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Local robust estimation of Pareto-type tails with random right
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Abstract. We propose a nonparametric robust estimator for the tail index of a conditional
Pareto-type distribution in the presence of censoring and random covariates. The censored
distribution is also of Pareto-type and the index is estimated locally within a narrow neighbour-
hood of the point of interest in the covariate space using the minimum density power divergence
method. The main asymptotic properties of our robust estimator are derived under mild regu-
larity conditions and its finite sample performance is illustrated on a small simulation study. A
real data example is included to illustrate the practical applicability of the estimator.

AMS Subject Classifications: 62G05, 62G20, 62G32, 62G35.

Keywords: Pareto-type distribution; random censoring; density power divergence; local esti-
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1 Introduction

Extreme value statistics deals with modelling extreme events, that is, events that have a low
frequency of occurrence but a high impact. From a theoretical point of view this implies that
the interest is in quantities related to the tail of the distribution like, e.g., indices describing tail
decay, extreme quantiles and small tail probabilities, rather than the centre. Estimation of such
parameters is then naturally based on the largest observations in the available sample. In many
practical applications one encounters also censoring, a situation where only partial information
on a random variable is available, typically that it exceeds a certain value. When studying
advanced age mortality one often has that some individuals of a birth cohort are still alive at
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the time of follow-up, meaning that only a lower bound for their actual lifetime is available.
In insurance, long developments of claims are encountered, which means that at the evalua-
tion of a portfolio some claims might not be completely settled and thus the real payments
are censored by the payments up to the time of evaluation. In the present paper we will ad-
dress robust estimation of a tail heaviness parameter under a random right censoring mechanism.

More formally, let Y be the random variable of main interest and let C be the censoring random
variable, with distribution functions FY and FC , respectively, both being of Pareto-type, that
is, with • denoting either Y or C, one has

1− F•(y) = y−1/γ•`•(y), y > 0, (1)

where γ• > 0 is the extreme value index, and `• is a slowly varying function at infinity:
`•(ty)/`•(t) → 1 as t → ∞ for all y > 0. Interest is in studying properties of the right tail
of FY , but due to censoring one observes only Y ∧ C, rather than Y , together with a censoring
indicator 1l{Y≤C}, where 1l{A} is the indicator function on the event A. Estimation is then based
on a random sample of the observables Y ∧C and 1l{Y≤C}, together with some correction which
is needed to obtain inference for the tail of FY and not that of FY ∧C . In this univariate context,
estimation of tail parameters with random right censoring has been studied quite extensively
in the extreme value literature, see for instance Beirlant et al. (2007), Einmahl et al. (2008),
Worms and Worms (2014), Beirlant et al. (2016).

In the present paper we extend the above described setup to the case where a random covariate
X is available. Model (1) can then be stated as

1− F•(y|x) = y−1/γ•(x)`•(y|x), y > 0,

where γ•(x) > 0 is referred to as the conditional extreme value index and `•(y|x) is again a
slowly varying function at infinity, and interest is in estimating γY (x). Our approach is non-
parametric and based on local estimation in the covariate space. Estimation of tail parameters in
presence of random covariates has received quite some attention in the recent literature. Wang
and Tsai (2009) followed a parametric maximum likelihood approach within the Hall subclass
of Pareto-type models (Hall, 1982). Also in the framework of Pareto-type tails, Daouia et al.
(2011) considered the nonparametric estimation of extreme conditional quantiles, and plugged
these conditional quantile estimators into classical estimators for the extreme value index, such
as the Hill (1975) and Pickands (1975) estimators. Goegebeur et al. (2014b) introduced a non-
parametric and asymptotically unbiased estimator for the conditional tail index. Wang et al.
(2012) considered the estimation of extreme conditional quantiles for Pareto-type distributions
and developed a two step procedure based on quantile regression. Daouia et al. (2013), extended
the methodology of Daouia et al. (2011) to the general max-domain of attraction. We also refer
to Stupfler (2013) and Goegebeur et al. (2014a) for estimation of the conditional tail index
in the general max-domain of attraction. Despite these numerous contributions to conditional
extremes, the situation of censoring in regression received very little attention. Stupfler (2016)
adjusted the local moment estimator introduced in Stupfler (2013) to the censoring context by
diving it by the local proportion of non-censored observations. Apart from this pioneering work
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we are, to the best of our knowledge, not aware of other methods to deal with random covariates
and censoring.

Besides censoring and random covariates we also want to develop an estimator that is robust
with respect to outliers. To obtain robustness we will use the minimum density power divergence
(MDPD) approach, developed by Basu et al. (1998). The density power divergence between
density functions f and g is given by

∆α(f, g) :=

{ ∫
R
[
g1+α(y)−

(
1 + 1

α

)
gα(y)f(y) + 1

αf
1+α(y)

]
dy, α > 0,∫

R log f(y)
g(y)f(y)dy, α = 0.

(2)

For the purpose of estimation, f is assumed to be the true (typically unknown) density of the
data, whereas g is a parametric model, depending on a parameter vector θ which is determined
by minimizing the empirical version of (2). Applications of this criterion in the context of ex-
tremes can be found in, e.g., Kim and Lee (2008), Dierckx et al. (2013, 2014), and Escobar-Bach
et al. (2018).

The remainder of this paper is organized as follows. In the next section we introduce the
nonparametric robust estimator in the context of censorship, obtained from local fits of the
extended Pareto distribution to the relative excesses over a high threshold. Then, in Section
3, we study its main asymptotic properties under some mild regularity conditions. The finite
sample performance of the proposed estimator is evaluated in a small simulation study in Section
4, whereas Section 5 illustrates the applicability of the method on a real dataset. All the proofs
are postponed to the Appendix.

2 Construction of the estimator

Let Y denote the response variable of interest, and C be the random right censoring time, both
having a distribution depending on a random covariate X, and conditionally on X we assume Y
and C to be independent random variables. We observe the random covariate X, T := Y ∧C, and
a censoring indicator 1l{Y≤C}. The covariate X has density function fX with support SX ⊂ Rd,
having non-empty interior. We assume the following for the conditional distributions of Y and
C given X = x, denoted FY (.|x) and FC(.|x), respectively.

Assumption (D) The conditional survival functions of Y and C satisfy, for all x ∈ SX , with •
denoting either Y or C,

F •(y|x) = A•(x)y−1/γ•(x)
(

1 +
1

γ•(x)
δ•(y|x)

)
,

where A•(x) > 0, γ•(x) > 0, and |δ•(.|x)| is normalised regularly varying with index ρ•(x)/γ•(x),
ρ•(x) < 0, i.e.,

δ•(y|x) = B•(x) exp

(∫ y

1

ε•(u|x)

u
du

)
,
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with B•(x) ∈ R and ε•(y|x)→ ρ•(x)/γ•(x) as y →∞. Moreover, we assume y → ε•(y|x) to be
a continuous function.

Note that assumption (D) implies that FY (.|x) and FC(.|x) have density functions. Indeed,
straightforward differentiation gives

f•(y|x) =
A•(x)

γ•(x)
y−1/γ•(x)−1

[
1 +

(
1

γ•(x)
− ε•(y|x)

)
δ•(y|x)

]
. (3)

The random variable T has a conditional distribution function satisfying the same properties as
those of Y and C. Indeed, by straightforward computations one obtains:

F T (y|x) = F Y (y|x)FC(y|x)

= AT (x)y−1/γT (x)
(

1 +
1

γT (x)
δT (y|x)

)
,

where AT (x) := AY (x)AC(x), γT (x) := γY (x)γC(x)/(γY (x) + γC(x)), and

δT (y|x) :=


γT (x)/γY (x)δY (y|x)(1 + o(1)) if δY (y|x)/δC(y|x)→ ±∞,
γT (x)/γC(x)δC(y|x)(1 + o(1)) if δY (y|x)/δC(y|x)→ 0,
γT (x)δY (y|x)/γY (x)(1 + γY (x)/(γC(x)a))(1 + o(1)) if δY (y|x)/δC(y|x)→ a,

where 0 < |a| < +∞.

