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Macro Models, Micro Models and
Network-based Coupling

3.1. Introduction

In this chapter, we will discuss coupling models with different scales to

describe the propagation of a virus within a population. This population is

distributed throughout a set of cities connected by airline routes. Population

movements between cities enable the virus to travel, carried by infected

individuals. In each city, the description of virus propagation is based on

an SIR-type model (presented in more detail in section 3.2). The first

model, called EpiSim [DAU 14], is presented in section 3.3, first in its

aggregate variant, and then in its individual-based variant. Comparing these

two approaches will allow us to discuss the advantages and limitations of each

of them. In the second section, we will present two approaches for coupling

models based on networks. The first approach considers a network of coupled

systems of equations (section 3.5). The second combines an agent-based model

of microscale components with a model of macroscale components based

on systems of equations (section 3.6). This coupled model, called MicMac,

is presented in more detail in [BAN 16]. The added value of micro/macro

coupling is examined in the article [BAN 15b].

This chapter picks up where the last chapter left off. In the previous chapter,

we considered a weak coupling approach combining distinct traffic models
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with different scales. This chapter instead focuses on an integrative coupling

approach that associates two different dynamics modeled at different scales.

3.2. Description of the equation-based SIR model

The dynamics of an epidemic within a population can be formulated with

an SIR model that describes the evolution of the number of susceptible (S),

infected (I) and recovered (R) individuals within the population. This model

is described by the system [3.1] (see [KER 27]).

⎧⎪⎪⎪⎪⎪⎪⎨
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dS

dt
= − β

N
IS

dI

dt
=

β

N
IS − αI

dR

dt
= αI

[3.1]

In this model, each city has a population (P) divided into three groups S,

I and R. If the population has not been previously exposed to the virus, then

P = S, and everybody in the city is susceptible. The population is constant,

i.e. demography is not taken into account. The transition from the group of

susceptible individuals to the group of infected individuals is described by the

term
β

N
SI where

β

N
is the contamination rate in the event of contact between

a susceptible individual and an infected individual. The transition from the

group of infected individuals to the group of immune (recovered) individuals is

described by αI , where the α term gives the proportion of infected individuals

that recover at each time step.

This system of equations describes the evolution of the number

of susceptible, infected and recovered individuals over time for fixed

contamination and recovery rates, as shown in Figure 3.1.

There are various different approximation methods for numerically

calculating the solutions of this kind of system, i.e. determining the evolution

of S, I and R over time. As discussed previously (Volume 1, Chapter 5, p. 178

[BAN 15a]), the system dynamics module in NetLogo uses Euler’s method.

We will use this module and hence this method for section 3.3 of this chapter.

In section 3.3, the numerical method that we will use is called fourth-order
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Runge–Kutta ([BAN 15a] p. 183). It is implemented directly in NetLogo.

Finally, in section 3.6, we will use the Scala extension presented in Chapter

1 of this book.

Figure 3.1. Evolution of the number of susceptible, infected and recovered individuals

over time with α = 0.2,
β

N
= 0.5 (hence, R0 is equal to

β

α
= 2.5) and initial conditions

Sinit = 1000, Iinit = 10 and Rinit = 1. The chosen method of numerical integration
is Runge–Kutta 4, with a resolution of 10−3. For a color version of the figure, see
www.iste.co.uk/banos/netlogo2.zip

In the following sections, whenever an SIR system is used to describe the

population of a city i (for i ∈ 1, ..., NBNodes), we will denote the S, I and R

components of the populations respectively, by Si, Ii and Ri.

3.3. Equation-based and agent-based propagation model: EpiSim

In this section, we will aim to recreate the global dynamics of the aggregate

SIR model with an agent-based model. We will analyze the conditions under

which each of these two models converge and diverge. We will begin by

individualizing the SIR model without spatial constraints, and then we will

gradually add mechanisms for local interactions.

3.3.1. Distributed and non-spatial SIR model

The first stage of modeling is to develop the processes of the

aggregated mathematical model using an agent-based formalism
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(EpiSim_Modele.nlogo), while retaining the fundamental assumptions

of the initial approach (EpiSim_Math_Modele.nlogo). To shift from the

first formalism to the second, we need to redistribute the SIR model at

the individual scale. Each agent is therefore assigned a description of its

epidemiological state: S → I → R. Similarly to the aggregate version,

these transitions are not symmetric.

