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Minimal graphs for 2-factor extension

M.-C. Costa * D. de Werra | C. Picouleau *
May 7, 2018

Abstract

Let G = (V,E) be a simple loopless finite undirected graph. We say
that G is (2-factor) expandable if for any non-edge uv, G + uv has a 2-factor
F' that contains uv. We are interested in the following: Given a positive
integer n = |V|, what is the minimum cardinality of E such that there exists
G = (V, E) which is 2-factor expandable? This minimum number is denoted
by Ezps(n). We give an explicit formula for Expy(n) and provide 2-factor
expandable graphs of minimum size Expa(n).

Keywords:2-factor,

1 Introduction

Matching extension has been studied for a long time by many authors, see for in-
stance [1], [7] and [9]. In [4] a different kind of matching extension has been explored:
the goal was to characterize graphs G = (V, E') on n vertices with a minimum num-
ber of edges such that for every pair x,y of non adjacent vertices, there exists an
(almost) perfect matching in G, = (V, EUzy). This work was motivated by a reli-
ability problem in which edges subject to breakdowns could be reinforced so that to
any pair xy of non adjacent vertices, one could associate reinforced edges to obtain
an (almost) perfect matching M U xy.

Here we intend to concentrate on the problem in which (almost) perfect match-
ings (1-factors) are replaced by 2-factors. The precise formulation will be given
below. In [8] a different 2-factor extension problem has been studied.

We will consider a simple finite graph G = (V, E') with n vertices and m edges.
A pair u, v of vertices is a non-edge if uv ¢ E. For any subset X C V' the subgraph
induced by X is denoted by G[X]. We write G — X = G[V \ X] and G — v for
G — {v}. N(v) is the set of neighbors of a vertex v; d(v) = |N(v)| is the degree of
v; a p-vertex is a vertex of degree p; if 6(v) = n — 1 then v is universal. The closed
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neighborhood of v is N[v] = N(v) U {v}. 6(G) (resp. A(G)) is the minimum (resp.
maximum) degree of the vertices in G. An induced path with p edges is called a
p-path. By d(u,v) we denote the distance between u and v, i.e., the length of a
shortest path (number of edges) between u and v in G.

A subset F' C E is a 2-factor if every vertex v has exactly two edges in F' which
are incident in v. Equivalently F' is a collection of vertex-disjoint cycles covering all
vertices. Cj (resp. Kj) is the cycle (resp. complete graph) on k vertices. K, with
an edge missing is called a diamond.

For all definitions related to graphs, see [3].

We intend to determine, for any integer n > 3, a graph G = (V, E) with n ver-
tices and a minimum number of edges such that for every pair x,y of non adjacent
vertices of GG it is always possible to include the non-edge xy into a 2-factor, i.e.,
the graph G, = (V, EU{zy}) has a 2-factor F, F' D zy. In such a case we shall say
that zy has been extended (to a 2-factor).

Definition 1.1 A graph G = (V, E) is 2-factor expandable (or shortly expandable)
if every non-edge xy can be extended.

Definition 1.2 An expandable graph G = (V, E) with |V | = n and with a minimum
number of edges is a minimum expandable graph (meg(n)). The size |E| of its edge
set is denoted by Exps(n).

Our problem may be related to the idea of edge-criticality. This concept has
been considered in various contexts (see for instance [2], [3], [5]). We may call a
graph 2-factor edge-critical if it contains no 2-factor but for any non-edge uv there
is a 2-factor in G, (which necessarily uses uv). Our meg(n) are different : they
may contain a 2-factor and they have a minimum number of edges.

We state our main result which will be proved in the following sections:

Proposition 1.1 The minimum size of a 2-factor expandable graph is:

o Expy(3) =2, Expy(4) =4, Expa(5) = 6, Expa(6) = 9, Expa(7) = 10, Expy(8) =
11, Exps(9) = 12;

o Eapy(n) = [5(3n — [2])].n > 10.

The paper is organized as follows. In Section 2 some elementary properties of
expandable graphs will be stated for later use. Section 3 will be dedicated to the
presentation of meg(n) for 3 < n < 9. In Section 4 a lowerbound for Expy(n) will
be established for n > 10, while it will be shown in Section 5 that it is best possible.
Variations of the construction for n = 8p will be presented in Section 5.3 to handle
the case n # 0 mod(8), n > 14. Finally constructions will be given for 10 < n < 13
in Section 5.4. Some conclusions and suggestions for further research are presented
in Section 6.



2 Properties of expandable graphs

We shall state some basic properties of minimal expandable graphs which will be
used to compute Fxps(n).

Fact 2.1 If G = (V, E) is not expandable, any partial graph G' = (V, E'), with
E' C E, is not expandable.

Property 2.1 If G = (V, E) is expandable then G is connected.

Proof: If u and v are in two distinct components then clearly uv cannot be ex-
tended. U

Property 2.2 Ifn >5 and 6(G) =1 then Exps(n) > 3n.

Proof: Let u be a 1-vertex of G. If GG is expandable then G —u induces a clique.
Since n > 5 we have m > %n OJ

Property 2.3 Let G = (V, E) be ezpandable, n > 5. If v € V is universal then
m > 3(n—1).

Proof: From Property 2.2 if there is a universal vertex then X,cyd(u) > n —
1+2(n—1)=3(n—1). O

Property 2.4 Let G = (V, E) be expandable. Let v be a 2-vertex of G with N(v) =
{a,b} and ab ¢ E. If c € N(a) N N(b),c # v, then 6(c) > 4.

Proof: Consider any extension of ab: the triangle (a,b,v) is in the 2-factor.
Since c¢ is necessarily covered by another cycle, we have d(c) > 4. O

Property 2.5 Let G = (V, E) be expandable and u,v be two 2-vertices. If d(u,v) =
4 with a 4-path wu'wv'v from u to v then 6(w) > 3.

Proof: d(u,v) = 4 implies that /v ¢ E. Now if 6(w) < 3 the non-edge u'v’
cannot be extended. U

Property 2.6 Let n > 7. If u,v are two 2-vertices and N(u) N N(v) # (O then
Expa(n) > 3n.

Proof: Let G be an expandable graph with m edges. If §(G) = 1, from Property
2.2 we have m > 3n. Now let §(G) > 2. If w € N(u) N N(v) then w is universal. If
there are at most two 2-vertices we have ¥,cyd(u) > (n—1)+4+3(n—3) =4n—6
and m > %n for n > 7. If a,b,c are three 2-vertices then any non-edge zy with
x,y # a,b,c cannot be extended so §(v) > n — 4 for all v # a,b,c. We have
Suevd(u) > (n—=1)+6+(n—4)(n—4)=n*—-Tn+2land m > 3nforn>7. O



3 Meg(n) for 3<n <9
We will compute Exps(n) for small values of n.

o Expy(3) = 2: Trivially P; the path on three vertices (Figure 1 left) is a meg(3).

oo P

Figure 1: P3, the paw, the butterfly.

e Expy(4) = 4: The paw (see Figure 1 center) is expandable. If G = (V| E) is a
meg(4) with |E| < 4 then from Property 2.1 G is a tree. So G is either Py or
the claw. None of those is expandable.

e Exps(5) = 6: The butterfly (see Figure 1 right) is expandable. Let G = (V, E)
be a meg(5) with |E| < 5. Then |E| < 2n and from Property 2.2, §(G) > 2,
so G is the cycle C5 on five vertices which is not expandable.

e Expy(6) = 9: The graph Gg (see Figure 2 left) is expandable. From Fact 2.1
it is sufficient to consider a meg(6), G = (V, F), with |E| = 8. If there is a
l-vertex v then G — v is K5 and |E| = 11, a contradiction. So 6(G) > 2. Let

b ofels

Figure 2: Gg and G7 two minimal expandable graphs with 6 and 7 vertices.

ny be the number of 2-vertices. We have 2 < ny < 4.

