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Abstract

The present work studies a one-DOF nonlinear unstable primary system, which undergoes harmful limit cycle
oscillations, coupled to a network of several parallel Nonlinear Energy Sinks (NESs). As usual, in the framework
of NES properties exploration and particularly in the context of dynamic instabilities mitigation, four steady-state
response regimes are observed. They are classified into two categories depending on whether the NESs mitigate or
not the instability and therefore separating harmless situations from harmful situations. An asymptotic analysis
shows that the critical manifold of the system can be reduced to a one dimensional parametric curve evolving
in a N dimensional space. The shape of the critical manifold and the associated stability properties provide an
analytical tool to predict the nature of the possible response regimes mentioned above. In particular, the mitigation
limit of the NESs, defined as the value of the chosen bifurcation parameter which separates harmful situations
from harmless situations, is predicted. Using more restrictive assumptions, i.e. neglecting the nonlinearity of the
primary system and assuming N identical NESs, a literal expression of the mitigation limit is obtained. Using
a Van de Pol oscillator as a primary system, theoretical results are compared, for validation purposes, to the
numerical integration of the system. The comparison shows a good agreement as long as we remain within the
limits of use of the asymptotic approach.

Keywords: Nonlinear energy sink network, passive mitigation, relaxation oscillations, mitigation limit, asymp-
totic analysis.

1 Introduction

A Nonlinear Energy Sink (NES) refers to an essential
nonlinear absorber based on the concept of Targeted
Energy Transfer (TET). It has been shown that NESs
can be used successfully for vibration mitigation [27],
noise reduction [1] or seismic mitigation [23]. Recently,
particular attention has been paid to the comparison
between a single NES versus several NESs. In [19], a
linear oscillator coupled with two vibro-impact NESs
in parallel is studied under periodic and transient ex-
citations, respectively. Several coupled parallel NES
systems involving cubic nonlinearities are considered in
[28] to control strong modes of a linear master structure
under periodic and transient excitations, respectively.
Associated experimental results are reported in [26].
Taghipour and Dardel [25] compare the steady state dy-
namical behavior of a two Degrees Of Freedom (DOFs)
system - composed of an harmonically excited nonlin-
ear oscillator coupled with a single DOF NES - with
the behavior of a system consisting of a nonlinear os-
cillator coupled with a two-DOFs NES subjected to ex-
ternal harmonic excitations. Conclusions of this paper
illustrate that increasing the DOFs of the NES would
increase the robustness of the system to the changes in

system parameters and the amplitude of the external
forces.

NESs can also be used to mitigate dynamic insta-
bilities. In [10], the self-excitation response regimes
of a Van der Pol oscillator coupled to a NES are in-
vestigated. Periodic responses, global bifurcations of
different types and basins of attraction of various self-
excitation regimes are revealed using an asymptotic
analysis of the system related to the decomposition
of the averaged flow into slow/super-slow time scales.
The case of a Van der Pol-Duffing system is consid-
ered in [7]. A series of papers [17, 18, 11] demon-
strated that a NES coupled to a rigid wing in subsonic
flow can partially or even completely suppress aeroe-
lastic instabilities. Aeroelastic instability suppression
is also considered in [20] based on a general nonlin-
ear multi DOFs system. More recently, other types
of instabilities have been considered. In [3, 4], a the-
oretical/numerical analysis of the capacity of a NES
to control helicopter ground resonance instability has
been performed whereas the problem of passive control
of friction-induced vibrations due to mode coupling in-
stability in braking systems using two NESs is studied
in [5].
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More generally, the discussion on the relationship be-
tween the dimensionality of the super-slow manifold
(hereafter referred as critical manifold), the structure
of the fixed points and the observed response regimes
is explored in the review paper by [9].

Some of the previous cited works [10, 7, 11] provide
theoretical criteria for the prediction of the response
regimes resulting from the coupling of a primary dy-
namical system - potentially unstable - with one NES.
In all these works, the system under study is (or is re-
duced to) of a one-DOF primary system coupled to one
NES. This leads to a one dimensional critical manifold
which is essential to make the theoretical prediction
relatively easy. Otherwise, if the system has a criti-
cal manifold with dimension strictly higher than one,
the prediction becomes very hard to obtain. This point
has been already discussed in previous works by the
authors [3, 4, 5] in the context of dynamic instability
mitigation and also when a NES is used as a passive
control device for a nonlinear elastic string, in internal
resonance conditions, excited by an external harmonic
force [21].

The present work studied a one-DOF nonlinear un-
stable primary system, which undergoes limit cycle os-
cillations with high amplitudes (hereafter referred to as
harmful situations), coupled to several parallel NESs.
The asymptotic analysis of the system shows that the
critical manifold of the system can be reduced to a
one dimensional parametric curve. Therefore, the an-
alytical prediction of the response regimes can be per-
formed. In particular, we introduce the mitigation limit
of the NESs, defined as the value of a chosen bifurca-
tion parameter which separates harmful situations (cor-
responding to responses in which the NESs do not act)
from harmless situations (corresponding to responses in
which the NESs act). The mitigation limit is therefore
predicted and a literal expression, function of the NESs
parameters, is even obtained in the case of identical
NESs and a linearized primary system.

The next section introduces the system under study.
In Sect. 3, the asymptotic analysis of the system, which
associates complexification-averaging method and geo-
metric singular perturbation theory [14], is performed
in the general case of a nonlinear primary system cou-
pled to N different NESs. The particular case of a
linearized primary system coupled to N identical NESs
is analyzed in Sect. 4. Sect. 5 is devoted to illustrat-
ing and validating analytical predictions proposed in
Sects. 3 and 4. For this purpose, a Van der Pol oscilla-
tor is considered as a primary system.

2 System under study

One considers a one degree of freedom unstable nonlin-
ear system

m
d2x

dt′2
− p dx

dt′
+ kx+ f̃NL

(
x,
dx

dt′

)
= 0, (1)

where m is the mass, k is the linear stiffness and −p
(with p > 0) is the negative damping which causes the
linear instability. The nonlinear function f̃NL (called
nonlinearity of the primary system) allows the exis-
tence of Limit Cycle Oscillations (LCOs) on which the
system can saturate. In the remainder of the paper,
we assume large amplitude LCOs which correspond to
harmful situations for the system.

A network of N NESs with masses mn, damping co-
efficients cn and pure cubic stiffnesses kNLn (for n =
1, . . . , N), are attached to the system in an ungrounded
configuration (NESs are parallel to each other, see
Fig. 1). Because a NES is an essentially nonlinear
oscillator, the linear stiffness components (kn) are ne-
glected. This assumption is in agreement with experi-
mental data (see for example [1, 12, 15]).

Taking into account the NESs displacements hn(t′),
the equations of motion of the coupled system become

m
d2x

dt′2
− p dx

dt′
+ kx+ f̃NL

(
x,
dx

dt′

)
+ (2a)

N∑
n=1

[
cn

(
dx

dt′
− dhn

dt′

)
+ kNLn (x− hn)3

]
= 0

mn
d2hn
dt′2

− cn
(
dx

dt′
− dhn

dt′

)
− kNLn (x− hn)3 = 0,

(2b)
for n = 1, . . . , N.

