
HAL Id: hal-01829789
https://hal.science/hal-01829789

Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Netlogo, An Open Simulation Environment
Benoit Gaudou, Christophe Lang, Marilleau Nicolas, Guilhelm Savin,

Sébastien Rey-Coyrehourcq, Jean-Marc Nicod

To cite this version:
Benoit Gaudou, Christophe Lang, Marilleau Nicolas, Guilhelm Savin, Sébastien Rey-Coyrehourcq, et
al.. Netlogo, An Open Simulation Environment. Arnaud Banos; Christophe Lang; Nicolas Marilleau.
Agent-based Spatial Simulation with Netlogo, 2 (Chapter 1), ISTE, pp.1-37, 2017, Advanced Concepts,
0081010648. �10.1016/C2015-0-01197-2�. �hal-01829789�

https://hal.science/hal-01829789
https://hal.archives-ouvertes.fr


1

NetLogo, an Open Simulation Environment

1.1. Introduction to extensions in NetLogo

NetLogo is a generic simulation environment in the sense that it was not

designed with any specific domain of application in mind. NetLogo offers a

wide range of features and generic operators to its users. Additionally, to make

up for any missing features, NetLogo is compatible with other platforms and

libraries, as we will demonstrate throughout this book.

There is a vast library of extensions available to users, allowing them to

integrate additional functionality that is not present in the native version of

NetLogo, but which might nonetheless be necessary for the development of a

given model. An official library of extensions is available on the official

NetLogo Website. We will explore some of these extensions later in this

chapter. But many modelers have also developed their own extensions to

tackle specific problems that are of interest to them. These extensions are

developed with an open Java API. We will discuss this in more detail in

section 1.2.

Conversely, NetLogo can also be called and controlled by other programs,

such as OpenMole1, Python2 and R3. To do this, NetLogo provides a Java API

Chapter written by Benoit GAUDOU, Christophe LANG, Nicolas MARILLEAU,

Guilhelm SAVIN, Sébastien REY COYREHOURCQ and Jean-Marc NICOD.

1 http://www.openmole.org/.

2 https://www.pythong.org/.

3 https://www.r-project.org/.



2 Agent-based Spatial Simulation with NetLogo 2

that allows models to be loaded, executed and gives access to their variables

and methods. The usage of this API is presented in detail in section 1.3.

1.1.1. Examples of typical NetLogo extensions

There are many different types of extension. The GitHub page of the

NetLogo platform4 gives one possible list of examples. This list distinguishes

between internally developed extensions, which are included with the

platform (e.g. GIS or network), and extensions developed by the community,

which have to be installed manually (section 1.1.2). In Chapter 3 of Volume 1

[BAN 15a], we presented a number of these extensions (GIS and network) to

showcase some of additional functionnalities of NetLogo.

Some of these extensions include language extensions, which allow the

modeler to manipulate more complex object types than those natively present

in NetLogo. Indeed, the language of the platform has relatively few complex

structures (unlike most programming languages) and primitives for

manipulating them. For instance, the array, table and matrix extensions

are now included with NetLogo. However, extensions such as string and

file are external.

More generally, the functionalities of the NetLogo language can be

augmented with a wide range of extensions, for example to achieve better

network management (network and nw), to provide more primitives for

network analysis (additional metrics and indicators) or to integrate

geographical data represented in vector form into NetLogo models (GIS).

This is not an easy task, but this is absolutely necessary, as NetLogo models

are natively based on a grid-based discrete environment. As another example,

the SQL extension allows models to interact with a database by sending

SQL-formatted queries and receiving data in response. Finally, the sound and

MIDI extensions allow sounds to be integrated into NetLogo models.

There are a number of extensions that enable NetLogo to interact with other

tools. This interaction can take various different forms: it might simply involve

reading or writing files that are compatible with a third-party application. For

example, it is possible to process image files (bitmap), tabular data (csv), Java

4 https://github.com/Netlogo/Netlogo/wiki/Extensions.



NetLogo, an Open Simulation Environment 3

system properties (Props), POV rays (RayTracing), VRML (VRML), NetCDF

(NetCDF), etc. This allows modelers with different backgrounds to increase

the realism of their simulations by exploiting real data in useful formats.

Other extensions allow deeper forms of interaction by directly integrating

third-party functionality into NetLogo; for this kind of interaction, NetLogo

must be able to connect with another application to send requests and retrieve

results, such as Matlab (MATLAB), Prolog (NetProLogo), IODA [KUB 11]

(IODA) and Graphstream5 (gs).

For example, the NetLogo language can be extended with primitives

allowing it to benefit from the scientific calculation tool R [THI 10], and in

particular to call R functions from within a NetLogo model. The R extension

for NetLogo can be downloaded on the Netlogo-R-Extension Website6. It

fulfills the task of communicating data between the two tools, and in

particular performs type conversions from one language to the other. A

working installation of R is required. There is also a reverse extension that

allows NetLogo to be called from R, known as RNetlogo7.

Finally, there are several extensions enabling NetLogo to connect with

various types of hardware (sensors, actuators, etc.). Examples include the

extensions Arduino (microcontroller), GoGo (sensors) and wiimote (game

controller with an accelerometer).

1.1.2. Installing and using extensions in models

The extensions used by NetLogo are located in the extensions folder in

the NetLogo root directory. Each extension has its own separate folder.

To use an extension that is not included with NetLogo, it has to first be

downloaded (usually as an archive file), unzipped and installed. Installation is

extremely simple – the folder extracted from the archive has to copied into

the extensions folder. The folder name must be the same as the name of

the extension.

5 http://graphstream-project.org.

6 http://r-ext.sourceforge.net/.

7 http://cran.r-project.org/web/packages/RNetlogo/index.html.



4 Agent-based Spatial Simulation with NetLogo 2

To use the primitives provided by the extension in a NetLogo model, we

have to first declare the extensions used by the model:

1 extensions [extension_name1 extension_name2]

To use a primitive defined in this extension, we simply call it by its name in

the model prefixed by the name of the extension:

extension_name1:primitive_name parameters

For example, to extend NetLogo functionality to include additional time

management functions, we can use the time extension, also known as the

NetLogo Time Extension8. Once unzipped, the archive produces the folder

time-1.3.0 (which corresponds to Version 1.3.0) containing the source files

of the extension, documentation, example models and .jar files (Java

archives). To use it in a NetLogo model, we have to simply rename this folder

as time instead of time-1.3.0, and copy it into the extensions folder9.