Let ny = 2. We have 6(v;) = 2,1 < i < 2 and 6(v;) = 3,3 < i < 6. If
v; € N(vy) N N(vy) then v; is universal which is impossible. Thus w.l.o.g.
N(v1) = {vs,v4}, N(vg) = {vs,v6}. From Property 2.4 if vsvy ¢ E then
d(vs) > 3, a contradiction. So w.l.0.g. v3vy, V5V, V3Us, V4V € E. But vsvg € E
cannot be extended.

Let ny = 3. W.lo.g. d(v1) = d(ve) = d(v3) = 2,(vy) = 6(vs) = 3,0(vg) = 4.
We have | N (vg) N {vy,v9,v3}| > 2, so vg is universal a contradiction.

Let ng = 4. W.Lo.g. d(v1) = §(vg) = 0(v3) = 0(vg) = 2. If §(vs) = d(v) = 4
then |N(vg) N {vy,va,v3, 04} > 2, so vg is universal a contradiction. So we
have d(vs) = 3,d(vg) = 5 but |N(vs) N {v1,ve,v3,v4}| > 2 and vs is universal
a contradiction.



o Expy(7) = 10: The graph G (see Figure 2 right) is expandable. Let G =
(V,E) be a meg(7) with |[E] < 10. Then |E| < 2n : from Property 2.2
we have 0(G) > 2 and from Property 2.6 two 2-vertices have no common
neighbor. FEach 2-vertex has its proper neighbor of degree at least three,
thus there are exactly three 2-vertices, says vy, v9, v3. Thus there are exactly
four 3-vertices vy, vs,vg,v7 and |E| = 9. Using Property 2.6 again, w.l.o.g.
V1Vg, U1V, VoUs, U3V, V307 € E. If vguy & E then vy € N(vg) N N(v;7) and from
Property 2.4 6(vy) > 3, a contradiction. So w.l.o.g. v4vg, Vsv7, VU5, VU7 € E
but v4v7 cannot be extended.

o Expy(8) =11:

Figure 3: The graph Gg is a meg(8).

One can check that Gy (see Figure 3) is expandable. Let G = (V,E) be

a meg(8) with |F| < 11. From Properties 2.2 and 2.6 §(G) > 2 and each 2-
vertex has its proper neighbor of degree at least three. It follows that there are

at most four 2-vertices. Since |E| < 10 there are exactly four 2-vertices, says

v1, Vg, U3, Uy, and four 3-vertices vs, vg, v7, vg. W.l.0.g. 0109, U304, V1V5, VaVg, U3V7, VU8 €
E. From Property 2.4 vsvg & E. So vsvy, v5vs, Ugv7, UgUs € E, but vsvg cannot

be extended.

e FExps(9) = 12: One can check that Gy (see Figure 4) is expandable.

Figure 4: The graph Gy is a meg(9).

Let G = (V, E),|E| < 12, be a meg(9). Properties 2.2 and 2.6 imply that
d(G) > 2 and each 2-vertex has its proper neighbor of degree at least three.
Then there are at most four 2-vertices. It follows that X,cyd(v) > 23 and
|E| > 12. So Expsy(9) = 12, a contradiction.



4 A lower bound for Ezpy(n), n > 10

We will concentrate in showing a lower bound of Expy(n) for n > 10. It will be
shown in the next section that it is best possible.

Lemma 4.1 If G = (V,E) is a meg(n),n > 10, then m > [1(3n — |2])].

Proof: From Property 2.1 GG is connected. If there is a 1-vertex then from
Property 2.2, m > %n If two 2-vertices have a common neighbor then from Prop-
erty 2.6, m > %n

So from now on we examine the case where 6(G) > 2 and for any two 2-vertices
u,v we have Ng(u) N Ng(v) = 0.

Let Vo, Vi, V2 be a partition of V' with Vj = {v € V : §(v) = 2}, V) = {v €
V,o(v) >3,3ue Vog,uv € E}, Vo=V — (VU W).

Each connected component of G[V] is isomorphic either to K or to K» (in this
second case its two vertices are denoted by v and v). Every v € Vj is such that:

N () N1Vl = 1.
If [Vo] < 1 then m > [#%-]. So from now on we have |Vp| > 2 and V; # 0.

Let V', Vi be the partition of 1 such that v € V' if and only if N(v) NV = 0,
Vé = Vo \ V). Define X = {v € V! : Nv) = {z,y},zy € E} and Yy =
Vi\Xo ={v eV :Nuw = {x,yt,zy € EF}. Forv € Vi let N(v) = {v,2}
with o € V&, x € Vi, N(v) = {v,y} with v € V&, y € Vy; let Zy = {v,v vy € E}
and Wy = Vi \ Zo.

For such v,v € Z;, from Property 2.4 we have 6(x),d(y) > 4.

We will use a discharging procedure: a weight w(v) is assigned to every vertex
v € V. At each step of the process the w(v) are changed to w’(v) in such a way that
Yoevw(v) = Ypeyw'(v). At the beginning we take w(v) = §(v) for every vertex v.
When the procedure will be completed we will have X,cyw'(v) = 2m > 3n — | §].

The procedure consists of two steps. In the first one vertices r with §(r) > 4 and
possibly some 3-vertices u with a 3-path usr such that s is a 2-vertex transfer part
of their charge to all 2-vertices v with d(v,r) < 2. In the second step 3-vertices u
transfer part of their charge to all 2-vertices v with d(v,u) < 2.

Moreover the weight of any vertex v € V| will be modified exactly once; initially
the vertex v is active; after increasing its charge, v will be considered as neutral for

all further discharging operations.

We proceed as follows:

e As long as there is 7 with §(r) > 4 such that there exists an active v with
d(v,r) = 1: we take w'(v) = w(v) + 2 = L and w'(r) = w(r) — 3 > L. Recall
that no two vertices of Vj share a same 7.

From now on, each active vertex has all its neighbors of degree 2 or 3.



e For each r with §(r) > 4 such that there exists an active v with d(v,r) = 2:
note that v ¢ Z, otherwise §(x) > 4, a contradiction. We now consider the
neighborhood of r.