In this first stage, space is not considered, and each agent can potentially

interact with everyone, depending on the contact rate β. The graph of

interactions is said to be trivial. Each agent has two transition functions:

P (S → I) = β
I

N
and P (I → R) = α

This non-spatial model, shown in Figure 3.2, is agent-based, but still

reproduces the same dynamics as the equation-based SIR model given

equivalent initial conditions.

Figure 3.2. Screenshot of the dynamics of the non-spatial model. The Network
parameter is set to “None”, the interactions are “implicit” (each agent can potentially
interact will every other agent), the neighborhood is “global” and individual mobility
(IndividualStatic?) is currently irrelevant
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3.3.2. Spatially distributed SIR model with local interactions

In this second version of the model, the individual probabilities of transition

are calculated as a function of a local fixed-radius neighborhood of agents

(fixed Euclidean distance around the agent). At each time step, the agents have

unlimited mobility within the domain. In this spatial version of the model,

individuals are randomly distributed over space at initialization and at each

time step. Contacts occur randomly within the neighborhood of each agent,

which can be configured to be more global or local depending on the choice of

spatial constraints. Thus, no a priori structure is defined for potential contacts.

The graph of contacts that did actually occur during the simulation could,

however, be reconstructed a posteriori, to examine its topology.

P (S → I) = β
Ilocal
Nlocal

and P (I → R) = α

Under these conditions, the model shown in Figure 3.3 once again allows

us to obtain dynamics similar to those produced by the equation-based SIR

model.

Figure 3.3. Screenshot of the dynamics of the spatial model with local neighborhoods.
The Network parameter is still set to “None”, interactions remain “implicit”, the
neighborhood is now “local” with a fixed radius of 3 and individual mobility
IndividualStatic? is disabled
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3.3.3. Spatially distributed model with local neighborhoods and
explicit contact between individuals

We continue this approach with a fully distributed and behavioral model,

shown in Figure 3.4. Each agent S experiences a number n of contacts

(parameter avg-num-contact), which follows a Poisson distribution with

mean β. Each agent therefore effectively enters into contact with n agents

from its neighborhood V . If the state of one of these n neighbors is I , then

S → I .

P (S → I) = 1 if
∑
V

I ≥ 1 and P (I → R) = α

Figure 3.4. Screenshot of the dynamics of the spatial model with local neighborhoods
and interactions only between individuals. The Network parameter is still set to “None”,
interactions are now “explicit”, the neighborhood remains “Local” with a fixed radius
radius of 3 and individual mobility (IndividualStatic?) is either enabled or disabled

The dynamics produced by the simulations of this model deviate from

previous dynamics, and infection rates are lower than previous versions,

or completely absent. One way of verifying this is to vary the radius,

IndividualsStatic? mobility and avg-num-contact parameters to trigger

the dynamics of an epidemic. These results allow us to improve the model by

relaxing the hypotheses of global spatiality and global interaction. The next
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model therefore takes into account the movements of agents and the localized

nature of the contacts that could potentially result in virus transmission.

3.3.4. Spatially distributed SIR model with a network of
interactions

With this next version, the structure of potential contacts can be entered

as a model input to specify the network of interactions between agents. Each

agent is represented by a node, and its potential contacts are represented by a

set of connections making up its neighborhood. Hence, mobility is no longer

relevant here, since the network of interactions does not change over the course

of the simulation. At each time step, each agent comes into contact with

other agents selected from the set of level 1 neighbors within the network,

limited to the average number of contacts retained from the previous version

of the model (fixed parameter β which follows a Poisson distribution). In other

words, if the size of the neighborhood is less than avg-num-contact, then

this parameter takes the value of the size of the neighborhood. Other networks

can be constructed in order to study the role of topology in the dynamics of

virus propagation:

– Regular networks: networks such that all vertices have the same number

k of neighbors, also described as k-regular networks.

– Random networks with fixed degree distributions: networks whose

vertices have an average of k neighbors. This number varies locally around the

mean for each vertex. The number of edges is defined beforehand to guarantee

the desired degree distribution, then each edge is connected to two randomly

selected vertices.

– Small world networks: intermediate networks between regular networks

and random networks. To generate these networks, we start with a regular

network and randomly reassign a certain percentage of its edges.