Now, consider the extended Pareto distribution (Beirlant et al., 2009), with distribution function
given by

G(z; γ, δ, ρ) =

{
1− [z(1 + δ − δzρ/γ)]−1/γ , z > 1,
0, z ≤ 1,

(4)

and density function

g(z; γ, δ, ρ) =

{ 1
γ z
−1/γ−1[1 + δ(1− zρ/γ)]−1/γ−1[1 + δ(1− (1 + ρ/γ)zρ/γ)], z > 1,

0, z ≤ 1,

where γ > 0, ρ < 0, and δ > max{−1, γ/ρ}. For distribution functions satisfying (D), one can
approximate the conditional distribution function of Z := Y/t, given that Y > t (or Z := C/t,
given that C > t or Z := T/t, given that T > t), where t denotes a high threshold value, by the
extended Pareto distribution. Indeed, as shown in Beirlant et al. (2009), one has that

sup
z≥1

∣∣∣∣F •(tz|x)

F •(t|x)
−G(z; γ•(x), δ•(t|x), ρ•(x))

∣∣∣∣ = o(δ•(t|x)), if t→∞,

where • represents Y , C or T . Clearly, based on this result, one can obtain an estimator for
γT (x) by fitting the extended Pareto distribution to the relative excesses over a high threshold.
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Let (Ti, Xi, 1l{Yi≤Ci}), i = 1, . . . , n, be independent copies of the random vector (T,X, 1l{Y≤C}).
Take x0 ∈ Int(SX). We estimate γT (x0) by fitting g locally to the relative excesses Zi := Ti/tn,
i = 1, . . . , n, by means of the MDPD criterion, adjusted to locally weighted estimation, i.e., we
minimize

∆̂α(γ, δ; ρ) :=

1

n

n∑
i=1

Khn(x0 −Xi)

{∫ ∞
1

g1+α(z; γ, δ, ρ)dz −
(

1 +
1

α

)
gα(Zi; γ, δ, ρ)

}
1l{Ti>tn}, (5)

in case α > 0 and

∆̂0(γ, δ; ρ) := − 1

n

n∑
i=1

Khn(x0 −Xi) ln g(Zi; γ, δ, ρ)1l{Ti>tn}, (6)

in case α = 0, where Khn(x) := K(x/hn)/hdn, K is a joint density function on Rd, hn is a non-
random sequence of bandwidths with hn → 0 if n→∞, and tn is a local non-random threshold
sequence satisfying tn → ∞ if n → ∞. Note that in case α = 0, the local empirical density
power divergence criterion corresponds with a locally weighted log-likelihood function. The pa-
rameter α controls the trade-off between efficiency and robustness of the MDPD criterion: the
estimator becomes more efficient but less robust as α gets closer to zero, whereas for increasing
α the robustness increases and the efficiency decreases. In this paper we only estimate γT (x0)
and δT (tn|x0) with the MDPD method. The parameter ρ will be fixed at some canonical value.
Alternatively, one can replace ρ by an external consistent estimator. However, the estimation of
ρ in a robust way is still an open problem, and moreover, using an external consistent estimator
rather than a canonical value, does not, in general, improve the performance of the final MDPD
estimator. For all these reasons, we only use a canonical value for the parameter ρ in the sequel.

3 Asymptotic properties

To deal with the regression context, the functions appearing in FY (y|x) and FC(y|x) are assumed
to satisfy the following Hölder conditions. Let ‖.‖ denote some norm on Rd.

Assumption (H) There exist positive constants MfX , MA•, Mγ•, MB•, Mε•, ηfX , ηA•, ηγ•,
ηB• and ηε•, such that for all x, z ∈ SX :

|fX(x)− fX(z)| ≤ MfX‖x− z‖
ηfX ,

|A•(x)−A•(z)| ≤ MA•‖x− z‖ηA• ,
|γ•(x)− γ•(z)| ≤ Mγ•‖x− z‖ηγ• ,
|B•(x)−B•(z)| ≤ MB•‖x− z‖ηB• ,

sup
y≥1
|ε•(y|x)− ε•(y|z)| ≤ Mε•‖x− z‖ηε• .
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For the kernel function K we assume the following:

Assumption (K) K is a bounded density function on Rd, with support SK included in the unit
hypersphere in Rd.

Set ln+ x = ln max{1, x}, x > 0, and consider, with s ≤ 0 and s′ ≥ 0,

T (1)
n (K, s, s′|x0) :=

1

n

n∑
i=1

Khn(x0 −Xi)

(
Ti
tn

)s(
ln+

Ti
tn

)s′
1l{Ti>tn},

T (2)
n (K|x0) :=

1

n

n∑
i=1

Khn(x0 −Xi)1l{Yi≤Ci,Ti>tn}.

Statistics of the type T
(1)
n (K, s, s′|x0) are the basic building blocks for studying the asymptotic

behaviour of the estimator for γT (x0). Indeed, the estimating equations resulting from (5) and

(6) depend only on statistics of this type. The statistic T
(2)
n (K|x0) will lead to an estimator for

the proportion of non-censored observations among the exceedances over tn, which is used to
correct the estimator for γT (x0) in order obtain an estimator for γY (x0), being the quantity of
main interest.

As a first step we establish the asymptotic expansions of E(T
(1)
n (K, s, s′|x)) and E(T

(2)
n (K|x)).

Let η := ηγY ∧ ηγC ∧ ηεY ∧ ηεC .

Theorem 1 Assume (D), (H), (K) and x0 ∈ Int(SX) with fX(x0) > 0. Then if tn → ∞ and
hn → 0 as n→∞ in such a way that hηn ln tn → 0, we have the following asymptotic expansions

E(T (1)
n (K, s, s′|x0)) = F T (tn|x0)fX(x0)γ

s′
T (x0)Γ(s′ + 1)

{
1

(1− sγT (x0))s
′+1

−δT (tn|x0)
γT (x0)

[
1

(1− sγT (x0))s
′+1
− 1− ρT (x0)

(1− ρT (x0)− sγT (x0))s
′+1

]
(1 + o(1))

+ O(h
ηfX∧ηAY ∧ηAC
n ) +O(h

ηγY ∧ηγC
n ln tn)

}
,

where the o(1) and O(.) terms are uniform in (s, s′) ∈ [S, 0] × [0, S′], with S < 0 and S′ > 0,
and

E(T (2)
n (K|x0)) = F T (tn|x0)fX(x0)

γT (x0)

γY (x0)

{
1 + δC(tn|x0)

γT (x0)ρC(x0)

γC(x0)(γC(x0)− γT (x0)ρC(x0))
(1 + o(1))

−δY (tn|x0)
ρY (x0)(γY (x0)− γT (x0))

γY (x0)(γY (x0)− γT (x0)ρY (x0))
(1 + o(1))

+ O(h
ηfX∧ηAY ∧ηAC
n ) +O(h

ηγY ∧ηγC
n ln tn)

}
.

We now turn to establishing the joint convergence of T
(1)
n (K, s, s′|x0) for several values of (s, s′)
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and T
(2)
n (K|x0). Let

Tn :=
1

F T (tn|x0)fX(x0)


T
(1)
n (K, s1, s

′
1|x0)

...

T
(1)
n (K, sJ , s

′
J |x0)

T
(2)
n (K|x0)

 ,

rn :=
√
nhdF T (tn|x0)fX(x0), and ’ ’ denoting convergence in distribution.

Theorem 2 Assume (D), (H), (K) and x0 ∈ Int(SX) with fX(x0) > 0. Then if tn → ∞ and
hn → 0 as n→∞ in such a way that hηn ln tn → 0 and rn →∞, then

rn(Tn − E(Tn)) N(0,Σ),

with

Σj,k :=
γ
s′j+s

′
k

T (x0)Γ(s′j + s′k + 1)‖K‖22
(1− (sj + sk)γT (x0))

s′j+s
′
k+1

, j, k ∈ {1, . . . , J},

ΣJ+1,J+1 :=
γT (x0)‖K‖22
γY (x0)

,

ΣJ+1,j :=
γ
s′j+1

T (x0)Γ(s′j + 1)‖K‖22
γY (x0)(1− sjγT (x0))

s′j+1
, j ∈ {1, . . . , J}.

We now establish the joint weak convergence of the statistics T
(1)
n (K, s, j|x0) as stochastic pro-

cesses in s ∈ [S, 0], with j = 0, 1, 2, 3, and T
(2)
n (K|x0). To this aim, let

S(j)n :=

{
rn

[
T
(1)
n (K, s, j|x0)

F (tn|x0)fX(x0)
−

j!γjT (x0)

(1− sγT (x0))j+1
,

]
; s ∈ [S, 0]

}
, j ∈ {0, 1, 2, 3},

S(4)n := rn

[
T
(2)
n (K|x0)

F T (tn|x0)fX(x0)
− γT (x0)

γY (x0)

]
.

