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A B S T R A C T

In many industrial sectors, Non Destructive Testing (NDT) methods are used for the thermomechanical analysis
of parts in assemblies of engines or reactors or for the control of metal forming processes. This article suggests an
automated multi-view approach for the thermal D3 reconstruction required in order to compute D3 surface
temperature models. This approach is based only on infrared cameras mounted on a Cartesian robot.

The low resolution of these cameras associated to a lack of texture to infrared images require to use a global
approach based first on an uncalibrated rectification and then on the simultaneous execution, in a single step, of
the dense D3 reconstruction and of an extended self-calibration.

The uncalibrated rectification is based on an optimization process under constraints which calculates the
homographies without prior calculation of the Fundamental Matrix and which minimizes the projective de-
formations between the initial images and the rectified ones.

The extended self-calibration estimates both the parameters of virtual cameras that could provide the rectified
images directly, and the parameters of the robot. It is based on two criteria evaluated according to the noise level
of the infrared images. This global approach is validated through the reconstruction of a hot object against a
reference reconstruction acquired by a D3 scanner.

1. Introduction

This article addresses the problem of a fully automated D3 thermal
reconstruction [1–3] from sensors embedded on a robotic system. Such
a method can be suitable for performing diagnostics on mechanical
assemblies, such as nuclear reactors [4], or for improving energy effi-
ciency in building construction [5] or for monitoring forming processes
[6]. The first sub-problem that arises is to define the system archi-
tecture using heterogeneous sensors. The second sub-problem is se-
lecting the dense D3 reconstruction methods with overlaid thermal
data. The third sub-problem is to make the inspection task totally au-
tomatic with a self-extended calibration (i.e. a calibration without a
specific target, covering all the geometric parameters of the robot-
sensor system, including the intrinsic and extrinsic sensor parameters
and the robot parameters).

The most conventional architecture is based on a D3 laser scanner
and infrared cameras mounted on a robot [7–9]. To overcome the
significant cost of the D3 laser scanner, several articles [5,10,11] have
suggested an architecture using only cameras. Inexpensive and readily
available digital visible cameras (CCD camera, color camera, Kinect,

etc.) give images processed by a D3 modeler, while infrared cameras
provide the thermal data mapped on the D3 model. One successful
system is the HeatWave system [3,12], i.e. a hand-operated device
consisting of rigidly attached infrared and color cameras. These multi-
sensory architectures face the difficulty of fusing D3 data provided by a
D3 modeler and temperature data acquired by infrared cameras into a
common coordinate frame. A joint geometric calibration of hetero-
geneous sensors [13] must be performed, which requires finding a
pattern that is completely visible by both the D3 sensors and the IR
cameras. This could be a tricky task, because these heterogeneous
sensors have different spectral sensitivities, spatial resolutions and
fields of view. The ideal architecture is then only based on infrared
cameras for a direct D3 thermal reconstruction. Assuming that thermal
methods already described in [14–16] are not in the scope of this paper,
the challenge is then to provide a dense image-based D3 reconstruction
[17,18] with infrared cameras.

Several image-based D3 reconstruction algorithms have been pro-
posed using visible cameras. The first step, image registration, requires
the detection and matching of features between images. Many feature
detectors (e.g., Harris, SIFT, SURF, FAST, ORB, …) automatically and
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correctly extract and match interest points on infrared images. Then
two classes of methods can simultaneously build a sparse D3 model and
the camera trajectory using only these matched interest points. The
Robotics community has developed several Vision-based Simultaneous
Localization And Mapping (VSLAM) techniques [19,20], taking ad-
vantage of other proprioceptive data acquired from the robot (odo-
metry, IMU…), but assuming generally that the intrinsic camera para-
meters are known. The Vision community has proposed Structure from
Motion (SfM) [21] approaches (Bundler, OpenMVG…) in order to re-
cover from an image sequence both the D3 environment structure and
the camera Motion; extrinsic and intrinsic camera parameters can be
estimated simultaneously when computing the D3 point positions. The
recovered parameters should be consistent with the reprojection error
(i.e., the sum of distances between the projections of each set of D3
corresponding feature points and its corresponding image features).
This minimization problem can be formulated as a non-linear least
squares problem and solved from a Bundle Adjustment (BA) algorithm
[22]. Exploiting VSLAM or SfM methods, an accurate and dense D3
model could be incrementally and gradually built and refined with,
typically, a sequence of one thousand images, either from an Iterative
Closest Point (ICP) algorithm (stereovision) or by a Multi-View Stereo
(MVS) [23] technique (monocular vision).

The paper proposes an automated thermal D3 reconstruction based
on an architecture composed of a Cartesian robot equipped only with
uncalibrated infrared cameras. The architecture requires a coupled
method that deals simultaneously with a multi-view D3 thermal re-
construction and a self-extended geometric calibration. An infrared
stereo vision rig provides a compensation to the lower spatial resolution
of infrared images. It also improves the number of reconstructed points
and thus the density of the D3 model. Moreover, it gives an initial guess
for the D3 position of every point. For the first step of the method, a
reasonable amount of stable and tractable matched points is obtained
through a specific method for infrared images based on the phase
congruency model [24,25] which is combined with more classical
feature detectors. With few and low-textured infrared images, the result
would be limited to a sparse D3 reconstruction. Next, the simultaneous
reconstruction and self-calibration with uncalibrated infrared cameras
is solved by the minimization of a cost function which integrates all the
geometrical calibration parameters for both the cameras and the robot.
Estimations variables are: four intrinsic parameters for each camera, six
for the relative position and orientation between the two cameras and
six for the rotational and the translational components of the Euclidean
transformation. This latter transformation is named hand-eye, between
hand (robot gripper) and eye (camera). The total number of parameters
is twenty if it is assumed that geometrical distortions due to the lens are
corrected beforehand. This assumption is a good trade-off between the
accuracy and the computation time. Indeed, it decreases the accuracy,
but it avoids additional degrees of freedom and high non-linearities in
the geometric model which are consuming in computation times. For
the targeted application in a robotic context, a real-time processing of
the calibration, compatible with the speed of the robot, is preferred
even if the accuracy is not optimal. Finally, these parameters have to be
estimated on-line from features extracted and matched from images
acquired on the unknown object from two or more positions of the
robot. These positions are known accurately in the robot reference
frame from its forward kinematics.

A projective rectification method is first introduced for improving
the matching problem between pixels on the left and right images,
limiting the search space from the whole image to only a line. Another
objective is to reduce the number of parameters of the cost function.
The projective rectification method, applied to uncalibrated stereovi-
sion infrared cameras, requires a specific algorithm. Two homo-
graphies, applied to rectify the left and right images, have to be esti-
mated in a single step to cope with the problem of noisy and low-
textured infrared images. A new cost function is proposed which is
minimized under geometric constraints by a non-linear optimization

process. These constraints are defined to keep the structure and the
skewness of the images, which are essential to preserving their geo-
metries.

The set of points matched from rectified images is then used to
perform simultaneously the extended self-calibration and the multi-
view infrared D3 reconstruction. It is based on the minimization of two
different functions depending on the observed noise level in infrared
images. The first objective function is based on the minimization of the
reprojection errors. When the noise level increases, a second objective
function is expressed in the projective space which takes advantage of
the epipolar constraint between two images. This second objective
function is expressed using the intrinsic camera parameters and the
essential matrix between two robot positions which depends itself on
the hand-eye parameters and the robot motion. Fig. 1 summarizes the
suggested coupled method which merges an extended self-calibration
and a multi-view infrared D3 reconstruction applied on rectified
images.

The paper is organized as follows. Section 2 briefly describes ex-
isting literature on rectification and places our suggested method with
uncalibrated infrared images in this context. The method is then de-
scribed and the results are compared to those in the literature. Section 3
outlines the formulation of the multi-view infrared D3 reconstruction
simultaneous to the extended self-calibration. The method is evaluated
on synthetic data. Finally, Section 4 summarizes the results of the fully
automated D3 reconstruction performed from multiple views acquired
by an uncalibrated infrared stereo rig mounted on a Cartesian robot.
The whole approach is evaluated comparing the D3 model of a re-
constructed object with a reference CAD model.

2. Suggested rectification method of uncalibrated cameras

The suggested rectification method, applied to uncalibrated ste-
reovision cameras, takes the advantage of calculating the homo-
graphies, projective transformations applied to rectify images, without
a previous calibration and in a single step to cope with the problem of
noisy and low-textured infrared images. These homographies are then
calculated with only one non-linear optimization process under geo-
metric constraints.