– Scale-free networks (scale-invariant): directed acyclic or star networks

with a strongly heterogeneous distribution for the number k of neighbors of

each node. This distribution follows a power law.

These networks can be characterized by global topological indicators

such as:

– the average degree K: the average number of incident edges to a vertex;
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– the clustering coefficient C: this measures the degree to which the

network contains clusters, i.e. groups of vertices strongly linked together and

weakly connected to the rest of the network;

– the average of the C(x) evaluated at each vertex x: this is the number of

existing edges within the neighborhood K(x) of the vertex x divided by the

number of possible edges in this neighborhood;

– the average length of shortest paths: the average of the shortest values for

the distance between any two vertices of the network.

We will present the results of simulations performed with a clustered

network, such that k-degree equal to 6 (Figures 3.5 and 3.6) and 2 test

parameter values corresponding to the high/low values for L. For example,

when the network has a high k-degree, the clustering coefficient C is high, and

the average of the shortest distances L tends to be low. By contrast, the lower

the k-degree of the network, the higher the average of the shortest distances

tends to be.

Figure 3.5. Screenshot of the dynamics of the spatial model, network with
interindividual interactions. The value of avg-num-contact remains fixed at 1.66. The
Network parameter is set to “clustered”, with average-node-degree equal to 6. The α
(0.50) and β (0.20) parameters have been adjusted to obtain a higher R0 (4.1)



Macro Models, Micro Models and Network-based Coupling 71

Figure 3.6. Screenshot of the dynamics of the spatial model, network with
interindividual interactions. The value of avg-num-contact remains fixed at 1.66. The
Network parameter is set to “clustered”, with average-node-degree equal to 12. The
α and β parameters have been adjusted to obtain a higher R0 (4.1)

The simulation calculates several indicators as outputs: the proportion, of

the entire population, of the contaminated individuals at peak contamination

(MaxI); the interquartile range (IQR), which provides an indication of the

duration of the epidemic; and the cumulative percentage of infected individuals

once the epidemic is over (Recovered). In general, the simulations confirm

the initial intuition that the more the network is connected, the faster the virus

propagates through it, and the greater the number of infected nodes.

Studying the influence of the R0 parameter on these indicators and varying

the k-degree parameter shows the “compensating” effect of this parameter

relative to how the degree of network connectivity affects the propagation

dynamics. Recall that the R0 parameter is equal to the probability of infection

multiplied by the average number of contacts divided by the probability

of recovery. The simulations show a strong time shift as a function of the

k-degree parameter: the epidemic “takes off” more quickly as the network

connectivity increases, for fixed R0. This can be observed by comparing the

two experiments shown in Figure 3.5 (11340 ticks) and Figure 3.6 (6322 ticks).

A simple experiment (varying R0, varying the k-degree parameter) allows

this initial intuition to be quickly verified. Also, the R0 threshold value for

a “lightning” epidemic (hyper-fast epidemic that reaches all vertices within a
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short period) decreases as the connectivity increases. Note also that the value

of R0 required for the epidemic to affect almost all of the population may be

less than 1 if the network is strongly connected.

3.4. Coupling SIR models based on networks

Assume now that we have the same nodes as the previous models,

representing cities, but that the edges between these cities represent

connections by air. We also define a mobility rate g for each city, representing

the proportion of outbound travelers from that city. This proportion may

vary across the groups of susceptible, infected and recovered individuals.

We could, for example, assume that in the case of a symptomatic disease,

infected individuals will cease to travel, whereas asymptomatic individuals

will continue to do so. With this assumption, the number of infected individuals

is a function of the proportion of asymptomatic cases observed for a given

infectious disease. The mobility rates are, respectively, denoted by gi, gs and

gr. The mobile population of city i is therefore given by g(Si + Ii + Ri), or

by (gsSi + giIi + grRi) in the case where the mobility varies as a function of

infectious state.

Once these mobility rates have been defined, individuals from one city

can travel to adjacent cities. The weight mij of each edge is the fraction of

outbound travelers from node i headed toward node j. The sum of the mij

corresponding to each of the outbound edges at a given node must be equal

to 1:

N∑
j=1, j �=i

mji = 1 with mii = 0

Thus, these nodes and edges define a network of cities, and the population

moves through them. To model these movements, we propose two approaches.