Introducing the new time t = ωt′, with ω =
√
k/m,

and rescaling system of Eqs. (2) through a dimension-
less small parameter ε > 0 assuming that the mass of
the NESs are small with respect to the mass of the pri-
mary system, one obtains the following rescaled system

ẍ− ερẋ+ x+ εfNL (x, ẋ) + (3a)
N∑
n=1

[
εµn

(
ẋ− ḣn

)
+ εαn (x− hn)3

]
= 0

εanḧn − εµn
(
ẋ− ḣn

)
− εαn (x− hn)3 = 0, (3b)
for n = 1, . . . , N,
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Figure 1: (a) Unstable linear dynamical system coupled
to N parallel NESs. m is the mass, k is the stiffness and −p
is the negative damping which causes the instability. (b)
Zoom on the NESn.

where

s ρ = p

ε
√
mk

, fNL(x, ẋ) = f̃NL(x, ωẋ)
ε mω2 , an = mn

εm
,

µn = cn

ε
√
mk

, αn = kNLn
εmω2 ,

(4)
and the dot denotes the differentiation with respect to
the new time variable t.

3 Asymptotic analysis in the general
case of a nonlinear primary system
coupled to N different NESs

3.1 The slow-flow

First, to simplify the following calculations, it is conve-
nient to introduce new coordinates as

u = x+ ε

N∑
n=1

anhn (5a)

vn = x− hn, for n = 1, . . . , N, (5b)

giving reciprocally,

x = u+ ε
∑N
n=1 anvn

1 + ε
∑N
n=1 an

(6a)

hn =
u−

(
1 + ε

∑N
k=1
k 6=n

ak

)
vn + ε

∑N
k=1
k 6=n

akvk

1 + ε
∑N
k=1 ak

, (6b)

for n = 1, . . . , N.

Using Eqs. (5) and (6), system of Eqs (3) is trans-
formed to the following form

ü+ u+ ε

(
− ρu̇+

N∑
n=1

an (vn − u) + (7a)

fNL (u, u̇, v1, v̇1, . . . , vN , v̇N )
)

= 0

v̈n + u+ µn
an
v̇n + αn

an
v3
n+ (7b)

ε

(
− ρu̇+

N∑
k=1

(
ak (vk − u) + µkv̇k + αkv

3
k

)
+

gn,NL (u, u̇, v1, v̇1, . . . , vN , v̇N )
)

= 0,

for n = 1, . . . , N

after performing a first-order Taylor expansion around
ε = 0. Because of the change of variables (5), the
nonlinearity of the primary system affects both vari-
ables u and vn. To simplify the notations, we use again
fNL even if the function has changed from Eq. (3a) to
Eq. (7a).

We restrict our attention to the motion of the sys-
tem in the vicinity of a 1:1 resonance associated to a
frequency close to the natural frequency (ω = 1) of the
primary system.

Following the Complexification-Averaging method
(CA-X) [22, 27], complex variables are introduced as

ψ = u̇+ ju (8a)
ζn = v̇n + jvn, for n = 1, . . . , N (8b)

and

ψ = φejt (9a)
ζn = ξne

jt, for n = 1, . . . , N (9b)

where j2 = −1 and φ and ξn (for n = 1, . . . , N) are the
complex slow modulated amplitudes of the fast compo-
nent ejt.

Substituting Eqs. (8) and (9) into (7) and averaging
over one period, system of Eqs (7) reduces to

φ̇ = εf (φ, ξ1, . . . , ξN ) (10a)
ξ̇n = gn (φ, ξ1, . . . , ξN , ε) , for n = 1, . . . , N, (10b)
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where

f (φ, ξ1, . . . , ξN ) =

1
2

(
ρ φ+ j

N∑
n=1

an (ξn − φ)
)

+ fNL (φ, ξ1, . . . , ξN ) ,

(11a)

gn (φ, ξ1, . . . , ξN , ε) =
j

2φ−
1
2

(
µn
an

+ j

)
ξn + 3jαnξn |ξn|2

8an
+

ε

8

(
4
(
ρ− j

N∑
k=1

ak

)
φ−

N∑
k=1

4 (µk − jan) ξk−3jαkξk |ξk|2
)

+

ε gn,NL (φ, ξ1, . . . , ξN ) . (11b)

Without loss of generality, the same notations have
been used to express the nonlinear functions fNL and
gn,NL before and after the averaging process.

system of Eqs (10) describes the Complex Form of
the Slow-Flow (CFSF) of (7). It is important to note
that due to the assumption of 1:1 resonance, only the
terms with fast frequency equal to 1 are kept during
the averaging step. Therefore, only odd nonlinearities
can be taken into account, the even nonlinearities are
averaged out.

3.2 The Critical Manifold

The slow-flow described by system of Eqs (10) high-
lights explicitly the "slow/fast" nature of the system:
Eq (10a) contains only O(ε) terms and Eq (10b) con-
tains both O(1) and O(ε) terms. Note that the nonlin-
earities of the primary system in Eq (10b) are located
only in O(ε) terms (see Eq. (11b)). Here the terminol-
ogy used by Gendelman et al. (see e.g. [10]) is preferred,
i.e. the terms fast and slow are replaced by slow and
super-slow respectively, whereas the term fast denotes
the time scale determined by fast oscillations of the pri-
mary system with frequency 1.

Eq. (10) can be reformulated by switching from the
slow time scale t to the super-slow time scale τ = εt as

φ′ = f (φ, ξ1, . . . , ξN ) (12a)
ε ξ′n = gn (φ, ξ1, . . . , ξN , ε) , for n = 1, . . . , N,

(12b)

where ′ = d
dτ . Solutions of the super-slow/slow sys-

tem (10) (or (12)) can exhibit slow and super-slow
epochs characterized by the speed at which the solu-
tion advances.

Stating ε = 0, the following subsystems are derived
from (10) and (12) respectively

φ̇ = 0 (13a)

ξ̇n = gn (φ, ξ1, . . . , ξN , 0) , for n = 1, . . . , N,
(13b)

which is the slow subsystem, and

φ′ = f (φ, ξ1, . . . , ξN ) (14a)
0 = gn (φ, ξ1, . . . , ξN , 0) , for n = 1, . . . , N, (14b)

which is the super-slow subsystem.
The algebraic Eqs. (14b) of the super-slow subsystem

defines the so-called Critical Manifold S [14] as

S :=
{

(φ, ξ1, . . . , ξN ) ∈ CN+1 ∣∣
gn (φ, ξ1, . . . , ξN , 0) = 0 for n = 1, . . . , N

}
. (15)

Looking at Eq. (11b), one can see that Eq. (14b) can
take the following equivalent form

φ = ξnFn (|ξn|) , for n = 1, . . . , N, (16)

where the complex functions Fn are defined by

Fn(X) = 1− 3αn
4an

X2 − j µn
an

= Rn(X) + jIn(X) (17)

showing that the form of S depends, at the time t =
ωt′,only on the NESs parameters.

It is convenient to characterize S in the real domain.
For this purpose, polar coordinates are introduced

φ = sejδ (18a)
ξn = rne

jθn , for n = 1, . . . , N, (18b)

and the modulus and the argument of Eq. (16) are suc-
cessively computed, leading to the following equivalent
form

s2 = Hn(rn) (19a)
ϑn = − arg (Fn(rn)) for n = 1, . . . , N (19b)

where ϑn = θn− δ denotes the difference of the angular
coordinate between ξn and φ and

Hn(rn) = r2
n

[
Rn(rn)2 + In(rn)2] . (20)

Result 3.1 Due to system of Eqs (19), the critical
manifold S is characterized as a one dimensional para-
metric curve evolving in R+N . It is the projection on
the (r1, . . . , rN )-space (i.e. R+N ) of the intersection of
the N Eqs. (19a), s2 = H1(r1), . . . , s2 = HN (rN ), de-
fined in the (s, r1, . . . , rN )-space (i.e. R+N+1).