In order to use this extension, we declare it in the model:

extensions [time]

We can now use the primitives defined by this extension using the prefix

time:. For example, time allows us to create a date object (with the create
primitive) and to manipulate it, in order to retrieve the day, month or year of

this date (get primitive), to perform operations on dates (plus primitive) or to

compare dates (is-before, is-after and is-equal primitives)10:

8 https://github.com/colinsheppard/time/.

9 In fact, for this extension (and most other extensions), only the .jar files (time.jar and

joda-time-2.2.jar) are required. These contain the definitions of the new primitives.

10 Other examples are included with the extension.



NetLogo, an Open Simulation Environment 5

let my_date time:create "2016-02-28 17:28:07.777"
print time:get "month" my_date
print time:plus my_date 1.0 "year"

4 print time:is-before (time:create "2016-01-01")
(time:create "2018-01-01")

1.2. Designing and developing extensions

A project that allows minimal extensions to be easily compiled in Scala

with SBT or Maven can be found within the GitHub repository Netlogo-

extension-build-example11.

1.2.1. Environment for compiling extensions

1.2.1.1. Maven and Java

Maven is a software build management system developed by the Apache

Foundation. It works by defining and using Project Object Model (POM) files,

which contain a set of instructions for successfully building the program.

The first step is to install Maven on the workstation.

Maven works by relying on repositories (local or online) containing the

dependencies that must be downloaded at compilation. Since March 2016,

NetLogo uses the online repository Bintray12, and it is no longer necessary

to manually add the Netlogo.jar file to your local repository. Development

versions (NetLogo 6.0) are already available from the online repository.

However, in this book, we will use the stable Version 5.3.1.

As a reminder, since only NetLogo versions 5.3 and later are available

online, we will recall how to register a .jar file in the local repository of

your device. Follow the instructions given in the documentation13. Once you

are in the NetLogo /app/ directory that you wish to install (replace X.X by the

version number), you can run the following command from the command line

to install the .jar file in the local Maven repository:

11 https://github.com/Spatial-ABM-with-Netlogo/Chapitre-A.

12 https://bintray.com/netlogo/NetLogo-JVM/netlogo.

13 https://maven.apache.org/guides/mini/guide-3rd-party-jars-local.html.



6 Agent-based Spatial Simulation with NetLogo 2

mvn install:install-file -Dfile=Netlogo.jar -DgroupId=org.nlogo
-DartifactId=Netlogo -Dversion=X.X -Dpackaging=jar↪→

For the development of most extensions, the Netlogo.jar file and

the scala-library dependency will be enough. Other extensions that use

specific NetLogo functions may, however, require other dependencies, most of

which will be contained in the .jar files in the NetLogo /app/ directory.

Users who wish to develop extensions in Scala or Java will need to pay

attention to the version of NetLogo. NetLogo 5.3 is only compatible with

Scala versions 2.9.x, and NetLogo 5.3.1 is only compatible with Scala versions

2.10.x. In both cases, the Java version needs to be 7.x. We have to wait for the

next version of NetLogo before we can use Scala 2.10.x with Java 8.x.

The simplest solution for compiling an extension is based on the

modification of the JavaHOME variable used by Maven. In Linux, simply type

the following command in the terminal before calling the mvn command:

export Java_HOME=/path/to/jdk7/

The pom.xml file and the Maven project that can be used

to compile a minimal Java extension may be obtained from the

Java-plugin-Netlogo-maven project on GitHub. This project can be

directly opened in the software workbench (or IDE) Java IntelliJ.

The pom.xml file contains the list of dependencies to be loaded

locally or from the Maven repositories, and also the configuration of two

plugins: maven-compiler-plugin and maven-jar-plugin. The first plugin

allows the Java sources to be compiled by running the Maven command

mvn compile in the project root directory. The second one allows the .jar
to be created in the /target repository by running the Maven command

mvn install.

1.2.1.2. SBT and Scala

Simple Build Tool (SBT) is a build system similar to Maven, but which is

commonly used to compile sources written in Scala. NetLogo is compiled with

SBT, since its most recent versions are written in Scala.



NetLogo, an Open Simulation Environment 7

Unlike Maven, which manages dependencies by using pom.xml files,

SBT uses files written in Scala to determine the structure of the project

and its dependencies. One of the most important such files is build.sbt,

which may be found in the project root directory. SBT uses the same

online repositories as Maven to download the right dependencies for

compiling and packaging extensions in development. The primary SBT file,

named build.sbt, uses Netlogo-Extension-Plugin14, which automatically

downloads the right Netlogo.jar file and provides a simplified interface for

packaging extensions.

Since NetLogo version 5.3.1 can only be compiled with Java

7, we must tell SBT where to find this version on your device:

sbt -Java-home /path/to/Java/home.

Even though it may not be immediately useful in our case, note that it is

possible to tell SBT which version of Java it should use to run Java programs

by adding the following lines to build.sbt:

fork in run := true
JavaHome in run := Some(file("/path/to/Java/home/" ))

Finally, the extension is compiled by running the sbt compile command,

and the .jar is built by calling sbt package.

1.2.2. Notes on type conversion between NetLogo and Java/Scala

All numeric variables used in NetLogo extensions must be converted into

the Double type, as this is the only numeric type accepted by NetLogo. There

are tools available to developers for converting from Java/Scala to NetLogo.

But conversion in the other direction is not so easy.

Type conversion from NetLogo to Java or Scala is more tricky, in particular

for LogoList lists. Since NetLogo lists are able to contain different types, it is

impossible to know in advance which types of objects are contained in the list

variable. The only solution is to carefully typecast15 each element in the list

before performing any operations.

14 https://github.com/Netlogo/Netlogo-Extension-Plugin.

15 Also known as type coercion, this means converting a variable from one type to another.



8 Agent-based Spatial Simulation with NetLogo 2

1.2.2.1. Java

From Java to NetLogo: numeric type conversion can be performed with

the command Double.valueOf(valueToConvert). This command wraps

the double variables in a Double class, which is understood by NetLogo.

From NetLogo to Java: handling lists requires generous use of try/catch
blocks to detect and convert the types of objects contained in the list. We

will illustrate this conversion when we present the code of the primitive for

calculating the average of a list of values passed as parameters.