3.5. SIR coupling without scaling: Metapop model

3.5.1. Presentation of the Metapop model

The metapopulation approach considered here takes into account the flow

of travelers from one city to another at each time step of the simulation. Trips
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are assumed to be instantaneous (the Euclidean distance between any two cities

is zero) since the model does not naturally include a notion of time and its

dynamics are exclusively defined by the number of integration steps. We are

therefore only interested in the epidemic-related dynamics of the city network,

as shown by the model in Figure 3.2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi

dt
= − β

N
IiSi − gsiSi +

n∑
j=1

gsjmjiSj

dIi
dt

=
β

N
IiSi − αIi − giiIi +

n∑
j=1

gijmjiIj

dRi

dt
= αIi − griRi +

n∑
j=1

grjmjiRj

[3.2]

Note that at each node, these dynamics are given by the initial dynamics of

the epidemic after subtracting all outbound travelers (hence the term −gsiSi

in the group of susceptible individuals) and adding all inbound travelers from

adjacent cities j (hence the term

n∑
j=1

gsjmjiSj in the susceptible group).

Movements are instantaneous, and at each step of the simulation the total

population is given by the sum of the populations at each node.

The interface of the metapopulation model is presented in Figure 3.7.

Figure 3.7. Interface of the metapopulation model, allowing the user to define the
network topology as well as the mobility rates and the initial distribution of the
population. This allows us to observe not only the dynamics of single nodes, but also
those unfolding at the level of the whole network. For a color version of the figure, see
www.iste.co.uk/banos/netlogo2.zip
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3.5.2. Numerical integration of a network of coupled SIR using
Runge-Kutta implemented in NetLogo

The fourth-order Runge-Kutta method is used to numerically approximate

the solutions of systems of ODEs. Recall that it works by averaging four

estimates, which makes it more precise than other approaches such as the Euler

method. Its implementation in NetLogo is shown below for an SIR system:

in the following code, the values of S, I and R are currentS, currentI
and currentR. Multiple stages are required to calculate these values for the

next time step, which are specified in full detail in Chapter 5 of Volume 1

[BAN 15a].

to calcK [coef]
2 set tmpS currentS + coef * currentKS

set tmpI currentI + coef * currentKI
set tmpR currentR + coef * currentKR
set nextKS (- beta) * tmpI * tmpS
set nextKI beta * tmpI * tmpS - alpha * tmpI

7 set nextKR alpha * tmpI
end

to stepK [coef]
set nextS nextS + coef * nextKS

12 set nextI nextI + coef * nextKI
set nextR nextR + coef * nextKR
set currentKS nextKS
set currentKI nextKI
set currentKR nextKR

17 end

;; deltaT is the integration step

to RKstepNetwork
22 (foreach (list 0 (1 / 2) (1 / 2) 1) (list (1 / 6) (1 / 3) (1 / 3) (1 /

6)) [
calcK ?1 * deltaT
stepK ?2 * deltaT
])

27 ;; update of the values of currentS, currentI and currentR
set currentS nextS
set currentI nextI
set currentR nextR

end
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This same method can be applied to the Metapop model with coupled SIR.

We must simply account for inflow and outflow at each of the nodes.

to calcK [coef]
set tmpS currentS + coef * currentKS
set tmpI currentI + coef * currentKI

4 set tmpR currentR + coef * currentKR
set nextKS (- beta / (tmpS + tmpI + tmpR)) * tmpI * tmpS
set nextKI (beta / (tmpS + tmpI + tmpR)) * tmpI * tmpS - alpha * tmpI
set nextKR alpha * tmpI

end
9

to coupling

; Outflow = sum of mij for each out-link of the nodes
14 ; this outflow is multiplied by the population of the nodes later

let sumOutS 0
let sumOutI 0
let sumOutR 0

19

ask my-out-links
[
set sumOutS sumOutS + mij
set sumOutI sumOutI + mij

24 set sumOutR sumOutR + mij
]

; Inflow : sum of mij * gs * tmpS, mij * gi * tmpI, mij * gr * tmpR for
each in-link

; where tmpS, tmpI and tmpR are the number of S, I, R of the source node
during the RK4 procedure