Note that in the sequel we will abundantly use the

4



(a)

(b)

Figure 2: Example of typical critical manifold of a system
containing two parallel NESs (N = 2) (a) in the (s, r1, r2)-
space (i.e. R+3) and (b) projected on the (r1, r2)-plane (i.e.
R+2) . Following parameters are used: a1 = a2 = a3 = 1,
α1 = 5, α2 = 6, α3 = 7, µ1 = 0.2, µ2 = 0.3 and µ3 = 0.4.

following relationships holding in S

ξnFn (|ξn|) = ξmFm (|ξm|) , for n,m = 1, . . . , N
(21)

or, using polar coordinates (18),

Hn(rn) = Hm(rm), θnm = θn−θm = arg
(
Fm(rm)
Fn(rn)

)
,

for n,m = 1, . . . , N. (22)

An illustration of Result 3.1 is presented in Fig. 2 for

Stable

Unstable

��

����

��

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

Figure 3: Part of the Critical Manifold (CM) correspond-
ing to the n-th NES, Eq (20). Following parameters are
used: an = 1, αn = 6 and µn = 0.3.

N = 2. One can see a typical critical manifold plotted
in the (s, r1, r2)-space (i.e. R+3) and its projection on
the (r1, r2)-plane (i.e. R+2).
Each point of S is a fixed point for the slow subsys-

tem (13). To determine the stability of a point of S,
one must know if it attracts or repels the slow dynamics.
For this purpose, using again the polar coordinates (18)
combined with Eqs. (16), (17), (19) and (20), system of
Eqs (13) can be rewritten as follows

ṡ = 0 (23a)

ṙn = 1
2 (s sinϑn + rnIn(rn)) (23b)

ϑ̇n = 1
2

(
s

rn
cosϑn −Rn(rn)

)
, for n = 1, . . . , N.

(23c)

Stability range is then determined by examining the
sign of the eigenvalue real parts of the Jacobian matrix
of the differential system (23b)-(23c) on critical mani-
fold S. It can be shown that the condition of stability
for a point r = [s, r1, . . . , rN ] is equivalent to

dHn (rn)
drn

> 0, for n = 1, . . . , N. (24)

For each n, the local extrema of the real functions
Hn are given by the positive roots of its derivative
dHn(rn)/drn. An easy calculus shows that the local
extrema occur at

rMn = 2
3

√
2an −

√
a2
n − 3µ2

n

αn
(25a)

rmn = 2
3

√
2an +

√
a2
n − 3µ2

n

αn
, (25b)
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if the following relation holds

µn <
an√

3
, (26)

and in this case rMn < rmn .
Assuming that the condition (26) holds for the N

NESs, the stability domain on S is only character-
ized by the (r1, r2, . . . , rn)-subspace D given in terms
of Cartesian product as

D =
N∏
n=1

Dn, (27)

where
Dn =

[
0 rMn

]
∪ [rmn +∞) . (28)

Dn denotes the stability range associated to the n-th
NES characterized on R+ by the two roots, rmn and rMn
(see Eqs. (25b) and (25a)).

A typical projection of the Critical Manifold onto
the subspace R+2 corresponding to the n-th NES (vari-
ables (s, rn)) is depicted in Fig. 3 where the stabil-
ity range is also reported. The two points (sm, rmn )
and (sM , rMn ) where the two scalars smn =

√
Hn (rmn )

and sMn =
√
Hn (rMn ) characterize the bounds where

S ceases to be hyperbolic1 connecting stable or attrac-
tive (continuous line) and unstable or repulsive (dashed
line) parts of S. These two points are called fold points.
The two scalars rdn and run which will later be used are
solutions of

Hn (rmn ) = Hn

(
rdn
)
⇒ rdn = 2

√
2

3

√
an −

√
a2
n − 3µ2

n

αn
,

(29a)

Hn

(
rMn
)

= Hn (run) ⇒ run = 2
√

2
3

√
an +

√
a2
n − 3µ2

n

αn
.

(29b)

Eq. (27) may be expanded as the union of 2N Carte-
sian products, each of them being the product of close
or left-close intervals resulting in an isolated stable or
attractive part of the the critical manifold S, hereafter
denoted Iak (with k ∈ [1, 2N ])

D =
2N⋃
k=1

Iak , (30)

where the first and the last terms are chosen as Ia1 =∏N
n=1[0, rMn ] and Ia2N =

∏N
n=1[rmn ,+∞) respectively.

Examples of typical critical manifolds for a system
containing two and three parallel NESs are presented
in Figs. 4(a) and 4(b) respectively. In both figures the
stability domain of S is shown. In particular, Eq. (30)

1S is hyperbolic if all the eigenvalues of the Jacobian matrices
of the differential system (23) have nonzero real parts.

is illustrated in Fig. 4(a), in the (r1, r2)-plane. Indeed,
D, the stable (or attractive) domain (gray areas on the
figure in which S is depicted in magenta) is defined by

D =
([

0 rM1
]
∪ [rm1 +∞)

)
×
([

0 rM2
]
∪ [rm2 +∞)

)
=
([

0 rM1
]
×
[
0 rM2

])
∪
([

0 rM1
]
× [rm2 +∞)

)
∪(

[rm1 +∞)×
[
0 rM2

])
∪ ([rm1 +∞)× [rm2 +∞)) ,

(31)

whereas the unstable or repulsive part (white areas on
the figure in which S is depicted in blue) is defined as
the associated complement set of D in R+2 .

Such structures of the critical manifold S provide a
possibility for relaxation oscillations [13] of the slow-
flow characterized by sudden transitions (jumps) of the
dynamics during each cycle (the hypothetical sudden
transitions between the two stable branches are denoted
by arrows in Fig. 3). Unlike the case with just one
NES, the presence of several NESs allows the existence
of several relaxation oscillations scenarii: relaxation os-
cillations in all planes (rn, s) or just in some of them.
Such relaxation oscillations of the slow-flow reflect the
presence of TET from the primary unstable system to
the NESs and explain the existence of Strongly Modu-
lated Responses [24, 11, 10] (SMRs) of the non-averaged
system (2). In view of the foregoing, in order to enable
the existence of such SMRs, the NES must respect the
condition (26) to ensure the S-shape of the critical man-
ifold S.

We proceed to a more detailed analysis of the possi-
ble steady-state regimes in the next section computing
fixed points of the slow-flow and their stability.

3.3 The fixed points of the slow-flow

We are interested in the nontrivial fixed points of the
slow-flow (10). These nontrivial fixed points charac-
terize periodic solutions of system of Eqs (7) having a
frequency exactly equal to 1, the frequency used to de-
fine the complex variables (9). The fixed point of (10)
can be computed from the Real Form of the Slow-Flow
(denoted RFSF) obtained by substituting the polar co-
ordinates (18) and considering instead of the arguments
δ and θn(t), the argument differences ϑn = θn − δ (the
master component can be chosen arbitrarily, φ is here
chosen for convenience). RFSF may be formally writ-
ten as follows

Ż = G (Z, ε) with Z = [s r1 . . . rN ϑ1 . . . ϑN ]t .
(32)

system of Eqs (32) gives a formulation to characterize
the existence of stable periodic response which is not
easy to manipulate and solve.

In the sequel, the Geometric Singular Perturbation
Theory (GSPT) [8, 14, 6] is preferred to conduct the
analysis. The dynamics of the slow-flow (CFSF (10) or

6
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Figure 4: Examples of typical CM for a system containing (a) two and (b) three parallel NESs. Following parameters are
used: a1 = a2 = a3 = 1, α1 = 5, α2 = 6, α3 = 7, µ1 = 0.2, µ2 = 0.3 and µ3 = 0.4.