The section begins with a short description of the background for
calculating the homographies and works related to the rectification
problem. The suggested projective rectification method is then

Fig. 1. Flowchart of the suggested method.



introduced and the non-linear optimization process under geometric
constraints is detailed. These constraints are defined to keep the
structure and the skewness of the images, which are essential to pre-
serving their geometries. This property is essential for the self-calibra-
tion introduced in the next section. Finally, the method is evaluated by
comparison with conventional methods that only work on visible
images to prove its effectiveness even under these conditions.

2.1. Background and works related to the rectification problem

The rectification process reduces the two-dimensional matching
problem on stereo images to a one-dimension matching problem. Using
epipolar geometry, it consists of aligning the epipolar lines to make
them parallel to the horizontal axis of the image. For uncalibrated
cameras, knowledge of the epipolar geometry is packaged in the
Fundamental matrix. The problem is then the computation of two
projective transformations (homographies) from the Fundamental ma-
trix to align the epipolar lines parallel to the horizontal image axis. The
following paragraphs detail the computation of homographies and
discuss the approach used to rectify uncalibrated images.

2.1.1. Background to epipolar geometry
Epipolar geometry defines the geometry between a pair of imagesI

and I′ from two stereoscopic cameras or two different locations of a
mobile camera. Let Q, 1 a D3 point, be simultaneously seen by two
pinhole cameras in D3 space. Let c and ′c the optical centers of these
two cameras. Let q and (resp. ′q ) the projections of Q through c and ′c
in images I (resp. and I′). Q c, and ′c define an epipolar plan in D3
space, denoted by P . The left epipolar line ′lq (resp. right epipolar line′lq) in I (resp. I′) is defined by the intersection of P and I (resp. P
and I′). By geometric construction, q has to be on the right epipolar
line ′lq (and resp. ′q on the left epipolar line ′lq ). This constraint is the
epipolar constraint: for a given point I∈q , its corresponding point

I′ ∈ ′q lies on its epipolar line ′lq, i.e. ′ ′ =⊤q l 0q . Similarly q lies on the
epipolar line ′lq , i.e. =⊤ ′q l 0q . Because the relationships between retinal
coordinates of corresponding points ′q q( , ) and their epipolar lines′ ′( )l l,q q are projective linear, the epipolar constraint can be rewritten as
follows:′ =⊤q F q 0. (1)

where F is Fundamental Matrix ( M 5∈F ( )3 ). It encapsulates the pro-
jective motion between two uncalibrated perspective cameras. The
epipoles e and ′e are points which satisfy the following equation:

3= ′ =⊤Fe F e 0 .2 (2)

The epipole e (resp. ′e ) is the intersection of all the epipolar lines in-
cluded in I (resp. I′). Moreover, Eq. (2) implies that the rank of F is
lower or equal to two. F is then defined up to a scale factor. It theo-
retically depends upon seven independent parameters. More details
about epipolar geometry and the fundamental matrix are provided in
the book [21].

2.1.2. Computation of homographies
Using epipolar geometry, the rectification provides corresponding

epipolar lines which are collinear and parallel with the x-axis. The
rectified fundamental matrix F0 is then expressed as follows:

= ⎡⎣⎢ − ⎤⎦⎥F
0 0 0
0 0 1
0 1 0

.0

This process is accomplished by applying two homographies ′H H, on
I and I′. These homographies map the epipoles e and ′e to points at

infinity. Hence, H and ′H transform the matched points
I I′ ∈ × ′q q( , ) to I I∼ ∼′ ∈ × ′∼ ∼q q( , ) as:∼ = ∼′ = ′ ′q Hq q H q; (3)

It follows from Eq. (1) that:

�	
� �
∼′ ∼ = ′ ′ =⊤ ⊤ ⊤

=q F q q H F Hq 0.
F

0 0
(4)

Finally, H and ′H are compatible homographies only if they satisfy the
following equation:= ′⊤F H F H.0 (5)

The practical computation of H and ′H is then achieved by solving
(5). However, due to the first row of F0, the pair of homographies is not
unique. This remaining degree of freedom can introduce an undesirable
distortion to the rectified images. Methods suggested in the literature to
reduce distortions can be divided into two classes. The first class as-
sumes that F is fixed and the second class F is implicitly recomputed.
The first class is divided into two steps. A preliminary accurate esti-
mation of F and a calculation of ′H H( , ) are first introduced from Eq.
(5). The distortions are then corrected by applying symmetrical [26,27]
or independent [28–32] matrix on ′H H( , ). The second class proceeds
only in a single step. The fundamental matrix F is directly recomputed
by replacing F by = ′∼ ⊤F H F H0 and by solving the following mini-
mization problem:∑ ′ + ′∼ ∼′ =

⊤d dq Fq F q qmin ( , ) ( , ).
k

N

k k k kH H, 1 (6)

where ′ = …q q( , )k N1 is a set of N matched points between the images I
and I′. ′ ∼d q Fq( , )k k (resp. ′∼⊤d F q q( , )k k ) is the distance from the point ′qk
(resp. qk) to the epipolar line ∼Fqk (resp. ′∼⊤F qk). However, this mini-
mization alone is not enough to overcome the distortions problem
which can be fixed thanks to the specific parametrization of the
homographies H and ′H [33,34]. These parametrizations go hand in
hand with assumptions on the parameters of F. For instance, in articles
[33,34], the authors assume that the principal point is centered and the
aspect ratio is equal to one (so that the skew is equal to zero).

2.2. Formulation of the uncalibrated rectification

The suggested formulation of the uncalibrated rectification is con-
sistent with the second class of rectification methods, which works in
only one step to take as fully as possible into account the low number of
points matched in infrared images (images with little texture and a
weak spatial resolution). Iteration of many steps could propagate and
amplify the uncertainty due to low numbers of matched points. The
suggested method then consists in computing the Fundamental matrix F
and the rectification homographies H and ′H in a single step without
prior assumptions on the geometry and on the parametrization of H and′H . The contribution is then to achieve the calculation of homographies
by applying the non-linear objective function of Eq. (6) under con-
straints to minimize the geometrical distortions induced by H and ′H .
Introduced by [31] and commonly used in the literature [33,34], cri-
teria based on the aspect ratio and the orthogonality of the images are
applied after the rectification process to control loss or pixels creation.
The main idea of the suggested computation of the homographies is to
include these classical criteria as constraints of minimization process in
order to keep the structure and the skewness of the image. The con-
straint space is then based on the aspect and size ratio and the ortho-
gonality of the image which are invariant to affine transformations
[27].

2.2.1. Definition of the non-linear objective function
The distance d from a point ′q to its corresponding epipolar line ∼Fq

of Eq. (6) is defined in 52 as follows:
1 Note that to improve the readability of Sections 2 and 3, sans-serif font upper-case is

used for 3D points (e.g. Q) while bold lower-case is used to denote D2 points (e.g. q).



′ = ′∼ ∼∼⊤d
π

q Fq q Fq
Fq

( , ) | |
‖ ( )‖2

2 (7)

with →π x x x x x: ( , , ) ( , )1 2 3 1 2 the canonical projection. Conversely, the
distance for a point q to its corresponding epipolar line ′Fq can also be
defined.

Eq. (6) is then rewritten symmetrically on both images as follows:

∑ ′ + ′
∼∼ ∼∈ =

⊤
⊤π π

q Fq
Fq F q

min
| |

‖ ( )‖ ‖ ( )‖P C k

N
k k

k k1

2

2
2

2
2 (8)

where 5 5 5= ′ ∈ × ≃P H H( , ) 9 9 18 is the vector of the nine parameters
of H and the nine parameters of ′H . This vector is minimized on a
constraint space 5⊂C 18 to find a pair of homographies reducing the
geometric distortions. The notation of only one constraint space, de-
noted by C, actually unifies and merges heterogeneous space con-
straints (i.e. with different units) applied either onI or onI′. C is then
the intersection of several constraint spaces which are detailed in the
next subsection.

2.2.2. Space constraints definition
The need to minimize distortion requires keeping the image struc-

ture and the skewness. Hence, each pixel of the original image should
map to a single pixel in the rectified images (pixel creation and loss
should be minimal). In the article [29] the creation or the loss of pixels
is modeled by the change in local area of a patch around the point
before and after the rectification. This change can be determined by the
numerical properties of the Jacobian homography. These numerical
properties can be controlled by matrix operators based on the de-
terminant [30] or on singular values [31]. Thus, minimizing these op-
erators involves reducing the distortion in the whole image and their
implementation then becomes very time-consuming in terms of com-
putation. Our approach is to define a set of numerical stable constraints
C which only enforces the physical properties of the image. The image
distortions are then defined as modifications of the image structure:
aspect ratio, size (width and height) and orthogonality of the image.