1.2.2.2. Scala

Support for automatic type conversion from Scala to NetLogo

has been added by the developers of NetLogo via the following

import, which can be added to the start of a program:

import org.nlogo.api.ScalaConversions.

Calling the function .toLogoObject on any Scala data type (Boolean,
Float, Character, Short, Int, Float, Long, Double, Byte, Seq) initiates

the conversion process, which automatically returns a type that is compatible

with NetLogo.

With SBT, it is possible to initialize an interactive console, which can

access the set of dependencies included in the project. This interactive mode

allows us to enter commands directly into a terminal without having to compile

or package the extension first.

In the root directory, simply type the command sbt console into a

terminal, followed by the following commands:

import org.nlogo.api.ScalaConversions._

val myIntValue:Int = 5
myIntValue.toLogoObject // return Java.lang.Double
val myFloatValue:Float = 2.2
myDoubleValue.toLogoObject // return Java.lang.Double
val myScalaList = Seq(2,3,8)
myScalaList.toLogoObject // return org.nlogo.api.LogoList



NetLogo, an Open Simulation Environment 9

1.2.3. Commentary of an example extension

The .jar file created by Maven or SBT after executing the

second command includes a valid manifest file, which is usually

named my-extension.jar. This should be copied into the directory

/app/extensions/my-extension in NetLogo 5.3, and then called in the program

with the following code: extensions [my-extension].

The extension named my-extension, which we compiled in the previous

few sections, allows us to do three things:

– return the sequence of characters “hello world” (print-message);

– return the average of the numbers passed as parameters (get-mean);

– construct a list of random numbers with length equal to the variable

passed as an argument to the primitive (build-a-random-list).

Calling the following command in the NetLogo observer returns the

character sequence “hello world”: print my-extension:print-message.

Calling the following command in the NetLogo observer returns

the average of the list of numbers passed as parameters: print
my-extension:get-mean list (10, 12, 15).

Calling the following command in the NetLogo observer returns a list of

five random elements: print my-extension:build-a-random-list 5.

The extension code is given in Java in the below examples. Equivalent code

in Scala is also available from the GitHub repository containing the examples

for compilation with Maven and SBT.

1.2.4. Minimum content of an extension

In order for NetLogo to be capable of loading an extension, the .jar
file should contain two elements: a manifest containing NetLogo-specific

properties, and a class implementing the ClassManager interface of the

org.nlogo.api package. The .jar file must contain all classes associated

with the extension.

If additional software libraries are used, they can be placed in the extension

folder in the NetLogo extensions directory.



10 Agent-based Spatial Simulation with NetLogo 2

1.2.4.1. Manifest

The manifest must contain the following three properties:

– Extension-Name, the name of the extension;

– Class-Manager, the extension class implementing ClassManager;

– Netlogo-Extension-API-version, the version of the NetLogo API

used by the extension.

If an extension named test has ClassManager implemented by the class

MyExtension in the package org.test and uses the NetLogo API 5.1, it

needs to have the following Manifest:

Manifest-Version: 1.0
Extension-Name: test
Class-Manager: org.test.MyExtension
Netlogo-Extension-API-Version: 5.3

1.2.4.2. The ClassManager

To develop the DefaultClassManager of the extension, we can extend

the DefaultClassManager class of org.nlogo.api to reduce the list of

methods that we must implement for load(PrimitiveManager). Passing the

PrimitiveManager object as a parameter allows us to add new primitives

(commands or reporters).

Consider the following minimal example of the extension MyExtension:

1 package org.test;

import org.nlogo.api.DefaultClassManager;
import org.nlogo.api.ExtensionException;
import org.nlogo.api.PrimitiveManager;

6

public class MyExtension extends DefaultClassManager {
@Override
public void load(PrimitiveManager primitiveManager) throws

ExtensionException {
//Declare primitives

11 }
}



NetLogo, an Open Simulation Environment 11

To define the call to the three primitives, we replace the comment in the

load function with the following code:

primitiveManager.addPrimitive("print-message", new MyMessage());
primitiveManager.addPrimitive("get-mean", new ComputeMean());

3 primitiveManager.addPrimitive("build-a-random-list", new BuildRandomList());

1.2.5. Snapshot of a primitive

The three primitives are placed in three separate Java files, each of which

contains the description of a primitive:

2

//BuildRandomList.Java
public class BuildRandomList extends DefaultReporter { ... }

//CountCharacter.Java
7 public class CountCharacter extends DefaultReporter { ... }

//MyMessage.Java
public class MyMessage extends DefaultReporter { ... }

These three classes extend the DefaultReporter interface, and so have to

implement the following functions:

public Syntax getSyntax() {...}

public Object report(Argument args[], Context context) throws
ExtensionException, LogoException {...}

In the next sections, we describe the way that these functions are called,

and the results that they return.

1.2.5.1. Displaying “hello world”

These primitives do not take any input parameter, and simply return a

message. The function Syntax.reporterSyntax() therefore only has one



12 Agent-based Spatial Simulation with NetLogo 2

single argument, which indicates the expected type to be returned. Since “hello

world” has the type of a string, we use the code Syntax.StringType().

public Syntax getSyntax() {
2 return Syntax.reporterSyntax(Syntax.StringType());

}

Other types can be returned, such as Syntax.NumberType(), which

indicates that a numerical value should be returned, Syntax.ListType(),

indicating that a list is expected, or any other NetLogo object that can be

manipulated by an extension, as shown by the list of functions defined in

the Syntax object: BooleanType(), AgentsetType(), TurtleType(),
PatchType(), LinkType()...

1.2.5.2. Return the average value of an array of variable size

We can define the call to this primitive in two different ways, either by

using the syntax Syntax.NumberType() | Syntax.RepeatableType()
to define a repeatable number, or by directly using a variable-size

list Syntax.ListType(). Finally, it should also be noted that we

can specify as many Syntax.typeName values as the number of

arguments that we wish to be returned when we call the primitive.

Thus, new int[]{Syntax.NumberType() | Syntax.NumberType(),
Syntax.StringType()} indicates a primitive that takes three input

arguments, i.e. two numbers and one sequence of characters.