— 0(s) > 3, Vs € N(r): From our assumption there are at most J(r)
vertices u; € Vy such that d(u;,r) = 2. Let uy, ug, ..., ux with v = uy be
the vertices which are active among those. Note that in the case where
u; € Vj there is either one 2-path or two disjoint 2-paths between r and
u;. 1f there is one path from 7 to u; let x; be its internal vertex; if there are
two paths, let x;,y; be their internal vertices. For u; € VZ there is exactly
one 2-path from u; to r, let x; denotes its internal vertex. Let A be the
number of vertices x; and y;, i.e., the number of 2-paths between r and
the vertices u;, i = 1,..., k. We take w'(r) = w(r)—2, w'(z;) = w(z;) — 1,
w'(y;)) = w(y) — 5,1 < i < k. In the case where u; € Vj! and there is
exactly one 2-path from u; to r we take w'(y;) = w(y;) — ;. Note that
since A < §(r) we have w'(r) > 3 and, from Property 2.6, z; and y; are
discharged at most once so we have w'(z;) > 4 and w'(y;) > 4. In the
case where u; € V@, let z; be a neighbor of z; distinct from r and wu;,
we take w'(z;) = w(z;) — 1; note that z; ¢ V; else, let s € Vo N N(z),
szx;u;u; is a 4-path and from Property 2.5 d(x;) > 4, a contradiction;
if there is another active vertex u; € Vi with a 2-path u;z;z;, there is a
4-path between u; and u; so 0(z;) > 4; since z; ¢ V;, z; transfers at most
ié(zi); hence, when the procedure ends, we have w'(z;) > 14—1. Finally,
we set w'(u;) = w(u;) +1 > L if there are two 2-paths from u; to r, or
w'(u;) = w(u;) + % = % else, for 1 <i < k.

— Jds e N(r)NnVy (s is neutral):

From our assumption we have (N(r) — {s}) NV = (. If v € Wy then

there is a 4-path from v to s; by Property 2.5 the neighbor = of v has
degree at least 4, a contradiction. Hence v € V.

Consider the case where there are two 2-paths var, vyr: since s is a 2-
vertex, to extend vr any 2-factor must contain vr,rs and needs that at
least one of x,y has a degree at least 4, a contradiction.

Thus there is exactly one 2-path var. Let uq,...,u; with v = u; be the
active vertices such that d(u;, ) = 2. As for u;, we have us, ..., u; € V'
with exactly one 2-path u;x;r; let y; # z; denote the second neighbor of
u;, 1 <1 < k. There are three cases to consider.

* s € Vi wehave k < 6(r)—1. Let ys # r be the second neighbor of s.
We suppose first that s has been charged by r in the first step of the
procedure. Notice that either d(ys) = 3 and ys was not used before,
or §(ys) > 4 and its charge is at least 6(y,) —1(6(ys)—1) > 3. We take

w'(r) =w(r) — @,w’(ys) = w(ys) — &. Second assume that s has

been charged by y,, so the charge of r has not been modified: we take
w'(r) = w(r) — %. Then in both cases w'(z;) = w(z;) — 3, w'(y;) =

w(y;) — 3, w'(u;) = w(y;) + 3,1 < i < k. Notice that z; and y; have
not been discharged before because wu; is the only 2-vertex in their
neighborhood. Hence all vertices ¢ involved here satisfy w’(q) > %.
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x s € Zy: let N(5) = {s,z} (recall that Zr € E and §(Z) > 4; so §
is neutral). Since §(z1) = d(y1) = 3 we have x1,y; # z. From our
assumption it does not exist v’ € Vo N N(_) v # 5 Sok<do(r)—
We take w'(r) = w(r) — £, w'(z;) = w(z;) — 1, w'(y;) = wly) — 1,1 <
i <k, and w'(w;) = w(u;)+3,1 <i <k Hence all vertices ¢ involved
here satisfy w’'(q) > %.

x s € Wy: let N(5) = {s,z} (recall that y;r ¢ E). If u; € Xy then ry;
cannot be extended, indeed rz; and rs must be in the 2-factor. So
u; € Y.

Let N(z1) = {uy,r,z}. Let 2/ € N(2),2 # x1; assume 2’ € Vp. If
rz ¢ E then srx,zz" is a 4-path and from Property 2.5 6(zq) > 4, a
contradiction. Now we consider the case rz € E:
First §(r) = 4. Assume that wuy, ug, ug with w3 = v,uy = 2',us # §
and d(r,uz) = 2 are three active 2-vertices. Let rzzus be the 2-
path from r to us. Since ug is active x3 is a 3-vertex. At least
one of w3y;, r3y- is a non-edge. W.l.o.g. yyx3 ¢ E. This non edge
cannot be extended: If a 2-factor F,y,x3 € F) exists then x3uz €
F, sores € F, sr,xjuy, 22 € F. W.lo.g rz € Forey € F, so
r12 ¢ F, a contradiction. uz cannot be active. We do as follows:
w'(r) =w(r) = 3= W@—1-3) =1 v(w)=wm)- 3w =
wiyn) — 1wy = 2) = wla) - 1w (y2) = w(ye) — 3, and w'(w) =
w(uy) + 4,w "(ug = 2') = w(ug) + 3.
Second §(r) > 5. Let k be the number of active 2-vertices distinct
from 5 at distance 2 of r. We do as follows: w'(r) = w(r)—%, w'(z;) =
w(z) — 4w (y) = wy) — b w'w) = wlug) + 3,1 <0 < k.
Now any neighbor of z has a degree at least 3. In the case 6(z) = 3
there does not exist a 2-vertex w,w # uy,d(z,w) = 2 else there is a
4-path between u; and w and z has degree greater than 3, a contra-
diction. So z has not been used before in the discharging procedure.
We do as follows: w'(r) = w(r) — (kzl),w’(z) = w(z) — 3w (z;) =

w(z;) — 30 (y;) = wly;) — 3,0 (W) = w(w;) + 3,1 < i < k. Since

kE <d(r) — 1 all vertices ¢ 1nvolved here satisfy w'(q) > 4.

In the case §(z) > 3, since all the neighbors of z have a degree at least

3, the case has been treated before and v is neutral: a contradiction.

From now on, any active v € Vj is such that Vr with 6(r) > 4, d(v,r) > 3. It
follows that v & Zj.

e For each active v € Vj such that d(v,u) > 4 for any u € V5 \ N[v]

If d(v,u) =4, there is a 4-path vrza'u, then from Property 2.5, 6(z) > 4, a
contradiction. So d(v,u) > 5 for any u € V; \ N[v]. We have two cases:

— v € V. Remark that from the discharging procedure the charge of any
3-vertex at distance at most two of v has not been decreased before since
d(v,v") > 3 for any 2-vertex v'. Let N(v) = {x,y} and z € N(x) U
N(y), z #v,z,y. We take w'(v) = w(v) + f’p w'(z) =w(x)— 1, w(y) =
w(y) — 1 and w'(z) = w(z) — L Hence w'(v) = 1 and all vertices ¢

4
involved here satisfy w’(q) > 1t

%
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—v € Wy Let N(z) = {v,21,20} and N(y) = {0,253, 24}. If {z1,22} N
{23,24} # () we can suppose that z; = z3. Then xy cannot be extended
since 0(z1) = 3.

Now {z1, 20} N {23, 24} = 0. We take w'(v) = w(v) + 2, w'(z) = w(z) — 1
and w'(z;) = w(z;)—3,1 < i < 2. Inthe case where ¥ is active we also take
w'(v) = w(v) + 2,0 (y) = w(y) — 3 and w'(z) = w(z) — 1,3 <@ < 4.
Hence w'(v) = 4, w'(v) > 4 and all vertices ¢ involved here satisfy
w'(q) > L since for any 2-vertex s,s # v, 9, we have d(s, z) > 3,i =

4

Notice that until now, the only 3-vertices which have been discharged are at
distance 1 or 2 of a 2-vertex.

For each remaining active vertex v € V v is such that there is u € Vj with
d(v,u) < 3.