29

let sumInS 0
let sumInI 0
let sumInR 0

34 ask in-link-neighbors
[
let mi [Mij] of out-link-to myself
set sumInS sumInS + gs * tmpS * mi
set sumInI sumInI + gi * tmpI * mi

39 set sumInR sumInR + gr * tmpR * mi
]

; Update of the number of S, I and R in each node, taking into account
outflows and inflows

44 set nextKS nextKS - sumOutS * gs * tmpS + sumInS
set nextKI nextKI - sumOutI * gi * tmpI + sumInI
set nextKR nextKR - sumOutR * gr * tmpR + sumInR
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end

49 to stepK [coef]
set nextS nextS + coef * nextKS
set nextI nextI + coef * nextKI
set nextR nextR + coef * nextKR
set currentKS nextKS

54 set currentKI nextKI
set currentKR nextKR

end

to RKstepNetwork
59 (foreach (list 0 (1 / 2) (1 / 2) 1) (list (1 / 6) (1 / 3) (1 / 3) (1 / 6))

[
ask nodes [calcK ?1 * deltaT]
ask nodes [coupling]
ask nodes [stepK ?2 * deltaT]

64 ])
ask nodes
[
set currentS nextS
set currentI nextI

69 set currentR nextR
]

end

3.5.3. Examples of results

[BAN 15b] presents the results of both models (Metapop and MicMac). We

chose the following indicators to analyze these results:

– MaxI: the maximum number of infected individuals at any given

moment;

– T imeofMaxI: the moment at which the maximum number of infected

individuals occurred;

– Duration: the duration of the epidemic.

This choice of indicators allows us to characterize how the propagation of

the disease though the population changes.

The first interesting result is that if we assume that the network is complete,

the S, I and R populations and the mobility rates are uniformly distributed

over all nodes, and the weights are equal on all edges of the network, then

the MetaPop model is equivalent to an SIR system on the total population.
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[BAN 15b] also shows the impact of different topologies on the disease

spread. In summary, decreasing the diameter and the average length of paths

in a network increases the value of MaxI and decreases the values of

T imeofMaxI and Duration. This is characteristic of an increase in the rate

of diffusion of a disease within a population.

3.6. SIR coupling with scaling: MicMac model

The MetaPop model assumes that the population moves instantaneously

between cities. We can include this hypothesis in the MicMac model by

introducing a new type of agent (typically representing aircraft) that transports

individuals between cities. This model therefore introduces a change in scale

and a new paradigm, since the epidemiological dynamics of city populations

are described by equations, and the epidemiological dynamics between cities

are modeled by single agents and their movements.

3.6.1. Model presentation

The MicMac model uses the same city agents as above, with the same

equation-based epidemiological dynamics (also described by the SIR model).

The difference between the 2 models lies in the “mobility” component of the

model, which is disaggregated and discrete: individuals are extracted from

each city and travel to other cities by airplane. The flight duration depends on

the distance, and is adjusted to the integration step. A preliminary calibration

phase is performed for each simulation to synchronize the integration step,

flight durations and distances, based on the duration of an observed epidemic.

The same principle of conservation of population is satisfied: the total

population is constant and at any given moment is equal to the sum of the

populations in the nodes and in the airplanes.

The interface of this hybrid model is presented in Figure 3.8.

Whereas the Metapop model had instantaneous movements, in the hybrid

model the dynamics of the epidemic need to be defined. Indeed, the disease

continues to propagate during flights, inside the airplanes. Thus, at each time

step, we need to update the number of individuals both in the cities and in the

air. For now, we will use an ODE-based SIR model to describe contagion in

the air.
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Figure 3.8. Interface of the hybrid micro-macro model, allowing the user to define the
network topology, mobility rates, and initial population distribution. We can observe the
dynamics at each node, but also the dynamics of the whole network. At each time step,
the difference between the total population in the network and the initial population is
calculated to ensure that the total population remains constant while passing from the
population to individuals and vice versa

3.6.2. General description of the working principle of the coupling

Figure 3.9 gives a global overview of the dynamics of the MicMac model

in the form of an activity diagram. The simulation loop is divided into 4 main

stages, each of which has its own method for coupling the equation-based

model with the agent-based model.