RFSF (32)) for 0 < ε � 1 is described from the anal-
ysis of the slow and super-slow subsystems (which are
defined for ε = 0). More precisely, we use the following
result of the GSPT: if 0 < ε � 1, the dynamics of the
slow-flow during the slow (resp. super-slow) epoch is
given by the dynamics of the slow (resp. super-slow)
subsystem (13) (resp. (14)). This allows to easily com-
pute the fixed points of system of Eqs (32) which are
assumed to exist only at the super-slow time scale.

As detailed in Appendix A, Eq. (32) gives access to
the slow subsystem (system of Eqs (64)) and to the
super-slow subsystem (system of Eqs (65)) in polor co-
ordinates. Substiting system of Eqs (19) with n = 1
(any n ∈ [1, N ] can be chosen) into the super-slow sub-
system we obtain

dH1 (r1)
dr1

r′1 = fr1 (r1, . . . , rN ) , (33)

where H1 is defined by Eq. (20) and fr1 is built in
Appendix A and explicitly given here after. Eq. (33)
describes the super-slow dynamics projected on the crit-
ical manifold S.

From Eq. (33), it is possible to detect fixed points as

fr1 (r1, . . . , rN ) = 0 (34a)
dH1 (r1)
dr1

6= 0, (34b)

and folded singularities as

fr1 (r1, . . . , rN ) = 0 (35a)

dH1 (r1)
dr1

= 0. (35b)

Folded singularities correspond to situations for which
fixed points and fold points coincide, they are hints of
possible canard explosions [2]. The rest of the section is
dedicated to the analysis of the fixed points which, for
0 < ε� 1, are assumed to be the fixed points of (32).

Eq. (33) can be re-written separating the linear part
of the primary system and the nonlinearities due to the
NESs attachments as

fr1 (r1, . . . , rN ) = 2
(
ρH1(r1)−

N∑
k=1

r2
kµk+fNL (r1, . . . , rN )

)
,

(36)

where, without loss of generality, the same notations
have been used to express the nonlinear function fNL
(of the primary system) before and after the use of polar
coordinates (18).

Hence, finding the fixed points of system of Eqs (32)
amounts to finding the roots of

ρH1(r1)−
N∑
k=1

r2
kµk + fNL (r1, . . . , rN ) = 0 (37a)

Hn(rn)−H1(r1) = 0,
for n = 2, . . . , N (37b)

which can be easily solved with a regular computer (at
least up to N ≈ 5 or 6).

To check the stability of a fixed point (denoted r∗ =
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[r∗1 , . . . , r∗N ]), Eq. (33) is written as

r′1 = f (r1, . . . , rN ) , (38)

where

f (r1, . . . , rN ) = 2ρH1(r1)−∑N
k=1 r

2
kµk + fNL (r1, . . . , rN )
dH1(r1)
dr1

.

(39)
The stability is deduced from the sign of df

dr1
(r∗) where,

using Eq. (37b), df
dr1

(r) takes the form

df

dr1
(r) = ∂f

∂r1
(r) +

N∑
n=2

∂f

∂rn
(r)drn

dr1

= ∂f

∂r1
(r) +

N∑
n=2

∂f

∂rn
(r)H

′
1(r1)

H ′n(rn) . (40)

Result 3.2 A fixed point r∗ of Eq. (32) is stable if the
two following conditions are satisfied

1. df

dr1
(r∗) < 0,

2. ∀n ∈ [1, N ], r∗n ∈ [0 rMn ] ∪ [rmn +∞).

A stable (respectively unstable) fixed point is de-
noted r∗s =

[
r∗s,1, . . . , r

∗
s,N

]
(respectively r∗u =[

r∗u,1, . . . , r
∗
u,N

]
).

The second condition means that to be stable the fixed
point must be on a stable branch of the critical manifold
S (see Sect. 3.2).

3.4 Prediction of the mitigation limit

Four main types of response regimes may be generated
when a NES is attached to an unstable system: com-
plete suppression of the instability, mitigation through
Periodic Response (PR), mitigation through Strongly
Modulated Response (SMR) or no mitigation. These
four types of responses have been observed and ana-
lyzed in the case of a Van de Pol oscillator coupled to
one NES [10]. They have also been observed in [17] and
studied theoretically in [11] in the context of the mit-
igation of aeroelastic instabilities of a rigid wing in a
subsonic flow. Furthermore, Bergeot et al. [5] observed
these responses studying mitigation of a mode-coupling
instability in breaking systems using two NESs.

Numerical simulations by the authors on the consid-
ered system show that the same regimes are encoun-
tered considering N parallel NESs. In this study we
classify these regimes into two categories depending on
whether the NESs act or not and therefore separating
harmless situations from harmful situations:

1. Harmless situation: The NESs act, resulting in
the following regimes

(a) Complete suppression. The trivial fixed point
of the slow-flow is reached. In this case,
due to the additional damping, the NESs at-
tachments stabilize the system, i.e. the triv-
ial fixed point, common to both the non-
averaged system and the slow-flow, becomes
stable.

(b) Mitigation through Periodic Response. A
nontrivial stable fixed point of the slow-flow is
reached. In this case, the steady-state regime
of the non-averaged system (2) is a periodic
regime, i.e. LCOs with amplitudes smaller
than the amplitudes of the LCOs undergone
by the primary system alone.

(c) Mitigation through Strongly Modulated Re-
sponse. In this case, the steady-state regime
is a quasiperiodic regime which exhibits a
"fast" component and a "slow" component cor-
responding to the envelope of the signal. The
term "Strongly modulated response" has been
introduced in [24] for the study of a harmon-
ically forced linear system coupled to a NES.
SMRs for (2) corresponds to relaxation oscil-
lations of the slow-flow mentioned in Sect. 3.2.
To ensure the existence of SMRs, at least one
of the N parallel NESs must respect the con-
dition (26).

2. Harmful situation: The NESs do not act result-
ing in

(a) No mitigation. The NESs are not able to mit-
igate the instability and the non-averaged sys-
tem saturates on a LCO which has an ampli-
tude close to that of the case without NES.
Regarding the slow-flow, it reaches a stable
fixed point with large amplitude.

The nature of the steady-state regime depends on two
characteristics of the slow-flow: (i) the initial conditions
(to know where the slow dynamics leads the trajectory
on S) and (ii) the fixed points (position and stability)
which orientate the dynamics on S at the super-slow
time scale. In the present paper, for convenience and
in accordance with real word situations, we consider
a set of initial conditions [s(0), r1(0), . . . , rN (0)] as a
small perturbation of the trivial solution.

In reference to the two situations (harmless and
harmful) described above and the previous comments,
the mitigation limit is introduced in the following
definition.

Definition 3.1 Considering a set of initial conditions
(for the slow-flow) [s(0), r1(0), . . . , rN (0)] as a small
perturbation of the trivial solution, the mitigation
limit is defined as the value of a chosen bifurcation pa-
rameter which separates harmful situation from harm-
less situation.

8



Classically the bifurcation parameter is one of the
parameters of the considered system which affects the
fixed points of the slow subsystem (see system of
Eqs (37)).

The mitigation limit is only based on the nature of
the steady-state regimes when 1:1 resonance occurs.
This approach may be questioned regarding the am-
plitudes of these regimes. In this context, two is-
sues have to be given a special attention. First, one
might wonder, if a stable fixed point of the slow-flow is
reached, how to know if the system undergoes a Miti-
gation through Periodic Response (harmless situation)
or No mitigation (harmful situation). In general, the
primary nonlinearity generates, in the bifurcation di-
agram of the slow-flow, an isolated branch of stable
fixed points which are the larger ones (compared to
both stable and unstable fixed points). In particular
situations (addressed in Sect. 5.3) some other stable
fixed points may also have large amplitude, remaining
smaller than those of the primary nonlinearity. Conse-
quently, the following issue may arise: if SMRs are ob-
served, is the resulting amplitude sufficiently small to
characterize the regime as a harmless situation? This
point is easier to answer. Indeed, the amplitude of the
relaxation oscillation of the slow-flow is given by the co-
ordinates of the fold points (29). Therefore, the NESs
parameters can be chosen to have relaxation oscillations
with small amplitudes compared with the amplitudes of
the LCOs generated by the primary nonlinearity.

