
HAL Id: hal-01829374
https://hal.science/hal-01829374v2

Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalising Executable Specifications of Low-Level
Systems

Paolo Torrini, David Nowak, Narjes Jomaa, Mohamed Sami Cherif

To cite this version:
Paolo Torrini, David Nowak, Narjes Jomaa, Mohamed Sami Cherif. Formalising Executable Specifi-
cations of Low-Level Systems. 10th Working Conference on Verified Software: Theories, Tools, and
Experiments (VSTTE 2018), Jul 2018, Oxford, United Kingdom. �10.1007/978-3-030-03592-1_9�.
�hal-01829374v2�

https://hal.science/hal-01829374v2
https://hal.archives-ouvertes.fr

Formalising Executable Specifications of
Low-Level Systems

Paolo Torrini, David Nowak, Narjes Jomaa, and Mohamed Sami Cherif

CRIStAL, CNRS & University of Lille, France
{p.torrini,d.nowak,n.jomaa}@univ-lille.fr,mohamedsami.cherif@yahoo.com

Abstract. Formal models of low-level applications rely often on the dis-
tinction between executable layer and underlying hardware abstraction.
This is also the case for the model of Pip, a separation kernel formalised
and verified in Coq using a shallow embedding. DEC is a deeply embed-
ded imperative typed language with primitive recursion and specified
in terms of small-step semantics, which we developed in Coq as a rei-
fied counterpart of the shallow embedding used for Pip. In this paper,
we introduce DEC and its semantics, we present its interpreter based on
the type soundness proof and extracted to Haskell, we introduce a Hoare
logic to reason about DEC code, and we use this logic to verify proper-
ties of Pip as a case study, comparing the new proofs with those based on
the shallow embedding. Notably DEC can import shallow specifications
as external functions, thus allowing for reuse of the abstract hardware
model.1 2

1 Introduction

Formal modelling and verification of OS kernels involve different aspects of
theorem proving: realistic modelling of low-level systems, scalable verification
of program behaviour with respect to abstract specifications, executable mod-
els, generation of efficient, certified low-level code. Models have often complex
structures in terms of components and levels of abstraction [2,3,4]. A natural
distinction arises between the mathematical modelling of low-level require-
ments, typically associated with an abstract model of the platform, and the
executable model of the platform-independent application which we also call
the service layer. Primarily, the abstract model needs to be extensible with re-
spect to concrete models of specific architectures, whereas the executable model
needs to be translated to an efficient implementation language. Working with a
theorem prover such as Coq [5] or Isabelle [6], this is a difference that matters
for the choice of the representation in the base language.

A deep embedding of an object language captures its abstract syntax in
terms of abstract datatypes, therefore providing a reified representation that
supports manipulation, notably translations, as well as operational specifica-
tions of behaviour, thus allowing for a naturally executable characterisation

1 This work was funded by the EU Celtic-Plus Project ODSI C2014/2-12.
2 DEC can be found at https://github.com/2xs/dec.git [1].

2 P. Torrini et al.

of control flow. However, reasoning about abstract datatypes involves a sig-
nificant overhead in relation to the pervasive use of constructors and destruc-
tors. Moreover, conventional datatypes are not extensible. A shallow embed-
ding consists of defining semantically the constructs of the object language in
the base language, hence providing their characterisation in terms of denota-
tional semantics, thus not only keeping the maths as simple as possible, but
also allowing for extensibility in a non-problematic way. On the other hand, a
shallow embedding does not provide any direct way to manipulate language
constructs, and it makes it hard to separate object execution from evaluation in
the base language.

Going back to our problem, we would generally like to associate the exe-
cutable model with a deep embedding and the abstract platform model with a
shallow one. Our approach consists in deeply embedding an object language
that allows importing specifications written in the metalanguage as external
function calls. We call the object language thus formalised a deeply embedded
language extension (DLE). A DLE can be thought of as a domain specific exten-
sion of the base language, taking it closer to the target domain in the sense of
syntax (i.e. with language constructs close to the instructions to be modelled)
and of behavioural specification (i.e. with an operational semantics close to its
model of execution).

2 Motivation

In this paper, we focus on the development of a specific DLE in connection
with the formal development of the Pip protokernel [4,7,8,9]. Separation kernels
[10] are systems designed to provably ensure noninterference properties with
respect to distinct applications running on the same machine [3,2,11]. Usually a
separation kernel is based on a formal model that is verified with respect to its
security policy and translated to a low-level language for efficiency.

Pip is a separation kernel in which the kernel functionalities are reduced
to a minimum needed to allow for efficient memory management and context
switching (hence its characterisation as protokernel) [4]. It provides a service
API allowing for partitions to be created, allocated memory and removed at
runtime according to a hierarchical model. Partitions form a tree and each par-
tition manages its own subpartitions. The security policy of Pip is based on
three memory access properties: the parent partition can access the memory
of its children (vertical sharing), sibling partitions cannot share memory with
each other (horizontal isolation), and no partition can access kernel memory (ker-
nel isolation). The Pip system is implemented in C and assembly, relying on a
model written in Coq, the structure of which is shown in Fig. 1. The executable
model, corresponding to the service API, is built on top of an abstract plat-
form model that covers hardware abstraction layer (HAL) and hardware, the
former in terms of the high-level specification of low-level, platform-specific C
and assembly functions, the latter in terms of an abstract model of the physical
memory and the MMU.

Formalising Executable Specifications 3

ABSTRACT

manual

HAL (C and ASM)
implementation

MODEL

automated

specification

 SERVICE API (C)
translation

PLATFORM−
DEPENDENT

abstract

MODEL (COQ)

HAL

HARDWARE HARDWARE

SERVICE LAYER (IL)

Fig. 1: The design of Pip: the system and its model

The service layer of Pip relies on a fragment of C that can be represented
as a comparatively simple imperative language, one that is not difficult to cap-
ture in functional terms. This fragment, which we call IL here, corresponds to
a typed first-order sequential language with call-by-value, primitive recursion
and mutable references. Crucially, we do not need to return pointers, to use
call by reference, structures or arrays. Non-termination can always be ruled out
relying on hardware parameters.