Aspect ratio criterion. The constraints of the image structure can be
first quantified by the invariance of the ratio of image diagonals com-
puted from the aspect ratio between original and rectified images.
Ideally, the aspect ratio is equal to 1 (see Fig. 2(a)). The four image
corners are sufficient to compute this criterion. Let p p p p{ , , , }1 2 3 4 and′ ′ ′ ′p p p p{ , , , }1 2 3 4 be the corners of the images I and I′. In the rectified
space, let ̃ ̃ ̃ ̃p p p p{ , , , }1 2 3 4 and ̃ ̃ ̃ ̃′ ′ ′ ′p p p p{ , , , }1 2 3 4 be the corners of rectified
images. The aspect ratio Ea and the aspect ratio constraint Ca are then
defined by:

5 5

̃ ̃
̃ ̃

̃ ̃
̃ ̃

→→ ′ ′′ ′−− −−( )
E

P

:

,
a

p p
p p

p p
p p

18 2

‖ ‖
‖ ‖

‖ ‖
‖ ‖

1 3 2
2 4 2

1 3 2

2 4 2 (9)

5= ∈ ∈ −∊ + ∊C P E P{ | ( ) [1 , 1 ] }a a18 2 (10)

where ∊ is the tolerant variation of the aspect ratio.
Orthogonality criterion. The angles invariance between original and

rectified images can be modeled by the orthogonality which is ideally
equal to °90 (see Fig. 2(b)). Article [27] considers that applying con-
straints on the four side mid-points preserves the orthogonality of the
image. With the same previous notations, orthogonality criterion Eo and
the orthogonality constraint Co are then defined by:

5 5→→ ′E
P γ γ
:

(acos( ), acos( ))
o 18 2

(11)

5= ∈ ∈ °− ° +C P E P θ θ{ | ( ) [90 , 90 ] }o o18 2 (12)

where ′γ γ, are the angle defined by:

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃ ̃ ̃= − + − − − − −− −γ

q q q q q q q q
q q q q

‖ ‖ ‖ ‖ ‖( ) ( )‖
2‖ ‖‖ ‖

1 3
2

2 4
2

1 3 2 4
2

1 3 2 4 (13)

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃ ̃ ̃′ = ′− ′ + ′− ′ − ′− ′ − ′− ′′− ′ ′− ′γ

q q q q q q q q
q q q q

‖ ‖ ‖ ‖ ‖( ) ( )‖
2‖ ‖‖ ‖

1 3
2

2 4
2

1 3 2 4
2

1 3 2 4 (14)

and θ is the tolerant variation of the orthogonality.
Size ratio criteria. The invariance of the width and the height of

images between original and rectified images can be only computed by
a set of points defined by the side mid-points of the horizontal side for
image I (resp. I′), q q,1 3 (resp. ′ ′q q,1 3) and vertical image side, q q,2 4
(resp. ′ ′q q,2 4). In the rectified images, the corresponding points are
defined as: ̃ ̃ ̃ ̃q q q q{ , , , }1 2 3 4 and ̃ ̃ ̃ ̃′ ′ ′ ′q q q q{ , , , }1 2 3 4 . The size ratio Es and the
size ratio constraint Cs are then defined by:

5 5→E :s 18 4 (15)

5

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃→= ∈ ∈ − +
′ ′′ ′ ′ ′′ ′−− −− −− −−( )P

C P E P δ δ

, , ,

{ | ( ) [1 , 1 ] }s s

q q
q q

q q
q q

q q
q q

q q
q q

‖ ‖
‖ ‖

‖ ‖
‖ ‖

‖ ‖
‖ ‖

‖ ‖
‖ ‖

18 4

1 3 2
1 3 2

1 3 2

1 3 2
2 4 2
2 4 2

2 4 2

2 4 2

(16)

where δ the tolerant variation of the image size. Ideally, E P( )s is equal
to 1 (see Fig. 2(c)).

Finally, the constraints space C is the intersection of the previous
constraints, i.e. = ∩ ∩C C C Ca s o. Although C merges heterogeneous
constraints, the optimization method used to solve Eq. (8) considers
each constraints separately and then deals with constraints of different
units. The minimization of Eq. (8) is performed by a local optimization
method which is the Sequential Quadratic Programming algorithm
(S.Q.P.) [35–37]. A good initial estimate P0 is then necessary to guar-
antee the convergence to a right solution. The choice of the constraints
space C affects the ease of finding this initial estimate. Therefore, the
nine initial parameters of the homographies have to satisfy the con-
straints C. The identity homographies are the simplest initial parameter
vector that satisfies the constraints. Indeed, the image without bias
(distortion) that satisfies the constraints is the original image. More-
over, the identity has the property (that we verified experimentally on
all our image tests) of being situated in a basin of attraction of a
minimum of physically practicable premises.

2.3. Validation experiment

The suggested rectification method was evaluated on images from
the Mallon’s test set [31] which are taken by the same camera under a
fixed lens configuration. Each set (Arch, Boxes and Drive) consists of
two RGG images with ×640 480 pixels resolution. The lens distortion
has been removed and the ground truth is not available. Results carried
out by the suggested rectification method were compared to Monasse’s
method [33], which also works in a single step. This article [33] also

Fig. 2. Criteria summary. Image (a) shows deformations due to an aspect ratio
different to 1. Image (b) displays deformations due to an orthogonality criterion
different to °90 . Image (c) displays deformations due to size ratio different to 1.



compares the results of other conventional methods implemented by
Loop and Zhang [27], Hartley [29] and Mallon [31].

2.3.1. Evaluation criteria
The rectification performance is concerned with quantifying the

rectification error Er . For each point of one image, it is the distance
between its corresponding point and epipolar line in the other image. It
is represented by the mean (mean) and the standard deviation (σ).
Then, the other criteria are the aspect ratio Ea and the orthogonality Eo.
Ideally, the aspect ratio Ea must be 1 and the orthogonality Eo must be°90 .

2.3.2. Results
Table 1 gives the relative performance on the three set of images

(Arch, Boxes and Drive) from the Mallon’s dataset and the comparison
with Monasse’s method.

The values of the orthogonality Eo (respectively the aspect ratio Ea)
criterion are similar for both methods and close to the reference value
of °90 (respectively of 1). The image structure and the skewness are well
preserved and remain invariant. The rectified images can be applied in
a geometric calibration process. The suggested method provides a
smaller rectification error Er (mean and standard deviation) than the
reference method (notably for the Drive set). The method is based on no
prior assumptions on the parametrization of the homographies H and′H . No geometry is assumed and all parameters of homographies can be
estimated with all possible values. However, at the same time the es-
timation is constrained to preserve the structure of the image and the
generality of the solution. Finally, it should be emphasized that the
identity provides a good initial estimate and convergence to a relevant
solution.

3. Suggested extended self stereovision hand-eye calibration

The extended self hand-eye calibration with one uncalibrated
camera is described with ten parameters: four intrinsic parameters of
the camera (focal length, optical center), and six ones for the rotational
and the translational component of the Euclidean transformation be-
tween hand and eye. With a stereovision rig, ten parameters must be
added: four intrinsic parameters for the second camera, and six for the
relative position and orientation between the two cameras. The pre-
vious rectification step decreases the number of parameters to be esti-
mated, from twenty to thirteen (six intrinsic parameters for cameras, six
parameters for the rigid hand-eye transformation and one for the rigid
rectified stereovision configuration). It is assumed that image distor-
tions are neglected. The estimation problem of the high number of
parameters of the extended self stereovision hand-eye calibration is
highly relevant in the presence of noise in the matching points between
each camera and each displacement.

A first paragraph deals with the background and related works of
hand-eye calibration. The second paragraph introduces the suggested
extended self stereovision hand-eye calibration which is a simultaneous

calibration of hand-eye, camera-intrinsic and stereo parameters. In the
third paragraph, the problem is formulated as two non-linear optimi-
zation processes in relation to the noise on the matching points. In the
last paragraph, experimental results on synthetic data show the influ-
ence of the noise on the accuracy of the D3 reconstruction.

3.1. Background and works related to hand-eye calibration

Hand-eye calibration is the computation of the unknown transfor-
mation, named X between the camera frame and the frame of the hand
of the robot. The hand-eye problem is solved knowing the displacement
of the camera, named A, in a reference frame and the displacement of
the hand of the robot, named B, between two positions i and j.

LetR j
c (resp.R ′jc ) be the coordinates system associated to c (resp. ′c )

at the jth position and Rw, the world coordinates system associated to
the initial position of the robot. The hand-eye calibration then consists
in estimating the parameters of the homogeneous Euclidean transfor-
mation, X, between the robot (hand) and the camera (eye) coordinate
frame. The main assumption is that the single camera is rigidly coupled
to the robot. As shown in Fig. 3, the robot performs discrete displace-
ments from the position i to the position j, which are encoded through
the euclidean transformation, Bij. The displacements are also measured
by the camera c as a transformation Aij in its own coordinate frame. The
parameters of hand-eye transformation, X, are then calculated ac-
cording to the graph of coordinate frames of Fig. 3 and by solving the
following equation:

Table 1
Comparison of the suggested rectification method with Monasse’s method of the article [33].