Theorem 3 Under the assumptions of Theorem 2 and assuming additionally that rnδT (tn|x0)→
λ ∈ R, rnh

ηfX∧ηAY ∧ηAC → 0 and rnh
ηγY ∧ηγC ln tn → 0 as n→∞, we have

(S(0)n , S(1)n ,S(2)n ,S(3)n ,S(4)n ) (S(0),S(1),S(2), S(3), S(4)),

where S(0), S(1), S(2) and S(3) are tight Gaussian processes on [S, 0] and S(4)n is a Gaussian
random variable, where, with s ∈ [S, 0],

E(S(j)(s)) = −λj!γj−1T (x0)

[
1

(1− sγT (x0))j+1
− 1− ρT (x0)

(1− ρT (x0)− sγT (x0))j+1

]
, j ∈ {0, 1, 2, 3},

E(S(4)) = λ×



− ρY (x0)(γY (x0)−γT (x0))
γY (x0)(γY (x0)−γT (x0)ρY (x0))

, if δY (y|x)/δC(y|x)→ ±∞,
γT (x0)ρC(x0)

γY (x0)(γC(x0)−γT (x0)ρC(x0)) , if δY (y|x)/δC(y|x)→ 0,
aγC(x0)

aγC(x0)+γY (x0)

[
γT (x0)ρC(x0)

aγC(x0)(γC(x0)−γT (x0)ρC(x0)))

− ρY (x0)(γY (x0)−γT (x0))
γY (x0)(γY (x0)−γT (x0)ρY (x0))

]
if δY (y|x)/δC(y|x)→ a,

(7)
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and, with s1, s2 ∈ [S, 0],

Cov(S(j)(s1), S(k)(s2)) =
(j + k)!γj+kT (x0)‖K‖22

(1− (s1 + s2)γT (x0))j+k+1
, j, k ∈ {0, 1, 2, 3},

Cov(S(j)(s),S(4)) =
j!γj+1

T (x0)‖K‖22
γY (x0)(1− sγT (x0))j+1

, j ∈ {0, 1, 2, 3},

Var(S(4)) =
γT (x0)‖K‖22
γY (x0)

.

For the sequel, we denote by γ
(0)
T (x0) and δ

(0)
T (tn|x0) the true value of γT (x0) and δT (tn|x0),

respectively. Let γ̂T,n(x0|ρ̃) and δ̂T,n(x0|ρ̃) be the corresponding MDPD estimators, obtained
from solving the following estimating equations, with the second order parameter ρ fixed at the
value ρ̃:

0 =
1

n

n∑
i=1

Khn(x0 −Xi)1l{Ti>tn}

∫ ∞
1

gα(z; γ, δ, ρ̃)
∂g(z; γ, δ, ρ̃)

∂γ
dz

− 1

n

n∑
i=1

Khn(x0 −Xi)g
α−1(Zi; γ, δ, ρ̃)

∂g(Zi; γ, δ, ρ̃)

∂γ
1l{Ti>tn}, (8)

0 =
1

n

n∑
i=1

Khn(x0 −Xi)1l{Ti>tn}

∫ ∞
1

gα(z; γ, δ, ρ̃)
∂g(z; γ, δ, ρ̃)

∂δ
dz

− 1

n

n∑
i=1

Khn(x0 −Xi)g
α−1(Zi; γ, δ, ρ̃)

∂g(Zi; γ, δ, ρ̃)

∂δ
1l{Ti>tn}. (9)

Define

p̂n(x0) :=
T
(2)
n (K|x0)

T
(1)
n (K, 0, 0|x0)

.

From Theorem 1 it is clear that p̂n(x0) estimates γ
(0)
T (x0)/γ

(0)
Y (x0), which motivates γ̂Y,n(x0|ρ̃) :=

γ̂T,n(x0|ρ̃)/p̂n(x0) as estimator for γ
(0)
Y (x0). The consistency of this estimator is formalised in

the next theorem. Let ’
P→’ denote convergence in probability.

Theorem 4 Under the assumptions of Theorem 2 we have, for n→∞,

(γ̂T,n(x0|ρ̃), δ̂T,n(x0|ρ̃), p̂n(x0))
P→ (γ

(0)
T (x0), 0, γ

(0)
T (x0)/γ

(0)
Y (x0)),

and hence γ̂Y,n(x0|ρ̃)
P→ γ

(0)
Y (x0).

Finally, we obtain the asymptotic normality of γ̂Y,n(x0; ρ̃), when properly normalised.
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Theorem 5 Under the assumptions of Theorem 3 we have for n→∞

rn(γ̂Y,n(x0|ρ̃)− γ(0)Y (x0)) N(λLT ∆̆−1(ρ̃)B(ρ̃)µ(ρ̃), LT ∆̆−1(ρ̃)B(ρ̃)Σ(ρ̃)B(ρ̃)T ∆̆−1(ρ̃)L),

where the precise definitions of L, ∆̆(ρ̃), B(ρ̃), µ(ρ̃) and Σ(ρ̃) are given in the proof of the
theorem in the appendix.

The estimator γ̂Y,n(x0; ρ̃) depends on γ̂T,n(x0|ρ̃) and p̂n(x0). In Dierckx et al. (2014) it was
shown that when ρ̃ is correctly specified, then γ̂T,n(x0|ρ̃) is asymptotically unbiased in the
sense that the mean of the normal limiting distribution is zero. In case ρ̃ is mis-specified then
the mean of the limiting distribution of γ̂T,n(x0|ρ̃) is not necessarily zero, but, being a second
order estimator, it continues to perform well compared to estimators that are not corrected
for bias, as observed in Dierckx et al. (2014). Also p̂n(x0) (after proper normalisation) has a
limiting distribution with a mean that is not necessarily equal to zero, as is common in extreme
value statistics. At the theoretical level one can thus expect a non-zero mean of the limiting
distribution of γ̂Y,n(x0; ρ̃), but despite this, the proposed estimator performs well in practice.
Also, it can tolerate outliers and high proportions of censoring, as is illustrated in the simulation
experiment.

4 A simulation study

In this section, we illustrate the performance of the proposed MDPD estimator γ̂Y,n(x0|ρ̃) with
a small simulation study. To this aim, we need first to choose the function K and the canonical
value ρ̃. Then, we have to select the bandwidth parameter hn and the threshold tn. Concerning
α, three values will be tried: α = 0 corresponding to a local maximum likelihood estimator,
α = 0.1 and α = 0.5.

Regarding the value ρ̃, according to Beirlant et al. (2016) in the uncontaminated framework,
ρ̃ = −0.5 is a suitable value which allows to stabilize the estimators adapted to censorship as a
function of k, the number of top order statistics used in the estimation. Thus this value will be
also used in our context. As for the kernel function K, we take the bi-quadratic function

K(x) =
15

16
(1− x2)21l{x∈[−1,1]}.

For the selection of hn and tn, we proceed as follows. For each dataset, an optimal bandwidth
hn,o is selected using the leave-one-out cross validation method, already used in the extreme
value literature, see, e.g., Daouia et al. (2011, 2013) and Goegebeur et al. (2014a). Once this
optimal bandwidth is selected an optimal value for tn has to be determined for every x0. As
usual in extreme value statistics, tn is selected as the (k + 1)-th largest response observation in
the ball B(x0, hn), where the optimal k-value is obtained for all x0 under consideration by the
following algorithm:

• We compute γ̂T,n(x0|ρ̃) with k = 5, 9, 13, . . . ,mx0−4 (mx0 being the number of observations
in the ball B(x0, hn,o)) by minimizing (5) or (6) . The minimization is carried out with the
numerical minimization procedure described in Byrd et al. (1995) (R function optim, with

9



method = "L-BFGS-B"). This method is a quasi Newton method adapted to allow for the
constraint γT (x0) > 0. Also, in order to avoid unstable estimates at some values of k we
added some smoothness condition linking estimates at subsequent values of k: |δ̂T,n(x0|ρ̃)|
is at most 5 percent larger for k compared to k + 1;

• we deduce γ̂Y,n(x0|ρ̃);

• we split the range of k into several blocks of same size 40;

• we calculate the standard deviation of the estimates of γY (x0) in each block;

• the block with minimal standard deviation determines the kn,o(x0) to be used.

Note that in this procedure, hn and k are selected separately. One could also determine the
two parameters simultaneously, as was attempted in, e.g., Daouia et al. (2013). However, as
reported in that paper, this is not without problems, and in practice it does not perform better
than with a separate selection.

We simulated N = 100 samples of size n = 1 000, with X ∼ U(0, 1) and Y |X = x is generated
from the following Burr distribution

1− FY (y;x) =
(

1 + y−ρ(x)/γY (x)
)1/ρ(x)

, y > 0.

We set here

γY (x) = 0.5 (0.1 + sin(πx))
(
1.1− 0.5 exp(−64(x− 0.5)2)

)
and ρ(x) = −1.

This function γY was also used in Daouia et al. (2011) and Goegebeur et al. (2014b).

In case of censoring, the data are censored using a Burr distribution also with ρ(x) = −1, but
with an index γC(x) set at two values, 0.75 and 0.5, respectively.

On top of the censoring, contamination is added in the response variable according to the
following mixture of distribution functions:

Fε(y;x) = (1− ε)FT (y;x) + εF̃ (y;x)

where F̃ (y;x) = 1−
(
y
xc

)−0.5
, y > xc, and ε ∈ [0, 1] is the fraction of contamination.