In the following, the method to predict the steady-
state regimes, and consequently the mitigation limit, is
presented. It is based on the above study (Sects. 3.2 and
3.3) which provides a theoretical framework to explain
and predict the possible steady-state regimes (described
above) of first the slow-flow itself and consequently of
the non-averaged system (2).

Conditions to ensure that the system undergoes a
harmless situation are stated in the following result.

Result 3.3 The conditions to obtain harmless situ-
ations are split in two cases:

Case 1 We assume that at least one of the N parallel
NESs respects condition (26).

Case 1a: We assume that the slow-flow has a sta-
ble fixed point r∗s =

[
r∗s,1, . . . , r

∗
s,N

]
(trivial or

nontrivial) on the first attractive part of the
critical manifold S, i.e.

r∗s ∈ Ia1 . (41)

The system is in a harmless situation
(trajectories reach inevitably r∗s) and under-
goes Complete suppression for the trivial fixed
point or Mitigation through Periodic Response
for the nontrivial fixed points. If (41) is not
respected, Case 1b holds instead of Cases 1a.

Case 1b: Let Ru be the set of all nontrivial unsta-
ble fixed points on a stable part of the critical
manifold S. We assume that Ru 6= ∅, i.e the
slow-flow has at least one nontrivial unstable
fixed point r∗u =

[
r∗u,1, . . . , r

∗
u,N

]
on a stable

part of the critical manifold S.
Let N = {n ∈ [1, N ] such that µn < an/

√
3}

(here N 6= ∅). The system is in an harmless
situation if

∀n ∈ N , max
r∗u∈Ru

r∗u,n > run, (42)

where run is defined by (29b).
In this case, harmless situations correspond to
Mitigation through Periodic Response or Mit-
igation through Strongly Modulated Response.
To discriminate PR from SMR, the existence
of the stable fixed point is not sufficient. In-
deed, the relaxation oscillations may prevent
the trajectory to reach the latter.

Conversely, an harmful situation is obtained if
the system is neither in Case 1a, i.e. condition
(41) is not respected, nor in Case 1b, i.e.

• the system has no unstable fixed point. In this
situation, the system reaches the stable fixed
point with large amplitude and it is therefore
in an harmful situation.

• or
∃n ∈ N , max

r∗u∈Ru

r∗u,n < run. (43)

In this case, after a transient regime at the
slow time scale the trajectory is pushed to
a stable fixed point with a large amplitude
(due to the primary nonlinearity and there-
fore close to that of the case without NES),
along S (at the super-slow time scale), by the
unstable fixed point r∗u (which satisfies (43))
and the system is actually in an harmful sit-
uation.

Case 2 We assume that ∀n ∈ [1, N ], µn > an/
√

3.
In this case relaxation oscillations cannot happen.
A harmful situation is obtained if the slow-flow
admits only one stable nontrivial fixed point. It
corresponds to the fixed point due to the primary
nonlinearity. A harmless situation is obtained
if at least two stable nontrivial fixed points exist.
The trajectory reaches inevitably the first one on S.
Therefore, the system undergoes Complete suppres-
sion for the trivial fixed point or Mitigation through
Periodic Response for the nontrivial fixed point.

A quantitative characterization of the mitigation
limit of the system is now given. As an example, we
consider the parameter ρ (see (3)) as the bifurcation
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parameter. Let ρlim be the value of the parameter ρ af-
ter which the slow-flow has no more nontrivial unstable
fixed point.

Result 3.4 The mitigation limit can be characterized
considering separately Case 1 and Case 2 (as introduced
in Result 3.3).

1. Assuming Case 1:
For each n ∈ N , we define ρsn as the value of the
parameter ρ such that

max
r∗u∈Ru

r∗u,n = run, (44)

where run is defined by Eq. (29b) and the minimum
value ρs as

ρs = min
n∈N

ρsn. (45)

The mitigation limit, denoted ρml, is defined as
follows

ρml =
{
ρs, if ρs < ρlim (46a)
ρlim, if ρs > ρlim. (46b)

2. Assuming Case 2:
Because S has no fold points, ρsn does not exist and
therefore

ρml = ρlim. (47)

Results 3.3 and 3.4 are particularly interesting for
engineering applications because they allow to discrim-
inate harmful situations from harmless situations.

Analytical predictions proposed in Results 3.3 and
3.4 are illustrated and compared, for validation pur-
poses, to numerical simulations in Sect. 5. The partic-
ular case of a linearized primary system coupled to N
identical NESs is studied beforehand in next section.

4 Asymptotic analysis in the particular
case of a linear primary system cou-
pled to N identical NESs

4.1 Literal expression of the mitigation limit

In this section, we assume N identical NESs (an = a,
µn = µ and αn = α, ∀n ∈ [1, N ]) and a linear primary
system (f̃NL = 0). In this case, the following result can
be obtained.

Result 4.1 Over the set of the fixed points R, the
largest value for each n coordinate, with n ∈ [1, N ],
is equal to w, i.e.

∀n ∈ [1, N ], max
r∗∈R

r∗n = w, (48)

with

w = 2

√
aρ+

√
µρ (a2N − µρ)

3ρα . (49)

The point defined as the constant coordinate w defines
an unstable fixed point in the stable part of S.

Result 4.1 is proved in Appendix B.
Eq. (49) shows that to ensure the existence of, at

least, one nontrivial unstable fixed point of the slow-
flow (see Result 3.3), the expression (49) must be real,
i.e. a2N − µρ > 0. We can therefore obtain the literal
expression of ρlim

ρlim = a2N

µ
. (50)

Moreover, because the NESs are identical, one also has

ru1 = ru2 = · · · = ruN−1 = ruN = ru =

2
√

2
3

√
a+

√
a2 − 3µ2

α
. (51)

Therefore, the limit value ρs, solution of Eq. (44) for N
identical NESs, can be obtained as

ρs =
a2µN

(
4a
√
a2 − 3µ2 + 5a2 − 3µ2

)
(a2 + µ2)2 . (52)

One can be shown that the inequality ρs < ρlim is
equivalent to µ < a/2. Therefore, according to Re-
sult 3.4, the literal expression of the mitigation limit for
a linear primary system coupled to N identical NESs,
denoted ρ∗ml, is obtained and stated in the following
result.

Result 4.2 The mitigation limit ρ∗ml, in the case of N
identical NESs, is defined by the following equation

ρ∗ml =


a2µN

(
4a
√
a2 − 3µ2 + 5a2 − 3µ2

)
(a2 + µ2)2 , if µ < a/2(53a)

a2N

µ
, if µ > a/2. (53b)

Note that because a/2 < a/
√

3, Eq. (53) is valid for
both Case 1 and Case 2 introduced in Result 3.3.

4.2 Parametric study

In the case of identical NESs, the explicit expression
of the mitigation limit (53) allows to easily perform a
parametric study in order to obtain an optimal config-
uration, i.e. with the larger value of ρml.

It is worth noting, regarding Eq. (53), that the mit-
igation limit is proportional to the number of NESs it
only depends on the linear parameters of the NESs,
namely a and µ.

