that Assumption

1 or Assumption 2 is satisfied for E = M. Thanks to Lemma 7.1 we have that, in any case,
Assumption 1 is satisfied, so Proposition 2.1 applies and yields that

∀y1, y2 ∈ E, U(y1, y2) :=
(

f−1
fy1(y2)

◦ fy1 ◦ fy2 , cy1 × cy2/cfy1 (y2)

)

∈ G.

In particular the range of the function U2 : (y1, y2) 7−→ cy1 × cy2/cfy1 (y2) is included in H. Recall

from Definition 1.1 and Remark 1.3 that y 7−→ cy, (y, x) 7−→ fy(x), y 7−→ fy(.), and y 7−→ f−1
y (.)

are continuous, and since the composition is continuous on C0(M,M), we get in particular that
U is continuous from M×M to C0(M,M) × R∗

+. We now distinguish two cases :

Case 1: U2 is constant. In that case, evaluating U2 at a point (x, y0) (where x is arbitrary)
and using (1.16), we obtain that U2 ≡ 1. This yields that (1.17) is satisfied so ((fy, cy), y ∈ M)
are good invariance components.

Case 2: U2 is non-constant. In that case, since M×M is connected and U2 is continuous,
we have that U2(M×M) ⊂ H is a subinterval of R∗

+, non-reduced to a single point. Then, H
is a subgroup of R∗

+ that contains an interval non reduced to a single point so H = R∗
+. We now

construct a continuous function L : R∗
+ −→ C0(M,M) such that L[1] = idM, (L[λ], λ) ∈ G for

all λ ∈ R∗
+, and (x, λ) 7−→ L[λ](x) is of class Ck.

Since ((fy, cy), y ∈ M) are Ck invariance components, U2 : M × M −→ R∗
+ is Ck. Since

it is non-constant, there exists λ0 ∈ R∗
+, ǫ > 0 and a Ck function l1 :]λ0e

−ǫ, λ0e
ǫ[−→ M × M

such that ∀λ ∈]λ0e
−ǫ, λ0e

ǫ[, U2(l1[λ]) = λ (just apply the Local Inversion Theorem for a local
coordinate of the Ck manifold M × M along which U2 is nonconstant, the other coordinates
being fixed). Let us define the function l2 :]λ0e

−ǫ, λ0e
ǫ[−→ C0(M,M) by l2 := λ 7−→ U1(l1[λ]),

where U1(y1, y2) = f−1
fy1(y2)

◦ fy1 ◦ fy2 . Then l2 is continuous, moreover (x, λ) 7−→ l2[λ](x) is of

class Ck, and clearly for any λ ∈]λ0e
−ǫ, λ0e

ǫ[ we have U(l1[λ]) = (U1(l1[λ]), U2(l1[λ])) = (l2[λ], λ),
so in particular (l2[λ], λ) ∈ G.

Then let us define l3 :]e
−ǫ, eǫ[−→ C0(M,M) by l3[λ] := l2(λ0λ) ◦ (l2(λ0))

−1. It is not difficult
to see that l3 is continuous, that (x, λ) 7−→ l3[λ](x) is of class Ck, that l3[1] = idM, and that
(l3[λ], λ) ∈ G for any λ ∈]e−ǫ, eǫ[. Let us now define Lǫ : R

∗
+ −→ C0(E,E) by

Lǫ[λ] := l3
[

exp
(

log(λ)− ǫ⌊2 log(λ)/ǫ⌋/2
)]

◦
(

l3[e
ǫ/2]
)◦⌊2 log(λ)/ǫ⌋

if λ ≥ 1,

Lǫ[λ] := l3
[

exp
(

log(λ) + ǫ⌊−2 log(λ)/ǫ⌋/2
)]

◦
(

l3[e
−ǫ/2]

)◦⌊−2 log(λ)/ǫ⌋
if λ ≤ 1.

In the above, (l3[e
ǫ/2])◦n (respectively (l3[e

−ǫ/2])◦n) means that the function l3[e
ǫ/2] ∈ C0(M,M)

(respectively l3[e
−ǫ/2] ∈ C0(M,M)) is composed n times by itself. Then, clearly, Lǫ is continuous

from R∗
+ to C0(M,M), Lǫ[1] = idM, and (x, λ) 7−→ Lǫ[λ](x) is of class Ck on M×]e−ǫ/2, eǫ/2[

(since it coincides with l3 on this set) and on each set of the form M×]enǫ/2, e(n+1)ǫ/2[ for some
n ∈ Z. Moreover, since (l3[r], r) ∈ G for any r ∈]e−ǫ, eǫ[ and since G is a group, we see that for
λ ≥ 1,

(Lǫ[λ], exp(log(λ)− ǫ⌊2 log(λ)/ǫ⌋/2) × (eǫ/2)⌊2 log(λ)/ǫ⌋) ∈ G,

that is, (Lǫ[λ], λ) ∈ G. Similarly, for λ < 1,

(Lǫ[λ], exp(log(λ) + ǫ⌊−2 log(λ)/ǫ⌋/2) × (e−ǫ/2)⌊−2 log(λ)/ǫ⌋) ∈ G,

that is, (Lǫ[λ], λ) ∈ G.

Let us now justify that there is a unique function L : R∗
+ −→ C0(M,M) that satisfies
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A) L is continuous from R∗
+ to C0(M,M),

B) L[1] = idM,
C) ∀λ ∈ R∗

+, (L[λ], λ) ∈ G.

The function Lǫ satisfies the required A), B) and C) so we only need to prove uniqueness.

First, let us prove that a function L that satisfies A), B) and C) also satisfies L[λ−1] = L[λ]−1

for all λ ∈ R∗
+. Indeed, let L satisfy A), B) and C). Using C) and the fact that G is a group we

get
∀λ ∈ R

∗
+, (L[λ] ◦ L[λ

−1], 1) ∈ G and (L[λ−1] ◦ L[λ], 1) ∈ G.

Therefore, we have that L[λ] ◦ L[λ−1] and L[λ−1] ◦ L[λ] are in Sym(Xy0) for any λ ∈ R∗
+.

Moreover, (λ 7−→ L[λ] ◦L[λ−1]) and (λ 7−→ L[λ−1] ◦L[λ]) are continuous from R∗
+ to C0(M,M)

because of A). Since, by assumption, Sym(Xy0) is discrete, we deduce that the functions (λ 7−→
L[λ] ◦ L[λ−1]) and (λ 7−→ L[λ−1] ◦ L[λ]) are constant. Evaluating at λ = 1 and using B), we
deduce that (λ 7−→ L[λ] ◦ L[λ−1]) = (λ 7−→ L[λ−1] ◦ L[λ]) ≡ idM. This proves the claim that
L[λ−1] = L[λ]−1. In particular, (λ 7−→ L[λ]−1) is continuous from R∗

+ to C0(M,M). Note that
the above argument can be adapted to show that (λ 7−→ L[λ]) is a group homomorphism from
(R∗

+,×) to (Hom(M), ◦).

We now prove uniqueness of the function satisfying A), B) and C). Let L and L̃ be two
functions from R∗

+ to C0(M,M) that both satisfy A), B) and C). Using C) and the fact that G

is a group we get ∀λ ∈ R∗
+, (L̃[λ] ◦ L[λ]

−1, 1) ∈ G, so L̃[λ] ◦ L[λ]−1 ∈ Sym(Xy0) for any λ ∈ R∗
+.

We have seen that, since L satisfies A), B) and C), (λ 7−→ L[λ]−1) is continuous. Combining with

the fact that L̃ satisfies A) we get that λ 7−→ L̃[λ] ◦L[λ]−1 is continuous from R∗
+ to C0(M,M).

Since, by assumption, Sym(Xy0) is discrete, we deduce that (λ 7−→ L̃[λ] ◦ L[λ]−1) is constant.

Evaluating at λ = 1 and using B), we deduce that (λ 7−→ L̃[λ]◦L[λ]−1) ≡ idM. Therefore L = L̃
so the uniqueness follows.

Now, let L be the unique continuous function from R∗
+ to C0(M,M) that satisfies L[1] = idM,

and (L[λ], λ) ∈ G for all λ ∈ R∗
+. We have seen that L = Lǫ so in particular (x, λ) 7−→ L[λ](x) is

of class Ck on M×]e−ǫ/2, eǫ/2[ and on each set of the form M×]enǫ/2, e(n+1)ǫ/2[ for some n ∈ Z.
To prove that (x, λ) 7−→ L[λ](x) is of class Ck on M×R∗

+, we thus only need to justify that for

each n ∈ Z\{0}, there is an open interval In ∋ enǫ/2 such that (x, λ) 7−→ L[λ](x) is of class Ck on
M×In. Let us chose ǫ′ ∈]0, ǫ[ such that ǫ′/ǫ is irrational. We can build Lǫ′ similarly as we built
Lǫ. In particular Lǫ′ is continuous from R∗

+ to C0(M,M), Lǫ′ [1] = idM, ∀λ ∈ R∗
+, (Lǫ′ [λ], λ) ∈ G,

and (x, λ) 7−→ Lǫ′ [λ](x) is of class Ck on each set of the form M×]emǫ
′/2, e(m+1)ǫ′/2[ for some

m ∈ Z. Since ǫ′/ǫ is irrational, we have that for any n ∈ Z \ {0}, there is mn ∈ Z such that

enǫ/2 ∈]emnǫ′/2, e(mn+1)ǫ′/2[=: In. Clearly (x, λ) 7−→ Lǫ′ [λ](x) is of class Ck on M× In, but by
uniqueness we have L = Lǫ′ , so (x, λ) 7−→ L[λ](x) is of class Ck on M× In. We conclude that
(x, λ) 7−→ L[λ](x) is of class Ck on M× R∗

+.

Then, for all y ∈ M, let us define f̃y := fy ◦ L[1/cy ]. We now justify that the family

((f̃y, 1), y ∈ M) defines a family of Ck invariance components for X. Let us fix y ∈ M, we have

f̃y(Xy0) = fy (L[1/cy](Xy0))
L
= fy(Xy0(cy × .))

L
= Xy,

where we have used that (L[1/cy ], 1/cy) ∈ G for the first equality in law, and that ((fz, cz), z ∈
M) is a family of invariance components for X for the second equality in law. Moreover, since

f̃y(x) = fy(L[1/cy ](x)) where (y 7−→ cy), ((y, x) 7−→ fy(x)) and (x, λ) 7−→ L[λ](x) are of class

Ck, we see that ((y, x) 7−→ f̃y(x)) is of class Ck. Similarly, f̃−1
y (x) = L[1/cy ]

−1(f−1
y (x)) =

L[cy](f
−1
y (x)) where (y 7−→ cy), ((y, x) 7−→ f−1

y (x)) and (x, λ) 7−→ L[λ](x) are of class Ck, so

((y, x) 7−→ f̃−1
y (x)) is also of class Ck. We conclude that ((f̃y, 1), y ∈ M) is a family of Ck
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invariance components for X. Note that f̃y0 = fy0 ◦ L[1/cy0 ] = idM ◦ L[1] = idM ◦ idM = idM
(we have used that ((fy, cy), y ∈ M) satisfies (1.16), as mentioned in the beginning of the

proof). Moreover, the time-dilatation constants in ((f̃y, 1), y ∈ M) are all equal to 1. Therefore

((f̃y, 1), y ∈ M) satisfies Definition 1.14, so ((f̃y, 1), y ∈ M) is even a family of Ck good
invariance components for X.

�

Remark 2.2. The above proof actually shows a little more than the statement of Proposition 1.15
and can possibly be used to produce good invariance components in practice. It shows that, for X
a gssMp that satisfies the assumptions of the proposition, if we pick a family ((fy, cy), y ∈ M) of

Ck invariance components, then we have the following dichotomy: either this family is a family of
good invariance components, either this family can be canonically modified (via composition by
some functions L[λ](.) that are uniquely determined) to produce a family of Ck good invariance

components ((f̃y, 1), y ∈ M) for which the changes of time are trivial. Recall that, as mentioned
in Subsection 1.6, the case where changes of times are trivial is particularly interesting, because
our results show that in that case Xy0 is only a Lévy process on some group (in the context of
Theorem 1.20), or the image by some function of a canonical Lévy process or of a process built
from the exponential functional of a bivariate Lévy process (in the context of Theorems 1.16 and
1.19), with no time-change. In particular, if X satisfies the assumptions of the proposition and
is given along with a family of Ck invariance components, then, if the family is not good we can
already conclude that Xy0 is as just described.

3. Relation with groups

First, let us prove Proposition 1.11 which says that it is possible to construct gssMp’s when
the state space is already equipped with a group structure.

Proof. of Proposition 1.11

Let us fix y ∈ E and let ϕy be defined by (1.14). Since (s 7→ L(s)) is càd-làg and h is
continuous and positive, the function ϕy is well-defined, continuous, increasing and defines a
bijection from [0,+∞[ onto [0, ϕy(+∞)[. As a consequence ϕ−1

y is well-defined on [0, ϕy(+∞)[

and continuous (we set ϕ−1
y (t) := +∞ for t ≥ ϕy(+∞)). This implies in particular that Xy,

defined by (1.15), is well-defined and càd-làg on [0, ϕy(+∞)[.

Let us now justify that ζ(Xy) = ϕy(+∞) a.s. Since ϕ−1
y is well-defined and continuous on

[0, ϕy(+∞)[, we have that for any t ∈ [0, ϕy(+∞)[, the interval [0, ϕ−1
y (t)] is compact. Since L

is càd-làg, and since (z 7−→ y ⋆ z) is an homeomorphism, the set y ⋆ L([0, ϕ−1
y (t)]) is relatively

compact, which show that the trajectory of Xy on [0, t] is contained inside a compact set. There-
fore, t < ζ(Xy), and since this is true a.s. for any t ∈ [0, ϕy(+∞)[ we get ϕy(+∞) ≤ ζ(Xy)
a.s. This proves that we have a.s. ϕy(+∞) = ζ(Xy) whenever ϕy(+∞) = +∞. Let (Kn)n≥1

be an increasing sequence of compact sets K1 ⊂ K2 ⊂ ... such that any compact subset of
E is included in Kn for some n ≥ 1. If ϕy(+∞) < +∞, then h(y ⋆ L(.)) takes arbitrary
large values on [0,+∞[. Therefore, for any n ≥ 1 there is a.s. un ∈ [0,+∞[ such that
h(y ⋆L(un)) > supz∈Kn

h(z). We thus have τ(y ⋆L(.),Kc
n) ≤ un < +∞ a.s. Since ϕ−1

y is increas-

ing we deduce that τ(Xy,K
c
n) = τ(y⋆L(ϕ−1

y (.)),Kc
n) = ϕy(τ(y⋆L(.),K

c
n)) ≤ ϕy(un) < ϕy(+∞).