The following settings were considered:

• Setting 1: censoring with γC(x) = 0.75

uncontaminated situation;

ε = 0.01, xc= 1.2 times the 99.99% quantile of FT (y;x);

ε = 0.05, xc= 1.2 times the 99.99% quantile of FT (y;x);

10



• Setting 2: censoring with γC(x) = 0.5

uncontaminated situation;

ε = 0.01, xc= 1.2 times the 99.99% quantile of FT (y;x);

ε = 0.05, xc= 1.2 times the 99.99% quantile of FT (y;x).

In the simulation experiment, hn was selected from the range 0.1 until 0.2

Figure 1 and Table 1 display the results for Setting 1. In particular, in Figure 1, we show
the boxplots of γ̂Y,n(x0|ρ̃) for the three values of α (corresponding to the three columns of
the figure) and the three percentages of contamination (corresponding to the three rows of the
figure). The full line represents the true value of γY . In the uncontaminated situation (first
row), the non-robust estimator (α = 0) and the robust estimators (with α = 0.1 and α = 0.5)
perform similarly and capture the sine behaviour of the function γY quite well, although the
variance becomes slightly larger as α increases, as expected. Indeed in case of no-contamination,
maximum likelihood approaches (corresponding to α = 0) are efficient. On the contrary, in case
of contamination (rows 2 and 3), a larger value of α is required in order to capture the sine
behaviour of the function γY without too much bias. Indeed, in that context, a small value
of α (0 or 0.1) leads to estimators γ̂Y,n(x0|ρ̃) with a considerable bias and variance. Also, as
expected, increasing the percentage of contamination deteriorates the estimation.
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Figure 1: Setting 1: boxplots of γ̂Y,n(x0|ρ̃), from the left to the right: α = 0, α = 0.1 and
α = 0.5; from the top to the bottom: no-contamination, ε = 0.01 and ε = 0.05. The full line
represents the true function γY .

We complete the graphical representations by an indicator of efficiency, called MSE in Table 1,
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obtained by computing the average over the 100 simulated datasets of

1

M

M∑
m=1

(γ̂Y,n(zm|ρ̃)− γY (zm))2 ,

where z1, . . . , zM are regularly spaced in the covariate space. Here M is set at the value 35.
Table 1 corroborates the conclusions derived from Figure 1, namely that the value α = 0.5 is
necessary in case of contamination to obtain good estimates of the true value γY (x0) and this
choice does not deteriorate too much the estimation in case of no-contamination.

% of contamination non robust (α = 0) α = 0.1 α = 0.5

0% 0.011 0.011 0.020
1% 0.195 0.031 0.021
5% 2.090 0.818 0.038

Table 1: Setting 1: MSE for γ̂Y,n(x0|ρ̃).

Figure 2 and Table 2 are constructed similarly as Figure 1 and Table 1 but in case of Setting
2. The conclusions are exactly the same, although the estimation of γY (x0) is more difficult
in Figure 2 than in Figure 1. This can be explained by the fact that the tail of the censoring
distribution is less heavy in Setting 2 than in Setting 1 leading to more extremes censored,
as illustrated in Figure 3 where the theoretical asymptotic proportion of censoring, namely
γY (x)/(γY (x)+γC(x)), is plotted. As a result, MSE values in Table 2 are somewhat larger than
in Table 1.

% of contamination non robust (α = 0) α = 0.1 α = 0.5

0% 0.012 0.015 0.022
1% 0.279 0.036 0.027
5% 2.718 0.707 0.043

Table 2: Setting 2: MSE for γ̂Y,n(x0|ρ̃).

5 Practical example

In this section, we illustrate our methodology with the Australian AIDS survival dataset before
1 July 1991, coming from Dr P.J. Solomon and the Australian National Centre in HIV Epidemiol-
ogy and Clinical Research; see Venables and Ripley (2002). This dataset aids2 is available in the
R package MASS, and has recently been considered several times in the extreme value literature,
in particular by Einmahl et al. (2008) but without taking care of the covariates, and by Ndao
et al. (2014), Stupfler (2016) and Goegebeur et al. (2018) in a regression context. However, up
to now, the question of whether this dataset contains outliers or not, has not yet been addressed.
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Figure 2: Setting 2: boxplots of γ̂Y,n(x0|ρ̃), from the left to the right: α = 0, α = 0.1 and
α = 0.5; from the top to the bottom: no-contamination, ε = 0.01 and ε = 0.05. The full line
represents the true function γY .
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Figure 3: Theoretical asymptotic proportion of censoring for Setting 1 (left panel) and Setting
2 (right panel).

The information on each patient includes gender, date of diagnosis, date of death or end of ob-
servation and an indicator as to which of the two is the case. The dataset contains 2843 patients,
of which 1761 died, the other survival times are right censored. Since this dataset contains only
89 women, only the 2754 male patients are considered. Our methodology was applied in order
to estimate the conditional extreme value index of the survival time Y of a patient conditionally
on his age at the time of the diagnosis.
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In Figure 4, we show the scatterplot of the original dataset (left) and dataset after rescaling the
age into (0, 1) (right). The censored observations are indicated by crosses and the uncensored
ones by circles. We can see some points which are away from the main cloud, and thus the
question is whether these points might be considered as outliers or not. This question is of in-
terest because as outlined in the simulation section, if the answer is yes, using the estimator with
α = 0 could have an adverse effect on the estimation of the extreme value index γ. To answer
this question, we plot in Figure 5 our estimator γ̂Y,n(x0| − 0.5) with two different values of α:
α = 0 (full line), α = 0.5 (dotted line). Note that we have not included α = 0.1 in order to have
a visually clearer figure. On the contrary, we have added the estimator γ̂T,n(x0| − 0.5) (dashed
line) to outline the effect of censoring. As is clear from Figure 5, there exists a substantial
difference between the estimates γ̂Y,n(x0| − 0.5) and γ̂T,n(x0| − 0.5), due to the high percentage
of censoring in the dataset. This outlines the importance of taking the censoring into account.
However, the different values for α do not change too much the estimation of γ, with estimates
almost always overlapping. This indicates that this dataset does not contain disturbing outliers.
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Figure 4: Aids dataset: survival time as a function of age (left) and of aged rescaled into (0, 1)
(right).
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Figure 5: Aids dataset: γ̂Y,n(x0| − 0.5) with two different values of α: α = 0 (full line), α = 0.5
(dotted line) and γ̂T,n(x0| − 0.5) (dashed line) as a function of age.

To reinforce this idea, we now contaminate the dataset by adding 15 pairs represented with
triangles in the scatterplot in the left panel of Figure 6, and whose coordinates are given in
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Table 3. Then, the estimators γ̂T,n(x0| − 0.5) and γ̂Y,n(x0| − 0.5) with the two same values of
α are computed again in the right panel of Figure 6. The first estimator is slightly higher than
previously. Concerning γ̂Y,n(x0| − 0.5), we can see, this time, a notable difference between the
estimates with α = 0 and α = 0.5, especially for the covariate range 40 till 60 years, which is
precisely the age range where the contamination was located. This highlights the presence of
contamination in the dataset, and the importance of taking it into account in the estimation of
the extreme value index.

age time age time age time

46 4693.527 47 4551.934 51 4982.919
45 4104.4 44 4191.676 47 4143.882
43 4699.267 46 4864.752 50 4449.309
51 4911.656 47 4047.968 43 4576.016
51 4707.304 52 4905.974 49 4833.587

Table 3: Age and survival time of the outliers added to the aids dataset.
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Figure 6: Aids dataset: with outliers represented with triangles (left panel); γ̂Y,n(x0|−0.5) with
two different values of α: α = 0 (full line), α = 0.5 (dotted line) and γ̂T,n(x0| − 0.5) (dashed
line) as a function of age (right panel).

Appendix

Proof of Theorem 1

We focus on deriving the asymptotic expansion for E(T
(2)
n (K|x0)). Then, E(T

(1)
n (K, s, s′|x0)) can

be handled similarly, combined with some ideas from Dierckx et al. (2014). Note that Dierckx et

al. (2014) also considered the statistic T
(1)
n (K, s, s′|x0), though it was analysed under their high

level assumption called (M), which is avoided in the present paper, and this allows us to obtain
a more precise statement of the remainder terms using the Hölder exponents from condition (H).
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We have

E(T (2)
n (K|x0)) = E

(
Khn(x0 −X)1l{Y≤C,T>tn}

)
= E(Khn(x0 −X)E(1l{Y≤C,T>tn}|X))

= E
[
Khn(x0 −X)

∫ ∞
tn

fY (y|X)FC(y|X)dy

]
=

∫
Rd
Khn(x0 − u)

∫ ∞
tn

fY (y|u)FC(y|u)dyfX(u)du

=

∫
SK

K(z)

∫ ∞
tn

fY (y|x0 − hnz)FC(y|x0 − hnz)dyfX(x0 − hnz)dz.