Eq. (53) is plotted as a function of a and µ in Fig. 5,
as a function of a for a fixed µ in Fig. 6(a) and as a
function of µ for a fixed value of a in Fig. 6(b). For a
given value of µ, ρml is an increasing function of a with
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Figure 5: Plot of Eq. (53) as a function of a and µ for
N = 3.
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15

(a)

(b)

Figure 6: Plot of Eq. (53) as a function of (a) a with
µ = 0.5 and (b) µ with a = 2 for N = 1, 2, 3, and 4.

the following asymptotic limit when a tends towards

infinity
lim

a→+∞
ρml = 9Nµ. (54)

For a given value of a, it exists an optimal value of µ
(denoted µopt, the abscissas of the maximums in Figure
6(b)). The expression of µopt can be obtained solving
dρml/dµ = 0, leading to

µopt = a

√
2√
3
− 1. (55)

Note that µopt is always smaller than a/2. The corre-
sponding mitigation limit is then computed substitut-
ing Eq. (55) into Eq. (53a) giving

ρml(µopt) = aN

2

√
9 + 6

√
3. (56)

It can be noted that the ρml(µopt) is proportional to
aN .
It might also be valuable to know, for a given mass

of the mitigation system, if it is more effective to use
one heavy NES or several light NESs. To answer the
question Equation (56) (corresponding to N NESs of
mass a) must be compared to the same substituting N
by 1 and a by aN (corresponding to one NES of mass
aN) giving the same mitigation limit. Following this
criterium, one heavy NES is equivalent to several light
NESs.

5 Application to a Van der Pol oscilla-
tor

This section is devoted to illustrate and validate ana-
lytical predictions proposed in Sects. 3 and 4. To this
end, a common Van der Pol oscillator is used as pri-
mary system. It is described by the following differen-
tial equation

ẍ+ ρεẋ
(
x2 − 1

)
+ x = 0. (57)

corresponding to the following nonlinearity of the pri-
mary system fNL(x, ẋ) = ρxẋ (see Eq. (3)). ρ is used
as the bifurcation parameter.

Since 0 < ε � 1 and ρ > 0, the Van der Pol oscil-
lator, described by Eq. (57), undergoes also relaxation
oscillations and it can be shown that the LCO ampli-
tude is AwoLCO = 2 (see for instance Example 5.2.1 in
[16]).

Performing the mathematical developments of
Sect. 3, system of Eqs (37) reads

ρ

(
H1(r1)− H2

1 (r1)
4

)
−

N∑
k=1

r2
kµ = 0 (58a)

Hn(rn)−H1(r1) = 0, for n = 2, . . . , N
(58b)
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Solving system of Eqs (58), fixed points of the slow-flow
can be computed. Using Eq. (40) and Result 3.2, the
stability of each fixed point can be determined.

5.1 Illustration of the results in the case of 3
different NESs

Let us first consider a case of a Van der Pol oscillator
coupled to N = 3 different NESs using the following set
of parameters

a1 = 1 a2 = 2 a3 = 3 (59a)
α1 = 2 α2 = 3 α3 = 4 (59b)
µ1 = 0.3 µ2 = 0.45 µ3 = 0.6 (59c)
ε = 0.001 (59d)

All NESs satisfy the condition µn < an/
√

3, therefore
relaxation oscillations are possible in all planes (rn, s)
for n ∈ [1, 3].
The comparison between the theoretical bifurcation

diagram, obtained from system of Eqs (58) and Re-
sult 3.2 and the maximum steady-state amplitudes ob-
tained from numerical simulations of the non-averaged
system (7) and of the slow-flow (10), both including
the Van der Pol primary nonlinearity, is presented in
Figs. 7 and 8.

The graphs of the maximum steady-state amplitude
give a numerical estimation of the mitigation limit as
the value of ρ for which the last jump of the ampli-
tude is observed. In practice, we take the first value
after the jump (with the larger amplitude). On Figs. 7
and 8 this jump appears at ρ ≈ 9.3 for both the non-
average system and the slow-flow. This value must be
compared to the theoretical prediction ρml. The set of
parameters used leads to a situation for which ρml is
defined by Eq. (46a). Therefore, on Fig. 7, the miti-
gation limit corresponds to the smaller intersection of
the branch of the larger fixed points and run. Here the
smaller intersection is obtained for the third NES: we
can read ρml ≈ 10 on Fig. 7(c), i.e. an overestimation
of 6%. This is due to the fact that the prediction is ob-
tained assuming 0 < ε� 1, for example using ε = 10−4

(resp. ε = 10−2) we find an overestimation of 2% (resp.
19%), again for both the non-averaged system and the
slow-flow.

5.2 Benchmark of the theoretical results in the
case of identical NESs

In this section, the relevance of the obtained theoretical
results is investigated in a systematic way. For this
purpose, the following quantities are defined:

1. ρn,1ml : the first numerical estimation of the mit-
igation limit. It is "measured" on the graphs
of the maximum steady-state amplitude obtained
from numerical simulations of the non-averaged

system (7). ρn,1ml is the reference value of the
mitigation limit.

2. ρn,2ml : the second numerical estimation of the miti-
gation limit. It is "measured" on the graphs of the
maximum steady-state amplitude obtained from
numerical simulations of the slow-flow (10).

The previous numerical estimations of the mitigation
limit are compared to the corresponding theoretical val-
ues:

1. ρml: the theoretical value of the mitigation limit
defined in Sect. 3.4, considering a nonlinear pri-
mary system and valid for the general case of N
different NESs.

2. ρ∗ml: the theoretical value of the mitigation limit
defined in Sect. 4.1, considering a linearized pri-
mary system. In this case a literal expression of
the mitigation limit is obtained (see Eq. (53)) but
it is valid only for N identical NESs.

The following parameters are used

an = 2 (60a)
αn = 4, ∀n ∈ [1, N ] (60b)

and the influence of the parameters µn = µ (∀n ∈
[1, N ]), ε and N on the mitigation limit is investigated.
Results are plotted in Figs. 9, 10 and 11 respectively.
Relative errors of the mitigation limit are computed (in
percentage) through the following expression

X − ρn,1ml

ρn,1ml

× 100, (61)

where X can denote ρn,2ml , ρml or ρ∗ml. In the sequel,
positive relative errors are called overestimations and
negative relative errors are called underestimations.

In Fig. 9, one can see first that the slow-flow is able
to estimate the mitigation limit. Indeed, the curves of
ρn,1ml and ρ

n,2
ml are almost superimposed with a maximum

overestimation of 2.4% and 1.9% for N = 2 and N = 4
respectively. Then, the figure shows that the theoretical
prediction ρml overestimates the mitigation limit when
µ is close to its optimal value µopt = 0.79 with a max-
imum overestimation of 11% and 18% for N = 2 and
N = 4 respectively. However, the prediction is correct
for µ > a/2, when the theoretical prediction is given
by ρs (see Result 3.4). Finally, we can observe that the
theoretical prediction ρ∗ml overestimates the mitigation
limit for µ < a/2 (with a maximum overestimation of
7.4% and 14.3% for N = 2 and N = 4 respectively) and
underestimates for µ > a/2 (with a maximum under-
estimation of 18.4% and 15.8% for N = 2 and N = 4
respectively). In Sect. 5.1, the differences between the
reference value of the mitigation limit obtained with nu-
merical simulations and the theoretical predictions have
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(a) (b) (c)

Figure 7: Comparison between the theoretical bifurcation diagram, obtained from system of Eqs (58) and Result 3.2
(magenta dots for stable fixed points and blue dots for unstable fixed points) and the maximum steady-state amplitudes
obtained from numerical simulations of system of Eqs (7) (black empty circles) and system of Eqs (11) (green filled squares)
including the Van der Pol primary nonlinearity. The bifurcation diagram and the maximum steady-state amplitudes are
plotted for the variables (a) r1, (b) r2 and (c) r3. The set of parameters (59) is used.

been explained by the assumption 0 < ε � 1. Results
presented in Fig. 9 show that neglecting the primary
nonlinearity (to obtain ρ∗ml) is also a source of error,
with a same order of magnitude.