The executable model has been formalised in Coq on top of hardware ab-
straction using a shallow embedding of IL based on its monadic semantics, and
the verification of the security properties, presented in [4], has been carried out
directly on the MC code using an associated Hoare logic, without going through
a higher-level model of the service layer. The service layer is about 1300 lines of
what we specifically call monadic code (MC), semantically corresponding to IL,
while the HAL is about 300 lines of monadic specification. The verification in-
volves rather long proofs [9] (several tens of thousands of lines), of which over
ten thousands for the abstract platform model.

Modelling Pip at the shallow level has made it possible to focus on system
development from the start, independent of any work on language develop-
ment. However, translation to a low-level language is mandatory for efficiency.
The closeness of IL to a fragment of C made it possible to carry out automati-
cally the translation of MC to C source code. Such translation, defined on Gal-
lina abstract syntax, has been implemented in Haskell [12] and it returns effi-
cient, yet unverified code. Unfortunately, verifying code obtained in this way
seems rather hard, as it would involve comparing semantically two large lan-
guages such as C and Gallina.

We would like to obtain a certified translation at a comparatively lower cost,
by focusing on a smaller source language, building a reified representation of
our object language, and by targeting an existing formalisation of C such as
CompCert C [13], defining a verified translator in Coq. For this reason, we have
developed in Coq a DLE that we call DEC [14,1], as an object-level counterpart
of IL. As a deep embedding, DEC can be the source of a translation function

4 P. Torrini et al.

defined in Coq by pattern matching on the abstract syntax. Unlike MC, DEC
has an interpreter based on its small-step operational semantics. This makes it
possible to analyse the control flow in Coq, and it could help significantly in
comparing formally the behaviour of a program with that of its translation to
another language. Although in practice it is difficult to run the interpreter in
Coq, it is possible to rely on the extraction mechanism to obtain an efficient
program based specifically on the operational semantics of DEC rather than on
generic Gallina evaluation.

Given DEC, there are indeed two distinct possibilities for the verification of
Pip, as shown in Fig. 2. Both plans involve translating the MC model to DEC.
Plan A consists additionally in proving the semantic equivalence between the
two models, relying for the rest on the verification of the security properties in
the shallow embedding as presented in [4]. Plan B, on the other hand, consists
in verifying properties directly on the DEC model. In this case, given the large
size of the existing verification based on MC, one of the main priorities is to
maximise its reuse in verifying DEC code. This can be achieved particularly
for the abstract platform model, relying on the DLE character of DEC. In this

(shallow embedding)

verification

Plan A:

C implementation

 translation (in Haskell)

model
MC executable

verification

Plan B:

(deep embedding)

DEC executable
model formal translation

formal translation

platform model

Fig. 2: Two verification plans: A and B

paper we focus on the distinctive part of plan B, i.e. on DEC and on verification
in the deep embedding, omitting the translation to C (which is ongoing work).
Our contribution (beyond the semiformal characterisation of IL) consists in two
aspects that are essential to our verification approach: the development of DEC
as DLE (ca. 10,000 lines code), and the development of an appropriate Hoare
logic for DEC (ca. 2,000 lines code), allowing for syntax-driven, compositional
proofs and reuse of the abstract platform model. We applied our approach to a
case study (ca. 2,000 lines code on top of a significant amount of reuse), proving
auxiliary invariants of Pip functions in their translation to DEC.

In section 3 we give a preliminary overview of IL, characterising it math-
ematically in terms of its operational semantics. In section 4 we present the
development of DEC, with its interpreter (section 5) and the associated Hoare
logic (section 6). Section 7 presents the verification of Pip invariants based on
DEC code, and compares it with their verification based on MC. In section 8 we
discuss related work, in section 9 conclusions and further work.

Formalising Executable Specifications 5

3 Preliminaries

We start with a semiformal, mathematical specification of IL, the language we
use to illustrate succinctly the operational semantics DEC is based on, and to
connect it with MC through a mathematical specification of its denotational se-
mantics. IL is parametric in the primitive types Typ (ranged over by t), in the
state type W, and in the actions Act, ranged over by a, associated with side
effects and used to represent external functions. Values of primitive types are
informally regarded as a set Val ranged over by v. Function types, ranged over
by ft, are each defined by a tuple of primitive types for the parameters, and
a primitive type for the return value. The syntax of IL is constituted of intrin-
sically well-typed expressions Exp and functions Fun (ranged over by e and f
respectively). We rely on higher-order abstract syntax (HOAS), treating identi-
fiers as formal variables and programs as closed terms, thus avoiding the need
for environments. For brevity, we represent tuples as heterogeneous lists, which
we treat as typed by type lists (denoted Typs), extending to them a standard list
notation (including map). We use the Haskell convention for naming lists.

Exp (t : Typ) := val t | cond (Exp Bool) (Exp t) (Exp t)
| binds (t′ : Typ) (Exp t′) (t′ → Exp t)
| call (ts : Typs) (Fun t ts) (Exps ts) | xcall (ts : Typs) (Act t ts) (Exps ts)

Exps (ts : Typs) := map Exp ts

Fun (t : Typ) (ts : Typs) := fun (ts→ Exp t) ((ts→ Exp t)→ ts→ Exp t) Nat

Act (t : Typ) (ts : Typs) := ts→W→ (W ∗ t)

We specify the small-step transition relation using configurations defined as
pairs (s,X) where s : W is a state and X may be either an expression or a list
of them. We make the presentation more concise by giving only the reduction
rules and relying on evaluation contexts to specify call-by-value. Evaluation
contexts allow us to compute the redex at each step. As usual [15], we write []
to denote the hole in which to plug the redex in, and C[e] to denote the splitting
of an expression into context and redex.