In view of the various Hölder conditions, the latter is further decomposed as

E(T (2)
n (K|x0)) =

fX(x0)

∫ ∞

tn

fY (y|x0)FC(y|x0)dy

+

∫ ∞

tn

fY (y|x0)FC(y|x0)dy

∫
SK

K(z)(fX(x0 − hnz)− fX(x0))dz

+fX(x0)

∫
SK

K(z)

∫ ∞

tn

fY (y|x0)(FC(y|x0 − hnz)− FC(y|x0))dydz

+

∫
SK

K(z)

∫ ∞

tn

fY (y|x0)(FC(y|x0 − hnz)− FC(y|x0))dy(fX(x0 − hnz)− fX(x0))dz

+fX(x0)

∫
SK

K(z)

∫ ∞

tn

(fY (y|x0 − hnz)− fY (y|x0))FC(y|x0))dydz

+

∫
SK

K(z)

∫ ∞

tn

(fY (y|x0 − hnz)− fY (y|x0))FC(y|x0)dy(fX(x0 − hnz)− fX(x0))dz

+fX(x0)

∫
SK

K(z)

∫ ∞

tn

(fY (y|x0 − hnz)− fY (y|x0))(FC(y|x0 − hnz)− FC(y|x0))dydz

+

∫
SK

K(z)

∫ ∞

tn

(fY (y|x0 − hnz)− fY (y|x0))(FC(y|x0 − hnz)− FC(y|x0))dy(fX(x0 − hnz)− fX(x0))dz

=: T1 + · · ·+ T8.

Concerning T1 we have

T1 = tnfY (tn|x0)FC(tn|x0)fX(x0)

∫ ∞
1

fY (tnz|x0)
fY (tn|x0)

FC(tnz|x0)
FC(tn|x0)

dz.

A slight modification of Proposition 2.3 in Beirlant et al. (2009) gives

sup
z≥1

z1/γ•(x)
∣∣∣∣F •(tnz|x0)F •(tn|x0)

−G(z; γ•(x0), δ•(tn|x0), ρ•(x0))
∣∣∣∣ = o(δ•(tn|x0)), tn →∞.
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This leads to the decomposition

T1 = tnfY (tn|x0)FC(tn|x0)fX(x0)

[∫ ∞
1

fY (tnz|x0)
fY (tn|x0)

G(z; γC(x0), δC(tn|x0), ρC(x0))dz

+

∫ ∞
1

fY (tnz|x0)
fY (tn|x0)

(
FC(tnz|x0)
FC(tn|x0)

−G(z; γC(x0), δC(tn|x0), ρC(x0))

)
dz

]
=: tnfY (tn|x0)FC(tn|x0)fX(x0)(T1,1 + T1,2).

From (3) we can write

T1,1 =

∫ ∞
1

z−1/γY (x0)−1G(z; γC(x0), δC(tn|x0), ρC(x0))dz

+
1

1 +
(

1
γY (x0)

− εY (tn|x0)
)
δY (tn|x0)

[
δY (tn|x0)
γY (x0)

∫ ∞
1

z−1/γY (x0)−1(zρY (x0)/γY (x0) − 1)G(z; γC(x0), δC(tn|x0), ρC(x0))dz

+
δY (tn|x0)
γY (x0)

∫ ∞
1

z−1/γY (x0)−1
(
δY (tnz|x0)
δY (tn|x0)

− zρY (x0)/γY (x0)

)
G(z; γC(x0), δC(tn|x0), ρC(x0))dz

−εY (tn|x0)δY (tn|x0)
∫ ∞
1

z−1/γY (x0)−1
(
εY (tnz|x0)
εY (tn|x0)

− 1

)
δY (tnz|x0)
δY (tn|x0)

G(z; γC(x0), δC(tn|x0), ρC(x0))dz

−εY (tn|x0)δY (tn|x0)
∫ ∞
1

z−1/γY (x0)−1
(
δY (tnz|x0)
δY (tn|x0)

− 1

)
G(z; γC(x0), δC(tn|x0), ρC(x0))dz

]
=: T1,1,1 +

1

1 +
(

1
γY (x0)

− εY (tn|x0)
)
δY (tn|x0)

(T1,1,2 + · · ·+ T1,1,5).

In order to deal with these integrals, the following expansion of the extended Pareto distribution
is useful

G(z; γ•(x0), δ•(tn|x0), ρ•(x0)) = z−1/γ•(x0)
(

1− δ•(tn|x0)
γ•(x0)

(1− zρ•(x0)/γ•(x0)) +O(δ2•(tn|x0))
)
,

where O(δ2•(tn|x0)) is uniform in z ≥ 1.

A straightforward calculation gives then

T1,1,1 = γT (x0) + δC(tn|x0)
γ2T (x0)ρC(x0)

γC(x0)(γC(x0)− γT (x0)ρC(x0))
+O(δ2C(tn|x0)),

T1,1,2 = δY (tn|x0)
γ2T (x0)ρY (x0)

γY (x0)(γY (x0)− γT (x0)ρY (x0))
+O(δY (tn|x0)δC(tn|x0)).

For T1,1,3 we use Proposition B.1.10 in de Haan and Ferreira (2006), see also Drees (1998). Thus,
for ε > 0 and 0 < δ < 1/γT (x0)− ρY (x0)/γY (x0) arbitrary, and n sufficiently large, we have

|T1,1,3| ≤ ε
|δY (tn|x0)|
γY (x0)

∫ ∞
1

z−(1−ρY (x0))/γY (x0)+δ−1G(z; γC(x0), δC(tn|x0), ρC(x0))dz.
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Since ε is arbitrary and by using calculations for the integral that are similar to those above,
one finds that T1,1,3 = o(δY (tn|x0)). In the same way T1,1,4 = o(δY (tn|x0)), and

T1,1,5 = −εY (tn|x0)δY (tn|x0)
γ2T (x0)ρY (x0)

γY (x0)− γT (x0)ρY (x0)
+ o(δY (tn|x0)).

Analogously one can show that T1,2 = o(δC(tn|x0)).

Collecting the terms gives then

T1 = tnfY (tn|x0)FC(tn|x0)fX(x0)γT (x0)

[
1 + δC(tn|x0)

γT (x0)ρC(x0)

γC(x0)(γC(x0)− γT (x0)ρC(x0))
(1 + o(1))

+δY (tn|x0)
(

1

γY (x0)
− εY (tn|x0)

)
γT (x0)ρY (x0)

γY (x0)− γT (x0)ρY (x0)
(1 + o(1))

]
.

Note that

tnfY (tn|x0)FC(tn|x0) =
F T (tn|x0)
γY (x0)

1− εY (tn|x0)δY (tn|x0)
1 + δY (tn|x0)

γY (x0)

 ,

whence

T1 = F T (tn|x0)fX(x0)
γT (x0)

γY (x0)

{
1 + δC(tn|x0)

γT (x0)ρC(x0)

γC(x0)(γC(x0)− γT (x0)ρC(x0))
(1 + o(1))

+ δY (tn|x0)
[(

1

γY (x0)
− εY (tn|x0)

)
γT (x0)ρY (x0)

γY (x0)− γT (x0)ρY (x0)
− εY (tn|x0)

]
(1 + o(1))

}
.

For T2, we use the Hölder condition on fX and obtain T2 = O(hηfXF T (tn|x0)).

By rearranging terms we obtain the following bound for T3

|T3| ≤ fY (tn|x0)FC(tn|x0)fX(x0)

∫
SK

K(z)

∫ ∞
tn

fY (y|x0)
fY (tn|x0)

FC(y|x0)
FC(tn|x0)

∣∣∣∣FC(y|x0 − hnz)
FC(y|x0)

− 1

∣∣∣∣ dydz,(10)

and from condition (H), for n large, and some constants M1, M2 and M3,∣∣∣∣FC(y|x0 − hnz)
FC(y|x0)

− 1

∣∣∣∣ ≤ M1

(
h
ηAC
n + yM2h

ηγC
n h

ηγC
n ln y + |δC(y|x0)|h

ηBC
n

+ |δC(y|x0)|yM3h
ηεC
n h

ηεC
n ln y

)
.

Plugging the above inequality into (10), and computing integrals similar to those encountered
above yields

T3 = O
(
F T (tn|x0)(h

ηAC
n + h

ηγC
n ln tn + δC(tn|x0)h

ηBC
n + δC(tn|x0)h

ηεC
n ln tn)

)
.