Sample Method Orthogonality Eo Aspect Ratio Ea Rectification error Er

′H H ′H H mean σ
(°) (°) (no unit) (no unit) (pix.) (pix.)

Boxes Proposed 89.44 90.66 0.9897 1.0105 0.11 0.06
Monasse 89.60 89.63 0.9884 0.9892 0.1293 0.0887

Arch Proposed 89.67 89.88 0.9955 0.9983 0.17 0.16
Monasse 89.80 90.05 0.9942 1.0014 0.2520 0.2349

Drive Proposed 90.61 89.32 1.0128 0.9876 0.55 0.44
Monasse 89.95 90.00 0.9977 1.0001 0.7139 0.8253

Fig. 3. Graph of transformations. Transformation matrix Bij displaces the co-
ordinates system of the robot, transformation matrix Aij displaces the co-
ordinates of the camera c, hand-eye transformation X displaces the coordinates
system of the robot (hand) on coordinates of the camera (eye).



= −A XB Xij ij 1 (17)

By referring rigid transformations by ×4 4 homogeneous matrices
composed of a rotation and a translation R t( , ), Eq. (17) is rewritten as
follows:

= ⊤R R R RA X B Xij ij (18)

� 	� 
�
= − −⊤( )t R t R R R I tA X B X B X

R

Xij ij ij

ijA (19)

Several methods exist to solve the hand-eye calibration problem
with different optimization processes. A general taxonomy of the clas-
sical approaches is provided in article [38] and in the focus of our
contribution, they can be split into two classes: non-unified and unified
methods. Using the decomposition (18), the non-unified methods se-
parately estimate the translation tX and the rotation RX. Several para-
metrizations can be used to estimate the rotation: the angle-axis para-
metrization of the group of rotations SO (3) [39,40], quaternions [41] or
dual quaternions [42]. Moreover, with noisy inputs, according to in-
vestigations carried out in the article [43], unified methods with a si-
multaneous estimation of both rotation and translation are highly re-
levant to balance the estimation of the rotation part of X. It has also
been shown in the article [42], that camera intrinsic parameters are not
independent from hand-eye parameters. The extended unified methods
thus include both hand-eye and camera parameters [44] (e.g. camera
pose, intrinsic parameters and lens distortion [45,46]) which are si-
multaneously estimated. The optimization process for solving Eq. (18)
is linear for unified methods and non-linear for non-unified methods.
According to prior knowledge of the external camera calibration, the
conventional non-linear optimization process is based on the norm two:−A X XB‖ ‖ij ij 2. The most recent non-linear optimization processes use
branch-and-bound [47–49], Second Order Cone Programming [50] or
polynomial optimization [51] techniques. For extended methods, all
parameters are mainly simultaneously estimated with the Structure-
from-Motion (SfM) technique. In the article [52] camera pose para-
meters are recovered up to a scale factor and in articles [42,53,54] they
are explicitly included. Branch-and-bound algorithms have recently
been introduced to estimate camera poses with a ∞L -norm formulation
[48] and with a hypothesis that assumes all the translations are equal to
zero. For extended methods with several parameters [45], the bundle
adjustment technique is the most promising approach to retrieve all
parameters simultaneously.

3.2. Extended self stereovision hand-eye calibration suggested for
uncalibrated infrared cameras rig

For uncalibrated stereovision infrared cameras, the extended self
stereovision hand-eye calibration suggested thus relies on a generalized
extended unified method. Indeed, the suggested method performs si-
multaneously, and in a single step, the extended self-calibration and the
multi-view infrared D3 reconstruction. The first paragraph recalled the
parameters of the calibration after the previous rectification step, which
are estimated using a bundle adjustment technique. The second para-
graph introduces two objective functions to solve the double problem of
calibration and reconstruction. The first one aims at minimizing the
reprojection errors (in pixels). The second one is expressed in the pro-
jective space, from the epipolar constraints between two images ac-
quired by the same camera from two robot positions. These two func-
tions make explicit all the parameters of the transformations (intrinsic
camera parameters, hand-eye parameters and robot motion para-
meters). Finally, the third paragraph validates the extended self ste-
reovision hand-eye calibration using simulated data generated with
different noise levels. The last paragraph concludes with the best ob-
jective function according to the noise level.

3.2.1. Parameters of extended self stereovision hand-eye calibration
As illustrated in Fig. 3, the rigid body transformation between R j

c
and R ′jc is denoted by =T R t[ ]. Given a D3 point RQ ∈w w, its pro-
jections q j and ′q j in I j and I′j after a displacement B j0 of the robot
from the initial position are:

Q= −q KXB Xj j w0 1 (20)

Q′ = ′ −q K TXB Xj
j w0 1 (21)

where the matrix T is reduced to a single translation over the horizontal
axis for a rectified stereovision rig: = ×T I t[ ]3 3 with = ⊤tt ( 0 0) . t is the
baseline of the rectified stereovision rig. K and ′K are the matrices of
intrinsic parameters which are given by:

= ⎛
⎝⎜

⎞
⎠⎟ ′ = ⎛

⎝⎜⎜
′ ′′ ′⎞
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α u

α v
α u

α vK K
0

0
0 0 1

;
0

0
0 0 1

u
v

u

v

0
0

0

0
(22)

where u v,0 0 (resp. ′ ′u v,0 0) represent the centers of images I (resp. I′),
α α,u v (resp. ′ ′α α,u v) represent the number of pixels per millimeter forI
(resp. I′). For an uncalibrated rectified stereovision rig, the two rec-
tified images are coplanar, abscissa are collinear and the epipolar lines
are aligned between the two images. Consequently, = ′v v0 0 and = ′α αv v.

Finally, projection functions are fully described with only thirteen
parameters: six intrinsic parameters ′ ′α α α u u v( , , , , , )u u v 0 0 0 , the baseline t
and six for the hand-eye transformation (three for the rotation and three
for the translation).

3.2.2. Discussion on the definition of the objective functions
Different approaches can be exploited to design the objective

functions.
The first approach is inspired by the estimation pose problem in

which the D3 location of observed points is estimated in terms of re-
projection errors. The approach operates the geometry of the stereo
image sequences. The objective function minimizes the reprojection
errors (see articles [55,56]) between the measured points by the camera
and points from the projection model (see Eq. (20)) in a recursive
bundle adjustment. However, the objective function is symmetric to
calculate the two distances in each image and the number of parameters
involved is high. Instead of minimizing the reprojection error, it is more
convenient to calculate the reconstruction error of D3 points built from
the stereo image sequence between two robot positions. Each D3 point
is expressed in the robot coordinate frame versus the intrinsic, the
stereo and hand-eye parameters and the displacement of the robot. The
estimation of intrinsic, stereo and hand-eye parameters is then per-
formed in a single step starting from approximate initial guesses.

The second approach is based on the epipolar constraint geometry
of the stereo image pairs and the stereo images sequences. It has some
theoretical drawbacks compared to the bundle adjustment, in that it
does not provide as much information and cannot achieve the same
level of accuracy. However, the first benefit is a smaller parameter
space. Moreover, methods based on epipolar geometry do not involve
the D3 position of the observed object point, i.e. the epipolar constraint
decouples the extrinsic camera parameters from the D3 structure of the
observed object. Eq. (2) only depends on the D2 coordinates image. Eq.
(20) additionally requires the depth of each observed point. If the
matching point is not accurate, the error is not propagated in the D3
space. The epipolar constraint is then calculated between two images
acquired by the same camera from two robot positions. This constraint
is expressed using the Fundamental matrix, i.e. using the intrinsic
camera parameters and the essential matrix which itself depends on the
hand-eye parameters and the robot displacement. This second sug-
gested objective function is thus expressed using the intrinsic camera
parameters and the essential matrix between two robot positions. All
the parameters are also estimated in a single step.

Based on these different approaches, our approach combines both



the geometry of the stereo image sequences and the epipolar constraint
geometry of the stereo image pairs with two objective functions being
derived in relation to the noise level of the images. Given noisy image
points, the minimization of these objective functions provides intrinsic,
stereo and hand-eye parameters and starts from approximate initial
guesses. The main contribution of the suggested extended self stereo-
vision hand-eye calibration is the proposal of two objective functions
which depend on the noise level on the infrared images.