From Property 2.6, the case d(v,u) = 2 cannot occur. In the case where
d(v,u) = 1 we have v € Wy so u = v. There is no other verticex v’ in Vj
with d(v,u’) = 3, else either d(v,u’) = 2, which is forbidden, or there is a
4-path vvzz'v' and 6(x) > 4 from Property 2.5, a contradiction. So for any
u € Vo, v #v,0, d(v,u') > 4,d(v,u") > 4: this case has been handled before.

From now on each active v € Vj is such that v € V' and there is u € V; with
d(v,u) = 3. With the same arguments as for v, u € V. Let N(v) = {z,y},
N(u) =A{2',y'} and ya’ € F (recall that §(z) = d(y) = d(2’) = 5(y/) = 3).

We have z2' ¢ E (resp. yy' ¢ E) else vz’ (resp. yu) cannot be extended.
Moreover zy ¢ E (resp. 'y’ ¢ E) else za’ (resp. yy') cannot be extended. So
v,u € Yy and xx',yy' € E.

If there is z € N(z) N N(y), z # v, then §(z) > 4 otherwise zy cannot be
extended: a contradiction since d(v,z) = 2. With a similar argument for u,
we have:

Fact 4.1 N(z) N N(y) = {v} and N(2') "N N(y') = {u}.

Let N(y) ={v,2', 2z} and N(z) = {v,2”,y"}. From Fact 4.1 zz,yz",yy" ¢ £
and z # ¢/, 2" y". Assume there is a 2-vertex w with N(w) = {z,w'}: if
2’z ¢ F then there is a 4-path wzyz'u and d(y) > 4, a contradiction; if 2’z € E
then, either one of the three edges xy/, zw’, w'y’ is not in E and this edge cannot
be extended, or G is not connected: indeed n > 10, é(x) = §(w') = 0(y') =
3 and G’ the subgraph induced by the nine vertices w,v,w,x,y, z,w', 2",y
is isomorphic to Gy (see Figure 4) and not connected to the rest of G, a
contradiction. Thus there is no 2-vertex at distance 1 of z.

If there is a 2-vertex w',w’ # v,u, with d(w’,z) = 2 then there is a 4-path
w'wzyv and 6(z) > 4, a contradiction. Thus there is no 2-vertex w,w # u, v,
with d(w, z) < 2, so z has not been discharged before.



Remember that any 3-vertex with an active vertex in the neighborhood has not

been discharged. Thus w(z) = w(y) = w(z) = 3. We take w'(v) = w(v) + 2,

w'(z) = w(x) — 1, w'(y) = w(y) — 1 and w'(z) = w(z) — ;. This discharging

is made for all the active vertices.

For each active vertex v we have considered its neighborhood {z,y} plus a
vertex z at distance 2 of v which has no other 2-vertex at distance 1 or 2. Thus
the weight of each vertex x,y, 2z associated to an active vertex v is decreased
exactly once. Hence all vertices ¢ involved here satisfy w'(q) > %.

The discharging procedure is done for all active vertices and Vv € V, w'(v) > %.
So 2m =X w(v) = B w'(v) > Ln. Thus m > [3(3n — [2])]. O

5 Meg(n) for n > 10

5.1 A basic module

To build the minimum expandable graphs we define their components. Figure 5

gives the component H.
m/@i
© ©)-

h ® @
V\Q)F

Figure 5: The subgraph H with two 2-vertices and six 3-vertices.

The graph #(2) is as follows (see Figure 6): H(2) contains 2 copies Hi, Ha of H.
The vertices of ‘H; are denoted by a;, b;,...,h;;1 < i < 2. The edges between H;
and Hy are are aiby, byas, c1co, d1ds. Notice that since Hs is a copy of Hy, there are
symmetries in H(2). In each module, a;, ¢;, €;, g; is symmetric to b;, d;, f;, h; and a;
(resp. b;) and ¢; (resp. d;) play identical roles. As a consequence, if there is a 2-factor
containing, for instance, the non-edge a; f1 then, by symmetry, there is also a 2-factor
containing c; f; as well as a 2-factor containing bie; or dyey, asfa, baes, dses, cofo.
Also, ajcy plays the same role as a;ds.

The graph H(p),p > 3, is built from H(p — 1) as follows (see Fig. 7): add
one copy H, of H to H(p — 1). The vertices of H;, = (V;,&;) are denoted by
ai, b, ..., hi;1 <7 < p. Remove the two edges bya,—1 and did,—; of Hip —1). Add
the four edges bya,, a,-1b,, did,, c,dp—1. The modules H,; are arranged around a cycle
and numbered clockwise from 1 to p. Notice that there is a symmetry on each side
of H, between H; and H,_; 1o, for i =2, ..., [p/2] +1. As for H(2), a; (resp. b;) and
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Figure 6: Two representations of H(2). (The index vertices are omitted).

¢; (resp. d;) play identical roles: this can be seen by looking at Figure 7. If there is
a 2-factor containing, for instance, a; fo then, there is also a 2-factor containing b, f5
as well as a 2-factor containing c; fs or d; f5. Notice also that a,b, and d,d;, the two
edges linking #H, to H; play the same role.

In the following, we shall shorten many proofs by referring to all these properties
as symmetries.

Remark 5.1 The graph H, has a 2-factor: for instance, take the cycle (a1, be, as, ..., ap,
bi,a1) and the p cycles (c;, €, giy hiy fiy diyci), 1 =1, ..., p.

Remark 5.2 The subgraph induced by V;UV; 11,1 <@ < p, is hamiltonian. A hamil-
tonian cycle is (ai, b, fi, hi, gis €3, i, diy Cig1, dig1, figr, Pigt, Gigts €1, Gig, iy, @i).

5.2 Meg(n) for n =8p, p > 2

We use a recurrence to prove that H(p) is a meg(8p).
Property 5.1 H(2) is a meg(16).

Proof: 7(2) contains m =22 = [$(3 x 16 — [£2])] edges.

We show that H(2) is expandable. Let xy ¢ E. We give, first a chain (z,...,y),
and then, possibly, a set of cycles that provide a 2-factor of H(2).

® Ty = aicy: (alaelaglah17f17b17a27b27f27h2,g27627627d27d1701); by symmetry
bldl, b2d2, 9Co Call be extended;

o 1y = aidy: (d1,01,€1,91,h1,f1,b1,a2,b2,@1),(d2,02,€2>92,h2>f2,d2)§ by sym-
metry bicy, baco, asds can be extended;

11



Figure 7: Two representation of H(5). (The vertex indices are omitted).

ry = aif1: (fl,h1a91,€1,017d17d2702,62792,h2,f2,b2aa2;bha1); by symmetry
dier, cifi,bier, ¢ fa, daea, as fa, baea can be extended;

TY = a141: (917hlaf17b17a27b2>f27h27927€2>027d27d17017€1aa1)3 by symmetry
€191, bihy, dihy, baha, daha, azgs, cags can be extended;

TY = aiaz: (az,blaf1,h1,91,€1,017d17d2,02,62792,h2;f27b27a1)§ by symmetry
b1bs, c1ds, dyco can be extended.

ry = aicy: (C2,da, dy,c1,e1, 91, ha, f1, 01, a0, €, 92, ha, fa,b2,a1); by symmetry
bldg, blcg, CL1d2, bQCl, dle, asCy, CLle can be extended.