// Way 1 using NumberType and RepeatableType
2 public Syntax getSyntax() {

return Syntax.reporterSyntax(new int[]{Syntax.NumberType() |
Syntax.RepeatableType()},Syntax.NumberType());

}

// or Way 2 using ListType
7 public Syntax getSyntax() {

return Syntax.reporterSyntax(new
int[]{Syntax.ListType()},Syntax.NumberType());

}



NetLogo, an Open Simulation Environment 13

In the first case, the primitive is called with: print
(my-extension:get-mean 0.0 5.0 10.0), and in the second case

with: print my-extension:get-mean list 0.0 5.0 10.0 or print
my-extension:get-mean [0.0 5.0 10.0]. The second syntax, shown

below, has the advantage of being more easily understood by beginners,

but requires developers to check the content of the table before performing

any operations. As discussed in the previous section on type conversion,

the methods for retrieving the content of the LogoList variables return a

collection of Object variables that need to be tested16.

Arguments should always be recovered using the “safe methods” provided

by the developers of NetLogo, which we wrapped into a method below.

1 private LogoList getListOrNull(Argument args[]) throws ExtensionException,
LogoException {

try {
return args[0].getList();

} catch (LogoException e) {
return null;

6 }
}

The operation that converts LogoList logoListNumbers into

ArrayList<Double> numbers is defined as follows in our code:

3 public Object report(Argument args[], Context context) throws
ExtensionException, LogoException {

final LogoList logoListNumbers = getListOrNull(args);

// LogoList return an array of Object, so we need to cast to
ArrayList[Double]

8 Double[] logoDouble = null;
try {

Object[] objectArray = logoListNumbers.toArray();
logoDouble = Arrays.copyOf(objectArray, objectArray.length,

Double[].class);
}catch (ClassCastException e){

13 System.out.println("Cast Error, only numbers are supported here");

16 Both versions of the code are available from the GitHub repository online.



14 Agent-based Spatial Simulation with NetLogo 2

}

ArrayList<Double> numbers = new
ArrayList<Double>(Arrays.asList(logoDouble));

18

return average(numbers);

}

Other conversion methods probably exist, but this topic is currently little

documented on the official website. Note that in this last example wrapping

the variable returned by the function average(numbers) in a Double is not

strictly necessary, as Java can perform “autoboxing” in certain conditions:

http://docs.oracle.com/Javase/tutorial/Java/data/autoboxing.html.

1.2.5.3. Construct and return a table of variable size

The first argument new int[]{Syntax.NumberType()} of the function

Syntax.reporterSyntax() states that the primitive expects an integer input.

The second argument Syntax.ListType() tells NetLogo that a list will be

returned.

public Syntax getSyntax() {
return Syntax.reporterSyntax(new

int[]{Syntax.NumberType()},Syntax.ListType());
}

Lists can be constructed using a “builder” provided by the developers:

LogoListBuilder list = new LogoListBuilder();

Adding a Double (not double) can be achieved with a simple loop as a

function of the value n, assigned by calling the getIntValue() method of the

class Argument on the table args[0]:

for (int i = 0; i < n; i++) {
list.add(Double.valueOf(r.nextDouble()));

}



NetLogo, an Open Simulation Environment 15

1.2.6. Future versions of the NetLogo API

Although the NetLogo API has been relatively stable for several versions,

it is expected to change with version 6.0.

Here are a couple of changes that have already been confirmed for the future

version of the API:

– multiple classes will be renamed or reorganized in future. For example,

a new package org.nlogo.core already uses classes from org.nlogo.api,

org.nlogo.nvm, and org.nlogo.agent;

– DefaultReporter and DefaultCommand will be removed, and

org.nlogo.api.Reporter and org.nlogo.api.Command will become

easier to extend.

Since this version is still in development, more information can be found

on the webpage dedicated to the transition17.

Help will be available on the various channels of communication used by

the developers of Netlogo: gitter18, GitHub19 and the NetLogo wiki, which

details the extensions API20, the discussion group21, and the StackOverflow22

website under the NetLogo tag.

1.2.7. Extending the graphical interface

The NetLogo API does not currently allow the development of dedicated

graphics widgets. However, it is possible to add a new tab to the interface and

directly manipulate its AWT/Swing canvas. We will use the GRAPHSTREAM23

software library, which allows graphs to be dynamically manipulated. The

purpose of the extension is to display a graph showing the set of turtles and

the links between them.

17 https://github.com/Netlogo/Netlogo/wiki/Hexy-Extension-Transition-Guide.

18 https://gitter.im/Netlogo/.

19 https://github.com/Netlogo/Netlogo/issues.

20 https://github.com/Netlogo/Netlogo/wiki/Extensions-API.

21 https://groups.google.com/forum/#!forum/Netlogo-devel.

22 http://stackoverflow.com/questions/tagged/Netlogo.

23 http://graphstream-project.org



16 Agent-based Spatial Simulation with NetLogo 2

The following code provides the basic structure of the extension. We will

later show how to develop one part of the missing content. The code is available

in full on GitHub24.

import org.nlogo.api.*;
import org.graphstream.graph.*;

public class GSExtension extends DefaultClassManager {
protected Graph graph;
protected ExtensionContext ctx;

public Graph getGraph() { return graph; }

public ExtensionContext getContext() { return ctx; }

public void load(PrimitiveManager manager) throws ExtensionException {
manager.addPrimitive("init" , new DefaultCommand() {
public void perform(Argument[] arg0, Context arg1) throws

ExtensionException, LogoException {↪→
GSExtension.this.init((ExtensionContext) arg1);

}
});

}

public void init(ExtensionContext ctx) {
this.ctx = ctx;
this.graph = new AdjacencyListGraph("netlogo" );
this.graph.addSink(new GSNetLogoSink(this));

addTab();
}

protected void addTab() { ... }
}

1.2.7.1. NetLogo/GraphStream connection
In a simulation, the NetLogo model and the graph coexist separately, and

consistency needs to be maintained between them. Modifications affecting

the NetLogo model must therefore update the graph, and vice versa.

The GSNetLogoSink class of the extension is dedicated to managing this

connection.

24 https://github.com/graphstream/gs-netlogo.



NetLogo, an Open Simulation Environment 17

For the connection from NetLogo to the graph, we will use the functionality

provided by the NetLogoListener interface of the API, which mainly

consists of information about events that occur at the NetLogo interface. The

method that we are interested in, tickCounterChanged(double), informs us

when the system undergoes a new iteration. We can therefore create events to

describe the corresponding changes in the graph at these moments.