3.3. Definition of the two objective functions

3.3.1. Objective function from the geometry of the stereo image sequences
Given a set of D3 points Q =( )k

w
k n1.. in Rw. It is assuming that all the

points are seen by a stereo rig displaced using m rigid transformation=B( )j j m0 1.. . For an easy reading of this section, we denote= ∀ =j mB B , 1. .j j0 . Consider a static D3 point RQ ∈k
w

w from the in-
itial position of the robot. It can be expressed inR j

c using the following
equation:

Q Q= XB .k
j

j k
w (23)

However, the localization of Qk
w remains the same for two successive

displacements:

Q Q=+− − + − −B X B X ,j k
j

j k
j

1
1 1 1 1 1 (24)

The aim is then the minimization of the D3 locations (in mm) for the
successive displacements:

Q Q∑ ∑ −=
−

= +− − + − −B X B Xmin ‖ ‖ ,
j

m

k

n

j k
j

j k
j

X 1

1

1
1

1 1 1 1 1 2

(25)

with X the vector of the hand-eye transformation. Recall that all the Bj
matrices are known.

However, the problem expressed in equation (25) is highly over-
determined. This equation can be rewritten by incorporating the in-
trinsic parameters of the two cameras, K and ′K , and the transformation
between both cameras, T.

The first step is the introduction of equality between ′q q( , )k
j

k
j , the

projections of Qk
w in the images taken at jth displacement, which is

given by the following equations:

Q=q KXBk
j

j k
w (26)

Q′ = ′q K TXB .k
j

j k
w (27)

In the next step, Eq. (25) is rewritten so as to minimize the reprojection
error (in pixels) as follows:

Q Q∑ ∑ − + ′ − ′′ = = q KXB q K TXBmin ‖ ‖ ‖ ‖ .
j

m

k

n

k
j

j k
w

k
j

j k
w

X K K T, , , 1 1

2 2

(28)

Note that solving Eq. (28) means knowing precisely the D3 locations
of the set Q( )k

w
k. However, without a calibration object and without

knowing the D3 points, the third step is the estimation of these D3 lo-
cations jointly to ′X K K, , and T as follows:

Q

QQ
∑ ∑ −+ ′ − ′′ = =

q KXB
q K TXB

min
‖ ‖

‖ ‖ .j

m

k

n
k
j

j k
w

k
j

j k
wX K K T, , , , 1 1

2

2
k
w (29)

This formulation, known as bundle-adjustment, requires a initial esti-
mate of Q =( )k

w
k n1.. . The fourth step is to recover these D3 locations

(unknown in our context) from the matched pixels by inverting Eq.
(26). A D3 locationQk

w is then seen as Q[ ]k
w j, the intersection of two rays

Q∼k
j
and Q′∼

k
j
given by:

Q = − −∼ ⊤ ⊤ − ⊤ ⊤ ⊤R R K q R R t R tk
j

k
j

B X B X X B B1
j j j j (30)

Q′ = ′ −∼ ⊤ ⊤ ⊤ − ⊤ ⊤ ⊤R R R K q R R R tk
j

k
j

B X T B X T T
1

j j (31)

− −⊤ ⊤ ⊤R R t R t ,B X X B Bj j j

Assuming that the localization of Qk
w remains the same for all positions

of the rig, the errors εk
j of two successive triangulations (see Fig. 4) are

minimized in the following formulation:∑′ = εmin .
k

n

k
j

X K K T, , , 1 (32)

with Q Q= − +ε ‖[ ] [ ] ‖k
j

k
w j

k
w j 1 2 (see Fig. 4).

The optimization method, noted (M1), provides an estimated vector
p of thirteen parameters (6 intrinsic parameters ( ′K K, ), the baseline
(T) and 6 parameters of the hand-eye transformation (X)).

3.3.2. Objective function from the epipolar constraint
These parameters can be also estimated in the second optimization

problem by using the epipolar geometry. As explained in Section 2, qk
j

lies on the epipolar line ′ +l
qk

j 1. The fundamental matrix F j associated to

camera c and camera c moved by applying the displacement +Aj j, 1 is
estimated by solving:

∑ +=
+ ⊤

⊤ +π π
q F q

F q F q
min

| |
‖ ( )‖ ‖ ( )‖k

n
k
j j

k
j

j
k
j j

k
jF 1

1 2

2 1 2j (33)

In the second step, F j is decomposed as follows:= −⊤ −F K E Kj j 1 (34)

where E j is the transformation between the retinal plane of c and the
retinal plane of c moved by applying the displacement Aj. Then, the
cost function of Eq. (33) can be rewritten as follows:

∑ ∑ +=
−

=
+ ⊤ −⊤ −

−⊤ − −⊤ ⊤ − +π π
q K E K q

K E K q K E K q
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j j

k
j

j
k
j j

k
j

1

1

1

1 1 2

1 2 1 1 2
(35)

Note that the rigid transformation R t[ ]j jE E extracted from the essential
matrix Ej is strictly equal to +Aj j, 1 := =+ + −R t A XB X[ ]j j j j j jE E , 1 , 1 1 (36)

Then the rotation R jE and the translation t jE can be deduced from Eq.
(18). The same idea can be applied to the fundamental matrix ′F j

Fig. 4. Definition of the error εk
j (in red) minimized in Eq. (32). This error is

defined by the distance between Q[ ]k
w j (the intersection of the rays – in black –

Q∼k
j
andQ′∼

k
j
) and Q +[ ]k

w j 1 (the intersection of the rays – in green –Q∼ +
k
j 1

andQ′∼ +
k
j 1

).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)



associated to camera ′c and camera ′c moved by applying the dis-
placement +A Tj j, 1 :′ = ′ ′ ′−⊤ −F K E Kj j 1 (37)=′ ′ + −R t TA T[ ]E j E j j j, 1 1 (38)= + − −TXB X T .j j, 1 1 1 (39)

Finally, the following optimization problem is stated:

E E∑ ∑ + ′′ =
−
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with:
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The method, noted (M2), minimizes Eq. (40) and exhibits sufficient
conditions to estimate the thirteen parameters of ′X K K, , , and T (six
for ′K K, , one for the baseline T and six for the hand-eye transformation
X).

3.4. Validation of extended self stereovision hand-eye calibration

The experiments were carried out on synthetic images to evaluate
and compare the accuracy and the robustness of the methods (M1) and
(M2) against noisy images.

3.4.1. Generation of noisy synthetic images
For six given displacements = …jB( ), 1, ,6j0 (given by Table 2)

between two successives images from the stereorig, for two given ma-
trices K and ′K of internal parameters (defined by Eq. (22) and Table 3)
and for an hand-eye transformation X (given by Table 3), a set of D3
points Q = …i( ) , 1, , 100i i is projected into the two images as′ = …q q( , )i i i 1, , 100 using Eq. (20). At each coordinates pixel, a centered
Gaussian noise with zero mean and standard deviation σq from 0 to 2
pixels is added. In order to have statistical evidence, the results are
averaged over 100 trials. The averaged resulting noisy points′ = …q q( , )i i i 1, , 100 are used to estimate the performance of the two pro-
posed methods.

3.4.2. Performances of methods M1 and M2
The minimization of Eqs. (32) and (40) was performed by a BFGS

algorithm [57] with the initial guess vector composed of the initial
intrinsic and baseline parameters and the initial parameters of the
hand-eye transformation which are tabulated in Table 3.

The criteria for assessing the performance of the two methods are
the relative error ̂∊ = −x x x‖ ‖/‖ ‖x

r and the absolute error ̂∊ = −x x‖ ‖x
a

between true vector x and its estimation ̂x . These criteria are calculated
after each simulation run. The quantities ∊a

r or ∊x
a denote the mean value

over all simulation runs.

Fig. 5 gathers the mean value of the relative error of intrinsic
parameters, ∊r

K, and the absolute error of translation parameter ∊t
a.

With synthetic images with little noise ( <σ 0.6q pixels), the fit on
intrinsic parameters with Method M1 and Method M2 are equivalents. In
contrast, when the level of noise increases ( >σ 0.6q pixels), ∊r

K increases
with method M1 whereas it remains lower than 5% with Method M2. The
same behavior can be observed for the translation parameter t. The
value of ∊t

a remains lower than 0.4 mm with Method M1 and it rises
above 1.5 mm with Method M2 when σq increases from 0.6 to 2 pixels.

The mean value of the absolute error on translation and rotation
hand-eye parameters, ∊a

tX and ∊a
RX , shown in Fig. 6, confirms the pre-

vious trend. When the standard deviation of noise, σq, is low, Method
M1 provides slightly lower values of ∊a

tX and ∊a
RX . When the standard

deviation of the noise, σq, is higher than 0.6 pixels, Method M2 performs
significantly better than Method M1 and provides a maximal value for∊a

tX (resp. ∊a
RX) of 4.5 mm (resp. of °0.2 ).

Finally, it might seem that the two methods are equivalent in a
context with a low standard deviation of noise (σq) point extraction (less
than 0.6 pixel). The Method M2 is globally less sensitive to the noise
level. In our application, the standard deviation of noise remains less
than 0.6 pixel. The two methods can thus be used. However, the

Table 2
Six displacements of the end-effector transformation, =B R t[ ]j B0j B0j0 , used for
the generation of synthetic images.