Using the Hölder condition on fX one easily verifies that T4 is of smaller order than T3.
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As for T5, we can write

|T5| ≤ fY (tn|x0)FC(tn|x0)fX(x0)

∫
SK

K(z)

∫ ∞
tn

fY (y|x0)
fY (tn|x0)

FC(y|x0)
FC(tn|x0)

∣∣∣∣fY (y|x0 − hnz)
fY (y|x0)

− 1

∣∣∣∣ dydz,
which, combined with the inequality∣∣∣∣fY (y|x0 − hnz)

fY (y|x0)
− 1

∣∣∣∣ ≤ M1

(
h
ηAY
n + yM2h

ηγY
n h

ηγY
n ln y + |δY (y|x0)|h

ηBY
n

+ |δY (y|x0)|yM3h
ηεY
n h

ηεY
n ln y

)
,

valid for n large, where M1, M2 and M3 are some constants, leads to

T5 = O
(
F T (tn|x0)(h

ηAY
n + h

ηγY
n ln tn + δY (tn|x0)h

ηBY
n + δY (tn|x0)h

ηεY
n ln tn)

)
.

After tedious calculations, but essentially involving integrals similar to the ones above, one can
verify that T6, T7 and T8, are of smaller order than terms that were already encountered before.

Collecting the terms then establishes Theorem 1.

Proof of Theorem 2

To prove the result we make use of the Cramér-Wold device (see, e.g., van der Vaart, 1998, p.16).

Take ξ = (ξ1, . . . , ξJ+1)
T ∈ RJ+1. Then

ξT rn(Tn − E(Tn)) =

n∑
i=1


J∑
j=1

ξj

(
hdn

nF T (tn|x0)fX(x0)

)1/2

Khn(x0 −Xi)

(
Ti
tn

)sj (
ln+

Ti
tn

)s′j
1l{Ti>tn}

+ξJ+1

(
hdn

nF T (tn|x0)fX(x0)

)1/2

Khn(x0 −Xi)1l{Yi≤Ci,Ti>tn}

−E

 J∑
j=1

ξj

(
hdn

nF T (tn|x0)fX(x0)

)1/2

Khn(x0 −X)

(
T

tn

)sj (
ln+

T

tn

)s′j
1l{T>tn}

+ ξJ+1

(
hdn

nF T (tn|x0)fX(x0)

)1/2

Khn(x0 −X)1l{Y≤C,T>tn}

]}

=:
n∑
i=1

Wi.

We have

Var(W1) =
ξTCξ
n

,
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where C has elements

Cj,k := Cov

((
hdn

F T (tn|x0)fX(x0)

)1/2

Khn(x0 −X)

(
T

tn

)sj (
ln+

T

tn

)s′j
1l{T>tn},(

hdn
F T (tn|x0)fX(x0)

)1/2

Khn(x0 −X)

(
T

tn

)sk (
ln+

T

tn

)s′k
1l{T>tn}

)
, j, k ∈ {1, . . . , J},

CJ+1,j := Cov

((
hdn

F T (tn|x0)fX(x0)

)1/2

Khn(x0 −X)1l{Y≤C,T>tn},(
hdn

F T (tn|x0)fX(x0)

)1/2

Khn(x0 −X)

(
T

tn

)sj (
ln+

T

tn

)s′j
1l{T>tn}

)
, j ∈ {1, . . . , J},

CJ+1,J+1 := Var

((
hdn

F T (tn|x0)fX(x0)

)1/2

Khn(x0 −X)1l{Y≤C,T>tn}

)
.

As for Cj,k, with j, k ∈ {1, . . . , J}, we have, by a straightforward application of Theorem 1

Cj,k =
hdn

F T (tn|x0)fX(x0)

F T (tn|x0)fX(x0)‖K‖22γ
s′j+s

′
k

T (x0)Γ(s′j + s′k + 1)

hdn(1− (sj + sk)γT (x0))
s′j+s

′
k+1

(1 + o(1)) +O(F
2
T (tn|x0))


= Σj,k(1 + o(1)).

In the same way, by using Theorem 1, CJ+1,J+1 = ΣJ+1,J+1(1+o(1)). For CJ+1,j , j ∈ {1, . . . , J},
we need to evaluate an expectation of the form

E

[
Khn(x0 −X)

(
T

tn

)sj (
ln+

T

tn

)s′j
1l{Y≤C,T>tn}

]
.

By arguments similar to those used in deriving the expansion for E(T
(2)
n (K|x0)) we obtain

E

[
Khn(x0 −X)

(
T

tn

)sj (
ln+

T

tn

)s′j
1l{Y≤C,T>tn}

]
= F T (tn|x0)fX(x0)

γ
s′j+1

T (x0)Γ(s′j + 1)

γY (x0)(1− sjγT (x0))
s′j+1

(1 + o(1)).

(11)

In order to establish the weak convergence to a Gaussian random variable we need to verify
the Lyapounov condition (see, e.g., Billingsley, 1995, p. 362), which simplifies in our setting to
showing that limn→∞ nE(|W1|3) = 0. To this aim, note that W1 is of the form V −E(V ), leading
to the inequality

E(|W1|3) ≤ E(|V 3|) + 3E(V 2)E(|V |) + 4(E(|V |))3.
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Again using the result from Theorem 1 and (11), we obtain the following orders

E(|V |3) = O

 1

n3/2
√
hdnF T (tn|x0)

 ,

E(V 2)E(|V |) = O


√
hdnF T (tn|x0)

n3/2

 ,

(E(|V |))3 = O

((
hdnF T (tn|x0)

n

)3/2
)
,

so that nE(|W1|3)→ 0 under our assumption rn →∞.

Proof of Theorem 3

Let

S̃(j)n :=

{
rn

[
T
(1)
n (K, s, j|x0)

F (tn|x0)fX(x0)
− E

(
T
(1)
n (K, s, j|x0)

F (tn|x0)fX(x0)

)]
; s ∈ [S, 0]

}
, j ∈ {0, 1, 2, 3},

S̃(4)n := rn

[
T
(2)
n (K|x0)

F T (tn|x0)fX(x0)
− E

(
T
(2)
n (K|x0)

F T (tn|x0)fX(x0)

)]
.

The weak convergence of the individual processes S̃(j)n , j ∈ {0, 1, 2, 3}, to tight, zero centered,
Gaussian processes, with a covariance structure as given in the statement of the theorem, can
be established following the arguments in the proof of Theorem 1 in Dierckx et al. (2014), while

the weak convergence of S̃(4)n to a zero centered Gaussian random variable with variance as in
the statement of the theorem follows from Theorem 2. Then joint tightness will follow from the
individual tightness. The joint tightness combined with the finite dimensional convergence from

Theorem 2 leads then to the joint weak convergence of (S̃(0)n , S̃(1)n , S̃(2)n , S̃(3)n , S̃(4)n ). It remains to
verify the expressions for the expected values of S(j), j ∈ {0, 1, . . . , 4}. To this aim we study

rn

[
E

(
T
(1)
n (K, s, j|x0)

F (tn|x0)fX(x0)

)
−

j!γjT (x0)

(1− sγT (x0))j+1

]
,

and

rn

[
E

(
T
(2)
n (K|x0)

F (tn|x0)fX(x0)

)
− γT (x0)

γY (x0)

]
.

A straightforward application of Theorem 1, and taking the link between δT (tn|x0), δY (tn|x0)
and δC(tn|x0) into account, one easily obtains the expressions for the expected values of the
limiting processes S(0), S(1), S(2) and S(3), and the random variable S(4).
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Proof of Theorem 4

The consistency of γ̂T,n(x0|ρ̃) and δ̂T,n(x0|ρ̃) for γ
(0)
T (x0) and 0, respectively, follows from Propo-

sition 1 in Dierckx et al. (2014).

Concerning p̂n(x0) we have from Theorem 1

E

(
T
(1)
n (K, 0, 0|x0)

F T (tn|x0)fX(x0)

)
= 1 + o(1),

E

(
T
(2)
n (K|x0)

F T (tn|x0)fX(x0)

)
=

γ
(0)
T (x0)

γ
(0)
Y (x0)

+ o(1),

and

Var

(
T
(1)
n (K, 0, 0|x0)

F T (tn|x0)fX(x0)

)
= O

(
1

nhdnF T (tn|x0)

)
,

Var

(
T
(2)
n (K|x0)

F T (tn|x0)fX(x0)

)
= O

(
1

nhdnF T (tn|x0)

)
.

Thus

T
(1)
n (K, 0, 0|x0)

F T (tn|x0)fX(x0)

P→ 1 and
T
(2)
n (K|x0)

F T (tn|x0)fX(x0)

P→
γ
(0)
T (x0)

γ
(0)
Y (x0)

,

and hence, by the continuous mapping theorem, p̂n(x0)
P→ γ

(0)
T (x0)/γ

(0)
Y (x0). Another applica-

tion of the continuous mapping theorem gives then γ̂Y,n(x0|ρ̃)
P→ γ

(0)
Y (x0).