Ctx := [] | binds Ctx (Exp) | binds Val Ctx | cond Ctx (Exp) (Exp)
| call (Fun) Ctxs | xcall (Act) Ctxs

Ctxs := Ctx :: (Exps) | Val :: Ctxs

〈 s . e 〉 −→ 〈 s′ . e′ 〉
〈 s . C[e] 〉 −→ 〈 s′ . C[e′] 〉

〈 s . binds (val v) e 〉 −→ 〈 s . e v 〉

〈 s . cond (val true) e1 e2 〉 −→ 〈 s . e1 〉

〈 s . cond (val false) e1 e2 〉 −→ 〈 s . e2 〉

〈 s . call (fun e0 e1 0) (map val vs) 〉 −→ 〈 s . e0 vs 〉

6 P. Torrini et al.

〈 s . call (fun e0 e1 (S n)) (map val vs) 〉 −→ 〈 s . e1 (fun e0 e1 n) vs 〉

〈 s . xcall ts a (map val vs) 〉 −→ 〈 s′ . val v 〉 where a vs s = (s′, v)

Notice that val simply lifts values to expressions, and the final value can be
obtained by unlifting from an expression of form val v. The denotational se-
mantics of IL can be defined along the lines of the monadic translation in [16],
using a state monad with state W (see Appendix A). The result corresponds to
the shallow embedding used in the formalisation of Pip [4].

4 The Deep Embedding

DEC [1] is a strongly normalising, functional imperative language with prim-
itive recursion, implemented in Coq as an DLE based on IL, parametric in the
type of the mutable state. The constructs of DEC are internally specified as func-
tional ones. Nonetheless, Coq functions can be imported as external functions,
and these can be stateful, although the totality requirement of the metalan-
guage ensures that they are terminating. In this sense, DEC is a functional lan-
guage that can be extended with generic effects, as well as a deeply embedded
functional interface which can be used to extend a stateful model. Unlike the
HOAS-style presentation of IL, DEC relies on environments, on explicit typing
relations, and on a semantic representation which uses propagation rules rather
than evaluation contexts, following an approach closer to [17] and to the orig-
inal presentation of structural operational semantics (SOS) [18], a choice made
to allow for explicit manipulation of identifiers without the need to implement
α-renaming. As a distinctive computational feature, DEC has typing relations
with inductive principles which are strong enough to carry the weight of the
type soundness proof, while minimising type annotation.

Relying on Coq modules, the definition of DEC is parametric in the type of
the mutable state W and in the type of the identifiers Id, the latter required to
have decidable equality. We model environments as homogeneous lists, and to
this purpose, unlike in HOAS, we need to introduce a deep embedding of object
types and values. Our object types (i.e. deep types) are lifted Gallina types (i.e.
shallow ones). Their type could be treated as trivial hiding, i.e.Σ(λX:Type,X), but
we prefer to rely on a type class ValTyp:Type→Prop to ensure lifting is explicitly
allowed, hence defining our type VTyp of value types asΣValTyp, with associated
lifting function vtyp: Type → VTyp. Deep values are defined by lifting shallow
values, hiding their type, and their type Value is defined as ΣValueI, where
Inductive ValueI (T: Type) : Type := Cst (v: T).

and lifting is cst: ∀ T:Type, T → Value. Value environments and value typ-
ing contexts are then given types list(Id*Value) and list(Id*VTyp), re-
spectively abbreviated as valEnv and valTC. The value typing relation
ValueTyping:Value→VTyp→Type reduces to extracting and equating the shal-
low types of the two arguments, whereas the identifier typing rela-
tion IdTyping:valTC→Value→VTyp→Type relies on the application of the lookup
function findE.

Formalising Executable Specifications 7

From the deep typing point of view, DEC is intended as a first-order lan-
guage, therefore it would not be strictly necessary to allow for the body of pro-
gram expressions to contain occurrences of function definitions, as opposed
to function variables. However, allowing function definitions to be syntactical
subexpressions leads to a stronger built-in induction principle. Partly for this
reason, DEC is essentially designed as first-order fragment of a higher-order
language. The deep type of function types
Inductive FTyp : Type := FT (prms_type: valTC) (ret_type: VTyp).

ensures the first-order restriction, requiring that parameters are deep dataval-
ues. Function environments (funEnv) and function typing contexts (funTC) are
defined as lists, in analogy to valEnv and valTC. The namespace distinction be-
tween value identifiers and function identifiers is enforced at the level of head
normal forms, here called q-values and q-functions.
Inductive QValue : Type := Var (x: Id) | QV (v: Value).

The inductive type of expressions is mutually defined with functions, q-
functions, and lifted expression lists that represent parameters.
Inductive Fun : Type := FC (fenv: funEnv) (tenv: valTC)

(e0 e1: Exp) (x: Id) (n: nat)
with QFun : Type := FVar (x: Id) | QF (f: Fun)
with Exp : Type := Val (v: Value) | Return (q: QValue)

| IfThenElse (e1 e2 e3: Exp)
| BindN (e1 e2: Exp) | BindS (x: Id) (e1 e2: Exp)
| BindMS (fenv: funEnv) (venv: valEnv) (e: Exp)
| Apply (qf: QFun) (args: Prms)
| Modify {T1 T2: Type} {VT1: ValTyp T1} {VT2: ValTyp T2}

(XF: XFun T1 T2) (arg: QValue)
with Prms : Type := PS (es: list Exp).

The function constructor FC represents an iterate-style construct, where tenv

gives the list of the formal parameters with their types, n is a natural number
that represents fuel, e0 is the function body for n=0, e1 is the function body for
n>0, x is the function identifier used in recursive calls, and fenv is the local func-
tion environment. Constructors Var and FVar lift identifiers to the correspond-
ing head-normal forms. Similarly QV and QF lift normal forms. PS lifts expression
lists to parameters. Concerning expressions, Val and Return are lifting construc-
tors, IfThenElse represents conditional branching, BindN sequencing and BindS

local binding of identifiers to expressions (i.e. let-style binding). BindMS allows
for multiple binding of identifiers to normal forms, i.e. for local environments,
and it is needed for internal processing in our environment-based representa-
tion. Apply represents application of recursive functions. Modify represents ap-
plication of external one-argument functions, where the function type is T1→T2.
Modify works as a constructor of generic effects, handled by the stateful func-
tions associated with the corresponding record of type
Record XFun (T1 T2: Type) : Type := { x_mod : W→T1→W*T2 ;

x_exec : W→T1→W := λw x, fst (x_mod w x) ;
x_eval : W→T1→T2 := λw x, snd (x_mod w x) }.

8 P. Torrini et al.

For example, generic read and write actions can be defined as follows
Definition xf_read {T: Type} (f: W → T) : XFun unit T := {|

x_mod := fun x _ ⇒ (x, f x) |}.
Definition xf_write {T: Type} (f: T → W) : XFun T unit := {|

x_mod := fun _ x ⇒ (f x, tt) |}.