ry = digr: (91,h1,flybl,CLQ,b2,a17€1701702,€2,g2,h27f27d2,d1); by symmetry
b1g1, c1hy, a1hy, caho, asho, dsgo, bogo can be extended;

TYy = €10a3: (elagl7h17f17b17a17b27f27h27g27€27a2>7(Clad17d2762701); by sym-
metry bgfl, blfg, ajea, d2€1, Cgfl, d1€2, leg can be extended;

Ty = elb2: (elaglahl?fladla617627d2af27h’27927627a27b17a1ab2); by Symmetry
as f1, a1 f2, bie, cae1, da f1, crez,dy fo can be extended;

Ty = eifi: (eluglahhfl),(al,b1,a2;€2ag2ah27f27b27a1)7(017d1,d2,02701); by
symmetry es fo can be extended;

Ty = eidy: (617917hl,fl,d1701702,d2),(al,bl,az,ez’gz,hmf2,b2a(11)§ by sym-
metry aseq, ¢ f1,baf1,c1fo, dres, ares, by fo can be extended;

ry = e fa: (617917h1;fl,blaahbz,@,@mg%h2,f2);(01,d17d2,02701); by sym-
metry ejes, f1fae, €2f1 can be extended;
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¢ Ty = eth: (el7glah17f17d17017027d27f2ab27a17b17a2a62a92ah2); by Symmetry
€192, f1ha, 192, €291, f2hi, f2g1, e2hy can be extended;

& Iy = flgl: (glahlafl)v(blaala617017d17d27027€27927h2af27627a2ab1); by sSym-
metry ejhy, faga, ea2hs can be extended;

o Ty = g1y (91,hlafl,d1,d2,02,01,61,@1,bha2,62,92,h27f27b2); by symmetry
291, aghy, dahy, athy, diha, bigs, c1g2 can be extended;

o 1y = gidy: (glahlaf1;d17d2)7(01761701702,62,92,h2;f2,b27a2751,a1); by sym-
metry 241, Cghl, thl, Clhg, blhg, dlgg, aigs can be extended;

o 1y = gihy: (glahluf17d17d2’f27b27a27b17a17617017c2762,92’h2)§ by symmetry
9192, h1hs, h1go can be extended;

O

Property 5.2 H(3) is a meg(24).

Proof: H(3) contains m = 33 = [5(3 x 24 — | 2])] edges.

We show that H(3) is expandable. Let zy & E.

Case 1. =,y ¢ Hs. Looking at the 2-factors given for H(2), we observe that they
all contain at least one of the two edges byas, dids and then we can build a 2-factor
containing zy in H(3) from a 2-factor F' containing xy in H(2). If bjay € F and
didy ¢ F, we substitute bjas for byagbzas and we add the cycle (c3, ds, f3, hs, g3, €3, ¢3)
to obtain a 2-factor in H(3). The case bjay ¢ F and didy € F is symmetric. If
bias € F and didy € F, we substitute byas for byazbsas and dyds for dids fshsgsescsds
to obtain a 2-factor in H(3).

Case 2. x,y ¢ Ha: by symmetry this is equivalent to Case 1.

Case 3. © € Ha, y € Hs. For each zy, we give, first a chain (z,...,y), and then,
possibly, a set of cycles that provide a 2-factor of H(3).

® TY = a2ag3: (a27 b37 f37 h3)g37 €3, a3); (a’17 b17 f17 h17g17 €1, C1, dla d37 C3, d27 Ca,
€2, ga, ha, fa,be, a1); by symmetry bybs, dods, cacs can be extended,;

® TY = a2C3: (0’27b37a37€3ag37h37f37d37d17017617917h17f17b17a17b27f27h2ag27
€g, Ca, ds, c3); by symmetry dybs can be extended;

& Ty = CLngi (a27b37f37h3ag37637a37b17alab27f27h27g27627027d27c37d3>7
(c1,dq, f1,h1, g1, €1, c1); by symmetry bocs, cobs, daag can be extended,;

o vy = ases: (ag,bs, as, by, aq, b, fa, ho, g2, €2, o, do, c3,ds, f3, h3, g3, €3),
(c1,dq, f1,h1,1,€1,c1); by symmetry fobs, daf3, eacs can be extended;

o vy = asfs: (as, bs,as, es, g3, hs, f3), (a1, b1, f1,h1, 91, €1, ¢1,d1, d3, c3,da, c2, €3,
92, ha, f2,be,a1); by symmetry esbs, faocs, daes can be extended;

® TY = azg3: (a27b37a3ae3a037d27027€27927h2af27627a17bl?flahlyglyelachdla
ds, f3, hs3, g3); by symmetry hobs, gacs, dahs can be extended;
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& Ty = a2h3: (a'27b37f3ad3ac3ad2702a627927h27f27b27a17b17a3763yg37h'3)7
(c1,dy, f1,h1,91,e1,c1); by symmetry gobs, hocs, da2gs can be extended;

& Ty = b2a3: (an f27 h’27927 €2, G2, bSv f37 h3ag3a €3, a3)7 (Clv d17 d37 C3, d2a Ca, Cl)7
(ay,b1, f1, h1, 1, €1,a1); by symmetry ceds can be extended;

o 1y = byds: (b27a2ab3»a37b17a1761a91ahl:fl»dla017027627927h2af27d2703a
€s, g3, hs, f3,ds); by symmetry csag can be extended;

o 1y = boes: (bz,a2,53703751&1,617917h1,f17d17017027€2;927h2,f2,d2703,
ds, f3, hs3, g3, 63)§ by symmetry fyas, eads, caf3 can be extended;

o 1y = bafs: (by,a1,e1, 91, ha, f1,b1, a3, b3, Gz, €2, 9o, ho, fo, d2, o, c1, dy, ds,
3, €3, g3, I3, f3); by symmetry esas, fods, coes can be extended;

® 1y = bags: (b2;a1761791,hhf1,517a3;€3703,d3,d17017027d2,f2,h27g27€27aza
bs, f3, hs, g3); by symmetry hoag, gods, cahs can be extended;

® Ty = b2h3: (b27a27b37f37d37c37d27f27h’27g27627C27cl7d17f17h17g17€17a’17
by, as, es, g3, h3); by symmetry geas, hods, cogs can be extended;

® Ty = €63 (627927hz,f2,52702753&3,bbalaehgl’h1,f1,d1701702,d27037d3,
f3, hs, g3, €3); by symmetry f,f3 can be extended;

® 1y = ey fs: (62792, ha, fa,ds, ca,c1,d1, ds, c3, €3, g3, hs, f3); (@1761,91, hi, f1.
b1, as, bs, as, be,aq); by symmetry foes can be extended,;

® TY = €293 (627927h27f2762aa2ab37a37637637d27027cl7d17d37f37h3yg3);
(a1,b1, f1, h1, g1, €1, a1); by symmetry hyf3, fohs, gaes can be extended;

& Ty = €2h3: (62792ah?vf27b27a27b37f37d37c37d27027cl7d17f17hl?.gl?el)alabla
as, €3, g3, h); by symmetry gafs, fags, hoes can be extended;

® TY = §293: (92a hQa f27 b27 ai, bla fla h17gl7 €1, C1, dla d37 f37 h3ag3)7 (a2a €2, Ca, d27
3, €3, a3, bz, as); by symmetry hohs can be extended:;

¢ Ty = 92h3: (.927 h27 f2a b27 ay, blv as, €3, gs, h3)7 (a27 €9, C2, d27 C3, d37 f37 b37 a2)a
(c1,d1, f1,h1,41,€1,c1); by symmetry hogs can be extended,;

Remark 5.3 Let xy ¢ H(p), p > 3. If z,y # hy then any 2-factor containing xy
contains ayby or d,d;.