Proof of Theorem 5

Let ∆̃α(γ, δ; ρ̃) := ∆̂α(γ, δ; ρ̃)/(F T (tn|x0)fX(x0)), and let ∆̃α,u(γ, δ; ρ̃), u = 1, 2, denote the
derivatives with respect to γ and δ, respectively, apart from the common scale factor 1 + α.
Similarly, ∆̃α,u,v(γ, δ; ρ̃) and ∆̃α,u,v,w(γ, δ; ρ̃), u, v, w = 1, 2, will denote second and third order
derivatives (again apart from the common scaling by 1 + α).

We apply a Taylor series expansion of the estimating equations (8) and (9) around (γ
(0)
T (x0), 0),
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and extend these with T
(1)
n (K, 0, 0|x0) and T

(2)
n (K|x0) to obtain

rn


−∆̃α,1(γ

(0)
T (x0), 0; ρ̃)

−∆̃α,2(γ
(0)
T (x0), 0; ρ̃)

T
(1)
n (K,0,0|x0)

FT (tn|x0)fX(x0)
− 1

T
(2)
n (K|x0)

FT (tn|x0)fX(x0)
− γ

(0)
T (x0)

γ
(0)
Y (x0)

 =


∆α,1,1(γ

(0)
T (x0), 0; ρ̃) ∆α,1,2(γ

(0)
T (x0), 0; ρ̃) 0 0

∆α,1,2(γ
(0)
T (x0), 0; ρ̃) ∆α,2,2(γ

(0)
T (x0), 0; ρ̃) 0 0

0 0 1 0
0 0 0 1




rn(γ̂T,n(x0|ρ̃)− γ(0)T (x0))

rnδ̂T,n(x0|ρ̃)

rn

(
T

(1)
n (K,0,0|x0)

FT (tn|x0)fX(x0)
− 1

)
rn

(
T

(2)
n (K|x0)

FT (tn|x0)fX(x0)
− γ

(0)
T (x0)

γ
(0)
Y (x0)

)


with

∆α,1,1(γ
(0)
T (x0), 0; ρ̃) := ∆̃α,1,1(γ

(0)
T (x0), 0; ρ̃) +

1

2

[
∆̃α,1,1,1(γ̆T,n(x0|ρ̃), δ̆T,n(x0|ρ̃); ρ̃)(γ̂T,n(x0|ρ̃)− γ(0)T (x0))

+∆̃α,1,1,2(γ̆T,n(x0|ρ̃), δ̆T,n(x0|ρ̃); ρ̃)δ̂T,n(x0|ρ̃)
]
,

∆α,1,2(γ
(0)
T (x0), 0; ρ̃) := ∆̃α,1,2(γ

(0)
T (x0), 0; ρ̃) +

1

2

[
∆̃α,1,2,2(γ̆T,n(x0|ρ̃), δ̆T,n(x0|ρ̃); ρ̃)δ̂T,n(x0|ρ̃)

+∆̃α,1,1,2(γ̆T,n(x0|ρ̃), δ̆T,n(x0|ρ̃); ρ̃)(γ̂T,n(x0|ρ̃)− γ(0)T (x0))
]
,

∆α,2,2(γ
(0)
T (x0), 0; ρ̃) := ∆̃α,2,2(γ

(0)
T (x0), 0; ρ̃) +

1

2

[
∆̃α,2,2,2(γ̆T,n(x0|ρ̃), δ̆T,n(x0|ρ̃); ρ̃)δ̂T,n(x0|ρ̃)

+∆̃α,1,2,2(γ̆T,n(x0|ρ̃), δ̆T,n(x0|ρ̃); ρ̃)(γ̂T,n(x0|ρ̃)− γ(0)T (x0))
]
,

and where (γ̆T,n(x0|ρ̃), δ̆T,n(x0|ρ̃)) is a point on the line segment connecting (γ
(0)
T (x0), 0) and

(γ̂T,n(x0|ρ̃), δ̂T,n(x0|ρ̃)).

After tedious, but straightforward, derivations one obtains

∆̃α,1(γ
(0)
T (x0), 0; ρ̃)

= (γ
(0)
T (x0))

−α−2

[
−
αγ

(0)
T (x0)(1 + γ

(0)
T (x0))

[1 + α(1 + γ
(0)
T (x0))]2

T
(1)
n (K, 0, 0|x0)

F T (tn|x0)fX(x0)

+γ
(0)
T (x0)

T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 0|x0)

F T (tn|x0)fX(x0)
−
T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 1|x0)

F T (tn|x0)fX(x0)

]
,
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∆̃α,2(γ
(0)
T (x0), 0; ρ̃)

= (γ
(0)
T (x0))

−α−1

[
−

αρ̃(1 + γ
(0)
T (x0))

[1 + α(1 + γ
(0)
T (x0))][1− ρ̃+ α(1 + γ

(0)
T (x0))]

T
(1)
n (K, 0, 0|x0)

F T (tn|x0)fX(x0)

+
T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 0|x0)

F T (tn|x0)fX(x0)
−(1− ρ̃)

T
(1)
n (K,−(α(1 + γ

(0)
T (x0))− ρ̃)/γ

(0)
T (x0), 0|x0)

F T (tn|x0)fX(x0)

]
,

and

∆̃α,1,1(γ
(0)
T (x0), 0; ρ̃)

= (γ
(0)
T (x0))

−α−2

[(
α+ 2

1 + α(1 + γ
(0)
T (x0))

− 2α+ 4

[1 + α(1 + γ
(0)
T (x0))]2

+
2α+ 2

[1 + α(1 + γ
(0)
T (x0))]3

)
T
(1)
n (K, 0, 0|x0)

F T (tn|x0)fX(x0)

−(α+ 1)
T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 0|x0)

F T (tn|x0)fX(x0)
+

2α+ 2

γ
(0)
T (x)

T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 1|x0)

F (tn|x0)fX(x0)

− α

(γ
(0)
T (x0))2

T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 2|x0)

F T (tn|x0)fX(x0)

]
,

∆̃α,1,2(γ
(0)
T (x0), 0; ρ̃)

= (γ
(0)
T (x0))

−α−2

[(
1 + α(2 + α)(1 + γ

(0)
T (x0))

[1 + α(1 + γ
(0)
T (x0))]2

−
(1− ρ̃)2 − α[ρ̃(1− ρ̃)− 2(1 + γ

(0)
T (x0))(1− ρ̃)] + α2(1 + γ

(0)
T (x0))(1− ρ̃)

[1− ρ̃+ α(1 + γ
(0)
T (x0))]2

)

× T
(1)
n (K, 0, 0|x0)

F T (tn|x0)fX(x0)
− (1 + α)

T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 0|x0)

F T (tn|x0)fX(x0)

+(α+ 1)(1− ρ̃)
T
(1)
n (K,−(α(1 + γ

(0)
T (x0))− ρ̃)/γ

(0)
T (x0), 0|x0)

F T (tn|x0)fX(x0)

+
α

γ
(0)
T (x0)

T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 1|x0)

F T (tn|x0)fX(x0)

−(α− ρ̃)(1− ρ̃)

γ
(0)
T (x0)

T
(1)
n (K,−(α(1 + γ

(0)
T (x0))− ρ̃)/γ

(0)
T (x0), 1|x0)

F T (tn|x0)fX(x0)

]
,
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∆̃α,2,2(γ
(0)
T (x0), 0; ρ̃)

= (γ
(0)
T (x0))

−α−2

[(
1 + α+ γ

(0)
T (x0)

1 + α(1 + γ
(0)
T (x0))

−
2(1− ρ̃)(1 + γ

(0)
T (x0) + α)

1− ρ̃+ α(1 + γ
(0)
T (x0))

+
(1 + γ

(0)
T (x0))(1− 2ρ̃) + α(1− ρ̃)2

1− 2ρ̃+ α(1 + γ
(0)
T (x0))

)
T
(1)
n (K, 0, 0|x0)

F (tn|x0)fX(x0)

−(α+ γ
(0)
T (x0))

T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 0|x0)

F T (tn|x0)fX(x0)

+2(1− ρ̃)(α+ γ
(0)
T (x0))

T
(1)
n (K,−(α(1 + γ

(0)
T (x0))− ρ̃)/γ

(0)
T (x0), 0|x0)

F T (tn|x0)fX(x0)

−[(1 + γ
(0)
T (x0))(1− 2ρ̃) + (α− 1)(1− ρ̃)2]

T
(1)
n (K,−(α(1 + γ

(0)
T (x0))− 2ρ̃)/γ

(0)
T (x0), 0|x0)

F T (tn|x0)fX(x0)

]
.

For brevity, the expressions for the third order derivatives are omitted from the paper.