Read and write instructions can then be defined, given UnitVT:ValTyp unit (here
@ is used to make implicit arguments explicit).
Definition Read {T: Type} (VT: ValTyp T) (f: W → T) : Exp :=
@Modify unit T UnitVT VT (xf_read f) (QV (cst unit tt)).

Definition Write {T: Type} (VT: ValTyp T) (f: T → W) (x: T) : Exp :=
@Modify T unit VT UnitVT (xf_write f) (QV (cst T x)).

Notice that function definitions are meant to represent closed terms, as they
may occur as subterms in expressions. For this reason, a function definition is
defined as a closure with respect to its function identifiers, by including fenv

as local function environment. This measure prevents variable capture and suf-
fices to ensure we can type check recursive functions without annotating them
with their return type.

The typing relations on expressions, functions, q-functions and parameters
are defined by mutual induction, where MatchEnvs maps a binary relation over
two lists.3

Inductive ExpTyping : funTC→valTC→funEnv→Exp→VTyp→Type := ...
| Apply_Typing : ∀ (ftenv: funTC) (tenv fps: valTC) (fenv: funEnv)

(q: QFun) (ps: Prms) (pt: PTyp) (t: VTyp),
pt = PT (map snd fps) → MatchEnvs FunTyping fenv ftenv →
QFunTyping ftenv fenv q (FT fps t) →
PrmsTyping ftenv tenv fenv ps pt →
ExpTyping ftenv tenv fenv (Apply q ps) t

| Modify_Typing : ∀ (ftenv: funTC) (tenv: valTC) (fenv: funEnv)
(T1 T2: Type) (VT1: ValTyp T1) (VT2: ValTyp T2)
(XF: XFun T1 T2) (q: QValue),

QValueTyping tenv q (vtyp T1) →
ExpTyping ftenv tenv fenv (@Modify T1 T2 VT1 VT2 XF q) (vtyp T2)

with QFunTyping : funTC→funEnv→QFun→FTyp→Type := ...

In the typing of function application, the type of the actual parameters is com-
pared with that of the formal ones obtained from the q-function typing, which
means either consulting the function typing context (ftenv) in case of an identi-
fier, or else checking the function type. In the typing of external function calls
the relevant types and the function definition are passed as a record.

Our function typing relation has a comparatively non-standard, algorithmic
character.
with FunTyping : Fun→FTyp→Type :=

| Fun0_Typing: ∀ (ftenv: funTC) (tenv: valTC) (fenv: funEnv)
(e0 e1: Exp) (x: Id) (t: VTyp),

MatchEnvs FunTyping fenv ftenv →
ExpTyping ftenv tenv fenv e0 t →

3 Details in 2xs/dec/src/langspec/LangSpec.v [14]

Formalising Executable Specifications 9

FunTyping (FC fenv tenv e0 e1 x 0) (FT tenv t)
| FunS_Typing: ∀ (ftenv: funTC) (tenv: valTC) (fenv: funEnv)

(e0 e1: Exp) (x: Id) (n: nat) (t: VTyp),
let ftenv' := (x, FT tenv t) :: ftenv in
let fenv' := (x, FC fenv tenv e0 e1 x n) :: fenv in
MatchEnvs FunTyping fenv ftenv → ExpTyping ftenv' tenv fenv' e1 t →
FunTyping (FC fenv tenv e0 e1 x n) (FT tenv t) →
FunTyping (FC fenv tenv e0 e1 x (S n)) (FT tenv t)

Given a function f := FC fenv tenv e0 e1 x n to type, while the types of the pa-
rameters are supplied by tenv, the return type needs to be inferred, either from
e0 when n = 0, or else from e1. This involves also inferring the types of the local
functions in fenv, not supplied by f. Hence the typing relation requires a func-
tion environment as argument, rather than just a function typing context, and
given the function environment update in case of n > 0, type inference requires
induction on the fuel.

We have developed our typing definitions in parallel with the proof of a
type soundness theorem which in fact we carry out by mutual induction on
the typing relations. However, the induction principle supplied automatically
by Coq turned out to be weak, particularly given our use of lists to represent
parameters and our typing of parameters
with PrmsTyping : funTC→valTC→funEnv→Prms→PTyp→Type :=

| PS_Typing: ∀ (ftenv: funTC) (tenv: valTC) (fenv: funEnv)
(es: list Exp) (ts: list VTyp),

Forall2T (ExpTyping ftenv tenv fenv) es ts →
PrmsTyping ftenv tenv fenv (PS es) (PT ts).

where Forall2T maps a relation on lists.
Inductive Forall2T {A B : Type} (R: A→B→Type): list A→list B→Type :=
| Forall2_nilT : Forall2T R nil nil
| Forall2_consT : ∀ x y l l',

R x y → Forall2T R l l' → Forall2T R (x::l) (y::l').

We solved this problem by supplying customised and stronger mutual induc-
tion principles (called ExpTyping_str_rect for expressions and similarly for the
other categories), obtained by instantiating a more general one, proved by
means of the mutually recursive version of the fix tactic [5]. Reasoning by in-
duction on the typing relations, we can prove that each well-typed object is
uniquely typed. This is also the case for functions.
Lemma UniqueFunType (f: Fun) (ft1 ft2: FTyp)

(k1: FunTyping f ft1) (k2: FunTyping f ft2) : ft1 = ft2.

Although the typing of functions depends on their fuel, we can prove
FunTyping (FC fenv tenv e0 e1 x (S n)) ft →
FunTyping (FC fenv tenv e0 e1 x n) ft

and conversely
sigT (fun ft0 ⇒ FunTyping (FC fenv tenv0 e0 e1 x (S n)) ft0) →
FunTyping (FC fenv tenv0 e0 e1 x n) ft →
FunTyping (FC fenv tenv0 e0 e1 x (S n)) ft.

10 P. Torrini et al.

The dynamic semantics of DEC, defined in terms of small-step rules, is com-
paratively standard and close to the IL presentation, though far less concise, as
propagation rules are needed for each constructs. It relies on a notion of con-
figuration parametrised by syntactic categories (i.e. expressions, parameters,
q-values and q-functions).
Inductive AConf (T: Type) : Type := Conf (state: W) (qq: T).