To “listen” to changes in the graph and propagate these changes to the

NetLogo model, the GSNetLogoSink class implements the Sink interface of

GraphStream, which connects to the graph.

GSNetLogoSink is structured as follows:

import org.nlogo.api.NetLogoAdapter;
import org.graphstream.stream.Sink;

public class GSNetLogoSink extends NetLogoAdapter implements Sink {
protected World world;
protected GSExtension ext;

public GSNetLogoSink(GSExtension ext) {
this.ext = ext;

}

// NetLogoListener

public void tickCounterChanged(double arg0) { ... }

// Sink

public void nodeAdded(String sourceId, long timeId, String nodeId) {
... }↪→

public void nodeRemoved(String sourceId, long timeId, String nodeId) {
... }↪→

public void edgeAdded(String sourceId, long timeId, String edgeId,
String fromId, String toId, boolean directed) { ... }↪→

public void edgeRemoved(String sourceId, long timeId, String edgeId) {
... }↪→

// ... other methods of Sink not used here
}



18 Agent-based Spatial Simulation with NetLogo 2

To establish the connection between NetLogo and GraphStream, we must

create a shared procedure for identifying agents (nodes) and their connections

(edges). We assume that these objects are characterized by a sequence of

characters of the form breedName.agentNumber. We can therefore add a

method that retrieves the identifier of a Turtle object:

public String getTurtleId(Turtle t) {
return String.format("%s.%d" , t.getBreed().printName(), t.id());

}

The tickCounterChanged(double) method needs to contain code

allowing the NetLogo model to be compared with the contents of the graph.

To do this, we need to iterate over the agents and their existing connections.

This iteration is provided by the World object and its methods turtles() and

links(). A minimal version of the function might look like this:

public void tickCounterChanged(double arg0) {
Collection<Node> nodes = new HashSet<Node>();

for (Agent a : world.turtles().agents()) {
String nodeId = getTurtleId((Turtle) a);
Node = ext.getGraph().getNode(nodeId);

if (node == null)
node = ext.getGraph().addNode(nodeId);

nodes.add(node);
}

// Remove non-existent nodes
Iterator<Node> itNodes = ext.getGraph().getNodeIterator();

while (it.hasNext()) {
Node n = it.next();

if (!nodes.contains(n))
it.remove();

}

Collection<Edge> edges = new HashSet<Edge>();

for (Agent a : world.links().agents()) {



NetLogo, an Open Simulation Environment 19

Link l = (Link) a;
String edgeId = getLinkId(l);
Edge edge = ext.getGraph().getEdge(edgeId);

if (edge == null)
edge = ext.getGraph().addEdge(edgeId, getTurtleId(l.end1())

getTurtleId(l.end2()), l.isDirectedLink());↪→

edges.add(edge);
}

// Remove non-existent edges
Iterator<Edge> itEdges = ext.getGraph().getEdgeIterator();

while (it.hasNext()) {
Edge e = it.next();

if (!edges.contains(e))
it.remove();

}
}

This is a minimal version of the function. It only updates the model in

one direction, from NetLogo to GraphStream. Readers can refer to the project

source code for more details.

1.2.7.2. Creating a new tab

The final part of the extension adds a new tab to the NetLogo interface on

which the graph will be displayed. We will build on the addTab() method

mentioned earlier. We could also add a separate primitive to make displaying

the graph optional.

Tabs are managed by JTabbedPane objects (provided by Swing), which

can be retrieved through the App object: App.app().tabs().

protected void addTab() {
javax.swing.SwingUtilities.invokeLater(new Runnable() {

public void run() {
if (v != null)

v.close();
World w = ctx.workspace().world();
v = new Viewer(g,

Viewer.ThreadingModel.GRAPH_IN_ANOTHER_THREAD);



20 Agent-based Spatial Simulation with NetLogo 2

v.setCloseFramePolicy(Viewer.CloseFramePolicy.HIDE_ONLY);
v.addDefaultView(false);

// Resize the graph to fit NetLogo.

v.getDefaultView().getCamera().setGraphViewport(w.minPxcor(),
w.minPycor(), w.maxPxcor(), w.maxPycor());

↪→
↪→

Tabs tabs = App.app().tabs();
tabs.addTab("GraphStream" , v.getDefaultView());

}
});

}

1.2.8. Example: the RungeKutta extension

In this section, we will present a simple but concrete example of an

extension in a few lines.

The rungekutta extension has been used for epidemiological simulation

models in Chapter 3. It includes a compute-SIR function taking six Double
parameters that calculates the evolution of the population stock passed as

an argument using a fourth-order Runge–Kutta numerical integration method

applied to the SIR equations. These equations and their solutions are described

in more detail in Chapter 3.

override def getSyntax(): Syntax =
Syntax.reporterSyntax(Array(NumberType, NumberType, NumberType,

NumberType, NumberType, NumberType, NumberType, NumberType,
NumberType, NumberType, NumberType), ListType)

↪→
↪→

This function expects the following arguments. We will consider the case

of an initial population of 100 individuals:

– the population stock S (99 susceptible individuals);

– the population stock I (1 infected individual);

– the population stock R (0 recovered individual);

– the Alpha parameter (rate of recovery I to R = 0.2);



NetLogo, an Open Simulation Environment 21

– the Beta parameter (rate of infection S to I = 0.5/100);

– the integration step h.

The following report block passes these arguments to the function that

calculates the evolution step:

@throws(classOf[ExtensionException])
@throws(classOf[LogoException])
override def report(args: Array[Argument], context: Context) =
{

val S = args.apply(0).getDoubleValue
val I = args.apply(1).getDoubleValue
val R = args.apply(2).getDoubleValue

val alpha = args.apply(3).getDoubleValue
val beta = args.apply(4).getDoubleValue
val h = args.apply(5).getDoubleValue

rungeKuta4( Array(S,I,R), alpha, beta, h).toLogoList
}

Once the arguments have been safely retrieved using getDoubleValue,

the values are passed to the rungeKuta4(...) function, which performs

integration then returns an updated table of the SIR stock Array(ds,di,dr).

We still need to convert this table into LogoList using the automatic

conversion function .toLogoList.