Displ. rotation (°) translation (mm)

j r jxB0 r jyB0 r jzB0 t jxB0 t jyB0 t jzB0

1 0 180 0 0 0 500
2 45 180 14 10 200 356
3 −43 −167 22 −318 −158 424
4 49 175 4 12 189 832
5 60 167 34 −321 376 294
6 −34 −163 −45 531 −269 756

Table 3
Intrinsic parameters of both rectified cameras, K and ′K , the baseline t and the
parameters of Hand-Eye transformation, =X R t[ ]X X , used for the generation of
synthetic images (S.) and for the initial guess (I.) of the minimization process.

αu ′αu αv u0 ′u0 v0 t
(–) (–) (–) (pix.) (pix.) (pix.) (mm)

S. 195.84 191.61 201.58 137.39 26.95 58.58 −156.14
I. 200 200 200 82 82 64 −150

t xX t yX t zX r xX r yX r zX
(mm) (mm) (mm) (°) (°) (°)

S. 152 36 −19 6.53 4.89 −3.98
I. 150 40 −20 0 0 0

Fig. 5. Evolution of the mean value of ∊r
K, the relative error of intrinsic para-

meters of camera c, and ∊t
a, the relative error of translation parameter versus the

standard deviation of noise for fits to Eqs. (32) and (40).



advantage of Method M1 is that it calculates the D3 points conjointly
with the calibration parameters.

3.5. Conclusion

The first objective function (Method M1) is very efficient with a low
level of noise. When the noise level increases, it is necessary to in-
troduce a second objective function in the projective space which takes
advantage of the epipolar constraint between two images acquired by
the same camera from two robot positions. However, Method M1 is able
to calculate the D3 points conjointly with the calibration parameters.

4. Automated thermal D3 reconstruction

The automated thermal D3 reconstruction will be implemented to
monitor incremental forming processes [6]. Its principle is to locally
and gradually deform a metal sheet using a hemispherical tip tool
(small diameter compared to the dimensions of the sheet) until the
desired shape. The trajectory of the tip tool is controlled by a numerical
control machine. This process makes it possible to form sheets of

geometries complex with an extremely simple and therefore in-
expensive tooling. The automated multiview thermal D3 reconstruction
method suggested aims at controlling both the local thermal gradient
under the tip tool and guarantying the shape of the part during the
forming. The section aims at testing and evaluating the shape mea-
surement of a reference part, called pyramid, which is a test part of the
incremental forming process.

The first section details the automatic NDT architecture composed
by uncalibrated infrared cameras mounted on the Cartesian robot. The
method, explained in the two previous sections, is summarized in the
second subsection. The last subsection provides the results the D3 re-
construction of the reference part provided by the suggested thermal D3
reconstruction method. It also compares this D3 reconstruction with D3
reconstruction performed by a reference D3 Digitizer, Konica Minolta
Range, with ± 50 µm accuracy.

4.1. Automatic NDT architecture for the automated thermal D3
reconstruction

The automatic NDT architecture is a Cartesian robot equipped only
with stereovision bench composed of uncalibrated infrared cameras
which is displayed in Fig. 7(a).

The Cartesian robot positions the end-effector (hand) at the desired
position for the acquisitions in a working volume of× ×1000 1000 800 mm. The position of the end-effector is known and
given by the calculation of euclidean transformations (translation and
rotation, named Bij in the previous section) between the world and the
end-effector frames. A Cartesian robot offers a high rigidity (and so a
good reproducibility of motion) and a good accuracy (thanks to the
partial decoupling of the axes). The stereovision infrared cameras, in-
stalled at the end-effector, are compact and dedicated to embedded
applications, such as drones. Their advantages are size and very low
weight (around 400 g). These cameras are equipped with matrix sensors
of uncooled microbolometers. They operate in 8–14 µm spectral band
and work at 25 fps. Their resolution is ×160 120 pixels with a pitch of
25 µm. The Noise Equivalent Temperature Difference (NETD) is ap-
proximately 100 mK. The focal length is 11 mm and acquisition distance
is approximately 50 cm.

The automated multiview thermal D3 reconstruction is tested on the
pyramid part (see Fig. 7(b)), manufactured by an incremental forming
process. Its base is about thirty centimeters with sides around ten
centimeters. Its height is twenty centimeters.

4.2. Overview of the process of automated thermal D3 reconstruction

As shown in Fig. 8, the first step of the automated thermal D3 re-
construction is the acquisition of multiviews from the robot displace-
ment, so as to extract interest points on the part of the object to be
reconstructed. Considering the displacements of the end effector of the
robot expressed by the matrix Bj and +Bj 1, at the position j, the k

Fig. 6. Evolution of the mean value of the error of hand-eye translation para-
meters, ∊a

tX (high figure) and hand-eye rotation parameters, ∊a
RX , (low figure)

versus the noise parameter ν for fits to Eqs. (32) and (40).

Fig. 7. (a) Thermal robotic set-up composed of a Cartesian robot and infrared cameras. (b) Reference part, called pyramid, used for testing the automated multiview
thermal D3 reconstruction.



matched points on each of the pairs of images and on each image be-
tween the displacement j and + ′j q q1, ( , )k k j are obtained with a com-
bination of detectors.

Thus, the matched points on each of the pairs of images are the
inputs to calculate the pair of rectification homographies of the ste-
reovision bench which minimize the projective deformations according
to the method described in Section 2. The two obtained homographies
Hj and +Hj 1 are used to compute the two rectified images I j and I′j.
Next, the end effector is moved to the position +j 1 using +B j 1. At this
new position, a new step of rectification is performed. Four rectified
images I I I′ +, ,j j j 1 and I′ +j 1 are then available. Edge detection is
then performed on this set in order to obtain n quadruplets

′ ′+ + = …q q q q( , , , )k
j

k
j

k
j

k
j

k n
1 1

1 of matched points.
This set of quadruplets is used in the self-calibration and re-

construction step presented in Section 3 and to solve Eq. (32). Solving
this problem provides the calibration parameters ′K K T, , , the hand-eye
parameters X and two sets Q Q= … + = …([ ] ) , ([ ] )k

w j k n k
w j k n1 1 1 of D3 -points.

Note that the criterion of Eq. (32) is the sum of euclidean distance
Q Q− +‖[ ] [ ] ‖k

w j
k
w j 1 2. Consequently, the two sets of obtained D3 -points are

very close at the end of the optimization process. Nevertheless, a choice
must be made between the two sets. We define Q = …( [ ] )k

w j k n1 , the final
set of D3 points, by the mean between Q = …([ ] )k

w j k n1 and Q + = …([ ] )k
w j k n1 1 .

This process leads to the D3 partial reconstruction of the observed
object summarized in Fig. 8.

4.3. Compared D3 reconstruction on the reference part

To assess the performances of the suggested approach, a D3 re-
construction comparison was carried out on the pyramid part presented
in Fig. 7. The reference D3 reconstruction was performed using the D3
Digitizer, Konica Minolta Range. It measures the shape of the part by
profilometry with ± 50 µm accuracy for a measurement distance of
60 cm.

The reference D3 reconstruction was compared to the D3 points
cloud performed by the suggested automated thermal D3 reconstruction
with =m 15 displacements of the robot. These fifteen displacements
only provide a partial D3 reconstruction of the part.

4.3.1. Rectification of uncalibrated cameras
As presented in the flowchart of Fig. 8, the first step consists in
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k
j

k
j

k
j

k N
1 1

1 of points on the stereo
images acquired for the position j of the end-effector. The Harris’s de-
tector [58], coupled with ZNCC (Zero mean Normalized Cross-Corre-
lation) method, provide the highest number of uniformly distributed
matched points. Fig. 9a shows an example of the number of matched
points ( =N 110).

These matched points are the inputs of the rectification method
suggested in Section 2. Fig. 9b displays the original and rectified images
calculated with this set of matched points.

The criteria used to qualify the rectification image of Fig. 9 have
already been presented in Section 2.3 and are tabulated in Table 4. The
mean (respectively the standard deviation) on the rectification error Er
is very low: 0.09 pixels (respectively 0.03 pixels). The maximal ortho-
gonality error °−max E(90 )o (respectively the maximal aspect ratio error−max E(1 )a ) is 0.7° (respectively 0.02). These results, with an ortho-
gonality error of less than one degree highlight a very small deforma-
tion of the image and will ensure the introduction of a small de-
formation in the next calibration step.

4.3.2. Extended self stereovision hand-eye calibration
As presented in the flowchart of Fig. 8, extended self stereovision

hand-eye calibration is performed on =m 15 displacements of the
robot. Between the position j and +j 1 of the end effector, four rectified
images I I I′ +, ,j j j 1 and I′ +j 1 are computed in the step presented

Fig. 8. Flowchart of the automated thermal D3 reconstruction.