The step rules for q-values and q-functions are just environment lookups.
Inductive QVStep : valEnv → AConf QValue → AConf QValue → Type
Inductive QFStep : funEnv → AConf QFun → AConf QFun → Type

The step rules for expressions and parameters (evaluated from left to right) are
defined by mutual induction, using the principle supplied by Coq.
Inductive EStep: funEnv→valEnv→AConf Exp→AConf Exp→Type := ...
with PrmsStep: funEnv→valEnv→AConf Prms→AConf Prms→Type := ...

The reduction rules for Apply and particularly the decreasing character of
the recursive one (shown below), supplemented by the call-by-value prop-
agation rules, ensures the termination of recursive functions in a way that
corresponds to the iterate-style construct of IL. Here isValueList2T is used
to check whether a list of expressions equals a list of lifted values, and
mkVE:valTC→list Value→valEnv constructs a value environment from a typing
context and a list of values of the same length.
| Apply_RS1 : ∀(fenv fenv': funEnv) (env: valEnv) (n: W) (e0 e1: Exp)

(es:list Exp) (vs:list Value) (x: Id) (i: nat) (pt:valTC),
isValueList2T es vs → length pt = length vs → EStep fenv env
(Conf Exp n (Apply (QF (FC fenv' pt e0 e1 x (S i))) (PS es)))
(Conf Exp n (BindMS ((x,(FC fenv' pt e0 e1 x i))::fenv') (mkVE pt vs) e1))

Notice the use of BindMS to introduce a local environment, with the following
step rules.
| BindMS_RS : ∀(fenv fenv': funEnv) (env env': valEnv) (n: W) (v: Value),
EStep fenv env (Conf Exp n (BindMS fenv' env' (Val v))) (Conf Exp n (Val v))
| BindMS_PS : ∀(fenv fenvL:funEnv) (env envL:valEnv) (n n': W) (e e': Exp),
EStep (fenvL++fenv) (envL++env) (Conf Exp n e) (Conf Exp n' e') →
EStep fenv env (Conf Exp n (BindMS fenvL envL e))

(Conf Exp n' (BindMS fenvL envL e'))

The reduction rule of Modify enacts the monadic behaviour of the stateful action
associated with xf, returning the value computed by x_eval and changing the
state according to x_exec.

5 The SOS Interpreter

The small-step semantics can be used to compute well-typed programs in
well-typed environments. First of all, we extend the definitions of transi-
tion steps to reflexive-transitive closures (represented by inductive types,
e.g. EClosure : funEnv → valEnv → AConf Exp → AConf Exp → Type). Then, af-
ter using double induction on the step relation and its reflexive-transitive ex-

Formalising Executable Specifications 11

tension to prove a weakening lemma (for expressions as shown, and similarly
for parameters)
Lemma weaken (fenv fenv':funEnv) (env env':valEnv) (n1 n2:W) (e1 e2:Exp):
EClosure fenv env (Conf Exp n1 e1) (Conf Exp n2 e2) →
EClosure (fenv ++ fenv') (env ++ env') (Conf Exp n1 e1) (Conf Exp n2 e2).

our strong mutual induction principle on typing suffices to prove a type sound-
ness theorem, with the following formulation for expressions (and similarly for
the other mutually defined categories).4

Lemma ExpEval (ftenv:funTC) (tenv:valTC) (fenv:funEnv) (e:Exp) (t:VTyp):
ExpTyping ftenv tenv fenv e t →
MatchEnvs FunTyping fenv ftenv → ∀ env: valEnv,
MatchEnvs ValueTyping env tenv → ∀ n: W,
Σ (λ v: Value, ValueTyping v t * Σ (λ n': W,

EClosure fenv env (Conf Exp n e) (Conf Exp n' (Val v)))).

The use of Σ types ensures that the witnesses can be extracted from the proof.
The proof can then be applied as a function, ensuring that a value of the ex-
pected type can always be obtained together with a final state for well-typed
expressions in well-typed environments by a finite number of steps. Notice that
usually induction on the typing relation only suffices to prove subject reduc-
tion, i.e.
Lemma ExpSubjectRed (ftenv:funTC) (tenv:valTC) (fenv:funEnv) (e:Exp) (t:VTyp):

ExpTyping ftenv tenv fenv e t → MatchEnvs FunTyping fenv ftenv →
∀ (env: valEnv), MatchEnvs ValueTyping env tenv →
∀ (e': Exp) (n n': W), EStep fenv env (Conf Exp n e) (Conf Exp n' e') →

ExpTyping ftenv tenv fenv e' t.

whereas type soundness, in the case of a terminating language, involves a weak
normalisation result typically provable by induction on the step relations. Our
typing relations incorporate the inductive aspect on fuel, and therefore suffice
to prove normalisation. We prove determinism of evaluation, again by induc-
tion on typing.
Lemma ExpDeterm (ftenv:funTC) (tenv:valTC) (fenv:funEnv) (e:Exp) (t:VTyp):

ExpTyping ftenv tenv fenv e t → FEnvTyping fenv ftenv →
∀ (env: valEnv), EnvTyping env tenv → ∀ (n n1 n2: W) (e1 e2: Exp),
EStep fenv env (Conf Exp n e) ((Conf Exp n1 e1)) →
EStep fenv env (Conf Exp n e) ((Conf Exp n2 e2)) → (n1 = n2) ∧ (e1 = e2).

Determinism together with weak normalisation give us strong normalisation,
and indeed this makes it possible to ensure that our type soundness proof can
be used as an SOS interpreter to evaluate DEC programs. We can run the in-
terpreter on simple expressions, but Coq’s evaluation mechanism (notoriously
fragile [19]) currently does not carry us far enough, particularly in connection
with our extensive use of dependent types.