Proof: Let F' be a 2-factor containing xy and assume that none of a,b; and
d,d; are in F'. To cover b; and d;, ' must contain the edges biai, b fi, dic; and
dy f1. Clearly these 4 edges cannot be completed in a 2-factor if z and y # hy. O

Property 5.3 H(p) is a meg(8p),p > 4.
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Proof: H(p) contains m = 11p = [£(3 x 8p — [ 2])] edges.

The proof is by induction. From Properties 5.1 and 5.2, H(2) and #H(3) are
expandable. So for p > 3 we assume that H(p) and H(p — 1) are expandable.

We now prove that for any p > 3, H(p + 1) is expandable.

Let xy & H(p + 1). We examine several cases.

Case 1. z,y ¢ V1 UV,41. Let F' be a 2-factor containing zy in H(p). From Remark
5.3, ayby € F or d,d, € F. If F contains a,b; but not dpd; then a,b, is replaced
by apbp+1a,+101; adding the cycle (¢pt1, dpr1, for1s hpt1s Gpt1, €pr1, Cpr1) We have a
2-factor in H(p + 1). By symmetry, the case where d,d; € H(p) and ayb; ¢ H(p) is
equivalent. If both a,b; and d,d; are in F, then a,b; is substituted for a,b,1a,+101
and dyd; for d,cpr1€pr19p41hpt1 fpr1dpr1, di to obtain a 2-factor in H(p + 1).

Case 2. z € V.

Case 2.1. y ¢ V, UV,41. From our assumption zy can be extended in H(p — 1).
If the 2-factor in H(p — 1) contains a,_1b, but not d,_1d; then a,_1b; is substituted
for a,_1b,a,b,410,4101; adding the two cycles (¢;, d;, fj, hj, gj.€5,¢5), p < j < p+1,
we have a 2-factor in H(p+1). By symmetry, the case where the 2-factor in H(p—1)
contains d,_1d; but not a,_1b; is equivalent. If both a,_1b; and d,_;d; are in the
2-factor of H(p — 1), then a,_1b; is substituted for a,_;b,a,by+1a,+1b1 and d,_1d;
for d,_1cpep9php [dpCpi1€pi19pr1hpi1 fpr1dpi1dy to obtain a 2-factor in H(p+1). Fi-
nally, if a,_1b1,d,—1d; ¢ F, we add to F the hamiltonian cycle on V,.1 UV, (see
Remark 5.2) to obtain a 2-factor in H(p + 1).

Case 2.2. y € V, U V,y1. By symmetry, y € V,41 is equivalent to y € V, and, if
p >4, y €V, is equivalent to y € V5 seen just before.

It remains the case p = 3, y € V3: we remove from H(4) the modules Hy and
H, and we obtain #H'(2) isomorphic to H(2). Looking at the 2-factors obtained
in H(2) for zy ¢ E, © € Vi,y € Vs, we see that they all contain exactly three
edges among a1by, bias, ¢1¢2, didy. Thus in ‘H'(2), any 2-factor F' containing zy ¢ F,
r € Vi,y € V3 contains also exactly three edges among aibs3,bias,cic3, dids or,
equivalently, they all miss exactly one edge among a,b3, byas, cic3, d1ds. To obtain a
2-factor in #H(4), we make the following substitutions: if a;bs ¢ F', we replace c¢;c3
by c1cadacs and we add the cycle (¢a, da, fo, ha, go, €2, Co); if biag & F, we replace dyds
by didscyds and we add the cycle (cy, dy, fu, ha, ga, €4, ¢4); if c1c3 € F, we replace a1bs
by a1beasbs and we add the cycle (o, da, fa2, ha, g2, €2, ¢2); if dids ¢ F, we replace byas
by biasbsasz and we add the cycle (¢4, dy, f1, ha, ga, €4, C4).

Case 3. © € Vpy1.

Case 3.1. y € V;, i # 2. If y € Vi, by symmetry, this equivalent to the case
x € Vi, y € Vpy1 treated in Case 2.

IfyeV,i=3,..,p—1, these cases are equivalent to cases z € V5, y € V,_;13
which were treated in Case 1.

If y € V,, this is equivalent to x € Vs, y € V3 treated in Case 1.
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Case 3.2 y € V,, p > 4. There are two adjacent modules H; and H,,; with
1 #2and 1+ 1 # p+ 1. We remove these modules and add the edges a; 1b;12 and
d;—1¢i+2. We obtain a graph H'(p — 1) isomorphic to H(p — 1) which has a 2-factor
F containing xy by assumption. If a; 1b;1o € F but d;_i¢;10 ¢ F then a; 1019
is substituted for a;_1b;a;b;+10,11b;+2; adding the two cycles (¢;, d;, f;, hj, g5, €5, ¢;),
i < j < i+ 1, we have a 2-factor in H(p + 1). By symmetry, the case where
di—1¢iro € F and a;_1b;4o ¢ F is equivalent. If both a;_1b;42 and d;_1¢;;2 are in the
2-factor of H'(p—1), then a;_1b;, 2 is substituted for a;_1b;a;b;11a;11b;42 and d;_1¢;49
for di_lcz-, eigihifidici+lei+lgi+1hi+1fi+1di+1ci+2 to obtain a 2-factor in H(p + 1) Fi-
nally, if neither a;_1b; 45 nor d;_jc;,o are in the 2-factor of #'(p— 1), then adding the
hamiltonian cycle covering V;UV; 1 (see Remark 5.2) we obtain a 2-factor in H(p+1).

Case 3.3 y € V,, p = 3. This is the last case: x € V; and y € V5. We remove
the module H3 from #(4) and add the edges asby and dycy: we get a graph H'(3)
isomorphic to H(3) in which xy can be extended. Let F' be the 2-factor of H'(3)
containing xy.

Looking at the 2-factors given for H(3) to complete an edge xy ¢ H(3) with
r € Vo and y € V3, we see that they all contain asbs or docs. Equivalently, F'
contains asbs or docy.

If F' contains asby but not dscy then asby is substituted for asbzasby; adding the
cycle (cs,ds, fs, hs, g3, e3,c3) we have a 2-factor in H(4). By symmetry, the case
where H'(3) contains dycy but not asby is equivalent. If both asby and dscy are in
F, then agb, is substituted for asbsasby and dscy for docsesgshsfsdscy to obtain a
2-factor in H'(4). O

5.3 Meg(n) for n # 0 mod(8), n > 14

Now, we give minimal expandable graphs when n > 10 is not a multiple of 8. The
graphs H~1(p), H=2(p),p > 2, are obtained from H(p) by contracting one edge g;h;,
respectively two edges g;h;, g;jh;,7 # j. The vertex resulting of the contraction of gh
is denoted by gh.

Property 5.4 H'(p) is a meg(8p —1),p > 2 and H™2(p) is a meg(8p —2),p > 2.