We deduce that ζ(Xy) = limn→+∞ τ(Xy,K
c
n) ≤ ϕy(+∞) a.s. In conclusion ϕy(+∞) = ζ(Xy)

a.s. which proves in particular that ∆ can only be reached continuously by Xy, so Xy is càd-làg
on [0,+∞[.
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We denote by Py the law of the process Xy. Let respectively (Gt, t ≥ 0) and (Ft, t ≥ 0) be
the right continuous filtrations generated by the processes L and Xy. Note that for any t ≥ 0,
ϕ−1
y (t) is a (possibly infinite) stopping time for L and that Gϕ−1

y (t) = Ft.

We now justify that Xy satisfies the Markov property at every instant t ≥ 0. Let us fix an
instant t ≥ 0 and work on {ϕ−1

y (t) < +∞} = {Xy(t) 6= ∆} (since ∆ is an absorbing state, the

case where Xy(t) = ∆ is trivial). Since ϕ−1
y (t) is a stopping time for the Lévy process L on (E, ⋆),

the process L̃(.) := (L(ϕ−1
y (t)))−1 ⋆ L(ϕ−1

y (t) + .) is independent from Gϕ−1
y (t) = Ft and has the

same law as L. Now let ϕ̃e0 and X̃e0 be constructed from L̃ just as ϕy and Xy are constructed

from L: for all s ≥ 0, ϕ̃e0(s) :=
∫ s
0

1
h(L̃(u))

du and for all s ∈ [0, ϕ̃e0(+∞)[, X̃e0(s) := L̃(ϕ̃−1
e0 (s))

(and X̃e0(s) := ∆ for s ≥ ϕ̃e0(+∞)). Then, since it is a function of L̃, X̃e0 is independent

from Ft and, since L̃ has the same law as L, X̃e0 has law Pe0 . We need to link ϕy and ϕ̃e0 .

For any u ≥ 0 we have from the definition of L̃ and the homomorphism property for h that
h(L̃(u)) = h(L(ϕ−1

y (t) + u))/h(L(ϕ−1
y (t))). Therefore, for any s ∈ [0, ϕ̃e0(+∞)[ we have

s =

∫ ϕ̃−1
e0

(s)

0

1

h(L̃(u))
du =

∫ ϕ̃−1
e0

(s)

0

h(L(ϕ−1
y (t)))

h(L(ϕ−1
y (t) + u))

du

=
h(y ⋆ L(ϕ−1

y (t)))

h(y)

∫ ϕ̃−1
e0

(s)

0

1

h(L(ϕ−1
y (t) + u))

du

=
h(Xy(t))

h(y)

∫ ϕ−1
y (t)+ϕ̃−1

e0
(s)

ϕ−1
y (t)

1

h(L(u))
du

= h(Xy(t))×
[

ϕy
(

ϕ−1
y (t) + ϕ̃−1

e0 (s)
)

− t
]

.

We thus get ϕy(ϕ
−1
y (t)+ϕ̃−1

e0 (s)) = t+s/h(Xy(t)) from which we deduce that ϕ−1
y (t+s/h(Xy(t))) =

ϕ−1
y (t) + ϕ̃−1

e0 (s). As a consequence, for any s ∈ [0, ϕ̃e0(+∞)/h(Xy(t))[ we have that ϕ−1
y (t+ s)

is finite and equals ϕ−1
y (t+ h(Xy(t))s/h(Xy(t))) = ϕ−1

y (t) + ϕ̃−1
e0 (h(Xy(t))× s). Then,

Xy(t+ s) = y ⋆ L(ϕ−1
y (t+ s)) = y ⋆ L

(

ϕ−1
y (t) + ϕ̃−1

e0 (h(Xy(t))× s)
)

= y ⋆ L
(

ϕ−1
y (t)

)

⋆ L̃
(

ϕ̃−1
e0 (h(Xy(t))× s)

)

= Xy(t) ⋆ X̃e0(h(Xy(t))× s).

We have obtained that, on [0, ϕ̃e0(+∞)[, Xy(t+ .) = Xy(t) ⋆ X̃e0(h(Xy(t)) × .), with X̃e0 inde-
pendent of Ft and having law Pe0 . We can also see that ϕy(+∞) = t + ϕ̃e0(+∞)/h(Xy(t)) so

Xy(t + s) = ∆ if and only if X̃e0(h(Xy(t)) × s) = ∆. Combing all this we deduce the Markov
property for Xy at time t. The same procedure can be done in the case where t is a stopping
time so Xy is strongly Markovian.

We now justify the self-similarity of X. Let ϕe0 and Xe0 be constructed from L as in (1.14)
and (1.15). Then, Xe0 has law Pe0 . Let y ∈ E be arbitrary, and define ϕy and Xy from L as in
(1.14) and (1.15). Then, Xy has law Py. We have

∀t ≥ 0, ϕy(t) =
1

h(y)

∫ t

0

1

h(L(s))
ds =

1

h(y)
ϕe0(t),

so that ϕ−1
y (.) = ϕ−1

e0 (h(y) × .) and ϕy(+∞) = ϕe0(+∞)/h(y). We then have for all 0 ≤ t <
ϕy(+∞) = ϕe0(+∞)/h(y),

Xy(t) = y ⋆ L
(

ϕ−1
y (t)

)

= y ⋆ L
(

ϕ−1
e0 (h(y) × t)

)

= y ⋆ Xe0 (h(y)× t) .

As a consequence we have Xy(.) = y ⋆ Xe0 (h(y) × .) on [0, ϕy(+∞)[= [0, ϕe0(+∞)/h(y)[ and
these two processes reach the state ∆ at the same time ϕy(+∞) = ϕe0(+∞)/h(y). We deduce
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that
(Xy(t), t ≥ 0) = (y ⋆ Xe0(h(y)t), t ≥ 0) ,

where Xy has law Py while Xe0 has law Pe0 (note that we have used the convention y ⋆∆ = ∆).
Since the above is true for any y ∈ E we deduce that X is a gssMp with invariance components
((fy, cy), y ∈ E) given by fy(.) := y ⋆ . and cy := h(y), for the reference point e0. Since e0 is
the neutral element of (E, ⋆), and since h is an homomorphism from (E, ⋆) to (R∗

+,×), we see
that (1.16) and (1.17) are satisfied so that the family ((fy, cy), y ∈ E) actually defines good
invariance components.

�

We are now interested in proving a key point for our purpose: for X a gssMp, given along with
a family of good invariance components, we want to make appear a group structure on the sate
space such that X is a time-changed Lévy process on this group. In the following proposition
we make appear the group structure.

Proposition 3.1. Let X be a gssMp on a connected locally compact separable metric space E and
let ((fy, cy), y ∈ E) be a family of good invariance components for X, relatively to some reference
point y0. We assume that either Assumption 1 or Assumption 2 is satisfied and that Sym(Xy0)
is discrete. Let us define an interne composition law ⋆ on E by y ⋆ x := fy(x). Then (E, ⋆) is
a topological group with neutral element y0 and (y 7−→ cy) is a continuous group homomorphism
from (E, ⋆) to (R∗

+,×).

If moreover, for k ≥ 1, E is a Ck-differentiable manifold and ((fy, cy), y ∈ E) are Ck good

invariance components, then (E, ⋆) is even a Ck-Lie group and (y 7−→ cy) is a Ck-Lie group
homomorphism.

Proof. Associativity: This is the key point. According to Proposition 2.1, we have that,

∀y1, y2 ∈ E, ffy1(y2) (Xy0)
L
= fy1 ◦ fy2

(

Xy0

(

cy1 × cy2
cfy1(y2)

× .

))

.

Since ((fy, cy) y ∈ E) is a family of good invariance components it satisfies (1.17), so cy1 ×

cy2/cfy1 (y2) = 1. We thus get ffy1(y2) (Xy0(.))
L
= fy1 ◦ fy2 (Xy0(.)), so that

∀y1, y2 ∈ E, U1(y1, y2) := f−1
fy1(y2)

◦ fy1 ◦ fy2 ∈ Sym(Xy0).

Recall from Definition 1.1 and Remark 1.3 that (y, x) 7−→ fy(x), y 7−→ fy(.), and y 7−→ f−1
y (.)

are continuous, and since the composition is continuous on C0(E,E), we get in particular that
U1 : E × E −→ C0(E,E) is continuous. Moreover, E × E is connected. By assumption,
Sym(Xy0) is discrete so U1 is constant on E ×E. Moreover, since ((fy, cy) y ∈ E) is a family of
good invariance components it satisfies (1.16) from which we deduce U1(y0, y0) = idE . Therefore
U1 ≡ idE so we get

∀y1, y2 ∈ E, ffy1(y2) = fy1 ◦ fy2 .

Evaluating the above functions at a point y3 ∈ E we obtain exactly (y1 ⋆ y2) ⋆ y3 = y1 ⋆ (y2 ⋆ y3),
and the associativity follows.

Neutral element: Using (1.16) we see that for any y ∈ E, y0 ⋆ y = fy0(y) = idE(y) = y. Also,
evaluating (1.2) at t = 0 and using that Xy0(0) and Xy(0) are almost surely equal to respectively
y0 and y, we see that fy(y0) = y, that is, y ⋆ y0 = y. This proves that y0 is a neutral element for
⋆.

Inverse: Clearly we only need to justify the existence of a right-inverse for every y ∈ E. Since
fy is bijective, f−1

y (y0) is well-defined and it clearly satisfies y ⋆ f−1
y (y0) = y0.
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Continuity: Let us denote by y−1 the inverse of y. The continuity of ((y, x) 7−→ y ⋆ x) and of
(y 7−→ y−1) follows from the continuity of ((y, x) 7−→ fy(x)) and of ((y, x) 7−→ f−1

y (x)) assumed
in Definition 1.1.

Group homomorphism: The fact that (y 7−→ cy) is a group homomorphism from (E, ⋆) to
(R∗

+,×) follows from (1.17), which is satisfied since, by assumption, ((fy, cy) y ∈ E) are good
invariance components. The continuity of (y 7−→ cy) is satisfied by definition of invariance
components in Definition 1.1.

Smoothness: If E is a Ck-differentiable manifold and ((fy, cy), y ∈ E) are Ck good invariance
components, then it only remains to justify that the applications ((y, x) 7−→ y ⋆ x), (y 7−→ y−1),
and (y 7−→ cy) are Ck, but this follows from Definition 1.4.

�

Definition 3.2. Let X be a gssMp on a locally compact separable metric space E. Let ((fy, cy), y ∈
E) be a family of good invariance components for X, relatively to some reference point y0. If
the interne composition law ⋆, defined on E by y ⋆ x := fy(x), gives rise to a topological group
structure on E, then we say that (E, ⋆) is the bearing group of X associated with the good
invariance components ((fy, cy), y ∈ E).

If (E, ⋆) is a bearing group for X, then the self-similarity relation can be re-expressed as

∀y ∈ E, (Xy(t), t ≥ 0)
L
= (y ⋆ Xy0(cyt), t ≥ 0) .

In particular, for any starting point z, if X̃y0 ∼ Py0 is independent from Xz and S is a stopping
time for Xz, then

(Xz(S + t), t ≥ 0)
L
=
(

Xz(S) ⋆ X̃y0(cXz(S)t), t ≥ 0
)

. (3.33)

We can now prove that a gssMp can be identified with a time-changed Lévy process on the
group constructed in Proposition 3.1.

Proposition 3.3. Let X be a gssMp on a connected locally compact separable metric space E
and let ((fy, cy), y ∈ E) be a family of good invariance components for X, relatively to some
reference point y0. We assume that either Assumption 1 or Assumption 2 is satisfied for E and
that Sym(Xy0) is discrete. Let (E, ⋆) be the bearing group associated with ((fy, cy), y ∈ E).
Then there is a Lévy process L on (E, ⋆) such that if we set

∀t ∈ [0,+∞], ϕ(t) :=

∫ t

0

1

cL(s)
ds, (3.34)

then

ζ(Xy0) = ϕ(+∞) (3.35)

and

∀ 0 ≤ t < ϕ(+∞), Xy0(t) = L
(

ϕ−1(t)
)

. (3.36)

Moreover, if we let ξ(.) := log(1/cL(.)), then ξ is a real Lévy process and we have ζ(Xy0) =
∫ +∞
0 eξ(s)ds.

In the particular case where cy = 1,∀y ∈ E, then Xy0 = L, so Xy0 is itself a Lévy process on
(E, ⋆).

Proof. We define for all 0 ≤ t < ζ(Xy0), φ(t) :=
∫ t
0 cXy0(u)

du and L(t) := Xy0(φ
−1(t)).
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We first justify that L is well-defined. Since (s 7→ Xy0(s)) is càd-làg and (y 7→ cy) is continuous
and positive, the function φ is well-defined, continuous, increasing and defines a bijection from
[0, ζ(Xy0)[ onto its range, [0, φ(ζ(Xy0))[, where φ(ζ(Xy0)) has to be considered as possibly finite
(we will prove later that it is actually a.s. infinite). As a consequence φ−1 is well-defined on
[0, φ(ζ(Xy0))[ and continuous. This implies in particular that L is well-defined on [0, φ(ζ(Xy0))[
and càd-làg. We see from L(t) := Xy0(φ

−1(t)) that φ(ζ(Xy0)) = ζ(L). If φ(ζ(Xy0)) < +∞, let
us put φ−1(t) = +∞ and L(t) := ∆ for t ≥ φ(ζ(Xy0)), so that L is well-defined on [0,+∞[ and
càd-làg (we see that the state ∆ is a.s. reached continuously). Let respectively (Gt, t ≥ 0) and
(Ft, t ≥ 0) be the right continuous filtrations generated by the processes L and Xy0 . Note that
for any t ≥ 0, φ−1(t) is a stopping time for Xy0 and that for any t ≥ 0,Gt = Fφ−1(t).

We now prove that L is a Lévy process on (E, ⋆), possibly absorbed at ∆. Let us fix an
instant t ≥ 0 and work on {L(t) 6= ∆} = {φ−1(t) < +∞}. According to (3.33), the process

X̃y0(.) := (Xy0(φ
−1(t)))−1 ⋆ Xy0(φ

−1(t) + ./cXy0 (φ
−1(t))) is independent from Fφ−1(t) = Gt and

has law Py0 . Now let φ̃ and L̃ be constructed from X̃y0 just as φ and L are constructed from

Xy0 : for all 0 ≤ s < ζ(X̃y0), φ̃(s) :=
∫ s
0 cX̃y0(u)

du and L̃(s) := X̃y0(φ̃
−1(s)). Then, since it is a

function of X̃y0 , L̃ is independent from Gt and, since X̃y0 has law Py0 , L̃ has the same law as L.