Nonetheless, we can rely on the Coq extraction mechanism to obtain a cer-
tified and efficient implementation of the SOS interpreter. We used extraction
to Haskell to generate code which we compiled and run with GHC. The pres-

4 Specification and proofs in 2xs/dec/src/DEC1 [1]

12 P. Torrini et al.

ence of dependent types in our Coq code required some adjustments. In fact,
when Coq types have no direct translation into Haskell, the extraction mecha-
nism will use the Haskell type Any (which can be understood as the union of all
possible types). This means that in order to print the result of running the inter-
preter, we need to supply explicitly the translated type using the Haskell func-
tion unsafeCoerce. As expected, the Haskell interpreter is recursively defined
on a term that in Coq has the dependent type of the typing relation. In fact,
the computational content of our carefully designed algorithm rests entirely on
that relation, rather than on its arguments. Although such arguments have no
computational role, they are still present in the extracted code, as they have
computational types. But the lazy evaluation strategy of Haskell ensures that
they are not evaluated, and thus they can be safely given the value undefined.

In the future we would like to tackle the aspect of evaluation in Coq too,
in order to show the semantic adequacy of DEC with respect to MC. We have
defined a translation of DEC to Gallina, relying on the strong induction princi-
ple on typing as we did for type soundness. Ideally we would like to show that
for each DEC program, the proof term of this translation is equal to the term
obtained from the SOS interpreter.

6 Hoare Logic

We defined a Hoare logic to verify well-typed DEC programs with respect to
state properties expressed in Gallina. Our definitions of Hoare triples allow for
the postcondition to depend on the value returned by the computation, follow-
ing [20,21], and for the computation to depend on function and value environ-
ments. We provide the syntax {{ P }} fenv >> env >> e {{ Q }} to write triples
for expressions, where the unary predicate P gives the precondition and the
binary predicate Q the postcondition of running the SOS interpreter on a well-
typed expression e in well-typed environments fenv for functions and env for
values, corresponding to the following definition
Definition THoareTriple_Eval (P : W → Prop) (Q : Value → W → Prop)

(fenv: funEnv) (env: valEnv) (e: Exp) : Prop :=
∀ (ftenv: funTC) (tenv: valTC) (t: VTyp)

(k1: MatchEnvs FunTyping fenv ftenv) (k2: MatchEnvs ValueTyping env tenv)
(k3: ExpTyping ftenv tenv fenv e t) (s s': W) (v: Value),
EClosure fenv env (Conf Exp s e) (Conf Exp s' (Val v)) → P s → Q v s'.

where the transitive closure hypothesis states that the expression e, eval-
uated in state s, leads to value v in an updated state s'. The syn-
tax {{ P }} fenv >> env >> ps {{ Q }} and an analogous definition are used for
Hoare triples for parameters. Notice that in contrast with the triples for MC [4]
where well-typedness is shallow and implicit, here the typing information is
deep and thus needs to be explicit. In principle, this explicitness could bring
additional discriminating power, making it easier to distinguish between types
that are meant to be different, with different actions associated to them, though
modelled by the same shallow type. However, this comes to the cost of an over-
head in the proofs. On the other hand, an untyped version of the triples could

Formalising Executable Specifications 13

not rely on termination, and therefore would be rather weak in comparison
with the shallow counterpart.

We supply a Hoare logic library based on our triples, notably including
Hoare logic structural rules for each DEC construct, in order to allow for a veri-
fication style that is essentially syntax-driven. Most of these rules support bidi-
rectional use, i.e. both by weakest precondition and strongest postcondition,
and correspond to big-step rules. For example, the following is the main rule
for BindS

{{P0}} fenv >> env >> e1 {{P1}} →
(∀ v: Value, {{P1 v}} fenv >> (x,v)::env >> e2 {{P2}}) →
{{P0}} fenv >> env >> BindS x e1 e2 {{P2}}

This rule allows a triple for the expression BindS x e1 e2 to be broken down into
sequential triples for e1 and e2 (the latter in an updated value environment). The
main rule for the Apply constructor can be conveniently split into two distinct
ones, in order to deal with the recursive update of the function environment,
which does not take place with zero fuel
let f := FC fenv' tenv' e0 e1 x 0 in

{{P0}} fenv >> env >> PS es {{P1}} →
(∀ vs: list Value, {{P1 vs}} fenv' >> (mkVE tenv' vs) >> e0 {{P2}}) →
{{{P0}} fenv >> env >> Apply (QF f) (PS es) {{P2}}

whereas it does otherwise (i.e. fenv' is updated with the assignment of function
f0 to the identifier x)
let f0 := FC fenv' tenv' e0 e1 x n in
let f1 := FC fenv' tenv' e0 e1 x (S n) in

{{P0}} fenv >> env >> PS es {{P1}} →
(∀ vs, {{P1 vs}} (x, f0)::fenv' >> (mkVE tenv' vs) >> e1 {{P2}}) →
{{P0}} fenv >> env >> Apply (QF f1) (PS es) {{P2}}

As another example, given an external function record xf: XFun t1 t2, the rule
for Modify has more naturally the form of a weakest precondition (we show the
case when the argument q is already a lifted value):
let q := QV (cst t1 v) in let g := λs, xf.x_eval s v in
let h := λs, xf.x_exec s v in {{λ s. Q (g s) (h s)}}

fenv >> env >> Modify xf q {{Q}}

The validity of these rules is proved by inverting the corresponding operational
semantic rules, making use of the determinism of DEC.

7 Case Study: Verifying Properties of Pip

The model of Pip in the shallow embedding [4] is based on Gallina code which
can be regarded as a monadic representation of IL. The LLI monad used in that
representation is defined as an abstract datatype and it wraps together hard-
ware state and undefined behaviours, analogously to applying a state trans-
former to an error monad [16,22].
Definition LLI (A: Type) : Type := state → result (A * state).
Inductive result (A: Type) : Type :=

14 P. Torrini et al.

val: A → result A | undef: nat → state → result A.

The primitive types are Booleans and subsets of naturals. The HAL functions
correspond to the actions in IL. The monadic operations ret and bind, which
can be easily proved to satisfy the monadic laws
Definition ret : A → LLI A := fun a s ⇒ val (a, s).
Definition bind : LLI A → (A → LLI B) → LLI B := fun m f s ⇒
match m s with | val (a, s') ⇒ f a s' | undef a s' ⇒ undef a s' end.

provide the semantics for sequencing, let binding and function application.
Primitive recursion and conditional expressions are encoded in terms of the
corresponding Gallina notions (see Appendix A for a semiformal definition of
the corresponding denotational semantics).