Proof: H~!(p) contains m = 11p — 1 = [1(3 x (8p — 1) — |2 ])] edges. H2(p)
contains m = 11p — 2 = [1(3 x (8p — 2) — [222])] edges.

From Properties 5.1 and 5.3 we have H(p) is a meg(8p),p > 2. The 2-factor of
HY(p), resp. H2(p), corresponds to the 2-factor of H(p) where the subsequence
of two consecutive vertices g, h in H(p) is replaced by the contracted vertex gh in

H™'(p), resp. H*(p). O

The graph H™(p)

,p > 2, is obtained from H(p) by adding a 2-vertex ¢ and the
two edges ig,ih to H(p).

Property 5.5 H™'(p) is a meg(8p+1),p > 2.
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Proof: H*(p) contains m = 11p+2 = [3(3 x (8p+ 1) — [ ])] edges.

Observe that all 2-factors of H(p) contain gh. Let xy ¢ E. If x,y # iy then
the 2-factor of H*!(p) corresponds to the 2-factor of H(p) where gihy in H(p) is
replaced by gii hy in HT(p). If 2 = iy then gy ¢ F or hy ¢ E. W.lo.g. assume
that gy ¢ E. Then the 2-factor of H™!(p) corresponds to the 2-factor of H(p) where
higy in H(p) is replaced by hyi1g; in H™(p). O

The graph H*?(p) is obtained from H(p) as follows: the two edges ajey, cie; are
subdivided into the paths (aq,1,€1), (c1, 7, €1), respectively; the edge ij is added.

Property 5.6 H™(p) is a meg(8p +2),p > 2.

Proof: H*?(p) contains m = 11p+3 = [3(3 x (8p+2) — [ 2])] edges.

We show that H*2(p) is expandable. Let zy ¢ E. In the case where z,y ¢
{a1,c1,e1} we proceed as follows: we know that xy can be extended in H(p); the
corresponding 2-factor contains either the subsequence aje;cy, or aje;g; or cie1g;. In
the first case the subsequence is substituted for ajie;jcy, in the second for ayije; gy,
in the third for ¢;jie;g;. So xy can be extended in H™(p).

Now let & = i (the case where x = j is similar). If y # ¢y, g1, we know that ey
can be extended in H(p); the corresponding 2-factor contains e;g;; we replace it by
ijergr. fy =cy (resp. y = g1): in H(p), the 2-factor corresponding to the non-edge
gic1 (resp. giap) contains cjejai; we replace it by c¢jjejiay.

If y = g1 in H(p), the 2-factor corresponding to the non-edge gja; contains
cieiay; we replace it by cijejiay.

So iy can be extended in H™(p).

Now let x = e;. We know that ¢,y can be extended in H(p); the corresponding
2-factor contains both g1h; and ajejc; (or ciejaq, but from symmetry this case is
the same). We substitute the first subsequence for e;g;h; and the second for ajije;
and ey can be extended in H2(p). d

The graph H3(p),p > 2, is obtained from H(p) by adding a triangle (i, j, k) and
the two edges iay, ja; to H(p).

Property 5.7 H™3(p) is a meg(8p + 3),p > 2.

Proof: H*3(p) contains m = 11p+5=[3(3 x (8p+3) — [ 2])] edges.

Let vy & E. If z,y & {i,7,k} then the 2-factor of H™3(p) corresponds to the
2-factor of H(p) plus (4,7, k).

Let * = i (the case x = j is the same): note that y & {i,j,k,a1}. Suppose
first that y is not a neighbor of a; in H(p): ya; can be extended to a 2-factor and
substituting ya, for yikjai, (i = x), we have a 2-factor for H3(p). Now let y = e;.
We know that e; f; can be extended in H(p). The corresponding 2-factor contains
(e1g1h1 fre1) and a cycle C' with the edge a;b;. Substituting a1b; for ayjkie;grhy f1b
we have a 2-factor of H13(p). Let y € {b1,ba}; e1f1 can be extended in H(p), and
the corresponding 2-factor contains (eq, g1, h1, f1,€1), a cycle C' with the edges a;b;
and a1be, and a cycle C” with the edge c1dy. So replacing a1y by a1jkiy and ¢1d; by
cie1gihy fid, we have a 2-factor of H3(p).
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For x = k, if y # a; we do as above by replacing the sequence ikj by kij.
If y = a1, we do as follows: we know that gja; can be extended in H(p); the
corresponding 2-factor contains eja;g;. Thus substituting eja,g; for e;g; and adding
(a1,1,7,k,a;) we obtain a 2-factor of H3(p). O

The graph H(p), p > 2, is obtained from H(p) by adding a diamond (i, j, k, 1), ij &
E and the edge ia; to H(p).

Property 5.8 H™(p) is a meg(8p +4),p > 2.

Proof: H*4(p) contains m = 11p+6 = [1(3 x (8p+4) — [ 22])] edges.

Let 2y ¢ E. If z,y & {i,j, k, 1} then to obtain a 2-factor of H™*(p) we add the
cycle (i, k, j,1,7) to the 2-factor of H(p) obtained for the extension of xy.

For zy = ij we do as follows: we take a 2-factor covering H(p) (see Remark 5.1)
and the cycle (7,7,1,k,1) to obtain a 2-factor of H**(p).

Let x =i : we have y & {i,7,k,l,a1}. First we suppose that y is not a neighbor
of a;. We know that ya; can be extended in H(p), so in the corresponding 2-factor
there is a cycle with the sequence ya;. Substituting ya; for yia; and adding the
cycle (4,k,1,7) we have a 2-factor for H™(p). Now let y = e¢;: We know that e, f;
can be extended in H(p). The corresponding 2-factor contains (ey, g1, b1, f1,€1) and
a cycle C' with the edge a;b;. Substituting the sequence a;b; for ajie;gihy f1b1 and
adding (j, k,1,j) we have a 2-factor of H(p). When y € {by, b2} we do as follows:
e1 f1 can be extended in H(p), the corresponding 2-factor contains (eq, g1, by, f1, €1),
a cycle C' with ayy, and a cycle C" with ¢;d;. So substituting the sequence a,y for
a11y, the sequence cid; for cie1g1hy fid; and adding (4, k, [, j) we have a 2-factor of

H(p).
Let © = k (resp.z = j): We proceed as for x = i but instead of a;i we take ajiljk
(resp. ayilky). O

The graph H™(p), is obtained from H*?(p) by subdividing the edge aib; into
the path ailkb;, adding a 2-vertex r together with two edges rl, k. See Figure 8.

Figure 8: The graph H(p) is a meg(11p + 7).

Property 5.9 H™5(p) is a meg(8p + 5).
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Proof: H*°(p) contains m = 11p+ 7= [3(3 x (8p+5) — | Z2])] edges.

From Property 5.6 we know that H2(p) is expandable.

Let xy € E. If ay is also an non-edge of H2(p) and the corresponding 2-factor
contains a;1b; then we substitute the sequence a,b; for a,lrkby; else if a1b; is not in
the 2-factor, so we add the cycle (k, [, 7, k) to the 2-factor. In both cases we obtain
a 2-factor for H(p).

Now let zy = aibi: (a1, be, a9,bs,as,...,by, a,,b1),(c1, 74,0, €1, 91, b1, f1,d1, c1),
(¢is€iy Giy hiy fivdiy i), 2 < i < p,and (k,[,r k) is a 2-factor.