We need to link φ and φ̃. For any 0 ≤ u < ζ(X̃y0) we have from the definition of X̃y0 and the
homomorphism property of (y 7−→ cy) that cX̃y0(u)

= cXy0(φ
−1(t)+u/c

Xy0 (φ−1(t)))
/cXy0 (φ

−1(t)). For

any 0 ≤ s < φ̃(ζ(X̃y0)) we have

s =

∫ φ̃−1(s)

0
cX̃y0(u)

du =

∫ φ̃−1(s)

0

cXy0 (φ
−1(t)+u/c

Xy0 (φ−1(t)))

cXy0(φ
−1(t))

du =

∫ φ̃−1(s)/c
Xy0(φ−1(t))

0
cXy0 (φ

−1(t)+v)dv

=

∫ φ−1(t)+φ̃−1(s)/c
Xy0(φ−1(t))

φ−1(t)
cXy0(u)

du = φ
(

φ−1(t) + φ̃−1(s)/cXy0 (φ
−1(t))

)

− t.

We thus get φ
(

φ−1(t) + φ̃−1(s)/cXy0 (φ
−1(t))

)

= t + s from which we deduce that φ−1(t + s)

is finite and satisfies cXy0(φ
−1(t))[φ

−1(t + s) − φ−1(t)] = φ̃−1(s). As a consequence, for any

0 ≤ s < φ̃(ζ(X̃y0)) we have

L(t+ s) = Xy0(φ
−1(t+ s)) = Xy0

(

φ−1(t) + cXy0 (φ
−1(t))[φ

−1(t+ s)− φ−1(t)]/cXy0 (φ
−1(t))

)

= Xy0

(

φ−1(t)
)

⋆ X̃y0

(

cXy0(φ
−1(t))[φ

−1(t+ s)− φ−1(t)]
)

= Xy0

(

φ−1(t)
)

⋆ X̃y0

(

φ̃−1(s)
)

= L(t) ⋆ L̃(s).

We have obtained that, on [0, φ̃(ζ(X̃y0))[, (L(t))−1 ⋆ L(t + .) = L̃(.). We can also see that

φ(ζ(Xy0)) = t + φ̃(ζ(X̃y0)) so L(t + s) = ∆ if and only if L̃(s) = ∆. Therefore we have that,

on [0,+∞[, (L(t))−1 ⋆ L(t+ .) = L̃(.), with L̃ independent of Gt and having the same law as L.
Since we have such a relation for any t ≥ 0, and combining with the fact that L is càd-làg, we
deduce that it is a Lévy process on E, possibly absorbed at ∆.

Let us assume that absorption at ∆ can occur with a positive probability: P(ζ(L) < +∞) > 0,
and recall that, in that case, ∆ is reached continuously a.s. on {ζ(L) < +∞}. Note that since

L(t+ .) reaches ∆ at s if and only if L̃ reaches ∆ at s, the absorption at ∆ occurs independently
from the past trajectory (i.e. the fact that the absorption occurs on [t, t+h[ is independent from
the trajectory of L on [0, t]) so in particular, given a compact neighborhood K of y0, we can see
that L may remain in K on [0, ζ(L)[ with positive probability. This means that, with positive
probability, ∆ may be not reached continuously which is a contradiction. Therefore L is a.s. never
absorbed so it is a regular Lévy process on (E, ⋆) and we have a.s. φ(ζ(Xy0)) = ζ(L) = +∞. In
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particular, φ−1(t) is defined and finite for all t ≥ 0 (it is a bijection from [0,+∞[ to [0, ζ(Xy0)[)
so the expression L(t) = Xy0(φ

−1(t)) holds for all t ≥ 0.

We now need to prove that φ−1 = ϕ, for ϕ defined from L as in (3.34). For any t ≥ 0 we have

φ−1(t) =

∫ φ−1(t)

0
1du =

∫ t

0

1

φ′(φ−1(v))
dv =

∫ t

0

1

cXy0(φ
−1(v))

dv =

∫ t

0

1

cL(v)
dv = ϕ(t), (3.37)

where we have used the change of variable v = φ(u), the definition of φ, the definition of L in
term of Xy0 and φ−1, and the definition of ϕ in (3.34). Taking the limit on both sides in (3.37)
when t goes to infinity we get ζ(Xy0) = ϕ(+∞), which is (3.35). Combining (3.37) with the
expression L(t) = Xy0(φ

−1(t)) we obtain (3.36).

Let us now justify the representation of ζ(Xy0) in term of an exponential functional of a real
Lévy process. Recall from Proposition 3.1 that (y 7→ cy) is a continuous group homomorphism
from (E, ⋆) to (R∗

+,×), so (y 7→ log(1/cy)) is a continuous group homomorphism from (E, ⋆) to
(R,+). Therefore, ξ(.) := log(1/cL(.)) is a real valued Lévy process and, re-writting (3.35) in

term of ξ we get ζ(Xy0) =
∫ +∞
0 eξ(s)ds. �

Remark 3.4. We note from the previous proof that the change of time ϕ−1(t) in (3.36) has an

alternative expression in term of Xy0 : for all 0 ≤ t < ζ(Xy0), ϕ
−1(t) = φ(t) =

∫ t
0 cXy0(u)

du.

Putting together Proposition 3.1 and Proposition 3.3 we obtain Theorem 1.20 and, combining
with Proposition 1.15, we deduce Theorem 1.8. Let us write all the details for the sake of clarity.

Proof. of Theorem 1.20

Let E be a connected locally compact separable metric space, and X be a gssMp on E.
((fy, cy), y ∈ E) is a family of good invariance components associated with X, relatively to some
reference point y0 ∈ E. We assume that either Assumption 1 or Assumption 2 is satisfied for E
and that Sym(Xy0) is discrete.

Let us define an interne composition law ⋆ on E by y ⋆ x := fy(x). According to Proposition
3.1, (E, ⋆) is a topological group with neutral element y0, and (y 7−→ cy) is a continuous group
homomorphism from (E, ⋆) to (R∗

+,×). Therefore, (E, ⋆) is the bearing group for X associated
with the good invariance components ((fy, cy), y ∈ E). According to Proposition 3.3, there

is a Lévy process L, on (E, ⋆), such that if we set ∀t ∈ [0,+∞], ϕ(t) :=
∫ t
0 1/cL(s)ds, then

ζ(Xy0) = ϕ(+∞) and

∀ 0 ≤ t < ϕ(+∞) = ζ(Xy0), Xy0(t) = L
(

ϕ−1(t)
)

. (3.38)

Finally, if moreover, for k ≥ 1, E is a Ck-differentiable manifold and ((fy, cy), y ∈ E) are Ck

good invariance components, then the last statement in Proposition 3.1 guaranties that (E, ⋆) is
even a Ck-Lie group and (y 7−→ cy) is a Ck-Lie group homomorphism.

Let us now justify Remark 1.21. Clearly we only need to justify that for all 0 ≤ t < ζ(Xy0),

ϕ−1(t) =
∫ t
0 cXy0(u)

du. In the above proof, an application of Proposition 3.3 yielded the existence

of a process L satisfying the relation (3.38), with ∀t ∈ [0,+∞], ϕ(t) =
∫ t
0 1/cL(s)ds. According

to Remark 3.4, this implies that we have 0 ≤ t < ζ(Xy0), ϕ
−1(t) =

∫ t
0 cXy0(u)

du, which is the
claim.

�

Proof. of Theorem 1.8
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Under the assumptions of the theorem, Proposition 1.15 applies so we can produce a family
((fy, cy), y ∈ E) of Ck good invariance components associated with X, relatively to the reference

point y0. Let us define an interne composition law ⋆ on M by y ⋆ x := fy(x) and a Ck-function
h : M −→ R+ by h(y) := cy. Then, Theorem 1.20 guaranties that the three points in the
statement of Theorem 1.8 are true for this ⋆ and this h.

�

4. Explicit isomorphisms between some Lie groups

In the previous section we have made appear a group structure on the space E where a
gssMp is defined. If E = I (respectively D), an open interval of R (respectively an open simply
connected domain of R2), this gives rise to a Lie group structure of dimension 1 (respectively 2).
In this section we provide some explicit group isomorphisms between the Lie groups obtained
and canonical examples of Lie groups in dimension 1 and 2, on which Lévy processes are more
classical. This allows to construct the explicit diffeomorphisms appearing in Theorems 1.16 and
1.19.

We consider an open set O ⊂ Rn (typically I ⊂ R or D ⊂ R2), together with an intern
composition law ⋆ such that (O, ⋆) is a group. If the group operations (multiplication and
inversion) are of class Ck with respect to the usual differentiation on Rn, then we say that (O, ⋆)
is a Ck-Lie group. In other words, the differential manifold structure attached with the Lie group
(O, ⋆) is always the natural one, arising from the fact that O is an open subset of Rn.

We first need a technical result. For a function f : O × O −→ O , J1f (respectively J2f)
denotes the Jacobian matrix of f when it is differentiated with respect to the first (respectively
the second) entry. In the particular case where O = I, an open interval of R, we shall only write
∂1f (respectively ∂2f) for the first (respectively second) partial derivative of f . For a function
g : O −→ O, Jg denotes the Jacobian matrix of g.

Lemma 4.1. Let O ⊂ Rn be open, let f : O ×O −→ O be a function and let ⋆ be the interne
composition law on O induced by f . If (O, ⋆) is a Ck-Lie group (let us denote its neutral element
by y0), then J2f(u, v) and [J2f(u, v)]

−1 are defined and Ck−1 in (u, v) ∈ O ×O and we have

∀u, v,∈ O, [J2f (f(u, v), y0)]
−1 .J2f (u, v) = [J2f(v, y0)]

−1 . (4.39)

Proof. Since, by assumption, (O, ⋆) is a Ck-Lie group, the application ((u, v) 7−→ u ⋆ v) =
((u, v) 7−→ f(u, v)) is Ck so its differential with respect to the second entry, J2f(u, v), is well-
defined at any (u, v) ∈ O × O and Ck−1. Now let us fix an arbitrary u ∈ O. The application
lu := (v 7−→ u ⋆ v) = (v 7−→ f(u, v)) is bijective with inverse application lu−1 = (v 7−→
u−1 ⋆ v), where u−1 denotes the inverse of u for the group law ⋆. lu−1 is Ck just as lu so we get
Id = J2f(u

−1, f(u, v)).J2f(u, v). This justifies that ((u, v) 7−→ [J2f(u, v)]
−1) is defined at any

(u, v) ∈ O ×O and Ck−1.

The associativity property for ⋆ reads

∀u, v, w ∈ O, f (f(u, v), w) = f (u, f(v,w)) .

Differentiating with respect to w we get

∀u, v, w ∈ O, J2f (f(u, v), w) = J2f (u, f(v,w)) .J2f(v,w).

Evaluating the latter relation at w = y0 and using that f(., y0) = idO we obtain

∀u, v,∈ O, J2f (f(u, v), y0) = J2f (u, v) .J2f(v, y0).

which yields (4.39).
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�

Let I be an open interval of R and let ⋆ be an intern composition law on I such that (I, ⋆) is
a Lie group. Since we will need to differentiate the group operations, it is convenient to consider
the function f : I × I −→ I associated with the interne composition law ⋆ (f(y, z) = y ⋆ z). The
following Lemma builds an explicit group isomorphism between (I, ⋆) and the canonical group
(R,+).

Lemma 4.2. Let I ⊂ R be an open interval, and let f : I × I −→ I define a Ck-Lie group
structure (I, ⋆) on I, for some k ≥ 1. Define g : I −→ R via

∀y ∈ I, g(y) :=

∫ y

y0

1

∂2f(y, y0)
dy, (4.40)

where y0 ∈ I is the neutral element of (I, ⋆). Then g is well-defined, it is a Ck-diffeomorphism
from I to R, and a Ck-Lie group isomorphism from (I, ⋆) to (R,+).

Proof. If g is the sought isomorphism, then we should have

∀y, z ∈ I, g(f(y, z)) = g(y) + g(z),

so differentiating with respect to z and evaluating at z = y0 we get:

g′(y) = g′(y0)/∂2f(y, y0).

We see that the derivative g′ has to be proportional to the function y 7−→ 1/∂2f(y, y0). This
explains why the expression (4.40) is a natural candidate for g. Moreover, note that for any
y ∈ I, the application (z 7−→ f(y, z)) = (z 7−→ y ⋆ z) is Ck and it has an inverse application
(z 7−→ y−1 ⋆ z) which is also Ck. Therefore, the derivative of (z 7−→ f(y, z)) does not vanish
at y0 for all y ∈ I: ∀y ∈ I, ∂2f(y, y0) 6= 0 and, since ((y, z) 7−→ f(y, z)) is Ck, we have that
y 7−→ ∂2f(y, y0) is Ck−1. Therefore, the expression of g in (4.40) is well-defined and defines a Ck

mapping from I to R. Let us thus consider g defined by (4.40).

We now justify that g is a group homomorphism from (I, ⋆) to (R2,+). Let y, x ∈ I, we have

g(f(y, x)) =

∫ f(y,x)

y0

1

∂2f(z, y0)
dz

=

∫ y

y0

1

∂2f(z, y0)
dz +

∫ f(y,x)

y

1

∂2f(z, y0)
dz

= g(y) +

∫ f(y,x)

y

1

∂2f(z, y0)
dz

= g(y) +

∫ x

y0

∂2f(y, v)

∂2f(f(y, v), y0)
dv, (4.41)

where we have made the change of variable z = f(y, v). Here, the relation (4.39) from Lemma

4.1 reads ∂2f(y,v)
∂2f(f(y,v),y0)

= 1
∂2f(v,y0)

. Therefore, the right hand side of (4.41) equals

g(y) +

∫ x

y0

1

∂2f(v, 0)
dv = g(y) + g(x),

where we have used (4.40) to make appear g(x) in the last equality. We have obtained g(f(y, x)) =
g(y) + g(x) so g is indeed a group homomorphism from (I, ⋆) to (R,+).

We now justify that g is a Ck diffeomorphism. Clearly, g′(.) = 1/∂2f(., y0) is continuous
and never vanishes so it has constant sign so g is bijective from I to g(I) and g(I) is an open
interval of R containing g(y0) = 0. Since moreover g(I) is a subgroup of (R,+) we conclude that
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g(I) = R. Therefore, g is bijective from I to R. Since g is Ck and its derivative never vanishes,
it is even a Ck diffeomorphism from I to R. Since g is also a group homomorphism from (I, ⋆) to
(R,+), it is even a Ck-Lie group isomorphism from (I, ⋆) to (R,+), which concludes the proof.

�

We now consider the two-dimensional case. Let D be an open simply connected domain of R2

and let ⋆ be an intern composition law on D such that (D, ⋆) is a Lie group. Since we will need
to differentiate the group operations, it is convenient to introduce f : D × D −→ D associated
with the interne composition law ⋆ (f(y, z) := y ⋆ z).