The executable specification of Pip rests on a platform model which in-
cludes the representation of physical memory as association lists of physical
addresses and values, and the specification of HAL primitives corresponding
to architecture-dependent functions [4,9]. Stateful functions such as get and put

are only used in the definition of the HAL primitives, thus ensuring that Pip
services can access the state only through specific actions. A physical address is
modelled as a page identifier (corresponding to a fixed-size chunk of memory)
and an offset value called index.
Record page := {p :> nat; Hp: p < memorySize}.
Record index := {i :> nat; Hi: i < pageSize}.
Definition paddr := page * index.

The value datatype sums up the types of values that can be found in the config-
uration pages.
Inductive value : Type:= | PE: Pentry → value | VE: Ventry → value

| PP: page → value | VA: vaddr → value | I: index → value.

Here Pentry stands for physical entry, Ventry for virtual entry, and vaddr for vir-
tual address. Physical entries (PTEs) associate a page with its accessibility in-
formation.
Record Pentry : Type:= {pa: page; present: bool; accessible: bool}.

The management of memory is based on a tree-like partition structure. The par-
tition tree is a hierarchical graph in which each node contains a handle called
partition descriptor (PD) together with the configuration of the partition, de-
fined as a set of entities, the main one being the MMU configuration. This has
the structure of a tree of fixed levelNum depth where physical addresses (in-
cluding those pointing to possible children in the partition tree) are essentially
leaves, whereas valid virtual addresses represent maximal branches. In fact,
virtual addresses are modelled as lists of indices of length levelNum+1. Each of
them is translated by the MMU either to the null address or to a physical one,
by interpreting each index in the list as offset in the page table at the corre-
sponding level in the MMU. Partitioning management also uses two auxiliary
entities, which can be described as shadows of the MMU. The first shadow is
used to find out which pages are assigned children, and it uses the type Ventry.
The second shadow is used to associate each PD to the virtual address it has in

Formalising Executable Specifications 15

the parent partition. The comparatively low-level representation of these struc-
tures in the Coq model is based on lists and relies on consistency invariants to
ensure e.g. that a list represents a tree. The physical state in Pip is defined by
the PD identifier of the currently active partition and the relevant part of the
memory state (i.e. essentially, the configuration pages).
Record state: Type := {currentPartition: page; memory: list (paddr * value)}.

In the monadic model of Pip, this defines the state for the LLI monad [4,9].
In the deep embedding formalisation [1,23], we rely on a concrete module

where Id is instantiated with strings, and W with state. The HAL primitives cor-
respond to the actions which are executed as external function calls by means
of Modify. Since the current definition of DEC does not include rules for error
handling, we delegate undefined behaviour to each action, using option types.
This involves some adjustments. For example, the original HAL primitive in [9]
to read a physical address in a given page

Definition readPhysical (p: page) (i: index) : LLI page := bind get (λs,
match (lookup p i (memory s) page_beq index_beq) with
| Some (PP a) ⇒ ret a | Some _ ⇒ undefined 5 | None ⇒ undefined 4 end).

gets translated to the following
Definition readPhysical' (p: page) (i: index) (s: state) : option page :=
match (lookup p i (memory s) page_beq index_beq) with
| Some (PP a) ⇒ Some a | _ ⇒ None end.

which can be lifted to DEC as external function.
Definition xf_read (p: page) : XFun (option index) (option page) :=
{| x_mod := fun (s: W) (x: option index) ⇒ (s, match x with

| Some i ⇒ readPhysical' p i s | None ⇒ None end) |}.
Definition ReadPhysical (p:page) (x:Id) : Exp := Modify (xf_read p) (Var x).

The fact that the composition of state and error is essentially inverted by the
translation is not problematic in our model: all the proofs on the hardware
primitives turned out to be easy to adjust.

We translated to DEC three auxiliary functions which are defined in the
MC model [9], called getFstShadow, writeVirtual and initVAddrTable. For each
function, we proved the main invariant associated with it for its DEC transla-
tion, along the lines of the proofs in the shallow embedding, reusing the HAL
model in the sense we have described above. The top-level proofs in the shal-
low embedding are comparatively small (about 50, 100 and 250 lines, respec-
tively), but they are quite representative as they involve using several HAL
primitives, sequencing and let-binding, reading from the state (getFstShadow),
updating the state (writeVirtual), as well as a conditional and a recursive func-
tion (initVAddrTable). Following in the footsteps of the shallow proofs, the deep
embedding results in comparable top-level proofs (about 100, 100 and 350
lines respectively), with an overhead due mainly to DEC type-checking, and
to the lifting-unlifting of values on which properties may depend. In the case
of getFstShadow, we have experimented with alternative definitions of HAL
primitives, showing that the top-level proof does not change and therefore,

16 P. Torrini et al.

in principle, that DEC could support refinement of abstract specifications. In
the case of initVAddrTable, we also proved the invariant following a more thor-
oughly syntax-driven approach, in the spirit of our Hoare logic. This resulted
in a significantly shorter top-level proof (about 170 lines, mainly instantiations
of metavariables), though it involved proving additional HAL-level lemmas
(about 300 lines) not supplied by the original model, yet general enough to be
potentially reusable.

The function getFstShadow is used to return the physical page of the
first shadow for a given partition, and it is implemented monadically using
readPhysical as well as getSh1idx and Index.succ as HAL primitives.
Definition getFstShadow (p : page) : LLI page :=

bind getSh1idx (λ x, bind (Index.succ x) (λ y, readPhysical p y)).

This function can be translated to DEC as follows
Definition GetFstShadow (p : page) : Exp :=

BindS ”x” GetSh1idx (BindS ”y” (IndexSucc ”x”) (ReadPhysical p ”y”)).

where all the subexpressions are based on lifted primitives. The invariant that
has been proved for the DEC code [1,23] is the following
Lemma GetFstShadowBind (p: page) (P: W → Prop) (fenv: funEnv) (env: valEnv):
{{λ s, P s ∧ PartitionDescriptorEntry s ∧ p ∈ (GetPartitions mltplxr s) }}

fenv >> env >> (GetFstShadow p)
{{λ sh1 s, P s ∧ NextEntryIsPP p sh1idx sh1 s }}.
closely matching the shallow version in [9]. Here again GetPartitions

and NextEntryIsPP are lifted HAL primitives. GetPartitions returns the list of all
sub-partitions of a given partition, NextEntryIsPP returns a Boolean depending
on whether the successor of the given index in the given configuration page
points to the given physical page, whereas PartitionDescriptorEntry defines a
specific property of the partition descriptor. The typing information that is ex-
plicit in the shallow embedding needs to be extracted from the deep type, and
this makes for most of the overhead in the deep proof.