In Fig. 10, the error made assuming 0 < ε � 1 is
investigated more precisely. We can see that the rel-
ative errors (61) of the theoretical predictions of the
mitigation limit increase with the parameter ε. Table 1
presents the computed maximum and minimum relative
errors. As expected, the maximum errors are obtained
for ε = 10−2 and the minimum errors for ε = 10−4,
whatever the value of N .

Finally, Fig. 11 shows the influence of the number N
of parallel NESs. One can see that the overestimation of
the theoretical predictions ρml and ρ∗ml increase withN .
We have minimum overestimations of 4.7% and 2.3%
for ρml and ρ∗ml for N = 1 respectively. The maximum
overestimations are obtained for N = 6, reaching 18.7%
and 14.9% for ρml and ρ∗ml respectively.

Observing Figs. 10 and 11 and Table 1, it can be
shown that the errors of the prediction ρml is often
larger than the error of ρ∗ml. This may seem contra-
dictory, but in fact the error caused by the assumption
of a small ε may be compensated by the error made

ignoring the primary nonlinearity.

5.3 On the influence of the cubic stiffnesses of
the NESs

The purpose of this final section is first to validate the
separation method between harmless and harmful sit-
uations based only on the nature of the steady-state
regimes. Then, in this context, the influence of the pa-
rameter α is investigated.
The maximum steady-state amplitudes obtained

from numerical simulations of the slow-flow (10) includ-
ing the Van der Pol primary nonlinearity as functions
of µ and ρ are shown as density plots in Fig. 12 and as
3-D plots in Fig. 13 respectively for ε = 0.001, a = 2,
N = 2 and three different values of the parameter α (2,
4 and 6). In Fig. 12, the mitigation limit ρ∗ml (Eq. (53))
corresponding to α = 0 (linear primary system) is also
drawn. In accordance with the order of magnitude of
the nonlinearity of the primary system (see Eq. (3a)),
the separation lines between small and large amplitudes
for the three values of α show a good agreement with
ρ∗ml specially for small values of µ(< a/2). We observe
that the amplitude jump corresponds actually to a large
variation. The variation increases with α overall and
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(a) (b)

Figure 8: Bifurcation diagram and maximum steady-state amplitudes plotted for the variable s. Fig. (b) is a zoom of Fig.
(a). The horizontal black line at s = 2 corresponds the LCO amplitude of the Van der Pol oscillator without any NES. The
set of parameters (59) is used.

the maximum values are obtained for small values of µ.
For a given α the variation decreases when µ increases.
For µ < a/2 the jumps occur between SMR and stable
PR whereas for µ > a/

√
3 they occur between stable

PRs.
The final but important remark is the fact that for

large µ values and small α values there are no ampli-
tude jumps anymore. This corresponds to situations
in which the primary nonlinearity cannot be neglected
compared to the nonlinearity of the NESs. It can be
shown that the resulting bifurcation diagram of the
slow-flow is composed of a single branch of stable fixed
points.

6 Conclusion

We have performed an asymptotic analysis of a primary
nonlinear unstable system coupled to N parallel Non-
linear Energy Sinks (NESs).

As usual, in the framework of NES properties explo-
ration and particularly in the context of dynamic insta-
bilities mitigation, four steady-state response regimes
have been observed. They are classified into two cate-

gories depending on whether the NESs act or not and
therefore separating harmless situations from harmful
situations. Three responses are referred to as harmless
situations, namely complete suppression, partial sup-
pression through periodic response, partial suppression
through strongly modulated response; and one is re-
ferred to as harmful situation, that is called no sup-
pression of the instability.

To analyze the steady-state response regimes, the
system has been partitioned into slow-fast dynamics
(denoted super-slow/slow dynamics for convenience)
using the complexification-averaging method. The
presence of a small dimensionless parameter related to
the mass of the NES in the slow-flow system implies
that it involves one "slow" complex variable and N
"super-slow" complex variables. The "super-slow/slow"
nature of the system allowed us to use an asymptotic
approach to analyze it. In particular, the critical man-
ifold of the slow-flow has been determined, it is a one
dimensional parametric curve evolving in a N dimen-
sional space. The shape of the critical manifold and
the associated stability properties provide an analyti-
cal tool to predict the nature of the possible response
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Table 1: Relative errors of the theoretical predictions of the mitigation limit ρml and ρ∗
ml with respect to the reference ρn,1

ml

obtained using numerical simulations.

Minimum errors (ε = 10−4) Maximum errors (ε = 10−2)
ρml ρ∗ml ρml ρ∗ml

N = 2 2.2% −1% 31.9% 27.7%
N = 4 4.6% 1.2% 43.3% 38.6%
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Figure 9: Comparison between numerical estimations ρn,1
ml

and ρn,2
ml and theoretical predictions ρml and ρ∗

ml of the mit-
igation limit as a function of µ using the set of parameters
(60), with ε = 0.001 and for (a) N = 2 and (b) N = 4.

regimes described above. In particular, the mitigation
limit of the NESs, defined as the value of a chosen bi-
furcation parameter which separates harmful situations
from harmless situations, has been predicted. Using
more restrictive assumptions, i.e. neglecting the non-
linearity of the primary system and assuming N iden-
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Figure 10: Comparison between numerical estimations
ρn,1

ml and ρn,2
ml and theoretical predictions ρml and ρ∗

ml of
the mitigation limit as a function of ε using the set of pa-
rameters (60), with µ = µopt = 0.79 and for (a) N = 2 and
(b) N = 4.

tical NESs, a literal expression has even been obtained.
It has been highlighted that, in this context, the miti-
gation limit is proportional to the number of NESs and
secondly that it depends only on the linear parameters
of the NESs.

Finally, using a Van der Pol oscillator as a primary
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Figure 11: Comparison between numerical estimation ρn,1
ml

and ρn,2
ml and theoretical predictions ρml and ρ∗

ml of the mit-
igation limit as a function of N using the set of parameters
(60) with µ = µopt = 0.79 and ε = 0.001.

system, theoretical results have been compared, for vali-
dation purposes, to the numerical integration of the sys-
tem. The comparison shows a good agreement as long
as we remain within the limits of use of the asymptotic
approach.
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A Projection of the super-slow dynam-
ics on the critical manifold

Eq. (32) is developed into the following form

ṡ = εF (s, r1, . . . , rN , ϑ1 . . . , ϑN ) (62a)
ṙn = Gn (s, r1, . . . , rN , ϑ1 . . . , ϑN , ε) , for n = 1, . . . , N

(62b)
ϑ̇n = Hn (s, r1, . . . , rN , ϑ1 . . . , ϑN , ε) , for n = 1, . . . , N,

(62c)

where functions F , Gn and Hn are deduced from func-
tions f and gn in Systems of Eqs. (10) and (11) as

F = Re
{
fe−jδ

}
(63a)

Gn = Re
{
gne
−jθn

}
(63b)

Hn =
s Im

{
gne
−jθn

}
− rn Im

{
fe−jδ

}
rn s

. (63c)

From system of Eqs (62) we obtain the real form of the
slow and super-slow subsystems (13) and (14) as

ṡ = 0 (64a)
ṙn = Gn (s, r1, . . . , rN , ϑ1 . . . , ϑN , 0) , for n = 1, . . . , N