We now recall some classic facts and notations about Lie groups and their associated Lie
algebras, but we formulate everything in the context of (D, ⋆). First let us assume for convenience
that (D, ⋆) is a C∞-Lie group. Given a C∞-vector field (Vy, y ∈ D) on D and a C∞ function
h : D −→ R we define the C∞ function V.h : D −→ R by (V.h)(y) := Dh(y)[Vy ]. The commutator
of two vector fields U, V is still a vector field that we denote [U, V ]:

∀h ∈ C∞(D,R), [U, V ].h := U.(V.h)− V.(U.h). (4.42)

The vector space of C∞-vector fields on D equipped with [., .] is a Lie algebra. A vector field
(Vy, y ∈ D) on D is called left-invariant if ∀y, z ∈ D, Vy⋆z = J2f(y, z)[Vz ]. For any u ∈ R2,
we can define a left-invariant vector field V (u) by V (u)y := J2f(y, y0)[u]. It can be seen that
(u 7−→ V (u)) is a linear isomorphism (we will denote its inverse by V −1) so the vector space
of left-invariant vector fields is isomorphic to R2. Moreover, it is a well known property of Lie
groups that the commutator of two left-invariant vector fields is still a left-invariant vector field.
In particular we have

[V (u), V (v)]y = J2f(y, y0).[V (u), V (v)]y0 , ∀y ∈ D, u, v ∈ R
2. (4.43)

Using the correspondance between R2 and left-invariant vector fields we can define a Lie bracket
on R2 by

∀u, v ∈ R
2, [u, v]L := V −1([V (u), V (v)]). (4.44)

Then, by construction, the Lie algebra (R2, [., .]L) is isomorphic to the Lie algebra of left-invariant
vector fields, and is usually called the Lie algebra associated with the Lie group D.

Also, using the definition of the vector fields V (u), V (v) and the definition (4.42) of the
commutator, we can give an explicit expression for the vector field [V (u), V (v)] in term of f(., .):
for any y ∈ D and u, v ∈ R2 we have

[V (u), V (v)]y = J1J2f(y, y0) [J2f(y, y0).u, v] − J1J2f(y, y0) [J2f(y, y0).v, u] . (4.45)

In the context where (D, ⋆) is only a Ck-Lie group for some k ≥ 2, the left-invariant vector
fields V (u) can still be defined by V (u)y := J2f(y, y0)[u] and they are Ck−1. The commutator

[V (u), V (v)] can still be defined via (4.42) (and its action on Ck(D,R)) and we still have (4.45)
by direct computation. Finally, it is still possible to see that [V (u), V (v)] is left-invariant so the
relation (4.43) still holds and the Lie algebra (R2, [., .]L) can still be defined by (4.44).

Using the so-called exponential map it can be seen that the Lie group (D, ⋆) is commutative if
and only if the Lie bracket [., .]L of its associated Lie algebra (R2, [., .]L) is trivial (i.e. [u, v]L = 0
for all u, v ∈ R2).

Let us now investigate the possible forms of the Lie bracket [., .]L, to deduce another expression
for [V (u), V (v)]y0 . Let {e1, e2} be the canonical basis in R2, so that every u and v in R2 can be
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decomposed as u = u1e1 + u2e2, v = v1e1 + v2e2. Then we have

[u, v]L = [u1e1 + u2e2, v1e1 + v2e2]L

= u1v1[e1, e1]L + u1v2[e1, e2]L + u2v1[e2, e1]L + u2v2[e2, e2]L

= (u1v2 − u2v1)[e1, e2]L

= det(u, v)[e1, e2]L,

where we have used the bi-linearity of [., .]L and the fact that it is anti-symmetric. Let us set
Y0 := [V (e1), V (e2)]y0 which can be computed explicitly using (4.45). Then for any u, v ∈ R2

we have [V (u), V (v)]y0 = V ([u, v]L)y0 = det(u, v)V ([e1, e2]L)y0 = det(u, v)[V (e1), V (e2)]y0 =
det(u, v)Y0. Thus,

∀u, v ∈ R
2, [V (u), V (v)]y0 = det(u, v)Y0. (4.46)

Note in particular that we have Y0 = 0 if and only if (D, ⋆) is commutative.

We have now all the tools required to prove the following Lemmas 4.3 and 4.4 that build an
explicit group isomorphism between (D, ⋆) and one of the two canonical Lie group structures on
R2. The first canonical Lie group structure on R2 is of course (R2,+), and the second is (R2, T ),
defined as follows:

∀

(

y1
y2

)

,

(

z1
z2

)

∈ R
2, yTz :=

(

y1 + z1
y2 + ey1z2

)

. (4.47)

It is easy to see that T gives rise to a group structure on R2 and that (R2, T ) is not commuta-
tive. As a consequence, the two-dimensional Lie groups (D, ⋆) that we are considering will be
isomorphic to (R2,+) or (R2, T ) depending on whether they are commutative or not.

Lemma 4.3. Let D ⊂ R2 be an open simply connected domain, and let f : D×D −→ D define a
commutative Ck-Lie group structure (D, ⋆) on D, for some k ≥ 2. Fix M ∈ GL2(R) and define
g : D −→ R2 via

∀y ∈ D, g(y) :=

∫ b

a
M. [J2f(γ(s), y0)]

−1 .γ′(s)ds, (4.48)

where y0 ∈ D is the neutral element of (D, ⋆), J2f(z, .) denotes the Jacobian matrix of the
function f(z, .) : D −→ D, and where γ : [a, b] −→ D is any path, locally C1, with γ(a) = y0 and
γ(b) = y. Then g is well-defined, it is a Ck-diffeomorphism from D to R2, we have Jg(y0) =M ,
and g is a Ck-Lie group isomorphism from (D, ⋆) to (R2,+).

Proof. If g is the sought isomorphism, then, reasoning as in the beginning of the proof of Lemma
4.2, we see that the Jacobian of g has to be y 7−→ Q.(J2f(y, y0))

−1 where Q is an invertible 2×2
matrix. This explains why the expression (4.48) is a natural candidate for g. Moreover, thanks
to Lemma 4.1 applied with (u, v) = (y, y0), we can see that J2f(y, y0) is invertible for any y ∈ D
and that y 7−→ (J2f(y, y0))

−1 is of class Ck−1. To prove that g is well-defined and Ck, we thus
only need to prove the existence of a primitive function for y 7−→M.(J2f(y, y0))

−1. The idea is
to apply Poincaré’s Lemma.

For any y ∈ D, let us denote by Ly the linear application that sends z ∈ R2 toM.(J2f(y, y0))
−1.z ∈

R2. We wish to apply Poincaré’s Lemma to the differential forms y 7−→ π1◦Ly and y 7−→ π2◦Ly.
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Let us show that these differential forms are closed. For i ∈ {1, 2} and y ∈ D we have

d

dy2
[πi ◦ Ly(e1)]−

d

dy1
[πi ◦ Ly(e2)] = πi

[

d

dy2
Ly(e1)−

d

dy1
Ly(e2)

]

=πi

(

M.

[

d

dy2
(J2f(y, y0))

−1.e1 −
d

dy1
(J2f(y, y0))

−1.e2

])

=− πi
(

M.
[

(J2f(y, y0))
−1.J1J2f(y, y0)

[

e2, (J2f(y, y0))
−1.e1

]

−(J2f(y, y0))
−1.J1J2f(y, y0)

[

e1, (J2f(y, y0))
−1.e2

]])

=πi
(

M.(J2f(y, y0))
−1.
[

J1J2f(y, y0)
[

e1, (J2f(y, y0))
−1.e2

]

− J1J2f(y, y0)
[

e2, (J2f(y, y0))
−1.e1

]])

=πi

(

M.(J2f(y, y0))
−1.
[

V ((J2f(y, y0))
−1.e1), V ((J2f(y, y0))

−1.e2)
]

y

)

= 0.

In the last line we have recognized the expression of the commutator in (4.45) and used that
it is equal to 0 since (D, ⋆) is commutative. Therefore the differential forms y 7−→ π1 ◦ Ly and
y 7−→ π2 ◦ Ly are closed. Then, since D is simply connected, Poincaré’s Lemma applies and
shows that there are two functions g1 : D −→ R and g2 : D −→ R such that gi(y0) = 0 and for
any y ∈ D, dgi(y), the differential of gi at y, is πi ◦ Ly = πi(M.(J2f(y, y0))

−1.).

Now, defining the function g : D −→ R2 by g := (g1, g2), we have obviously that g(y0) = 0 and
that ∀y ∈ D, Jg(y) =M.(J2f(y, y0))

−1. Therefore g is Ck, and for any y ∈ D and any locally C1

path γ : [a, b] −→ D with γ(a) = y0, γ(b) = y, the derivative of the function g ◦ γ : [a, b] −→ R2

at s ∈ [a, b] is clearly M.(J2f(γ(s), y0))
−1.γ′(s). We thus have

g(y) = g(y) − g(y0) = g(γ(b)) − g(γ(a)) =

∫ b

a
M. [J2f(γ(s), y0)]

−1 .γ′(s)ds,

so that (4.48) holds for any y ∈ D for the g that we have just defined. Therefore g is well-defined.

Since g is a primitive function of y 7−→M.(J2f(y, y0))
−1 we have Jg(y0) =M.(J2f(y0, y0))

−1,
but f(y0, .) is the identity function on D so J2f(y0, y0) is the identity matrix so Jg(y0) =M .

We now justify that g is a group homomorphism from (D, ⋆) to (R2,+). Let y, x ∈ D and
choose a locally C1 path γ : [0, 2] −→ D with γ(0) = y0, γ(1) = y, γ(2) = f(y, x). Using two
times (4.48), we have

g(f(y, x)) =

∫ 2

0
M. [J2f(γ(s), y0)]

−1 .γ′(s)ds

=

∫ 1

0
M. [J2f(γ(s), y0)]

−1 .γ′(s)ds +

∫ 2

1
M. [J2f(γ(s), y0)]

−1 .γ′(s)ds

= g(y) +

∫ 2

1
M. [J2f(γ(s), y0)]

−1 .γ′(s)ds. (4.49)

Now, let hy denote the inverse function of f(y, .) (hy := f(y−1, .)) and let us consider the
locally C1 path γ̃ : [1, 2] −→ D defined by ∀s ∈ [1, 2], γ̃(s) := hy(γ(s)). In particular we have
γ̃(1) = y0, γ̃(2) = x and

∀s ∈ [1, 2], γ(s) = f(y, γ̃(s)), γ′(s) = J2f(y, γ̃(s)).γ̃
′(s).

As a consequence, the second term in the right hand side of (4.49) equals
∫ 2

1
M. [J2f(f(y, γ̃(s)), y0)]

−1 .J2f(y, γ̃(s)).γ̃
′(s)ds =

∫ 2

1
M. [J2f(γ̃(s), y0)]

−1 .γ̃′(s)ds = g(x),

where we have used (4.39) with u = y, v = γ̃(s), and then (4.48). Putting into (4.49) we obtain
g(f(y, x)) = g(y) + g(x) so g is indeed a group homomorphism from (D, ⋆) to (R2,+).
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We now justify that g is onto R2. Jg(y0) =M is invertible so, by the local inversion theorem,
g(D) contains a neighborhood in R2 of g(y0) = (0, 0). Since moreover g(D) is a subgroup of
(R2,+) we conclude that g(D) = R2.

Let us now justify that g is injective. Assume the contrary, that is, ker g 6= {y0}. We have
that Jg(y) = M.(J2f(y, y0))

−1 is invertible for any y ∈ D so, thanks to the local inversion
theorem, we get that ker g is a discrete group. Let (Q, ⋆) be the quotient group of (D, ⋆) by
ker g, equipped with the quotient topology (we still denote the group composition law on Q by
⋆). Then, let ĝ : Q −→ R2 denote the quotient application of g. Then ĝ is a continuous injective
group homomorphism between (Q, ⋆) and (R2,+). ĝ is also onto because g is. As a consequence
ĝ is bijective. Let us justify that ĝ−1 is continuous: let (xn)n≥1 be a sequence converging to
some x ∈ R2, and let us justify that ĝ−1(xn) converges to ĝ−1(x). Let y ∈ D be an antecedent of
x by g. Then, the local inversion theorem gives the existence of a neighborhood U of x and of a
neighborhood V of y such that g is a Ck-diffeomorphism from V to U . Let us choose n0 such that
xn ∈ U for all n ≥ n0. For such n ≥ n0, let us define yn ∈ V to be the antecedent in V of xn by
g. Since g is a Ck-diffeomorphism from V to U we get that yn converges to y. Let π : D −→ Q
denote the quotient projection. Since π is continuous we get that π(yn) converges to π(y).
Finally, noting that π(yn) = ĝ−1(xn) and π(y) = ĝ−1(x), we obtain the sought convergence. In
conclusion have that ĝ is a bi-continuous isomorphism of groups between (Q, ⋆) and (R2,+). In
particular ĝ is an homeomorphism between Q and R2 so the latter two are homeomorphic. Now,
let γ : [0, 1] −→ D be a continuous path such that γ(0) = y0 and γ(1) ∈ ker g \ {y0}. Clearly,
π ◦ γ : [0, 1] −→ Q is a continuous loop that cannot be continuously reduced to a single point.
Therefore the topological group of Q is not trivial, so Q is not homeomorphic to R2 (whose
topological group is trivial). This is a contradiction, therefore g is injective.

Combining what is proved above, we obtain that g is bijective from D to R2 and Ck. Recall
that Jg(y) =M.(J2f(y, y0))

−1 is invertible for any y ∈ D. Therefore we can conclude that g is a
Ck-diffeomorphism from D to R2. Since g is also a group homomorphism from (D, ⋆) to (R2,+),
it is even a Ck-Lie group isomorphism from (D, ⋆) to (R2,+), which concludes the proof.

�

Lemma 4.4. Let D ⊂ R2 be an open simply connected domain, and let f : D ×D −→ D define
a non-commutative Ck-Lie group structure (D, ⋆) on D, for some k ≥ 2.

Let Y0 := [V (e1), V (e2)]y0 which can be computed explicitly using (4.45), and let M :=
(

π2(Y0) −π1(Y0)
π1(Y0) π2(Y0)

)

. Define g1 : D −→ R via

g1(y) =

∫ b

a
π1
(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds, (4.50)

where y0 ∈ D is the neutral element of (D, ⋆), J2f(z, .) denotes the Jacobian matrix of the
function f(z, .) : D −→ D, and where γ : [a, b] −→ D is any path, locally C1, with γ(a) = y0 and
γ(b) = y. Define g2 : D −→ R via

g2(y) =

∫ b

a
eg1(γ(s))π2

(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds, (4.51)

where γ : [a, b] −→ D is any path, locally C1, with γ(a) = y0 and γ(b) = y. Then g1 and g2 are
well-defined, g := (g1, g2) is a Ck-diffeomorphism from D to R2, and a Ck-Lie group isomorphism
from (D, ⋆) to (R2, T ).
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Proof. If g is the sought isomorphism, then, reasoning as in the beginning of the proof of Lemma

4.2, we see that the Jacobian matrix of g has to be y 7−→

(

1 0

0 eg1(y)

)

.Q.(J2f(y, y0))
−1 where

Q is an invertible 2 × 2 matrix. This explains why the definition of g in the statement of
the lemma is a natural candidate for the isomorphism. Here a again, thanks to Lemma 4.1
applied with (u, v) = (y, y0), we can see that J2f(y, y0) is invertible for any y ∈ D and that
y 7−→ (J2f(y, y0))

−1 is of class Ck−1. To prove that g is well-defined and Ck, we thus only need
to prove the existence of a primitive function, g1, for y 7−→ π1(M.(J2f(y, y0))

−1.), and then

to prove the existence of a primitive function, g2, for y 7−→ eg1(y)π2(M.(J2f(y, y0))
−1.). It will

appear that the 2 × 2 matrix M has been chosen in such a way so that it is possible apply
Poincaré’s Lemma to these differential forms.