Here is an example of how this method can be called in NetLogo:

show rungeKuta:compute-SIR 99.0 1.0 0.0 0.2 (0.5 / 100)
0.01

This call returns the following values, which describe the propagation of

infection:

[98.99504281588354 1.0029542312962296 0.00200295282023009]

The source code of this extension is available in the repository for

Chapter 1.



22 Agent-based Spatial Simulation with NetLogo 2

1.3. Using NetLogo from other platforms

The reason for wanting to use a NetLogo model from outside the NetLogo

interface, i.e. from another language, becomes apparent as soon as we

become interested in automating NetLogo simulations in batch mode (model

exploration), coupling different models together (using the output of one model

as the input of another), or supporting compatibility with other programs.

The NetLogo interface is useful because it allows rapid and visual

development within the context of an “agile”-type approach, which means that

the model is developed and then tested in fast-paced cycles, so that any change

is tested as soon as it is written. The interface has graphical objects, which can

be used to rapidly construct visualizations of models, and a “batch” mode,

which can be used to explore models. However, there are also limitations:

the graphics layout is fixed and is not necessarily suitable for operational

applications. Batch mode is limited to exhaustive model exploration and only

allows integrative coupling (see section 2.5). To overcome these constraints,

NetLogo provides a Java API (included in the official distribution) that

provides an opening to other environments. This API makes it possible to

interact with the model without needing a control interface (modify simulation

parameters, retrieve results, execute, etc.), as well as to modify the model

(by executing NetLogo commands as if they were entered into the interface

“command center”). Due to this API, we can interact with NetLogo from

programs such as R or languages such as Python. As described below, this

interaction unfolds according to a client/server paradigm, in which software

clients such as R or Python send requests to a Java server responsible for

executing the NetLogo model.

This opening to other programs allows us, for example, to:

– take advantage of all of the features of the host language (R – to exploit

all of its statistical primitives, Python – to use numerical calculation libraries

(NumPy25), Java – to use JavaFX graphics elements and any other useful

libraries);

– explore NetLogo models with specific search algorithms (simulated

annealing, genetic algorithms or screening), or even combinations of

algorithms. Given the amount of time required to execute some simulations

25 http://www.numpy.org.



NetLogo, an Open Simulation Environment 23

and the size of the parameter space, exhaustive model exploration is often

impossible. Choosing a suitable exploration algorithm is the crucial first step

toward obtaining results within a reasonable time frame;

– couple models by channeling the output of one model to other models

with essentially zero language-related constraints due to the numerous

gateways available in Java for connecting with other languages.

In the next section, we will give a brief description of the approaches that

can be used to establish an interface between NetLogo and Java, Python and

R. We will omit any specific details relating to the implementation, and simply

explore the basic principles of a simple example of coupling.

1.3.1. Using NetLogo from Java

To run NetLogo commands from Java, we first need to import a library.

import org.nlogo.app.App;

In order to run NetLogo programs, the Netlogo.jar file needs to be

located in one of the directories known to Java (classpath). The same is

true of the lib directory. The latter and the .jar file are included within the

NetLogo distribution.

We will illustrate how to use Java to run a simulation with the example of a

forest fire, Fire.nlogo, which is included within the NetLogo distribution.

new Runnable() {
public void run() {

try {
4 App.app().open("models/Sample Models/Earth Science/" +

"Fire.nlogo");
}
catch(Java.io.IOException ex) {
ex.printStackTrace();

}}};



24 Agent-based Spatial Simulation with NetLogo 2

From here, it is very simple to run NetLogo commands with

App.app.command(), as in the below example. In this case, we assign a value

to a variable and run setup.

App.app.command("set number-of-turtles 100");
2 App.app.command("setup");

In this simulation, we need to be able to retrieve the values of the variables

stored in Java. This will allow us to explore the model, either by means

of sophisticated processing or suitable visual representations. To retrieve the

value of a NetLogo variable, we must use the report function. In the example

below, we display the value of the variable number-of-turtles.

System.out.println(App.app().report("number-of-turtles"));

This example is based on the execution of a NetLogo model in “singleton”

mode. In this mode, running multiple simulations in parallel with the same

model or different models is not possible. The origin of this limitation lies in

the fact that these instructions manipulate static objects. The alternative is to

use the notion of “workspace”. Each simulation is assigned to a workspace,

and so one workspace must be created for each simulation. Each workspace

acts as a wrapper for the context of the simulation with which it is associated,

saving its attributes, model and execution thread.

To implement this approach, we must create an instance of the

HeadlessWorkspace class with its default constructor. We can then open

a model and execute NetLogo commands. The example below reuses the

previous code together with the “Fire” model to execute two simulations in

parallel, each with different parameters:

import org.nlogo.headless.HeadlessWorkspace;
public class SimulationFire {

public static void startModel(int nbTurtles, HeadlessWorkspace wSpace) {
4 Runnable myThread = new Runnable() {

public void run() {
try {

wSpace.open("models/Sample Models/Earth Science/" +
"Fire.nlogo");

wSpace.command("set number-of-turtles " + nbTurtles);



NetLogo, an Open Simulation Environment 25

9 wSpace.command("setup");
wSpace.command("repeat 50 [ go ]") ;

}
catch(Java.io.IOException ex) {

ex.printStackTrace();
14 }

}
};
myThread.start();

}
19 public static void main(String[] argv) {

HeadlessWorkspace simulation1 = HeadlessWorkspace.newInstance();
HeadlessWorkspace simulation2 = HeadlessWorkspace.newInstance();
SimulationFire.startModel(100, simulation1) ;
SimulationFire.startModel(200, simulation2) ;

24 }
}

More details on these features are available on the NetLogo GitHub page26.

There are technical subtleties relating to memory consumption, controlling

threads and the choice of whether to execute via a graphical user interface

(GUI) or the command line (Headless).

As well as allowing multiple executions, each with its own context, the Java

API provides the key to interoperability with other platforms and development

languages. Java has many possibilities and gateways to other languages (C,

Python, R, etc.). The NetLogo APIs developed by the community for other

programming languages build on these gateways and the native Java API

distributed with NetLogo. In the next part of this section, we will consider two

examples showing how to use NetLogo from other languages and applications:

Python and RNetlogo.