Now let

Un(ρ̃) :=
1

F T (tn|x0)fX(x0)


T
(1)
n (K, 0, 0|x0)

T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x), 0|x0)

T
(1)
n (K,−(α(1 + γ

(0)
T (x0))− ρ̃)/γ

(0)
T (x), 0|x0)

T
(1)
n (K,−α(1 + γ

(0)
T (x0))/γ

(0)
T (x0), 1|x0)

T
(2)
n (K|x0)

 ,

U(ρ̃) :=



1
1

1+α(1+γ
(0)
T (x0))

1

1−ρ̃+α(1+γ(0)T (x0))

γ
(0)
T (x0)

[1+α(1+γ
(0)
T (x0))]2

γ
(0)
T (x0)

γ
(0)
Y (x0)


.

Then by Theorem 3

Wn(ρ̃) := rn(Un(ρ̃)− U(ρ̃)) N(λµ(ρ̃),Σ(ρ̃)),
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where µ(ρ̃) a (5× 1) vector with elements

µ1(ρ̃) = 0,

µ2(ρ̃) = −
αρ

(0)
T (x0)(1 + γ

(0)
T (x0))

γ
(0)
T (x0)[1 + α(1 + γ

(0)
T (x0))][1− ρ(0)T (x0) + α(1 + γ

(0)
T (x0))]

,

µ3(ρ̃) = −
[α(1 + γ

(0)
T (x0))− ρ̃]ρ

(0)
T (x0)

γ
(0)
T (x0)[1− ρ̃+ α(1 + γ

(0)
T (x0))][1− ρ(0)T (x0)− ρ̃+ α(1 + γ

(0)
T (x0))]

,

µ4(ρ̃) =
ρ
(0)
T (x0)(1− ρ(0)T (x0))− α2ρ

(0)
T (x0)(1 + γ

(0)
T (x0))

2

[1 + α(1 + γ
(0)
T (x0))]2[1− ρ(0)T (x0) + α(1 + γ

(0)
T (xo))]2

,

µ5(ρ̃) = µ,

where µ is given by (7), apart from the factor λ, and Σ(ρ̃) a (5 × 5) symmetric matrix with
elements

Σ11(ρ̃) := ‖K‖22,

Σ21(ρ̃) :=
‖K‖22

1 + α(1 + γ
(0)
T (x0))

,

Σ22(ρ̃) :=
‖K‖22

1 + 2α(1 + γ
(0)
T (x0))

,

Σ31(ρ̃) :=
‖K‖22

1− ρ̃+ α(1 + γ
(0)
T (x0))

,

Σ32(ρ̃) :=
‖K‖22

1− ρ̃+ 2α(1 + γ
(0)
T (x0))

,

Σ33(ρ̃) :=
‖K‖22

1− 2ρ̃+ 2α(1 + γ
(0)
T (x0))

,

Σ41(ρ̃) :=
γ
(0)
T (x0)‖K‖22

[1 + α(1 + γ
(0)
T (x0))]2

,

Σ42(ρ̃) :=
γ
(0)
T (x0)‖K‖22

[1 + 2α(1 + γ
(0)
T (x0))]2

,

Σ43(ρ̃) :=
γ
(0)
T (x0)‖K‖22

[1− ρ̃+ 2α(1 + γ
(0)
T (x0))]2

,

Σ44(ρ̃) :=
2(γ

(0)
T (x0))

2‖K‖22
[1 + 2α(1 + γ

(0)
T (x0))]3

,
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Σ51(ρ̃) :=
γ
(0)
T (x0)‖K‖22
γ
(0)
Y (x0)

,

Σ52(ρ̃) :=
γ
(0)
T (x0)‖K‖22

γ
(0)
Y (x0)[1 + α(1 + γ

(0)
T (x0))]

,

Σ53(ρ̃) :=
γ
(0)
T (x0)‖K‖22

γ
(0)
Y (x0)[1− ρ̃+ α(1 + γ

(0)
T (x0))]

,

Σ54(ρ̃) :=
(γ

(0)
T (x0))

2‖K‖22
γ
(0)
Y (x0)[1 + α(1 + γ

(0)
T (x0))]2

,

Σ55(ρ̃) :=
γ
(0)
T (x0)‖K‖22
γ
(0)
Y (x0)

.

We have

rn


−∆̃α,1(γ

(0)
T (x0), 0; ρ̃)

−∆̃α,2(γ
(0)
T (x0), 0; ρ̃)

T
(1)
n (K,0,0|x0)

FT (tn|x0)fX(x0)
− 1

T
(2)
n (K|x0)

FT (tn|x0)fX(x0)
− γ

(0)
T (x0)

γ
(0)
Y (x0)

 = B(ρ̃)Wn(ρ̃) N(λB(ρ̃)µ(ρ̃), B(ρ̃)Σ(ρ̃)B(ρ̃)T ),

where

B(ρ̃) :=


b11(ρ̃) −(γ

(0)
T (x0))

−α−1 0 (γ
(0)
T (x0))

−α−2 0

b21(ρ̃) −(γ
(0)
T (x0))

−α−1 (γ
(0)
T (x0))

−α−1(1− ρ̃) 0 0
1 0 0 0 0
0 0 0 0 1

 ,
and

b11(ρ̃) :=
α(1 + γ

(0)
T (x0))

(γT (x0))α+1[1 + α(1 + γ
(0)
T (x0))]2

,

b21(ρ̃) :=
αρ̃(1 + γ

(0)
T (x0))

(γT (x0))α+1[1 + α(1 + γ
(0)
T (x0))][1− ρ̃+ α(1 + γ

(0)
T (x0))]

.

As for ∆α,u,v(γ
(0)
T (x0), 0; ρ̃), u, v = 1, 2, we have by Theorems 1, 3 and 4, and because |∆̃α,u,v,w(γ, δ; ρ̃)| ≤

Mu,v,w, in some open neighborhood of (γ
(0)
T (x0), 0) with Mu,v,w = OP(1), u, v, w = 1, 2, that
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∆α,u,v(γ
(0)
T (x0), 0; ρ̃)

P→ ∆α,u,v(γ
(0)
T (x0), 0; ρ̃), where

∆α,1,1(γ
(0)
T (x0), 0; ρ̃) := (γ

(0)
T (x0))

−α−2 1 + α2(1 + γ
(0)
T (x0))

2

[1 + α(1 + γ
(0)
T (x0))]3

,

∆α,1,2(γ
(0)
T (x0), 0; ρ̃)

:= (γ
(0)
T (x0))

−α−2 ρ̃(1− ρ̃)[1 + α(1 + γ
(0)
T (x0)) + α2(1 + γ

(0)
T (x0))

2] + α3ρ̃(1 + γ
(0)
T (x0))

3

[1 + α(1 + γ
(0)
T (x0))]2[1− ρ̃+ α(1 + γ

(0)
T (x0))]2

,

∆α,2,2(γ
(0)
T (x0), 0; ρ̃)

:= (γ
(0)
T (x0))

−α−2 (1− ρ̃)ρ̃2 + αρ̃2(1 + γ
(0)
T (x0))[α(1 + γ

(0)
T (x0))− ρ̃]

[1 + α(1 + γ
(0)
T (x0))][1− ρ̃+ α(1 + γ

(0)
T (x0))][1− 2ρ̃+ α(1 + γ

(0)
T (x0))]

.

Let

∆(ρ̃) :=

[
∆α,1,1(γ

(0)
T (x0), 0; ρ̃) ∆α,1,2(γ

(0)
T (x0), 0; ρ̃)

∆α,1,2(γ
(0)
T (x0), 0; ρ̃) ∆α,2,2(γ

(0)
T (x0), 0; ρ̃)

]

and

∆̆(ρ̃) :=

[
∆(ρ̃) 0

0 I2

]
,

where I2 is the (2× 2) identity matrix. It can be verified that ∆(ρ̃) is positive definite and thus
invertible. Then, by Lemma 5.2 in Chapter 6 of Lehmann and Casella (1998), we have

rn


γ̂T,n(x0|ρ̃)− γ(0)T (x0)

δ̂T,n(x0|ρ̃)
T

(1)
n (K,0,0|x0)

FT (tn|x0)fX(x0)
− 1

T
(2)
n (K|x0)

FT (tn|x0)fX(x0)
− γ

(0)
T (x0)

γ
(0)
Y (x0)

 N(λ∆̆−1(ρ̃)B(ρ̃)µ(ρ̃), ∆̆−1(ρ̃)B(ρ̃)Σ(ρ̃)B(ρ̃)T ∆̆−1(ρ̃)).

Finally, a straightforward application of the delta method gives

rn(γ̂Y,n(x0|ρ̃)− γ(0)Y (x0)) N(λLT ∆̆−1(ρ̃)B(ρ̃)µ(ρ̃), LT ∆̆−1(ρ̃)B(ρ̃)Σ(ρ̃)B(ρ̃)T ∆̆−1(ρ̃)L),

with LT := [γ
(0)
Y (x0)/γ

(0)
T (x0), 0, γ

(0)
Y (x0),−(γ

(0)
Y (x0))

2/γ
(0)
T (x0)].
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