Firstly, the infectious state of the population in cities (nodes agents) and

aircraft (mobilegroup agents) is updated. This dynamic is described by the

system of SIR equations. Each step of the simulation corresponds to one

integration step of the SIR system: consequently, the numerical solution of

the system and the updates of the agent-based model are synchronized. The

synchronization begins at model initialization by performing a calibration

phase on a test node. The numerical solution is presented in the next section.

Next, new airplanes are created. Each node is assigned a continuous

stock of population representing the proportion that desires to leave. Named

stock-to-flight, this stock depends in particular on a mobility rate

representing the fraction of the total population that can travel by plane at each

time step. The stock is incremented at each simulation step. The algorithm

creates planes according to the following principle: as many full planes as

possible are created at each step of the simulation and each node. Thus, at

each simulation step, if the value of stock-to-flight exceeds the capacity
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of a plane, a plane agent is created with a destination city chosen randomly

from the neighbors of the current node, containing a number of passengers

equal to its capacity. The population of the aircraft is then extracted from the

city of departure. The number of individuals in each state is proportional to the

distribution within the city, and is calculated using a lottery algorithm specified

in section 3.6.5.2. The number of people in the plane is then subtracted from

the stock-to-flight of that node. While this value remains greater than the

capacity of one plane, another plane is created by following the steps given

above.

Figure 3.9. General activity diagram of the MicMac model

At each step of the simulation, the airplanes travel at a certain speed

(and therefore cover a certain distance). This speed is also calibrated at

initialization. Once a plane reaches its destination city, its population merges

with the global population of the city (see section 3.6.5), and disappears. Thus,

if the plane contained infected persons, they could potentially contaminate the

population in the destination city, allowing the virus to travel from city to city.

3.6.3. Initialization: calibrating the model

At the beginning of the simulation, an SIR model is integrated on a

reference node using the parameter values specified by the user. This node
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contains the total population of the model, and uses the same stopping

condition for calibration as the simulation (namely that proportion of infected

individuals is below a certain threshold ε). The number of iterations of the

RK4 method required to achieve this stopping condition is calculated, and

the relation between the duration of the epidemic specified by the user and

the number of RK4 iterations is calculated to determine the “duration” of

each time step. Since the aspect of space is incorporated into the model by

specifying the network structure, this preliminary operation allows the size of

each edge to be derived, but also determines the traveling speed and therefore

the transport time.

3.6.4. Using the RK4 extension to perform numerical integration

The SIR equations of this model are numerically integrated using the RK4

extension (see section 1.2.8 of this book), which is recalled directly in the code

as follows:

set sir rungeKuta:compute-SIR S_Node I_Node R_Node galpha (gbeta / (S_Node
+ I_Node + R_Node)) integrationStep

3.6.5. Switching between the continuous and discrete parts of the
model

The MicMac model associates equation-based dynamics and agent-based

dynamics. For the former, integrating the system of equations can produce

non-integer values for each population stock. For the latter, by definition,

the dynamics are expressed in terms of integer numbers of individuals. The

interface between these dynamics therefore requires a method for transitioning

between continuous and discrete settings.

3.6.5.1. Transition from discrete to continuous

Converting discrete values to continuous values is trivial. Each plane

contains an integer number of susceptible, infected and recovered persons.

Once it arrives at a city, each plane unloads its passengers, which are added

to the city stock for each state.
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3.6.5.2. Transition from continuous to discrete: the lottery algorithm

The reverse situation arises when a plane is created to travel from one city to

another, specifically when calculating its integer number of passengers. At this

point, we encounter the following problem: how do we obtain integer numbers

of susceptible, infected and recovered populations from three population

stocks, represented as continuous values, while conserving the proportions of

each stock?

To answer this question, we introduce a so-called “lottery” algorithm. We

will present this algorithm here, as it is sufficiently general to be useful for a

wide range of different problems. It is based on two subroutines: find-state
and generate-passengers.