1.3.2. Using NetLogo from Python

Python is a programming language widely used in science, and its

popularity continues to grow. It has many different libraries, in particular

NumPy, which is extremely useful for scientific computations and numerical

simulations of mathematical models based on differential equations.

With NumPy, Python can be viewed as a way of combining mathematical

models and multiagent models. Python also proves very useful for dynamically

generating experimental protocols and automatically executing them.

26 https://github.com/Netlogo/Netlogo/wiki/Controlling-API.



26 Agent-based Spatial Simulation with NetLogo 2

There is no direct interface between Python and NetLogo. This means that

a Java bridge (JavaGateway) is required, running as a background task. This

bridge receives the NetLogo commands from Python and executes them in the

model to obtain the desired results.

One example of such a Java bridge was developed by David Masad, and is

available on the webpage Bad Networking27. We will distribute a modified

version that allows multiple simulations to be executed. The sources and

executable of the modified version can be downloaded from the GitHub page

of this book, at https://github.com/Spatial-ABM-with-Netlogo.

The idea is to run a Java program that will act as a server. The Python

program uses a library (package) that allows it to connect to this server. Each

time that Python wishes to access NetLogo, it sends a request to the Java

program. This program then executes the instructions in the NetLogo model

to obtain the desired results.

Thus, executing a NetLogo model form Python unfolds in the following

stages:

1) check that the Java bridge is running in the background, otherwise start

it up;

2) connect Python to the Java-NetLogo bridge;

3) create as many workspaces as required to run simulations;

4) initialize the simulations with the right parameters;

5) execute the simulations;

6) analyze the results.

The Java server program works according to the above steps. An example

of Java and Python code allowing multiple simulations to be simultaneously

executed from Python and Java commands is available on the GitHub page of

this book.

27 http://davidmasad.com/blog/Netlogo-from-python/http://davidmasad.com/blog/Netlogo-

from-python/.



NetLogo, an Open Simulation Environment 27

Once you have checked that the Java-Netlogo bridge is running properly,

you need to create a JavaGateway object to establish a connection with the

Java server.

# import
from py4j.Java_gateway import JavaGateway

# connect Python to the Java-Netlogo bridge
5 gw = JavaGateway()
bridge = gw.entry_point

It is now relatively simple to open an example model by creating a

workspace in Java, which is identified by a number in Python:

# create one workspace for each simulation we wish to run
sample_models = "/Applications/Netlogo 5.0.2/models/Sample Models/"
forest_fire = "Earth Science/Fire.nlogo"

4 wks1 = bridge.createWorkspace()
wks2 = bridge.createWorkspace()
bridge.openModel(wks1,sample_models + forest_fire)
bridge.openModel(wks2,sample_models + forest_fire)

We can now execute the NetLogo commands by specifying the desired

workspace with its number (this procedure is specific to our interface):

# Initialize the simulations with the desired parameters
# Parameters of the 1st simulation

3 bridge.command(wks1,"set density 62")
bridge.command(wks1,"random-seed 0")
bridge.command(wks1,"setup")

# Parameters of the 2nd simulation
8 bridge.command(wks2,"set density 50")
bridge.command(wks2,"random-seed 2")
bridge.command(wks2,"setup")

# Run the simulations
13 bridge.command(wks2,"repeat 50 [go]")

bridge.command(wks1,"repeat 50 [go]")

# Process the results of the simulation
...



28 Agent-based Spatial Simulation with NetLogo 2

We can now retrieve the values of the variables and display them:

...
2 # Process the results of the simulation
burned_trees = [0]*2
burned_trees[0] = bridge.report(wks1,"burned-trees")
burned_trees[1] = bridge.report(wks2,"burned-trees")

7 print "the average number of burned tree is: ",
sum(burned_trees)/float(len(burned_trees))

As you can see, this works the same way as Java, except that we can

now use the advanced features offered by Python to automatically execute

a parametrized series of models and construct all sorts of visual results, for

example using libraries such as matplotlib.

1.3.3. Exploring and analyzing models with R

NetLogo can be called from R using RNetlogo28. As presented in the article

(https://www.jstatsoft.org/article/view/v058i02), this package is also based on

the NetLogo Controller API (in Java), with an additional layer that provides a

connection between Java and R. The package can be installed as usual with the

following command in R:

install.packages("RNetlogo")

Once the package is installed, it simply needs to be loaded. This must be

performed once for each NetLogo session, and is done with the following

function:

library("RNetlogo")

28 http://rNetlogo.r-forge.r-project.org/.



NetLogo, an Open Simulation Environment 29

We can now run NetLogo from R. As was the case for Java, there are two

available modes: GUI and headless, i.e. with a graphical interface or from the

command line. To launch the GUI mode29:

install.packages(c("JGR","Deducer","DeducerExtras"))

To actually run it, we need to execute the following commands:

Sys.setenv(NOAWT=1)
library(JGR)
Sys.unsetenv("NOAWT")

4 JGR()

Next, run NetLogo:

1 nl.path <- "/Applications/Netlogo 5.3.1/Java/"
NLStart(nl.path)

We can now control NetLogo with R. For example, we can load a model

(or in our example a library of models using the function NLLoadModel in R),

execute commands on models (with the function NLCommand) and modify the

values of model parameters or execute individual model methods (for example,

setup then go).

;; Load a model
model.path <- file.path("models", "Sample Models", "Earth Science",

"Fire.nlogo")
3 model.library.path <- "/Applications/Netlogo 5.3.1/"

NLLoadModel(file.path(model.library.path, model.path))
;; Execute commands on this model
NLCommand("set density 77")

29 The path is the path to the folder with the Netlogo.jar archive. However, users running

Mac OS X or Linux who wish to run NetLogo in GUI mode will need to use JGC. The

installation steps are given on this page: http://www.deducer.org/pmwiki/pmwiki.php?n=

Main.MacOSXInstallation.



30 Agent-based Spatial Simulation with NetLogo 2

8 NLCommand("setup")
NLCommand("go")
NLDoCommand(10, "go")
NLDoCommandWhile("ticks < 200", "go")

We also need to be able to retrieve the values of variables. This can be done

very simply with the NLreport() command.

burned <- NLReport("number-of-turtles")

As you can see, running NetLogo from R is relatively simple. This allows

you to exploit the powerful calculation functions available in R to explore your

models.