For any y ∈ D, let us denote by d1y the linear form that sends z ∈ R2 to π1(M.(J2f(y, y0))
−1.z) ∈

R2. We wish to apply Poincaré’s Lemma to the differential form y 7−→ d1y. Let us check that it
is closed. For y ∈ D we have

d

dy2

[

d1y(e1)
]

−
d

dy1

[

d1y(e2)
]

= π1

(

M.

[

d

dy2
(J2f(y, y0))

−1.e1 −
d

dy1
(J2f(y, y0))

−1.e2

])

=− π1
(

M.
[

(J2f(y, y0))
−1.J1J2f(y, y0)

[

e2, (J2f(y, y0))
−1.e1

]

−(J2f(y, y0))
−1.J1J2f(y, y0)

[

e1, (J2f(y, y0))
−1.e2

]])

=π1
(

M.(J2f(y, y0))
−1.
[

J1J2f(y, y0)
[

e1, (J2f(y, y0))
−1.e2

]

− J1J2f(y, y0)
[

e2, (J2f(y, y0))
−1.e1

]])

=π1

(

M.(J2f(y, y0))
−1.
[

V ((J2f(y, y0))
−1.e1), V ((J2f(y, y0))

−1.e2)
]

y

)

=π1

(

M.(J2f(y, y0))
−1.J2f(y, y0).

[

V ((J2f(y, y0))
−1.e1), V ((J2f(y, y0))

−1.e2)
]

y0

)

=π1

(

M.
[

V ((J2f(y, y0))
−1.e1), V ((J2f(y, y0))

−1.e2)
]

y0

)

=det((J2f(y, y0))
−1)× π1 (M.Y0) = 0.

In the above we have recognized the expression of the commutator in (4.45), used (4.43), (4.46),
and the fact, that can easily be seen from the definition of M , that π1(M.Y0) = 0. This proves
that the differential form d1y is closed. Then, since D is simply connected, Poincaré’s Lemma
ensures the existence of a function g1 : D −→ R such that g1(y0) = 0 and for any y ∈ D, dg1(y),
the differential of g1 at y, is d1y = π1(M.(J2f(y, y0))

−1.). Therefore g1 is Ck, and for any y ∈ D

and any locally C1 path γ : [a, b] −→ D with γ(a) = y0, γ(b) = y, the derivative of the function
g1 ◦ γ : [a, b] −→ R2 at s ∈ [a, b] is clearly π1(M.(J2f(γ(s), y0))

−1.γ′(s)), so (4.50) follows.

Now that g1 is defined, we can define d2y for any y ∈ D as the linear form that sends z ∈ R2

to eg1(y)π2(M.(J2f(y, y0))
−1.z) ∈ R2. Here again, we wish to apply Poincaré’s Lemma to the

differential form y 7−→ d2y so we first check that it is closed. For y ∈ D we have

d

dy2

[

d2y(e1)
]

−
d

dy1

[

d2y(e2)
]

=π2

(

M.

(

d

dy2

[

eg1(y).(J2f(y, y0))
−1
]

.e1 −
d

dy1

[

eg1(y).(J2f(y, y0))
−1.e2

]

))

=π2

(

M.

(

−eg1(y).(J2f(y, y0))
−1.J1J2f(y, y0)

[

e2, (J2f(y, y0))
−1.e1

]

+

(

d

dy2
g1(y)

)

.eg1(y).(J2f(y, y0))
−1.e1

+eg1(y).(J2f(y, y0))
−1.J1J2f(y, y0)

[

e1, (J2f(y, y0))
−1.e2

]

−

(

d

dy1
g1(y)

)

.eg1(y).(J2f(y, y0))
−1.e2

))
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=eg1(y) × π2

(

M.(J2f(y, y0))
−1.

(

−J1J2f(y, y0)
[

e2, (J2f(y, y0))
−1.e1

]

+

(

d

dy2
g1(y)

)

.e1

+J1J2f(y, y0)
[

e1, (J2f(y, y0))
−1.e2

]

−

(

d

dy1
g1(y)

)

.e2

))

=eg1(y) × π2

(

M.(J2f(y, y0))
−1.
(

[

V ((J2f(y, y0))
−1.e1), V ((J2f(y, y0))

−1.e2)
]

y

+

(

d

dy2
g1(y)

)

.e1 −

(

d

dy1
g1(y)

)

.e2

))

=eg1(y) × π2

(

M.(J2f(y, y0))
−1.
(

J2f(y, y0).
[

V ((J2f(y, y0))
−1.e1), V ((J2f(y, y0))

−1.e2)
]

y0

+

(

d

dy2
g1(y)

)

.e1 −

(

d

dy1
g1(y)

)

.e2

))

=eg1(y) × π2

(

M.
[

V ((J2f(y, y0))
−1.e1), V ((J2f(y, y0))

−1.e2)
]

y0

)

+eg1(y)
((

d

dy2
g1(y)

)

× π2
(

M.(J2f(y, y0))
−1.e1

)

−

(

d

dy1
g1(y)

)

× π2
(

M.(J2f(y, y0))
−1.e2

)

)

.

(4.52)

In the above we have recognized the expression of the commutator in (4.45) ans used (4.43).
Then, using (4.46), and the definition of M :

π2

(

M.
[

V ((J2f(y, y0))
−1.e1), V ((J2f(y, y0))

−1.e2)
]

y0

)

=det
(

(J2f(y, y0))
−1
)

× π2 (M.Y0)

=det
(

(J2f(y, y0))
−1
)

× (π1(Y0)
2 + π2(Y0)

2). (4.53)

On the other hand, recall that the differential of g1 at y, is π1(M.(J2f(y, y0))
−1.). In partic-

ular we have d
dy2
g1(y) = (M.(J2f(y, y0))

−1)1,2 and d
dy1
g1(y) = (M.(J2f(y, y0))

−1)1,1. Also, we

have obviously π2(M.(J2f(y, y0))
−1.e1) = (M.(J2f(y, y0))

−1)2,1 and π2(M.(J2f(y, y0))
−1.e2) =

(M.(J2f(y, y0))
−1)2,2. We thus get

(

d

dy2
g1(y)

)

× π2(M.(J2f(y, y0))
−1.e1)−

(

d

dy1
g1(y)

)

× π2(M.(J2f(y, y0))
−1.e2)

=(M.(J2f(y, y0))
−1)1,2 × (M.(J2f(y, y0))

−1)2,1 − (M.(J2f(y, y0))
−1)1,1 × (M.(J2f(y, y0))

−1)2,2

=− det
(

M.(J2f(y, y0))
−1
)

= − det
(

(J2f(y, y0))
−1
)

× det(M)

=− det
(

(J2f(y, y0))
−1
)

× (π1(Y0)
2 + π2(Y0)

2). (4.54)

Putting (4.53) and (4.54) into (4.52) we obtain d
dy2

[

d2y(e1)
]

− d
dy1

[

d2y(e2)
]

= 0, that is, the

differential form y 7−→ d2y is closed. Then, since D is simply connected, Poincaré’s Lemma
ensures the existence of a function g2 : D −→ R such that g2(y0) = 0 and for any y ∈ D, dg2(y),

the differential of g2 at y, is d2y = eg1(y)π2(M.(J2f(y, y0))
−1.). Therefore g2 is Ck, and for any

y ∈ D and any locally C1 path γ : [a, b] −→ D with γ(a) = y0, γ(b) = y, the derivative of the

function g2 ◦ γ : [a, b] −→ R2 at s ∈ [a, b] is clearly eg1(γ(s))π2(M.(J2f(γ(s), y0))
−1.γ′(s)), so

(4.51) follows.

We have seen that g1 and g2 are well-defined and Ck, so g := (g1, g2) is also well-defined and
Ck. We now justify that g is a group homomorphism from (D, ⋆) to (R2, T ). Let y, x ∈ D and
choose a locally C1 path γ : [0, 2] −→ D with γ(0) = y0, γ(1) = y, γ(2) = f(y, x). Using two
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times (4.50), we have

g1(f(y, x)) =

∫ 2

0
π1
(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds

=

∫ 1

0
π1
(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds+

∫ 2

1
π1
(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds

= g1(y) +

∫ 2

1
π1
(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds. (4.55)

Now, let hy denote the inverse function of f(y, .) (hy := f(y−1, .)) and let us consider the
locally C1 path γ̃ : [1, 2] −→ D defined by ∀s ∈ [1, 2], γ̃(s) := hy(γ(s)). In particular we have
γ̃(1) = y0, γ̃(2) = x and

∀s ∈ [1, 2], γ(s) = f(y, γ̃(s)), γ′(s) = J2f(y, γ̃(s)).γ̃
′(s). (4.56)

As a consequence, the second term in the right hand side of (4.55) equals

∫ 2

1
π1

(

M. [J2f(f(y, γ̃(s)), y0)]
−1 .J2f(y, γ̃(s)).γ̃

′(s)
)

ds =

∫ 2

1
π1

(

M. [J2f(γ̃(s), y0)]
−1 .γ̃′(s)

)

ds = g1(x),

where we have used (4.39) with u = y, v = γ̃(s) and (4.50). Putting into (4.55) we obtain

g1(f(y, x)) = g1(y) + g1(x). (4.57)

Then, using two times (4.51), we have

g2(f(y, x)) =

∫ 2

0
eg1(γ(s))π2

(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds

=

∫ 1

0
eg1(γ(s))π2

(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds

+

∫ 2

1
eg1(γ(s))π2

(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds

= g2(y) +

∫ 2

1
eg1(γ(s))π2

(

M.[J2f(γ(s), y0)]
−1.γ′(s)

)

ds. (4.58)

Recall the definition of the locally C1 path γ̃ above, and that it satisfies (4.56). Note that for
all s ∈ [1, 2] we have g1(γ(s)) = g1(f(y, γ̃(s))) = g1(y) + g1(γ̃(s)) thanks to (4.57). The second
term in the right hand side of (4.58) can thus be expressed in term of γ̃. It equals

eg1(y)
∫ 2

1
eg1(γ̃(s))π2

(

M. [J2f(f(y, γ̃(s)), y0)]
−1 .J2f(y, γ̃(s)).γ̃

′(s)
)

ds

=eg1(y)
∫ 2

1
eg1(γ̃(s))π2

(

M. [J2f(γ̃(s), y0)]
−1 .γ̃′(s)

)

ds = eg1(y)g2(x),

where we have used (4.39) with u = y, v = γ̃(s) and (4.51). Putting into (4.58) we obtain

g2(f(y, x)) = g2(y) + eg1(y)g2(x). (4.59)

The combination of (4.57) and (4.59) yields g(f(y, x)) = g(y)Tg(x) so g is indeed a group
homomorphism from (D, ⋆) to (R2, T ).

We now justify that g is onto R2. Since eg(y0) = 1, we have Jg(y0) =M.(J2f(y0, y0)
−1) =M

which is invertible so, by the local inversion theorem, g(D) contains a neighborhood in R2 of
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g(y0) = (0, 0). Let us justify that any neighborhood V of (0, 0) generates the group (R2, T ). For

y =

(

y1
y2

)

∈ R2 let us define

zn :=

(

y1/n

y2/
(

∑n−1
k=0 e

ky1/n
)

)

.

Then, we see that for any n ≥ 1, y is equal to the T -product of n times the element zn:
y = znT...T zn. Moreover, we can see that zn ∈ V when n is large enough. Therefore V generates
the group (R2, T ). Then, since g(D) is a subgroup of (R2, T ) that contains a neighborhood of 0,
we conclude that g(D) = R2.

To prove that g is injective, we can readily repeat the argument that justified the injectiveness
in the proof of Lemma 4.3.

Combining what is proved above, we obtain that g is bijective from D to R2 and Ck. Recall
that g has been defined in such a way that for all y ∈ D, Jg(y), the Jacobian of g at y, equals
(

1 0

0 eg1(y)

)

.M.(J2f(y, y0))
−1 where M is invertible and J2f(y, y0) is invertible for any y ∈ D,

as mentioned in the beginning of the proof. Therefore, for all y ∈ D the Jacobian of g at y
is invertible so we can conclude that g is a Ck-diffeomorphism from D to R2. Since g is also a
group homomorphism from (D, ⋆) to (R2, T ), it is even a Ck-Lie group isomorphism from (D, ⋆)
to (R2, T ), which concludes the proof.

�

We will also need the following simple lemma about the group (R2, T ).

Lemma 4.5. Let m : R2 −→ R be a continuous group homomorphism from (R2, T ) to (R,+).
Then there exists β ∈ R such that

∀z = (z1, z2) ∈ R
2, m(z) = βz1.

A consequence of the above lemma is that, if m̃ is a continuous group homomorphism from
(R2, T ) to (R∗

+,×), then there exists β ∈ R such that ∀z = (z1, z2) ∈ R2, m̃(z) = eβz1 .

Proof. of Lemma 4.5

The proof is very basic. Note that (λ 7−→ (λ, 0)) and (λ 7−→ (0, λ)) are continuous group
homomorphisms from (R,+) to (R2, T ). Therefore, if we define m1,m2 : R −→ R by

m1(λ) := m(λ, 0) and m2(λ) := m(0, λ),

then m1 and m2 are continuous group homomorphisms from (R,+) to (R,+), so there exist β
and β′ such that ∀λ ∈ R,m1(λ) = βλ,m2(λ) = β′λ. Then, note that for any z = (z1, z2) ∈ R2,

m(z) = m

((

0
z2

)

T

(

z1
0

))

= m(0, z2) +m(z1, 0)

= m2(z2) +m1(z1) = βz1 + β′z2. (4.60)

(4.60) yields m(1, 1) = β + β′. On the other hand we have

m(1, 1) = m

((

0
1

)

T

(

1
0

))

= m(0, 1) +m(1, 0)

= m(1, 0) +m(0, 1) = m

((

1
0

)

T

(

0
1

))

= m(1, e1) = β + β′e1,
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where we have used (4.60) for the last equality. Putting together the above and m(1, 1) = β+β′

we deduce that β′ = 0 and, subsituing 0 to β′ in (4.60), we obtain the asserted result. �

5. Lévy processes on (R2, T )

The aim of this section is to identify Lévy processes on the group (R2, T ), and in particular
to express these Lévy processes in term of exponential functionals of classical Lévy processes on
(R2,+). Recall that the starting point of a Lévy process on a group is always the neutral element
of the group. Our result is the following.