Fig. 9. Example of stereo infrared images of the pyramid part. (a) 110 Matched points between the stereo infrared images with Harris detector and ZNCC method. (b)
Original (on the top) and rectified infrared images I I ′,j j (on the bottom).



below. Next, fifty-seven quadruplets of matched points are extracted
(i.e. =n 57) using phase congruency model [24,25] associated with
ZNCC method (see Fig. 10).

The selected criteria to analyze the calibration-reconstruction
quality are: d , the mean value of reconstruction and e , the mean value
of the epipolar distance. They are tabulated in Table 5. The mean value
of reconstruction error d remains lower than 1.32 mm. The mean value
of the epipolar distances e is higher than one pixel at around 3.25 pixels.
The extended hand-eye self-calibration is then accurate and consistent
with the spatial resolution of the infrared cameras.

The mesh performed from the D3 point cloud calculated during this
step is displayed in Fig. 11 where an image projection of the part is also
plotted.

4.3.3. Comparison of D3 point cloud calculated by the suggested method
and provided with the laser scanner (ground truth)

Fig. 12 provides the D3 deviations performed with Geomagic®soft-
ware between the previous mesh and the reference model (ground
truth) built with the laser scanner.

On this figure, the grey color represents the reference model. The
over-printed color is the D3 deviation values between the D3 re-
construction performed by the method and the reference model. This
colorbar provides the accuracy of the reconstruction for the different
areas of the part. The left box indicates the colorbar associated to each
D3 deviations and displays the histogram. The two images differs from
the range of colorbar. For the first image, the range of colorbar is cal-
culated using the maximal deviation. The image is called full-scale. The
second image is displayed with a range containing the most of the de-
viation values. This image is named restricted-scale. These different
scales make full use of the histogram of D3 deviations, in mm.

The first image with a full-scale highlights the maximum values of
the reconstruction deviation. The maximal deviation value reaches
12.8 mm and is located on the left field of the part. Most of D3 devia-
tions values are in the interval −[ 1.5 mm, 1.5 mm]. Thus, the part is
mainly green. In the second image, the colorbar is then restricted to the
interval −[ 1.5 mm, 1.5 mm] to analyze accurately deviation locations.
The mean error on the top of the part is then equal to 1.7 mm with an
standard deviation of 1.8 mm. The maximal deviation is recorded on the
edges of the part where the area is not textured enough.

These deviations are comparable to the spatial resolution of the
camera which is 1 mm (observation distance 50 mm, focal length
11 mm, pixel size 51 µm and a half correlation window of 4.5 pixel). This
reconstruction performance on a plane with very low resolution cam-
eras validates the D3 automated thermal reconstruction with a multi-
view approach performed with the help of a robot equipped with two
uncalibrated infrared cameras.

5. Conclusions and future works

This article presented algorithms required for performing an auto-
mated thermal D3 reconstruction of a part with a system composed of a
stereovision rig of uncalibrated infrared cameras mounted on a six-axis
Cartesian robot. This multi-view D3 thermal reconstruction relies on a
geometric extended self-calibration for estimating both intrinsic para-
meters for each camera, relative position and orientation between the
two cameras and the Euclidean transformation between the robot and
the camera reference frames.

A new projective rectification method was first introduced on one
hand for improving the stereo matching problem between pixels on the
left and right images reducing the search space from two dimensions to
a single one, and on the other hand for decreasing the number of
parameters of the cost function of the calibration problem. Because the
suggested method must cope with noisy and low-textured infrared
images, the two homographies needed for the rectification were cal-
culated in a single step, from only a few matched points and without
previous information on the Fundamental Matrix. The suggested recti-
fication keeps the aspect ratio and the orthogonality of images, and
consequently, limits the creation or loss of pixels. The structure and the
skewness of the images are preserved with an error of less than 0.8% on
both criteria. Before demonstrating its effectiveness on infrared images
in the last section, this method was benchmarked against recent recti-
fication methods on images classically used in the vision community.

Next, the set of matched points from rectified images was used to
perform simultaneously, also in a single step, the extended self-cali-
bration and the multi-view infrared D3 reconstruction. The minimiza-
tion problem of calibration was solved through two cost functions se-
lected according to the noise level measured in infrared images. The
first objective function aims at minimizing the reprojection errors (in
pixels). When the noise level increases, a second objective function is
expressed in the projective space, from the epipolar constraints between

Table 4
Rectification performances on the pyramid part.

Orthogonality Eo Aspect Ratio Ea Rectification error Er

′H H ′H H mean σ
(°) (°) (no unit) (no unit) (pix.) (pix.)

89.29 90.07 0.9882 0.9991 0.09 0.06

Fig. 10. Example of =n 57 matched points on four rectified images.

Table 5
Results on extended hand-eye self-calibration with the reference part.

Σd d σd Σe e σe
(mm) (mm) (mm) (pix.) (pix.) (pix.)

37.34 1.32 0.86 185.74 3.25 7.96

Fig. 11. Mesh from the D3 points cloud with a projection of the image part.



two images acquired by the same camera from two robot positions.
These two functions make explicit the intrinsic camera parameters and
the essential matrix between the robot positions, which itself depends
on the hand-eye parameters and the robot motion. The tests with si-
mulated images, with noise on the extracted points, confirmed that the
method based on the reprojection error is suitable, with a noise less
than 1 pixel. Above this value, the second method is more suitable. The
reconstruction based on a rectified stereovision rig gives low registra-
tion errors with an approach in a single step.

Finally, the automated thermal D3 reconstruction was validated by
comparing its results with those obtained with a D3 scanner with an
accuracy to 50 µm. An accurate D3 model of a hot object with an ac-
curacy around ± 1 mm was achieved with several views acquired by
uncalibrated infrared cameras.

References

[1] X. Maldague, Theory and Practice of Infrared Technology for Nondestructive
Testing, John Wiley Interscience, 2001.

[2] A. Maynadier, M. Poncelet, K. Lavernhe-Taillard, S. Roux, One-shot measurement of
thermal and kinematic fields: infrared image correlation (IRIC), Exp. Mech. 52
(2012) 241–255.

[3] S. Vidas, P. Moghadam, Heatwave: a handheld 3D thermography system for energy
auditing, Energy Build. 66 (0) (2013) 445–460.

[4] R. Reichle, P. Andrew, G. Counsell, J.-M. Drevon, A. Encheva, G. Janeschitz,
D. Johnson, Y. Kusama, B. Levesy, A. Martin, C.S. Pitcher, R. Pitts, D. Thomas,
G. Vayakis, M. Walsh, Defining the infrared systems for ITER, Rev. Sci. Instrum. 81
(10) (2010).

[5] Y. Ham, M. Golparvar-Fard, Epar: energy performance augmented reality models
for identification of building energy performance deviations between actual mea-
surements and simulation results, Energy Build. 63 (0) (2013) 15–28.

[6] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Allwood, Asymmetric single
point incremental forming of sheet metal, CIRP Ann. Manuf. Technol. 54 (1) (2005)
88–114.

[7] D. Gonzalez-Aguilera, P. Rodriguez-Gonzalvez, J. Armesto, S. LagÃela, Novel ap-
proach to 3D thermography and energy efficiency evaluation, Energy Build. 54 (0)
(2012) 436–443.

[8] D. Borrmann, A. Nuchter, M. ÃŘakulovic, I. Maurovic, Y. Petrovic, D. Osmankovic,
J. Velagic, A mobile robot based system for fully automated thermal 3D mapping,
Adv. Eng. Inform. (2014).

[9] K. Nagatani, K. Otake, K. Yoshida, Three-dimensional thermography mapping for
mobile rescue robots, in: K. Yoshida, S. Tadokoro (Eds.), Field and Service Robotics,
Springer Tracts in Advanced Robotics, vol. 92, Springer, Berlin Heidelberg, 2014,
pp. 49–63.

[10] L. Zalud, P. Kocmanova, Fusion of thermal imaging and CCD camera-based data for
stereovision visual telepresence, 2013 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), 2013, pp. 1–6.

[11] S. Vidas, P. Moghadam, M. Bosse, 3D thermal mapping of building interiors using
an rgb-d and thermal camera, 2013 IEEE International Conference on Robotics and
Automation (ICRA), 2013, pp. 2311–2318.

[12] P. Moghadam, S. Vidas, Heatwave: the next generation of thermography devices,
Proc. SPIE 9105 (2014), http://dx.doi.org/10.1117/12.2053950
91050F–91050F-8.

[13] S. Prakash, P.Y. Lee, A. Robles-Kelly, Stereo techniques for 3D mapping of object
surface temperatures, Quantit. InfraRed Thermogr. J. 4 (1) (2007) 63–84.