Given a set of (integer) values representing the number of individuals

in each state, find-state randomly chooses a state with probability

proportional to the number of individuals in this state. The function returns

an integer value representing the selected state, corresponding to the index of

the state selected from the list passed as a a parameter.

to-report find-state [#roundedStock]

let roundedPop sum #roundedStock
4 let random-value (random roundedPop) + 1

let state 0
let step-i 0

9 if roundedPop > 0 [
foreach #roundedStock
[
if state = 0 [
set random-value random-value - item step-i #roundedStock

14 ifelse random-value <= 0 [
set state step-i + 1

][
set step-i step-i + 1

]
19 ]

]
]

report state
24 end
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The function generate-passengers takes the list of the number of

individuals in each possible state (pop) and the number of individuals in

the group to be generated (sample_number) as parameters. It generates and

returns a group of sample_number individuals, with the same proportions in

each state as pop. This group has an integer number of individuals in each

state. The returned population is then removed from the population passed as

a parameter. This function takes two preliminary precautions:

– the population passed as a parameter is rounded down to the integer below

for each state. This means that if one state has the value of 0.3, it will be

rounded down to 0.

– it checks that the population passed as a parameter is larger than the

number of agents in the expected output population, after rounding.

The find-state function is then called int(sample_number) times.

Each time that it is called, one individual is extracted from the initial

population and added to the population that will be returned. Consequently

(because of the find-state algorithm), if the number of individuals (in the

population passed as a parameter) in a certain state hits 0 at some point during

the execution of the algorithm, no further individuals will be drawn in this

state.

1 to-report generate-passengers [pop sample_number]

let rounded_pop recompute-rounded-population pop
let S_pop item 0 rounded_pop
let I_pop item 1 rounded_pop

6 let R_pop item 2 rounded_pop

let state 0
let Si 0
let Ii 0

11 let Ri 0

if ((sum rounded_pop) >= int(sample_number))
[
;; One returned state by find-state

16 repeat sample_number
[
;; compute/recompute population at each turn
set state find-state recompute-rounded-population (list S_pop

I_pop R_pop)

21 if state = 1 [
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set Si Si + 1
set S_pop S_pop - 1

]

26 if state = 2 [
set Ii Ii + 1
set I_pop I_pop - 1

]

31 if state = 3 [
set Ri Ri + 1
set R_pop R_pop - 1

]
]

36 ]

report (list Si Ii Ri)
end

to-report recompute-rounded-population [pop]
report (list int(item 0 pop) int(item 1 pop) int(item 2 pop))

end

3.6.6. Example results

As above for the MetaPop model, the results are taken from [BAN 15b]. We

we will also consider the same indicators as before. Similarly to the MetaPop

model, the MicMac model can be equivalently rephrased as a system of SIR

ODEs on the total population if we consider the special case of a complete

network and uniformly distributed population over each node. The MicMac

model also requires the assumption of instantaneous travel between cities (or

zero distance between cities).

If we do not assume instantaneous travel or uniform distribution, the model

no longer coincides with classical SIR nor MetaPop:

– MaxI of MetaPop > MaxI of MicMac;

– T imeofMaxI of MetaPop < T imeofMaxI of MicMac;

– Duration of MetaPop < Duration of MicMac;
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These results show that diffusion unfolds more slowly in the MicMac

model. This is in particular because a city with an infected individual will not

necessarily infect its neighbors (whereas in the MetaPop model this city would

always send at least a small proportion of infected individuals to its neighbors

once it becomes infected).

The effect of the network topology on the dynamics of the epidemic, on

the other hand, is essentially identical in both MicMac and MetaPop. The

difference lies in the previous comment: propagation will be slower in the

MicMac model because an infected node does not always infect its neighbors.

3.7. Conclusion and outlook

In a massively connected and highly mobile world, studying the diffusion

of epidemics is of great social and scientific value. Modeling not just the spatial

but also temporal character of propagation leads us to consider hybrid models.

In this chapter, we presented a series of different models. The first of these,

the equation-based SIR model, is a macroscopic model based on ordinary

differential equations. We used the assumptions of this model as the basis for a

second, agent-based model that allows us to reproduce similar behavior under

certain conditions (EpiSim). Two approaches were considered to describe

diffusion within a network of interconnected cities. The first approach, fully

macroscopic, describes the population as a homogeneous group. Flows from

one city to another are instantaneous, which excludes temporality or state

changes (S, I , R) during travel. The second, hybrid approach views cities

as homogeneous groups of individuals but allows for heterogeneity in their

movements. It also allows us to include a description of travel times and

distances. Control strategies (quarantine, avoidance, risk culture, etc.) can

be applied to both of these models (MetaPop and MicMac). All strategies

applied to cities at a global scale can be tested with either of these models.

However, strategies related to individual choices can only be tested with the

MicMac model.