Proposition 5.1. Let Y be a Lévy process on (R2, T ), then there exists a Lévy process (ξ, η) on
(R2,+) such that

∀t ≥ 0, Y (t) =

(

ξ(t)
∫ t
0 e

ξ(s−)dη(s)

)

. (5.61)

Let us mention that the general form of generators of Lévy processes on the group (R2, T )
can be obtained by an application of Hunt’s theorem (see Theorem 5.3.3 in [3]) to the Lie group
(R2, T ). It is possible to prove Proposition 5.1 by 1) computing the generator of the right-hand-
side of (5.61) thanks to Ito’s Lemma for Lévy processes, 2) expliciting Hunt’s theorem in the
case of the Lie group (R2, T ), and 3) identifying the expressions of the two generators. However,
we have chosen to proceed in a more intuitive way that does not require an application of Hunt’s
theorem and relies on simple computations on stochastic integrals. If Y is a Lévy process on
(R2, T ), the idea is to define

∀t ≥ 0, ξ(t) := π1(Y (t)), η(t) :=

∫ t

0
e−π1(Y (s−))dπ2(Y (s)),

and then to justify that (ξ, η) is a Lévy process on (R2,+) and that (5.61) holds. This argument
is very simple modulo the fact that we can write stochastic integrals with respect to the real-
valued process π2(Y ). Since we do not know a priori what this process looks like we first justify
the fact that these integrals are well-defined. We proceed in several steps. We first study the
procedure of removing the big jumps for a Lévy process on the group (R2, T ). This procedure is
classical but we provide all the details for the sake of clarity.

For any M > 0 let

AM := {x ∈ R
2, |x|∞ ≥M}, (5.62)

where |(x1, x2)|∞ := |x1| ∨ |x2|. For Y a Lévy process on (R2, T ) and t ≥ 0, the jump of Y at
t is ∆Y (t) := (Y (t−))−1TY (t) (note that ∆Y (t) = (0, 0) if Y is continuous at t). Let RM [Y ]
be the process obtained by removing the jumps of Y that are in AM . Let us describe briefly
the construction of RM [Y ]. If Y has no jump in AM then we put RM [Y ] := Y . If Y does have
jumps in AM then, since Y is càd-làg, there are almost surely finitely many jumps of Y in AM
on finite time intervals. Let 0 < t1 < t2 < ... be the discrete sequence of times associated to the
jumps in AM , we then put RM [Y ](t) := RM [Y ](ti−)T (Y (ti))

−1TY (t) for t ∈ [ti, ti+1[, where by
convention t0 := 0 and RM [Y ](0−) := (0, 0). It will be convenient to work with RM [Y ], which
has only bounded jumps, and to notice that RM [Y ] coincides with Y until the instant of the first
jump of Y in AM . We have the following lemma about RM [Y ]:

Lemma 5.2. Let Y be a Lévy process on (R2, T ) and let (Ft)t≥0 be the right-continuous filtration
associated with Y . For any M > 0, RM [Y ] is a Lévy process on (R2, T ) adapted with respect to
(Ft)t≥0. For any t ≥ 0 we have

sup
s∈[0,t]

E

[

e2|π1(R
M [Y ](s−))|

]

< +∞, (5.63)
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and

sup
s∈[0,t]

E
[

|π2(R
M [Y ](s))|2

]

< +∞. (5.64)

Proof. Let Y be a Lévy process on (R2, T ) and let (Ft)t≥0 be the right-continuous filtration
associated with Y . The fact that RM [Y ] is adapted with respect to (Ft)t≥0 is plain from the fact
that (RM [Y ](s), 0 ≤ s ≤ t) has been constructed as a function of (Y (s), 0 ≤ s ≤ t). We first
justify that RM [Y ] is a Lévy process on (R2, T ). If Y has a.s. no jumps in AM then Y = RM [Y ]
so the latter is clearly a Lévy process on (R2, T ). We thus assume that Y admits jumps in AM .

By construction, RM [Y ] is a càd-làg process starting from (0, 0). We now justify that RM [Y ]
has stationary and independent increments. Let us fix t ≥ 0 and define St[Y ](.) := (Y (t))−1TY (t+
.). Then St[Y ] is independent from Ft and has the same law as Y . For any s ≥ 0 we have

∆Y (t+ s) = (Y (t+ s−))−1TY (t+ s) = ((Y (t))−1TY (t+ s−))−1T (Y (t))−1TY (t+ s)

= (St[Y ](s−))−1TSt[Y ](s) = ∆St[Y ](s).

As a consequence, St[Y ] has a jump at s if and only if Y has a jump at t+s. Let 0 < s1 < s2 < ...
be the sequence of the jumps of St[Y ] in AM (then t + s1 < t + s2 < ... is the sequence of the
jumps of Y in AM after time t). If Y has jumps in AM on [0, t], then let u be the instant of the
last jump of Y in AM . If Y has no jump in [0, t], then let u := 0. Let us prove by induction on
i that

RM [St[Y ]](s) = St[R
M [Y ]](s), ∀s ∈ [si, si+1[, (5.65)

where by convention s0 := 0. For s ∈ [0, s1[ we have by the definitions of RM , s1, and St:

RM [St[Y ]](s) = St[Y ](s) = (Y (t))−1TY (t+ s)

= (RM [Y ](u−)T (Y (u))−1TY (t))−1TRM [Y ](u−)T (Y (u))−1TY (t+ s)

= (RM [Y ](t))−1TRM [Y ](t+ s) = St[R
M [Y ]](s).

Therefore, (5.65) holds for i = 0. Let us assume that it holds for some i ≥ 0 and prove it for
i+ 1. By the induction hypothesis we have that RM [St[Y ]](si+1−) = St[R

M [Y ]](si+1−). Then,
for any s ∈ [si+1, si+2[, using the definition of RM , the previous relation and the definition of St
we have

RM [St[Y ]](s) = RM [St[Y ]](si+1−)T (St[Y ](si+1))
−1TSt[Y ](s)

= St[R
M [Y ]](si+1−)T (St[Y ](si+1))

−1TSt[Y ](s)

= (RM [Y ](t))−1TRM [Y ](t+ si+1−)T ((Y (t))−1TY (t+ si+1))
−1T (Y (t))−1TY (t+ s)

= (RM [Y ](t))−1TRM [Y ](t+ si+1−)T (Y (t+ si+1))
−1TY (t+ s)

= (RM [Y ](t))−1TRM [Y ](t+ s) = St[R
M [Y ]](s).

Then the induction is completed and we conclude that we have a.s. RM [St[Y ]] = St[R
M [Y ]].

This means that St[R
M [Y ]] is expressed as a deterministic function, RM , of the process St[Y ] that

is independent from Ft and has the same law as Y . As a consequence St[R
M [Y ]] is independent

from Ft and has the same law as RM [Y ]. This proves the independence and stationarity of the
increments of RM [Y ] which is therefore a Lévy process.

We now justify the claim about moments. For this we follow the proof of Theorem 2.4.7
in [2], just working on (R2, T ) instead of (Rd,+). Let T0 := 0 and recursively for n ≥ 0,
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Tn+1 := inf{t > Tn, |(R
M [Y ](Tn))

−1TRM [Y ](t)|∞ > M}. By definition of Tn we have a.s. that

∀s ∈ [Tn, Tn+1[, |π1((R
M [Y ](Tn))

−1TRM [Y ](s))| ≤M, (5.66)

|π2((R
M [Y ](Tn))

−1TRM [Y ](s))| ≤M. (5.67)

Then, |π1((R
M [Y ](Tn))

−1TRM [Y ](Tn+1))| equals a.s.

|π1((R
M [Y ](Tn))

−1TRM [Y ](Tn+1−)T∆RM [Y ](Tn+1))|

=|π1((R
M [Y ](Tn))

−1TRM [Y ](Tn+1−)) + π1(∆R
M [Y ](Tn+1))|

≤|π1((R
M [Y ](Tn))

−1TRM [Y ](Tn+1−))|+ |π1(∆R
M [Y ](Tn+1))|.

According to (5.66) the first term is a.s. less than M and, since RM [Y ] has no jump in AM , the
second term is a.s. less than M . We thus get |π1((R

M [Y ](Tn))
−1TRM [Y ](Tn+1))| ≤ 2M a.s.

and combining with (5.66) we get that a.s.

sup
s∈[Tn,Tn+1]

|π1((R
M [Y ](Tn))

−1TRM [Y ](s))| ≤ 2M. (5.68)

Then, |π2((R
M [Y ](Tn))

−1TRM [Y ](Tn+1))| a.s. equals

|π2((R
M [Y ](Tn))

−1TRM [Y ](Tn+1−)T∆RM [Y ](Tn+1))|

=|π2((R
M [Y ](Tn))

−1TRM [Y ](Tn+1−)) + eπ1((R
M [Y ](Tn))−1TRM [Y ](Tn+1−))π2(∆R

M [Y ](Tn+1))|

≤|π2((R
M [Y ](Tn))

−1TRM [Y ](Tn+1−))|+ eπ1((R
M [Y ](Tn))−1TRM [Y ](Tn+1−))|π2(∆R

M [Y ](Tn+1))|.

According to (5.67) the first term is a.s. less than M , and according to (5.66) the first factor
in the second term is a.s. less than eM . Since RM [Y ] has no jump in AM , the second factor in
the second term is a.s. less than M . We thus get that |π2((R

M [Y ](Tn))
−1TRM [Y ](Tn+1))| ≤

(1 + eM )M ≤ 2MeM a.s. and, combining with (5.67) we get that a.s.

sup
s∈[Tn,Tn+1]

|π2((R
M [Y ](Tn))

−1TRM [Y ](s))| ≤ 2MeM . (5.69)

Let us prove by induction that a.s.

∀s ∈ [0, Tn], |π1(R
M [Y ](s))| ≤ 2nM, |π2(R

M [Y ](s))| ≤ 2nMe2nM . (5.70)

(5.70) is clearly true for n = 0. Let us assume that it holds for some n ≥ 0 and prove it for
n + 1. If the supremum of |π1(R

M [Y ](s))| on the interval [0, Tn+1] is attained in [0, Tn[, then
the induction hypothesis implies that sups∈[0,Tn+1] |π1(R

M [Y ](s))| ≤ 2nM ≤ 2(n + 1)M . If the

supremum of |π1(R
M [Y ](s))| on the interval [0, Tn+1] is attained in [Tn, Tn+1] then we have

sup
s∈[0,Tn+1]

|π1(R
M [Y ](s))| = sup

s∈[Tn,Tn+1]
|π1(R

M [Y ](Tn)T (R
M [Y ](Tn))

−1TRM [Y ](s))|

= sup
s∈[Tn,Tn+1]

|π1(R
M [Y ](Tn)) + π1((R

M [Y ](Tn))
−1TRM [Y ](s))|

≤ |π1(R
M [Y ](Tn))|+ sup

s∈[Tn,Tn+1]
|π1((R

M [Y ](Tn))
−1TRM [Y ](s))|.

By the induction hypothesis the first term is a.s. less than 2nM and by (5.68) the second term is
a.s. less than 2M . In any case we thus have sups∈[0,Tn+1] |π1(R

M [Y ](s))| ≤ 2(n+ 1)M . Then, if

the supremum of |π2(R
M [Y ](s))| on the interval [0, Tn+1] is attained in [0, Tn[, then the induction

hypothesis implies that sups∈[0,Tn+1] |π2(R
M [Y ](s))| ≤ 2nMe2nM ≤ 2(n + 1)Me2(n+1)M . If the
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supremum of |π2(R
M [Y ](s))| on the interval [0, Tn+1] is attained in [Tn, Tn+1] then we have

sup
s∈[0,Tn+1]

|π2(R
M [Y ](s))| = sup

s∈[Tn,Tn+1]
|π2(R

M [Y ](Tn)T (R
M [Y ](Tn))

−1TRM [Y ](s))|

= sup
s∈[Tn,Tn+1]

|π2(R
M [Y ](Tn)) + eπ1(R

M [Y ](Tn))π2((R
M [Y ](Tn))

−1TRM [Y ](s))|

≤ |π2(R
M [Y ](Tn))|+ eπ1(R

M [Y ](Tn)) sup
s∈[Tn,Tn+1]

|π2((R
M [Y ](Tn))

−1TRM [Y ](s))|.

By the induction hypothesis the first term is a.s. less than 2nMe2nM ≤ 2nMe2(n+1)M and the
first factor in the second term is a.s. less than e2nM . By (5.69) the second factor of the second
term is a.s. less than 2MeM ≤ 2Me2M . In any case we thus have sups∈[0,Tn+1] |π2(R

M [Y ](s))| ≤

2(n+ 1)Me2(n+1)M . In conclusion, (5.70) holds for n+ 1 so the induction is completed.

Then, since RM [Y ] is a Lévy process, the sequence (Tn+1 − Tn)n≥0 is iid so in particular

E[e−λTn ] = E[e−λ(Tn−Tn−1)...e−λT1 ] = (E[e−λT1 ])n. Then for any t ≥ 0, z > 0,

P
(

|π1(R
M [Y ](t))| > z

)

≤ P
(

|π1(R
M [Y ](t))| > 2M⌊z/2M⌋

)

≤ P
(

T⌊z/2M⌋ < t
)

≤ eλt
(

E

[

e−λT1
])⌊z/2M⌋

,

where we have used (5.70) (which shows that |π1(R
M [Y ](t))| > 2nM ⇒ Tn < t) and Chernoff’s

inequality. Let us choose λM,1 large enough so that (E[e−λM,1T1 ])1/2M < e−2. For such a choice
of λM,1 we get

∀t ≥ 0, E
[

e2|π1(R
M [Y ](t))|

]

= 1 + 2

∫ +∞

0
e2zP

(

|π1(R
M [Y ](t))| > z

)

dz

≤ 1 + 2eλM,1t

∫ +∞

0
e2z
(

E

[

e−λM,1T1
])⌊z/2M⌋

dz

≤ 1 + eλM,1tC1,

where C1 is some positive constant. We thus get

sup
s∈[0,t]

E

[

e2|π1(R
M [Y ](s))|

]

< +∞.

Taking left-limits and using Fatou’s Lemma we obtain (5.63).