[14] T. Sentenac, R. Gilblas, D. Hernandez, Y.L. Maoult, Bi-color near infrared

thermoreflectometry: a method for true temperature field measurement, Rev. Sci.
Instrum. J. 83 (12) (2012) 124902.

[15] T. Sentenac, R. Gilblas, Noise effect on the interpolation equation for near infrared
thermography, Metrologia 50 (3) (2013) 208.

[16] R. Gilblas, T. Sentenac, D. Hernandez, Y.L. Maoult, Quantitative temperature field
measurements on a non-gray multi-materials scene by thermoreflectometry,
Infrared Phys. Technol. 66 (0) (2014) 70–77.

[17] S. Vidas, R. Lakemond, S. Denman, C. Fookes, S. Sridharan, T. Wark, A mask-based
approach for the geometric calibration of thermal-infrared cameras, IEEE Trans.
Instrum. Meas. 61 (6) (2012) 1625–1635.

[18] Z. Yu, S. Lincheng, Z. Dianle, Z. Daibing, Y. Chengping, Camera calibration of
thermal-infrared stereo vision system, 2013 Fourth International Conference on
Intelligent Systems Design and Engineering Applications, 2013, pp. 197–201.

[19] H. Durrant-Whyte, T. Bailey, Simultaneous localization and mapping: part i, IEEE
Robot. Autom. Mag. 13 (2) (2006) 99–110.

[20] R. Rusu, 3D robotic mapping: the simultaneous localization and mapping problem
with six degrees of freedom, KI - KÃijnstliche Intell. 24 (3) (2010) 267.

[21] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge
University Press, 2003.

[22] M.I.A. Lourakis, A.A. Argyros, Sba: a software package for generic sparse bundle
adjustment, ACM Trans. Math. Softw. 36 (1) (2009) 2:1–2:30.

[23] Y. Furukawa, J. Ponce, Accurate, dense, and robust multiview stereopsis, IEEE
Trans. Pattern Anal. Mach. Intell. 32 (8) (2010) 1362–1376.

[24] K. Hajebi, J. Zelek, Dense surface from infrared stereo, IEEE Workshop on
Applications of Computer Vision, 2007. WACV ’07, 2007, pp. 21–28.

[25] K. Hajebi, J.S. Zelek, Structure from infrared stereo images, Proceedings of the 2008
Canadian Conference on Computer and Robot Vision, CRV ’08, IEEE Computer
Society, Washington, DC, USA, 2008, pp. 105–112.

[26] F. Devernay, Vision stéréscopique et propriétés différentielles des surfaces (Ph.D.
Thesis), Ecole polytechnique, 1997.

[27] C. Loop, Z. Zhang, Computing Rectifying Homographies for Stereo Vision, Tech.
Rep. Microsoft Research, 1999.

[28] H.P. Trivedi, Estimation of stereo and motion parameters using a variational
principle, Image Vision Comput. 5 (2) (1987) 181–183.

[29] R. Hartley, Theorie and practice of projective rectification, Int. J. Comput. Vision 35
(1999) 115–127.

[30] J. Gluckman, S.K. Nayar, Rectifying transformations that minimize resampling ef-
fects, IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, 2001, p. 111.

[31] J. Mallon, P. Whelan, Projective rectification from the fondamental matrix, Image
Vision Comput. 23 (2005) 643–650 W.P..

[32] R. Laganière, F. Kangni, Projective rectification of image triplets, Signal, Image
Video Process. (2009) 389–397.

[33] P. Monasse, J.-M. Morel, Z. Tang, Three-step image rectification, Proceedings of the
British Machine Vision Conference, BMVA Press, 2010, pp. 89.1–89.10.

[34] F. Zilly, M. MÃijller, P. Kauff, P. Eisert, Three-step image rectification, Proceedings
of the 3D Data Processing, Visualization and Transmission Conference, 2010.

[35] C. Lawrence, A. Tits, A computationally efficient feasible sequential quadratic
programming algorithm, SIAM J. Optim. (2001) 1092–1118.

[36] J.Z.C.T. Lawrence, A. Tits, User’s Guide for cfsqp version 2.5, Tech. Rep. Electrical
Engineering Department and Institute for Systems Research, University of
Maryland, 1997.

[37] E.R. Panier, A.L. Tits, On combining feasibility, descent and superlinear con-
vergence in inequality constrained optimization, Math. Program. (1993) 261–276.

[38] M. Shah, R.D. Eastman, T. Hong, An overview of robot-sensor calibration methods
for evaluation of perception systems, Proceedings of the Workshop on Performance
Metrics for Intelligent Systems, 2012, pp. 15–20.

[39] R. Tsai, R. Lenz, Real time versatile robotics hand-eye calibration using 3D machine
vision, IEEE International Conference on Robotics and Automation, 1988.
Proceedings, vol. 1, 1988, pp. 554–561.

[40] Y.C. Shiu, S. Ahmad, Calibration of wrist-mounted robotic sensors by solving
homogeneous transform equations of the form AX=XB, IEEE Trans. Robot. Autom.

Fig. 12. D3 deviations at different scales (full and restricted scales) between the reference model and the mesh emerging from the D3 points cloud calculated by the
suggested method. The box indicates the scale of each image in mm and the values of the displayed histogram.



5 (1) (1989) 16–29.
[41] J.C.K. Chou, M. Kamel, Finding the position and orientation of a sensor on a robot

manipulator using quaternions, Int. J. Rob. Res. 10 (1991) 240–254.
[42] R.P. Horaud, F. Dornaika, Hand-eye calibration, Int. J. Robot. Res. 14 (3) (1995)

195–210.
[43] H. Chen, A screw motion approach to uniqueness analysis of head-eye geometry,

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
1991. Proceedings CVPR ’91, 1991, pp. 145–151.

[44] Z. Zhao, Y. Weng, A flexible method combining camera calibration and hand-eye
calibration, Robotica 31 (2013) 747–756.

[45] A. Malti, J.P. Barreto, Hand-eye and radial distortion calibration for rigid endo-
scopes, Int. J. Med. Robot. Comput. Assisted Surg. 9 (4) (2013) 441–454.

[46] A. Malti, Hand-eye calibration with epipolar constraints: application to endoscopy,
Robot. Auton. Syst. 61 (2) (2013) 161–169.

[47] J. Heller, M. Havlena, A. Sugimoto, T. Pajdla, Structure-from-motion based hand-
eye calibration using ∞l minimization, 2011 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

[48] S. Seo, Y.-J. Choi, S.W. Lee, A branch-and-bound algorithm for globally optimal
calibration of a camera-and-rotation-sensor system, 2009 IEEE 12th International
Conference on Computer Vision, 2009.

[49] J. Heller, M. Havlena, T. Pajdla, Globally optimal hand-eye calibration using
branch-and-bound, IEEE Trans. Pattern Anal. Mach. Intell. (99) (2015) 1.

[50] Z. Zhao, Hand-eye calibration using convex optimization, 2011 IEEE International

Conference on Robotics and Automation (ICRA), 2011, pp. 2947–2952.
[51] J. Heller, D. Henrion, T. Pajdla, Hand-eye and robot-world calibration by global

polynomial optimization, 2014 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2014, pp. 3157–3164.

[52] N. Andreff, R. Horaud, B. Espiau, On-line hand-eye calibration, International
Conference on 3D Digital Imaging and Modeling, 1999, p. 0430.

[53] K. Daniilidis, E. Bayro-Corrochano, The dual quaternion approach to hand-eye ca-
libration, Proceedings of the 13th International Conference on Pattern Recognition,
vol. 1, 1996.

[54] J. Schmidt, F. Vogt, H. Niemann, Calibration free hand-eye calibration: a structure
from motion approach, in: W.G. Kropatsch, R. Sablatnig, A. Hanbury (Eds.), Pattern
Recognition, Lecture Notes in Computer Science, vol. 3663, Springer, Berlin/
Heidelberg, 2005, pp. 67–74.

[55] G. Qing Wei, K. Arbter, G. Hirzinger, Active self-calibration of robotic eyes and
hand-eye relationships with model identification, IEEE Trans. Robot. Autom (1998).

[56] A. Jordt, N. Siebel, G. Sommer, Automatic high-precision self-calibration of camera-
robot systems, IEEE International Conference on Robotics and Automation, 2009.
ICRA ’09, 2009, pp. 1244–1249.

[57] A.S. Lewis, M.L. Overton, Non-smooth optimization via quasi-newton methods,
Math. Program. 141 (1) (2013) 135–163.

[58] C. Harris, M. Stephens, A combined corner and edge detector, Proc. of Fourth Alvey
Vision Conference, 1988, pp. 147–151.