(64b)

ϑ̇n = Hn (s, r1, . . . , rN , ϑ1 . . . , ϑN , 0) , for n = 1, . . . , N,
(64c)

and

s′ = F (s, r1, . . . , rN , ϑ1 . . . , ϑN ) (65a)
0 = Gn (s, r1, . . . , rN , ϑ1 . . . , ϑN , 0) , for n = 1, . . . , N

(65b)
0 = Hn (s, r1, . . . , rN , ϑ1 . . . , ϑN , 0) , for n = 1, . . . , N,

(65c)

respectively.
We assume that fixed points of (62) exist only at

the super-slow time scale and they are therefore fixed
points of (65). Of course the CM can be also obtained
solving Eqs. (65b) and (65c). Then, substituting system
of Eqs (19) with n = 1 (any n ∈ [1, N ] can be chosen)
into (65a) , we obtain

(√
H1 (r1)

)′
= 1

2
√
H1 (r1)

dH1 (r1)
dr1

r′1 =

F
(√

H1 (r1), r1, . . . , rN ,− arg (F1(r1)) , . . . ,− arg (FN (rN ))
)
,

(66)

which can be reduced to

dH1 (r1)
dr1

r′1 = fr1 (r1, . . . , rN ) , (67)

where fr1 = 2
√
H1 (r1)F . In reality, fr1 (r1, . . . , rN ) is

a single-valued function because all variables rn (with
n ∈ [1, N ]) are linked to each other through Eq. (22)
(any n ∈ [1, N ] can be chosen as master component,
we choose r1).

B Proof of Result 4.1

Because N identical NESs are assumed, the function
Hn(x) is now denoted H(x). Considering also a linear
primary system (f̃NL = 0), system of Eqs (37) becomes

ρH(r1)−
N∑
k=1

r2
kµ = 0 (68a)

H(rn)−H(r1) = 0, for n = 2, . . . , N (68b)

Eq. (68b) is a third order polynomial equation with re-
spect to r2

n having the three following roots as a func-
tion of r1

r2
n = f1(r2

1) = r2
1 (69a)

r2
n = f2(r2

1) = −r
2
1
2 + 8a+

√
3αr2

1 (16a− 9αr2
1)− 64µ2

6α
(69b)
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Figure 12: Maximum steady-state amplitudes of the variable s obtained from numerical simulations of the slow-flow (10)
including the Van der Pol primary nonlinearity as a function of µ and ρ for ε = 0.001, a = 2, N = 2 and (a) α = 2, (b)
α = 4 and (c) α = 6, as density plots. The solid black lines with triangle markers represent the numerical estimation ρn,2

ml

of the mitigation limit obtained only for α = 4.

(a) (b) (c)

Figure 13: Maximum steady-state amplitudes of the variable s obtained from numerical simulations of the slow-flow (10)
including the Van der Pol primary nonlinearity as a function of µ and ρ for ε = 0.001, a = 2, N = 2 and (a) α = 2, (b)
α = 4 and (c) α = 6, as 3-D plots.

r2
n = f3(r2

1) = −r
2
1
2 + 8a−

√
3αr2

1 (16a− 9αr2
1)− 64µ2

6α .

(69c)

The functions f2(r2
1) > f3(r2

1). If µ > a/
√

3, r2
n =

f1(r2
1) = r2

1 is the only real solution.
Using system of Eqs (69), Eq. (68a) is written as

follows

H(r1) = µ

ρ

(
r2

1 +
N∑
k=2

gn(r2
1)
)
, (70)

where gn(r2
1) can be, for each term of the sum, f1(r2

1),
f2(r2

1) or f3(r2
1).

If ∀n ∈ [2, N ], gn(r2
1) = f1(r2

1) = r2
1, Eq. (70) be-

comes
H(r1) = µ

ρ
Nr2

1. (71)

Ignoring the trivial solution, Eq. (71) is reduced to a
second order polynomial equation with respect to r2

1

with the following solutions

r∗21,1 =
4
(
aρ−

√
µρ (a2N − µρ)

)
3αρ , (72)

and

r∗21,2 =
4
(
aρ+

√
µρ (a2N − µρ)

)
3αρ , (73)

which are real if ρ < a2N
µ . In this case, r∗21,1 < r∗21,2.

Considering first the case µ > a/
√

3, r2
n = f1(r2

1) is
the only real solution, r∗21,1 and r∗21,2 are therefore the
only solutions given Eq. (48) with w = r∗1,2.

We consider now the case for which µ < a/
√

3. Solv-
ing f1(r2

1) = f2(r2
1) (to find the intersection between

the functions f1 and f2) and df2(x)/dx = 0 (to find the
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maximum of f2) gives the same value of r2
1 as

r?2
1 =

4
(

2a+
√
a2 − 3µ2

)
9α . (74)

which corresponds also to one of the solutions of
H ′ (r1) = 0 (see Eq. (25b)), i.e. r?1 = rm (where rm
is rmn in the case of identical NESs).

The difference between r∗21,2 and r?2
1 is

r∗21,2−r?2
1 =

4
(
aρ+ 3

√
µρ (a2N − µρ)− ρ

√
a2 − 3µ2

)
9αρ ,

(75)
which is a real positive number until ρ = a2N

µ . There-
fore, for r2

1 > r?2
1 , f1(r2

1) > f2(r2
1) and the right-hand

side of Eq. (70) is bounded as follows

Rl = µ

ρ

(
r2

1 + (N − 1)f2(r2
1)
)
<

Rc = µ

ρ

(
r2

1 +
N∑
k=2

gn(r2
1)
)
< Rr = µ

ρ
Nr2

1. (76)

Let Rl, Rc and Rr be the sets of fixed points r∗, the
solutions of H(r1) = Rl, H(r1) = Rc and H(r1) = Rr
respectively. Consequently, because for r2

1 > r?2
1 , H(r1)

in an increasing function and because of Eq. (76), the
following inequalities hold

∀n ∈ [1, N ], max
r∗∈Rl

r∗n < max
r∗∈Rc

r∗n < max
r∗∈Rr

r∗n, (77)

with
max

r∗∈Rr

r∗n = r∗1,2, (78)

giving also Eq. (48) with w = r∗1,2.
To finish the proof, one must show that r∗ =

[r1 = w, . . . , rN = w] is an unstable fixed point on a sta-
ble part of S. To this end, the derivative with respect
to r1 of the function

f(r1) = 2ρH(r1)− µNr2
1

dH1(r1)
dr1

, (79)

defined by Eq. (39), is computed as

df

dr1
(r1) = 2

ρdH1(r1)
dr1

− µN r1
dH1(r1)
dr1

− d2H1(r1)
dr2

1

ρH(r1)− µN r2
1(

dH1(r1)
dr1

)2

 .

(80)
By definition, the term ρH(r1)−µN r2

1 = 0 if r1 = r∗21,2
(see Eq. (71)). Moreover, because r∗21,2 > r?2

1 = rm

dH1(r1)
dr1

∣∣∣∣
r1=
√
r∗2

1,2

> 0. (81)

Therefore, the sign of Eq. (80) is given by the sign of

ρH ′(r1) − 2µN r1. One can be shown that ρdH1(r1)
dr1

−
2µN r1 is a real-valued function if r1 > κ with

κ = 2
3

√√√√2a+
√

a2(3µN+ρ)
ρ − 3µ2

α
, (82)

and that r∗1,2 > κ until ρ = a2N
µ . Consequently, using

Result 3.2 ( dfdr1
(r1) > 0), r∗1,2 is an unstable fixed point

and Result 4.1 is demonstrated.
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