Let x = k (the case where x = [ is symmetric). If y # ay: a1y can be extended
in H2(p); the corresponding 2-factor contains the path a; - - - y; we substitute it for
krlay - - -y and we have 2-factor for H™(p). If y = a1: (k, 7,1, a1), (c1,d1, dp, ¢p, dp_1,
Cp1,---,02,C,€2,92, Na, fo, b2, a2, b3, f3, N3, g3, €3, a3, by, fa, ha, ga, €45 a4, - -, by, [, By,
Gps €py G, b1, f1, R, 91, €1, 14, J, ¢1) is a 2-factor.

Let x = r. Remark that all 2-factors containing the non-edge ky contain also
kr; to extend ry we replace kr by rk in these 2-factors. 0

5.4 Meg(n) for 10 <n <13

The constructions given in the previous sections do not cover the cases 10 < n < 13.
We give constructions for all the situations.

We start from the graph G1¢ shown in Figure 9. Note that Gy9 and G1yp — a are
hamiltonian.

c © € i

Figure 9: The graph Gyg is a meg(10).

Property 5.10 Gy is a meg(10).

Proof: Gy contains m = 14 = [1(3 x 10 — [12])] edges.
Let zy € E.

e zy = ad: (a,b,c,e, f,h,j,i,g9,d) yields a 2-factor; by symmetry ae, jf, jg can
be extended;

e zy =af: (a,b,c, e g,d, f),(h,i, j,h) yields a 2-factor; by symmetry ag, jd, je
can be extended;
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e xy = ah: (a,b,c,e, f,d, g,i,7,h) yields a 2-factor; by symmetry ai, jb, jc can
be extended;

e zy =aj: (a,b,ce, f,d, g,i,h,j) yields a 2-factor;

o zy = be: (b,a,c,e),(d,g,i,7,h, f,d) yields a 2-factor; by symmetry cd, hg,if
can be extended;

o zy =bf: (bya,c e g,d, f),(h,i,j,h) yields a 2-factor; by symmetry cg, hd, ie
can be extended;

e zy = bg: (b,a,c,e, f,d,g),(h,i,7,h) yields a 2-factor; by symmetry cf, he, id
can be extended;

o zy = bh: (bya,c,e, f,d,g,i,75,h) yields a 2-factor; by symmetry c¢i can be
extended;

o zy = bi: (b,a,c e, qg,d, f, h,j,i) yields a 2-factor; by symmetry ch can be
extended;

o xy=de: (d, f, h,j,i,9,¢€),(a,b,c,a) yields a 2-factor; by symmetry fg can be
extended.

O

The graph G1; shown in Figure 10 is obtained from G by the addition of the
vertex k, the removal of dg, ef and the addition of dk, ek, fk, gk to E.

b () (%) h

c © € i

Figure 10: The graph Gy; is a meg(11).

Property 5.11 Gy; is a meg(11).
Proof: Gy contains m =16 = [1(3 x 11 — [ ])] edges.

Let zy ¢ E. It vy & {dg,ef, kz z € {a,...,j}} from Property 5.10 xy can be
extended to a 2-factor F' in G1g. Since at least one of dg, ef, df,eg is an edge of F,
F' can easily be modified to a 2-factor F’ of G1; by replacing the edge by the 3-path
passing through k.

e zy =dg: (d, f,k,e q),(a,b,c a),(h,i, j,h)is a 2-factor; by symmetry ef can
be extended;
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e vy = ak: (a,b,c e, q,i,j,h, f,d k) is a 2-factor; by symmetry jk can be ex-
tended;

o xy =0bk: (b,a,c,e q,i,7,h, f,d k) is a 2-factor; by symmetry ck, hk, ik can be
extended.

O

The graph G2 shown in Figure 11 is obtained from G by the addition of the
vertices k, [, the removal of dg, ef and the addition of dk, ek, fl, gl, kl to E.

b @) %) h

c © € i

Figure 11: The graph G2 is a meg(12).

Property 5.12 G5 is a meg(12).

Proof: Gy, contains m = 17 = [1(3 x 12 — [12])] edges.

Let xy ¢ E. lf xy & {dg,ef,kz,lz z € {a,...,j}} from Property 5.10 zy can be
extended to a 2-factor F' in G1g. Since at least one of dg, ef, df,eg is an edge of F,
F' can easily be modified to a 2-factor F” of G15 by replacing the edge by the 4-path
passing through k£ and /.

e xy = dg: (d,b,a,c,e k,l, f h,j,i,g) is a 2-factor; by symmetry ef can be
extended;

o xy=~Fkf: (kl,g,ec,a,bd,f), (hijh)isa 2-factor; by symmetry kg, dl, el
can be extended;

o vy = ka: (k,d, f,l,9,e,¢,b,a),(h,i,j,h)is a 2-factor; by symmetry [j can be
extended;

o zy = kb: (k,d, f,l,9,e,c,a,b),(h,i,7,h) is a 2-factor; by symmetry ke, lh, li
can be extended;

o vy = kj: (k,l,g,e,c,a,b,d, f,h,i,75) is a 2-factor; by symmetry la can be
extended;

o vy = ki: (k,l,9,e,¢,a,b,d, f,h,j i) is a 2-factor; by symmetry kh, b, lc can
be extended.
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Figure 12: The graph Gi3 is a meg(13).

O

The graph G113 shown in Figure 12 is obtained from G by the addition of the
vertices k, [, o, the removal of ac. {a,k,[, o0} induce the diamond with ao ¢ F .

Property 5.13 Gy3 is a meg(13).

Proof: Gi3 contains m = 18 = [1(3 x 13 — [1])] edges.

Let zy & E. If x,y & {a,k,l,0} then we take F' the corresponding 2-factor of
G1o- F has bac as subsequence. Substituting bac for bc and adding (a, k, 0,1, a)
we have a 2-factor for Gy3. If xy = ao then (a, k,[,0) and an hamiltonian cycle of
G1p — a is a 2-factor for Gis.

Let © = a. If y € {d, f,h,j} we know from Property 5.10 that there exists a
2-factor F' for G1p which does not contain ac. So adding (k, [, 0, k) we have a 2-factor

for Gis.
o y=c: (a,b,d, f, h,j,i,qg,ec),(kl 0,k)is a2-factor;
e y=ce: (a,b,ce),(d,g,i,j,h,fd),(klok)is a 2-factor;
e y=g: (a,b,c,e, f,d g),(h,ij,h), (k1 ok)is a 2-factor;
o y=1: (a,b,c,e,g,d, f h,7,1),(k,l,0,k) is a 2-factor.

Now when = € {k,l,0} we use the 2-factors we obtained above for x = a: the first
sequence begins with kola or loka or okla instead of a. O

6 Conclusion

We have determined the values of Expy(n) for all values of n. It could be interesting
to characterize the meg(n), for instance by a (finite 7) collection of forbidden induced
subgraphs. Furthermore one could consider a generalization of the basic problem:
the edges of a complete graph K,, are coloured in blue and in red. We want to color
a minimal set of red edges in white so that any red edge uv can be extended to
a 2-factor using only white edges. In our case, we had only white and red edges.
Furthermore instead of just one red edge we could require that any appropriate
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subset of d red edges could be extended to a 2-factor by adding only white edges.
More generally we could concentrate on k-factors, k > 3, or even other structured
set of edges.
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