Let zM be such that e3M⌊log(z)/3M⌋ > 2M⌊log(z)/3M⌋e2M⌊log(z)/3M⌋ for any z > zM . Then
for any t ≥ 0 and z > zM ,

P
(

|π2(R
M [Y ](t))| > z

)

≤ P

(

|π2(R
M [Y ](t))| > e3M⌊log(z)/3M⌋

)

≤ P

(

|π2(R
M [Y ](t))| > 2M⌊log(z)/3M⌋e2M⌊log(z)/3M⌋

)

≤ P
(

T⌊log(z)/3M⌋ < t
)

≤ eλM,1t
(

E

[

e−λM,1T1
])⌊log(z)/3M⌋

,

where we have used (5.70) (which shows that |π2(R
M [Y ](t))| > 2nMe2nM ⇒ Tn < t) and

Chernoff’s inequality. Let us choose λM,2 large enough so that (E[e−λM,2T1 ])1/3M < e−3. For
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such a choice of λM,2 we have (E[e−λM,2T1 ])⌊log(z)/3M⌋ < (E[e−λM,2T1 ])−1z−3. We thus get:

∀t ≥ 0, E
[

|π2(R
M [Y ](t))|2

]

= 2

∫ +∞

0
zP
(

|π2(R
M [Y ](t))| > z

)

dz

≤ 2eλM,2t

∫ +∞

0
z
(

E

[

e−λM,2T1
])⌊log(z)/3M⌋

dz

≤ eλM,2tC2,

where C2 is some positive constant. This yields (5.64).

�

We now study a procedure of re-centering for the second coordinate of RM [Y ], in order to
obtain a martingale.

Lemma 5.3. Let Y be a Lévy process on (R2, T ) and let (Ft)t≥0 be the right-continuous filtration
associated with Y . For any M > 0, there is a unique αM ∈ R such that the process

WM [Y ] :=

(

π2(R
M [Y ](t))− αM

∫ t

0
eπ1(R

M [Y ](u−))du, t ≥ 0

)

(5.71)

is a càd-làg martingale with respect to the filtration (Ft)t≥0, locally bounded in L2 (that is, for
any t > 0, supu∈[0,t] E[(W

M [Y ](s))2] < +∞).

Proof. Let Y be a Lévy process on (R2, T ) and let (Ft)t≥0 be the right-continuous filtration

associated with Y . The process (
∫ t
0 e

π1(RM [Y ](u−))du, t ≥ 0) is well-defined and a.s. continuous,

because RM [Y ] is a.s. càd-làg as a Lévy process, according to Lemma 5.2. Note from Lemma

5.2 that the expectations E[π2(R
M [Y ](1))] and E[

∫ 1
0 e

π1(RM [Y ](u−))du] are finite, and notice that
the second is positive. Let us put

αM := E
[

π2(R
M [Y ](1))

]

/E

[
∫ 1

0
eπ1(R

M [Y ](u−))du

]

, (5.72)

and define WM [Y ] with this αM , as in (5.71). Then, WM [Y ] is well-defined and a.s. càd-làg.

We now justify the local boundedness in L2. Let us fix t > 0 and s ∈ [0, t]. We have

E
[

(WM [Y ](s))2
]

≤ 2E
[

(π2(R
M [Y ](s)))2

]

+ 2α2
ME

[

(
∫ s

0
eπ1(R

M [Y ](u−))du

)2
]

≤ 2 sup
u∈[0,t]

E
[

|π2(R
M [Y ](u))|2

]

+ 2α2
M t

2
E

[

(

1

t

∫ t

0
eπ1(R

M [Y ](u−))du

)2
]

≤ 2 sup
u∈[0,t]

E
[

|π2(R
M [Y ](u))|2

]

+ 2α2
M tE

[
∫ t

0
e2π1(R

M [Y ](u−))du

]

≤ 2 sup
u∈[0,t]

E
[

|π2(R
M [Y ](u))|2

]

+ 2α2
M t

∫ t

0
E

[

e2π1(R
M [Y ](u−))

]

du

≤ 2 sup
u∈[0,t]

E
[

|π2(R
M [Y ](u))|2

]

+ 2α2
M t

2 sup
u∈[0,t]

E

[

e2|π1(R
M [Y ](u−))|

]

< +∞, (5.73)

where we have used Jensen’s inequality, Fubini’s theorem, and Lemma 5.2 for the finiteness of
the two supremums. Since the final upper bound is independent of s ∈ [0, t], we obtain that
WM [Y ] is indeed locally bounded in L2.
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We now justify that WM [Y ] is a martingale. Recall from Lemma 5.2 that RM [Y ] is adapted
with respect to (Ft)t≥0. From this it is not difficult to see that WM [Y ] is adapted with respect
to (Ft)t≥0. Now, for any h > 0 let us put

αM (h) := E
[

π2(R
M [Y ](h))

]

/E

[
∫ h

0
eπ1(R

M [Y ](u−))du

]

,

and notice that αM defined in (5.72) coincides with αM (1). By definition, αM (h) is the unique
real number that satisfies

E

[

π2(R
M [Y ](h)) − αM (h)

∫ h

0
eπ1(R

M [Y ](u−))du

]

= 0.

Then recall that, since RM [Y ] is a Lévy process on (R2, T ) adapted to (Ft)t≥0, for any h > 0
and u > 0 we have RM [Y ](h + u) = RM [Y ](h)TSh[R

M [Y ]](u) where Sh[R
M [Y ]] is equal in law

to RM [Y ] and is independent from Fh. Then E[π2(R
M [Y ](2h)) − αM (h)

∫ 2h
0 eπ1(R

M [Y ](u−))du]
equals

E

[

π2
(

RM [Y ](h)TSh[R
M [Y ]](h)

)

− αM (h)

∫ h

0
eπ1(R

M [Y ](u−))du

− αM (h)

∫ h

0
eπ1(R

M [Y ](h)TSh[R
M [Y ]](u−))du

]

=E

[

π2(R
M [Y ](h)) − αM (h)

∫ h

0
eπ1(R

M [Y ](u−))du

]

+E

[

eπ1(R
M [Y ](h))

(

π2(Sh[R
M [Y ]](h)) − αM (h)

∫ h

0
eπ1(Sh[R

M [Y ]](u−))du

)]

=0 + E

[

eπ1(R
M [Y ](h))

E

[

π2(Sh[R
M [Y ]](h)) − αM (h)

∫ h

0
eπ1(Sh[R

M [Y ]](u−))du
∣

∣Fh

]]

=E

[

eπ1(R
M [Y ](h)) × E

[

π2(R
M [Y ](h)) − αM (h)

∫ h

0
eπ1(R

M [Y ](u−))du

]]

=E

[

eπ1(R
M [Y ](h)) × 0

]

= 0. (5.74)

In the above we have used two times the definition of αM (h) and one time the fact that Sh[R
M [Y ]]

is equal in law to RM [Y ] and is independent from Fh. By unicity we obtain αM (2h) = αM (h) and
the previous reasoning can be used to prove by induction that we have actually αM (nh) = αM (h),
for all n ∈ N. In particular, the function αM (.) is constant on the set of positive dyadic numbers.
Then, reasoning as in (5.73), we see that for any t > 0 the families (π2(R

M [Y ](s)), 0 ≤ s ≤ t)

and (
∫ s
0 e

π1(RM [Y ](u−))du, 0 ≤ s ≤ t) are bounded in L2 and therefore uniformly integrable. Since

RM [Y ] is a Lévy process, these two family are also stochastically continuous with respect to
s ∈ [0, t]. We deduce that these family are continuous in L1 with respect to s ∈ [0, t]. This proves
the continuity of the function αM (.). Combining with the constantness on the set of positive
dyadic numbers, we obtain that this function is constant equal to αM . As a consequence, for
any h > 0 we have

E

[

π2(R
M [Y ](h)) − αM

∫ h

0
eπ1(R

M [Y ](u−))du

]

= 0.

Using this and reasoning as in (5.74) we can now prove that for any t, s > 0

E
[

WM [Y ](t+ s)
∣

∣Ft
]

=WM [Y ](t).
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This concludes the proof of the fact that WM [Y ] is a martingale with respect to the filtration
(Ft)t≥0.

Conversely, the fact that WM [Y ] is a martingale implies that E[WM [Y ](1)] = E[WM [Y ](0)] =
E[0] = 0. This can hold only for αM being as in (5.72). This proves unicity for the choice of αM
for which WM [Y ] is a martingale.

�

We are now ready to prove Proposition 5.1.

Proof. of Proposition 5.1

Let Y be a Lévy process on (R2, T ) and let (Ft)t≥0 be the right-continuous filtration associated
with Y . We want to define

∀t ≥ 0, ξ(t) := π1(Y (t)), η(t) :=

∫ t

0
e−π1(Y (s−))dπ2(Y (s)). (5.75)

We first need to justify that the stochastic integral in (5.75) is well-defined. Let us fix M >
0, and let WM [Y ] denote the process defined in (5.71). According to Lemma 5.3, WM [Y ]
is a càd-làg martingale with respect to the filtration (Ft)t≥0, locally bounded in L2. Also,

(
∫ t
0 e

π1(RM [Y ](u−))du, t ≥ 0) is continuous, adapted with respect to (Ft)t≥0 and has locally

bounded variation. Then, since by definition of WM [Y ] in (5.71) we have π2(R
M [Y ]) =WM [Y ]+

αM
∫ .
0 e

π1(RM [Y ](u−))du, we deduce that the process π2(R
M [Y ]) (that is càd-làg and adapted with

respect to (Ft)t≥0) satisfies the definition of a decomposable process, just before Theorem II.3.9
in [13]. By this theorem, π2(R

M [Y ]) is a semimartingale, in the meaning of [13], for the filtration
(Ft)t≥0. In the remainder, the concept of semimartingale has to be always understood in the
meaning of [13].

Let TM := inf{t ≥ 0, ∆Y (t) ∈ AM}, where AM is defined in (5.62). TM is a stopping time
for the filtration (Ft)t≥0 and TM converges a.s. to +∞ when M goes to +∞ (otherwise, with
positive probability, a finite time interval could contain infinitely many big jumps of Y , which
would not be compatible with Y being a.s. càd-làg). For Z a real process starting at 0 and
adapted to (Ft)t≥0, we define Z stopped at TM− by ZTM−(t) := Z(t)10≤t<TM +Z(TM−)1t≥TM .
For any M > 0 we have clearly (π2(R

M [Y ]))TM− = (π2(Y ))TM−. Moreover π2(Y ) is càd-làg and
adapted with respect to (Ft)t≥0. By Theorem II.3.6 in [13], we can conclude that π2(Y ) is a
semimartingale for the filtration (Ft)t≥0.

The process (e−π1(Y (t−)), t ≥ 0) is adapted with respect to (Ft)t≥0 and left continuous with
right limits. Section II.4 in [13] ensures that the stochastic integral of such a process, with
respect to a semimartingale for (Ft)t≥0, is well-defined (as a limit of stochastic integrals of
simple predictable processes with respect to the semimartingale in question), a.s. càd-làg, and
adapted with respect to (Ft)t≥0.

We deduce that the process (ξ, η) defined in (5.75) is indeed well-defined, a.s. càd-làg, and
adapted with respect to (Ft)t≥0. We now justify that (ξ, η) is a Lévy process on (R2,+). We
only need to justify the independence and stationarity of the increments. Let us fix t ≥ 0 and
define Ỹ (.) := (Y (t))−1TY (t + .). Then Ỹ is independent from Ft and has the same law as Y .

Since Y (t+ .) = Y (t)T Ỹ (.), it is not difficult to see that we have a.s.

∀s ≥ 0, Ỹ (s) =

(

π1(Y (t+ s))− π1(Y (t))

e−π1(Y (t))[π2(Y (t+ s))− π2(Y (t))]

)

.
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Let (ξ̃, η̃) be constructed from Ỹ just as (ξ, η) is constructed from Y in (5.75). Then (ξ̃, η̃) is
independent from Ft and has the same law as (ξ, η). Moreover, we have a.s. that for any s ≥ 0,

(

ξ̃(s)
η̃(s)

)

=

(

π1(Ỹ (s))
∫ s
0 e

−π1(Ỹ (u−))dπ2(Ỹ (u))

)

=

(

π1(Y (t+ s))− π1(Y (t))
∫ s
0 e

−π1(Y (t+u−))+π1(Y (t))e−π1(Y (t))dπ2(Y (t+ u))

)

=

(

π1(Y (t+ s))− π1(Y (t))
∫ s
0 e

−π1(Y (t+u−))dπ2(Y (t+ u))

)

=

(

π1(Y (t+ s))− π1(Y (t))
∫ t+s
t e−π1(Y (u−))dπ2(Y (u))

)

=

(

ξ(t+ s)
η(t+ s)

)

−

(

ξ(t)
η(t)

)

.

This proves that (ξ, η) has stationary increments. Moreover, recall that ((ξ(s), η(s)), 0 ≤ s ≤ t)

is measurable with respect to Ft and that (ξ̃, η̃) is independent from Ft, so the independence of
of increments for (ξ, η) follows. (ξ, η) is thus indeed a Lévy process on (R2,+).

It now only remains to justify that the expression (5.61) is satisfied. Since η is defined via
(5.75), Theorem II.5.19 in [13] ensures that η is a semimartingale for the filtration (Ft)t≥0

(alternatively, this follows from the fact that η is a Lévy process, adapted to (Ft)t≥0, and the

corollary of Theorem II.3.9 in [13]). The process (eπ1(Y (t−)), t ≥ 0) is adapted with respect
to (Ft)t≥0 and left continuous with right limits. Therefore, by Section II.4 in [13], this process
can be integrated with respect to η, and the stochastic integral in the sens of [13] coincides
with the classical stochastic integral with respect to the Lévy process η (see for example Section
4 in [2] for the definition of stochastic integrals with respect to real Lévy processes). Indeed,
both integrals are limits of stochastic integrals, with respect to η, of simple predictable processes
approaching the integrand. By the associativity property in Theorem II.5.19 of [13], we have
∫ .
0 e

π1(Y (s−))dη(s) =
∫ .
0 e

π1(Y (s−))e−π1(Y (s−))dπ2(Y (s)). Then we get that, a.s. for any t ≥ 0,

(

ξ(t)
∫ t
0 e

ξ(s−)dη(s)

)

=

(

π1(Y (t))
∫ t
0 e

π1(Y (s−))dη(s)

)

=

(

π1(Y (t))
∫ t
0 e

π1(Y (s−))e−π1(Y (s−))dπ2(Y (s))

)

=

(

π1(Y (t))
∫ t
0 1dπ2(Y (s))

)

=

(

π1(Y (t))
π2(Y (t))

)

= Y (t).

Therefore, (5.61) holds a.s. for our definition of (ξ, η).

�

6. Proof of the main theorems

6.1. Proof of Theorems 1.16 and 1.5. We first prove Theorem 1.16. Let I be an open
interval of R, and X be a Ck-gssMp on I, for some k ≥ 1. ((fy, cy), y ∈ E) is a family of Ck good
invariance components associated with X, relatively to some reference point y0 ∈ I. We assume
that either Assumption 1 or Assumption 2 is satisfied for E = I. Lemma 7.1 then guaranties
that Assumption 1 is satisfied. According to Lemma 7.2, Sym(Xy0) is discrete.