1.3.4. Discussion

The three examples given above show that accessing and externally

controlling a NetLogo model passes through the Java interface distributed with

each version of NetLogo.

Java is an expressive language, which makes it possible to develop

links to most platforms and languages. The communities of the most

commonly used languages in science, such as R and Python, have already

created implementations of these links (RNetlogo and Python-Netlogo
respectively). Most of these links seem to follow a common pattern, using

primitives to load the NetLogo model and then execute commands written in

NetLogo.

If the need should ever arise, the Java interface could definitely be used to

develop an ad-hoc links with specific functionality. This is the principle behind

the Open-Mole platform, a distributed environment for model exploration,

which we will discuss in section 5.6.

1.4. Deploying NetLogo models online

As well as the classical NetLogo application installed on personal

computers, which comes with a well-stocked library of models, NetLogo also



NetLogo, an Open Simulation Environment 31

exists on the Internet. The NetLogo Web30 application is similar to the desktop

version (with somewhat reduced functionality) and can be accessed from a

web browser (section 1.4.1). The NetLogo community is extremely active

on the Internet and on a number of Websites for publishing models. In the

next section, we will present the two best-known of these websites: Modeling

Commons31 dedicated to distributing NetLogo models (section 1.4.2) and the

more general-purpose web portal OpenABM32 for publishing and sharing

models (section 1.4.3).

1.4.1. Netlogo Web

NetLogo Web (http://www.Netlogoweb.org) is one of the official Internet

websites of the NetLogo platform. It gives not only a download link for the

desktop application, but also provides access to an online implementation of

NetLogo via the web browser (see the section presenting NetLogo 1.1).

Figure 1.1. NetLogo Web homepage (March 2016)

The web version of the NetLogo application allows you to run the models

available on the platform, but you can also upload your own models. The usual

features are available: the command center, the code editor and information

relating to the model description. You can run the application as if it were

30 http://www.Netlogoweb.org/.

31 http://modelingcommons.org/account/login.

32 https://www.openabm.org/.



32 Agent-based Spatial Simulation with NetLogo 2

installed on your personal computer. There are, however, some restrictions, as

some features are not yet available. For example, extensions, some language-

specific primitives, file reading and writing, 3D models and BehaviorSpace
are not yet available.

Figure 1.2. Interface of one of the models
available online (March 2016)

Therefore, if your model uses one of the features unavailable in the online

version, you will need to use the desktop version of NetLogo. If not, this

platform is a great way of running models without having to install the

application (Figure 1.2).

1.4.2. Modeling Commons

Modeling Commons33 (Figure 1.3) is an Internet-based platform for

facilitating collaboration between NetLogo modelers. Users can share their

models, as well as edit, create and execute them.

The platform also allows users to save their own personal models, and

specify the level of visibility. Models can be set to private, or restricted to a

certain specific group of users.

33 http://modelingcommons.org.



NetLogo, an Open Simulation Environment 33

Figure 1.3. Modeling Commons homepage (March 2016)

The first step is to create a user account (using the platform is completely

free). This is only required if you wish to save models online, edit them, or

comment on existing models. Browsing and downloading public models do

not require logging in.

You can now upload a model (Figure 1.4). The platform will ask you

to specify the name of the model, provide the filepath on your computer

and optionally upload an image as an illustration. The reading and writing

permissions of the model must then be selected. The model can be set to either

public or private – collaborators can always be added at a later point.

Figure 1.4. Interface for uploading a model (March 2016)

Permissions can be changed by adding collaborators. You can also write a

model description and browse other related tabs: comments, model execution,



34 Agent-based Spatial Simulation with NetLogo 2

code, version history, auxiliary model files, models belonging to the same

family (we will return to this concept later) and an update tab (Figure 1.5).

This final tab allows you to upload an updated version of the model.

Figure 1.5. Model management window (March 2016)

The History tab gives an overview of all versions, and allows you to

download each of them. You can also revert to a previous version.

Finally, the update function allows you to create a child version of

the current parent model. Child models are created by performing the

classical operation of forking, as is common practice within the programming

community. The development of the parent and child models then follows

independent paths. However, the relationship between the two remains visible

in the History tab.

In summary, the Modeling Commons platform is oriented toward sharing

NetLogo models. It provides simple and easy-to-access functionality. The

ability to manage groups and organized models into projects helps to develop

an effective workflow.

1.4.3. OpenABM

OpenABM is a consortium that unites teachers, researchers and

professionals with the objective of promoting agent-based modeling. The

Website34 (Figure 1.6) offers a large collection of resources on related topics.

34 http://www.openabm.org.



NetLogo, an Open Simulation Environment 35

They already have a very extensive library of community-submitted models.

Each model is documented, and the source code is provided.

Figure 1.6. OpenAbm.org homepage (March 2016)

But this platform is much more than just a repository of agent models. The

Education section of the website contains an extensive range of tutorials and

documentation for helping to develop models. There are also links to online

courses, textbooks and a YouTube channel35.

A comprehensive selection of resources is available, such as links to

development platforms, the websites of modeling-related journals and a well-

stocked reading list. There is also a calender of topical events, a forum and job

opportunities.

More than anything else, OpenABM is a platform for sharing models and

resources on agent-based modeling. As a tool, it is truly comprehensive.

1.5. Conclusion

In this chapter, we showed how the openness of the NetLogo platform holds

the key to a great amount of potential.

This is reflected first and foremost in its extensions, which are numerous.

We non-exhaustively listed a couple of examples that we consider to be

particularly significant, such as array, R, gis, sound, raytracing, etc.

35 http://www.youtube.com/user/CoMSESNet/.



36 Agent-based Spatial Simulation with NetLogo 2

We also took the opportunity to explain how to install and use NetLogo

extensions, and showed how to personally design a new extension. We gave

a list of compilation environments and explained the mandatory content of a

minimal extension.

In section 1.3, we examined the possibility of using NetLogo from other

platforms. We considered the cases of Java, Python and R. There are other

platforms that can make calls to NetLogo, such as OpenMole, an environment

dedicated to exploring models using high-performance computations. We will

discuss this further in section 5.6.

Finally, we discussed the different ways of deploying models on the

Internet. NetLogo Web allows models to be executed online, and Modeling

Commons provides additional features to support collaboration. We ended the

chapter by presenting OpenABM, a privileged hub for resources on relevant

topics.