We can thus apply Proposition 3.1. Let us define an interne composition law ⋆ on I by
y ⋆ x := fy(x). According to Proposition 3.1, (I, ⋆) is a Ck-Lie group (for the natural differential
structure on I, arising from the fact that it is an open subset of R) with neutral element y0, and
(y 7−→ cy) is a Ck-Lie group homomorphism from (I, ⋆) to (R∗

+,×). According to Proposition

3.3, there is a Lévy process L, on (I, ⋆), such that if we set ∀t ∈ [0,+∞], ϕ(t) :=
∫ t
0 1/cL(s)ds,

then ζ(Xy0) = ϕ(+∞) and

∀ 0 ≤ t < ϕ(+∞) = ζ(Xy0), Xy0(t) = L
(

ϕ−1(t)
)

. (6.76)
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Let us define g : I −→ R as in (1.18). Then, according to Lemma 4.2, g is well-defined, is a
Ck diffeomorphism from I to R, and even a Ck-Lie group isomorphism from (I, ⋆) to (R,+).
Let us define the real valued process ξ as ξ(t) := g(L(t)). Since g is a continuous group homo-
morphism from (I, ⋆) to (R,+) we have clearly that ξ is a real Lévy process. Then, we have

∀t ∈ [0,+∞], ϕ(t) =
∫ t
0 1/cg−1(ξ(s))ds and (6.76) can be re-written as

∀ 0 ≤ t < ϕ(+∞) = ζ(Xy0), Xy0(t) = g−1
(

ξ
(

ϕ−1(t)
))

.

Then, since g−1 is a continuous group homomorphism from (R,+) to (I, ⋆), and (y 7−→ cy)
is a continuous group homomorphism from (I, ⋆) to (R∗

+,×), we get that (x 7−→ cg−1(x)) is a
continuous group homomorphism from (R,+) to (R∗

+,×). Therefore, there exists α ∈ R such that

cg−1(x) = e−αx,∀x ∈ R. Clearly, this α is equal to − log(cg−1(1)) and "ϕ(t) =
∫ t
0 1/cg−1(ξ(s))ds"

can be re-written as ϕ(t) =
∫ t
0 e

αξ(s)ds, which terminates the proof of the asserted representation
for X.

Let us now justify Remark 1.17. Clearly we only need to justify that for all 0 ≤ t < ζ(Xy0),

ϕ−1(t) =
∫ t
0 cXy0(u)

du. In the above proof, an application of Proposition 3.3 yielded the existence

of a process L satisfying the relation (6.76), with ∀t ∈ [0,+∞], ϕ(t) =
∫ t
0 1/cL(s)ds. According

to Remark 3.4, this implies that we have 0 ≤ t < ζ(Xy0), ϕ
−1(t) =

∫ t
0 cXy0(u)

du, which is the
claim.

We now justify Theorem 1.5. Under the assumptions of the theorem, Lemma 7.1 guaranties
that Assumption 1 is satisfied. Then, Lemma 7.2 applies so the conditions are satisfied to
apply Proposition 1.15. We can thus produce a family ((fy, cy), y ∈ I) of Ck good invariance
components associated with X, relatively to the reference point y0. Then Theorem 1.16 applies
and yields the direct part of the theorem. The reciprocal is straightforward to verify, following
the procedure from the proof of Proposition 1.11.

6.2. Proof of Theorems 1.19 and 1.6. We first prove Theorem 1.19. Let D be an open simply
connected domain of R2, and X be a Ck-gssMp on D, for some k ≥ 2. ((fy, cy), y ∈ E) is a

family of Ck good invariance components associated with X, relatively to some reference point
y0 ∈ D. We assume that either Assumption 1 or Assumption 2 is satisfied for E = D and that
Sym(Xy0) is discrete.

Let us define an interne composition law ⋆ on D by y ⋆ x := fy(x). According to Proposition

3.1, (D, ⋆) is a Ck-Lie group (for the natural differential structure on D, arising from the fact
that it is an open subset of R2) with neutral element y0, and (y 7−→ cy) is a Ck-Lie group
homomorphism from (D, ⋆) to (R∗

+,×). According to Proposition 3.3, there is a Lévy process L,

on (D, ⋆), such that if we set ∀t ∈ [0,+∞], ϕ(t) :=
∫ t
0 1/cL(s)ds, then ζ(Xy0) = ϕ(+∞) and

∀ 0 ≤ t < ϕ(+∞) = ζ(Xy0), Xy0(t) = L
(

ϕ−1(t)
)

. (6.77)

We now distinguish two cases:

1) If ((fy, cy), y ∈ D) are commutative invariance components, then the Lie group (D, ⋆) is
commutative. Let us define g : D −→ R2 as in (1.23). Since the matrix M , defined a little before
(1.23), is always invertible, Lemma 4.3 ensures that g is well-defined, is a Ck diffeomorphism
from D to R2, and even a Ck-Lie group isomorphism from (D, ⋆) to (R2,+). Let us define the
R2 valued process (ξ, η) as (ξ(t), η(t)) := g(L(t)), where L is the Lévy process on (D, ⋆) that
appears in (6.77). Since g is a continuous group homomorphism we have that (ξ, η) is a Lévy
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process on (R2,+). Also, replacing L by g−1(ξ, η) we obtain

∀t ∈ [0,+∞], ϕ(t) =

∫ t

0

1

cL(s)
ds =

∫ t

0

1

cg−1(ξ(s),η(s))
ds, (6.78)

and (6.77) can be re-written as (1.26) (but with ϕ(.) as in (6.78)). It thus only remains to

prove that ϕ(t) =
∫ t
0 e

αξ(s)ds where α is as defined in the statement of the theorem, that is,
α = − log(cg−1(1,0)).

Note that (z 7−→ cg−1(z)) is a Ck-Lie group homomorphism from (R2,+) to (R∗
+,×). Therefore,

there are β1, β2 ∈ R such that ∀z = (z1, z2) ∈ R2, cg−1(z) = eβ1z1+β2z2 . Differentiating at (0, 0)
with respect to respectively z1 and z2 we get

β1 = tY0.Jg
−1(0, 0).e1 = tY0.(Jg(y0))

−1.e1 = tY0.M
−1.e1 and β2 = tY0.M

−1.e2.
(6.79)

In the above expression we have used that, as defined in the statement of the theorem, Y0 is the
gradient at y0 of the application (y 7−→ cy), and the fact that Jg(y0) =M (see Lemma 4.3).

If Y0 =

(

0
0

)

then we have clearly from (6.79) that β2 = 0. If Y0 6=

(

0
0

)

then recall that

M =

(

π1(Y0) π2(Y0)
−π2(Y0) π1(Y0)

)

so M−1 = 1
||Y0||2

(

π1(Y0) −π2(Y0)
π2(Y0) π1(Y0)

)

, where ||.|| denotes the Euclidian

norm of vectors of R2. Combining with (6.79) we get β2 = 0. Therefore, in any case, we have
∀z = (z1, z2) ∈ R2, cg−1(z) = eβ1z1 and, evaluating at z = (1, 0), β1 = log(cg−1(1,0)) = −α.

Putting the obtained expression of cg−1(.) into (6.78) we get ϕ(t) =
∫ t
0 e

αξ(s)ds as required, which
terminates the proof.

2) If ((fy, cy), y ∈ D) are not commutative invariance components, then the Lie group (D, ⋆) is
non-commutative. Let us define g : D −→ R2 as in Lemma 4.4. Then, according to that lemma,
g is well-defined, is a Ck diffeomorphism from D to R2, and even a Ck-Lie group isomorphism
from (D, ⋆) to (R2, T ). Let us define the R2 valued process Y as Y (t) := g(L(t)), where L is the
Lévy process on (D, ⋆) that appears in (6.77). Since g is a continuous group homomorphism we
have that Y is a Lévy process on (R2, T ). According to Proposition 5.1, there is a Lévy process

(ξ, η) on (R2,+) such that Y (t) = (ξ(t),
∫ t
0 e

ξ(s−)dη(s)),∀t ≥ 0. Therefore, we can replace L(.)

by g−1(ξ(.),
∫ .
0 e

ξ(s−)dη(s)). We obtain

∀t ∈ [0,+∞], ϕ(t) =

∫ t

0

1

cL(s)
ds =

∫ t

0

1

cg−1(ξ(s),
∫ s

0 e
ξ(u−)dη(u))

ds, (6.80)

and (6.77) can be re-written as (1.29) (but with ϕ(.) as in (6.80)). It thus only remains to

prove that ϕ(t) =
∫ t
0 e

αξ(s)ds where α is as defined in the statement of the theorem, that is,
α = − log(cg−1(1,0)).

(z 7−→ cg−1(z)) is a Ck-Lie group homomorphism from (R2, T ) to (R∗
+,×). Therefore, according

to Lemma 4.5, there is β ∈ R such that ∀z = (z1, z2) ∈ R2, cg−1(z) = eβz1 and, evaluating at
z = (1, 0), β = log(cg−1(1,0)) = −α. Putting the obtained expression of cg−1(.) into (6.80) we get

ϕ(t) =
∫ t
0 e

αξ(s)ds as required, which terminates the proof.

Here, we still have the alternative expression ϕ−1(t) =
∫ t
0 cXy0 (u)

du for 0 ≤ t < ζ(Xy0). The
justification is just as in the proof of Theorem 1.16.

We now justify Theorem 1.6. Under the assumptions of the theorem, Proposition 1.15 applies.
We can thus produce a family ((fy, cy), y ∈ I) of Ck good invariance components associated
with X, relatively to the reference point y0. Then Theorem 1.19 applies and yields the direct
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part of the theorem. Indeed, if the good invariance components are commutative then Theorem
1.19 shows that (1.9), (1.10) and (1.11) are true for ψ = g−1, β = 0 (and g, (ξ, η), α are given in
the first point of Theorem 1.19). If the good invariance components are not commutative then
Theorem 1.19 shows that (1.9), (1.10) and (1.11) are true for ψ = g−1, β = 1 (and g, (ξ, η),
α are given in the second point of Theorem 1.19). The reciprocal is straightforward to verify,
following the procedure from the proof of Proposition 1.11.

7. Techinal results

We now state and prove Lemmas 7.1 and 7.2, about the assumptions that are discussed in the
end of Subsection 1.1 and used all along the paper.

Lemma 7.1. Let E be a connected locally compact separable metric space, and let X be a gssMp
on E with invariance components ((fy, cy), y ∈ E) relatively to some reference point y0 ∈ E.
Then, Assumption 2 implies Assumption 1.

Proof. Let us assume that Assumption 2 holds. Let y be such that y ∈
˚̂

Supp(Xy). Clearly we
have Supp(Xy) = fy(Supp(Xy0)) so, since fy is an homeomorphism that maps y0 to y, we have

y0 ∈
˚̂

Supp(Xy0). Similarly, Supp(Xz) = fz(Supp(Xy0)) with fz an homeomorphism that maps

y0 to z, so z ∈
˚̂

Supp(Xz) for all z ∈ E. In other words, for all z ∈ E, Supp(Xz) is a neighborhood
of z.

We now justify that z ∈ Supp(Xy0) ⇒ Supp(Xz) ⊂ Supp(Xy0). Let z ∈ Supp(Xy0), v ∈
Supp(Xz) and ǫ > 0, we need to prove the existence of r ≥ 0 such that P(Xy0(r) ∈ B(v, ǫ)) > 0.
By definition of Supp(Xz), there is t ≥ 0 such that P(Xz(t) ∈ B(v, ǫ)) > 0. By self-similarity,
P(fz(Xy0(czt)) ∈ B(v, ǫ)) > 0. Since (y, x) 7−→ fy(x) and y 7−→ cy are continuous, and Xy0 is
stochastically continuous, we have that fw(Xy0(cwt)) converges in distribution to fz(Xy0(czt))
as w goes to z. Therefore, there is a neighborhood U of z such that

∀w ∈ U , P(Xw(t) ∈ B(v, ǫ)) = P(fw(Xy0(cwt)) ∈ B(v, ǫ)) > 0. (7.81)

Then, since U is a neighborhood of z ∈ Supp(Xy0), there is s ≥ 0 such that

P(Xy0(s) ∈ U) > 0. (7.82)

The combination of (7.82), (7.81), and the Markov property at time s yields that P(Xy0(t+ s) ∈
B(v, ǫ)) > 0, proving the claim.

We have established that for each z ∈ Supp(Xy0), Supp(Xy0) contains Supp(Xz) which is a
neighborhood of z. Therefore Supp(Xy0) is open. Since it also close (see (1.4)) and nonempty (it
contains y0, as previously justified), and since E is connected, we conclude that Supp(Xy0) = E,
that is, Assumption 1.

�

Lemma 7.2. Let I ⊂ R be an open interval, y0 ∈ I, Xy0 be a Markovian process on I that
satisfies Assumption 1 with E = I, and let Sym(Xy0) be defined as in (1.5). Then Sym(Xy0) is
discrete.

Proof. Let h be an increasing element of Sym(Xy0), and let us fix x ∈ I. Because of Assumption
1 and of the definition of the support (see (1.4)), we have that for any ǫ > 0, we can find t1, t2 ≥ 0
such that P(Xy0(t1) ∈]x, x+ ǫ[) > 0 and P(Xy0(t2) ∈]x− ǫ, x[) > 0. Therefore we have

P(Xy0(t1) > x) > P(Xy0(t1) > x+ ǫ) and P(Xy0(t2) > x) < P(Xy0(t2) > x− ǫ). (7.83)
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h−1 ∈ Sym(Xy0) and is also increasing so we have

P(Xy0(t1) > x) = P(h−1(Xy0(t1)) > x) = P(Xy0(t1) > h(x))

P(Xy0(t2) > x) = P(h−1(Xy0(t2)) > x) = P(Xy0(t2) > h(x)).

Combining with (7.83) we obtain P(Xy0(t1) > h(x)) > P(Xy0(t1) > x + ǫ) and P(Xy0(t2) >
h(x)) < P(Xy0(t2) > x− ǫ) which implies h(x) ∈]x− ǫ, x+ ǫ[. Since this is true for any ǫ > 0 we
get h(x) = x, and since x ∈ I is arbitrary we conclude that h = idI .

Since any h ∈ Sym(Xy0) is an homeomorphisms of I, it is either increasing or decreasing. Let

h be a decreasing element of Sym(Xy0), if such an element exists. If h̃ is any other decreasing

element of Sym(Xy0), then h̃−1 ◦ h is an increasing element of Sym(Xy0) so, by the previous

part, it equals idI , so h̃ = h. In conclusion Sym(Xy0) contains at most two elements so it is
discrete.

�
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