The function writeVirtual writes a virtual address to the physical memory
and it is used to update configuration pages in the second shadow. It is a HAL
primitive, and therefore can be adjusted and lifted to DEC as an external func-
tion. The associated invariant ensures that the given value is actually written
to the given location, while the properties which do not depend on the up-
dated part of the state are preserved. This example illustrates reuse quite well.
Although the invariant requires a comparatively long proof in the shallow em-
bedding, this proof can be replicated almost exactly in the deep embedding,
using the same (of many) HAL lemmas.

The recursive function initVAddrTable is used to initialise the virtual ad-
dresses in the second shadow. Its translation has a comparatively complex DEC
structure, involving a conditional and the use of tableSize as fuel.
Definition InitVAddrTableAux (f i: Id) (p:page) : Exp :=
BindN (WriteVirtual p i defaultVAddr)

(IfThenElse (LtLtb i maxIndex) (BindS ”y” (BindS ”idx” (IndexSucc i)
(ExtractIndex ”idx”)) (Apply (FVar f) (PS [VLift (Var ”y”)])))

Formalising Executable Specifications 17

(Val (cst unit tt))).

Definition InitVAddrTable (p:page) (i:index) : Exp :=
Apply (QF (FC emptyE [(”x”,vtyp index)] (Val (cst unit tt))

(InitVAddrTableAux ”initVAddrTable” ”x” p)
”initVAddrTable” tableSize)) (PS[Val (cst index i)]).

The associated invariant ensures that after execution each entry of the given
configuration table contains the default value defaultVAddr, regardless of the
current index (cidx).
Lemma InitVaddrTableInv (p: page) (cidx: index)

(fenv: funEnv) (env: valEnv) : {{λ s, (λ idx : index , idx < cidx →
(ReadVirtual table idx (memory s) = Some defaultVAddr)) }}

fenv >> env >> InitVAddrTable p cidx
{{λ _ s idx, ReadVirtual p idx (memory s) = Some defaultVAddr}}.
The DEC structure of InitVAddrTableAux makes it convenient to adopt a syntax-
driven approach based on the application of Hoare logic rules (as opposed to
unfolding the definition of Hoare triple), in order to facilitate automation and
maximise reuse. Indeed, it has been easy to write a tactic in Ltac (the scripting
language of Coq) to semi-automate the application of such rules. In compari-
son, pattern-matching on terms in MC might be trickier. On the other hand, the
impact of this basic form of automation is restricted by the need to instantiate
metavariables with comparatively complex terms for properties. Moreover, the
proof uses induction on tableSize (in analogy to the shallow one).

8 Related Work

Differences and complementarity between shallow and deep embedding have
been widely discussed in functional programming, in relationship with the
development of embedded domain specific languages (EDSLs) [24,25,26,27].
Combinations of shallow and deep embedding have been proposed e.g. in [25]
to deal at once with the expression problem (related to extending a deeply em-
bedded language) and the interpretation problem (related to extending the se-
mantic interpretation of a shallow embedding). Their approach consists in ex-
tending a deeply embedded core language with a shallowly embedded front-
end, thus the opposite of what we do with a DLE. In fact, they share our in-
tent of separating the interpretation of the EDSL from that of the metalan-
guage. However, they want the high-level qualities of a shallow embedding
(e.g. usability and extensibility of the syntax) for the top level part of the EDSL,
whereas we need those qualities in the abstract model underneath (where in
facts proofs tend to be, mathematically speaking, higher-level ones).

In applications of theorem proving, the difference between shallow and
deep embedding has often been associated with a tradeoff between ease in deal-
ing with mathematically higher-level proofs and language manipulation [28].
For example, Cogent [29] is a domain-specific language that has been used to
verify file systems in the context of the seL4 project [3]. Targeting Isabelle, Co-
gent compiles both to a shallow embedding, used in higher-level verification,

18 P. Torrini et al.

and to a deep one, used in verifying C source code (an approach that bears
some analogy with our plan A mentioned in section 2).

In the Coq community, refinement from abstract models based on shallow
embedding to deeply embedded lower-level ones has been discussed in the
context of higher-level formal development [30] as well as in hardware design
[31,32]. CertikOS [33,2] provides a method to formally develop low-level appli-
cations in Coq, targeting an extension of CompCert Clight and assembly code
[13], allowing for composition and refinement of modular specifications which
can be imported as external functions into the deeply embedded CompCert
frontend. In comparison, our notion of DLE has a radically lighter-weight, do-
main specific character, relying on a separation of concerns between verification
of the executable model (discussed in this paper) and translation to the imple-
mentation language. Moreover, unlike our basic Hoare logic, CertikOS provides
advanced support for modular reasoning through contextual refinement [33].

9 Conclusions and Further Work

We have presented the core development of DEC as a DLE, with an interpreter
based on its small-step operational semantics. The translation of DEC to C is on-
going work, and so is the proof that its denotational translation to the monadic
code agrees with its operational semantics. As a preliminary experiment in us-
ing DEC as modelling language, we formalised functions of Pip in DEC and we
proved model invariants associated with them. The DLE approach has proved
fruitful in two main respects: it has enabled us to match neatly the modelling
distinction between platform abstraction and service layer with a linguistic one
between external and internal functions, hence defining a formal interface be-
tween the two; it has supported modular reuse of abstract platform components
and associated proofs along that interface, within a framework that allows for
direct manipulation of the executable code.

The notion of DLE is essentially oriented toward the design of intermediate,
executable models. In the case of DEC, the DLE has been designed to ensure
well-typedness and termination. This choice has been made to match the orig-
inal model in the shallow embedding, rather than the ultimate C target. More
generally, the idea we presented is to build domain specific modelling lan-
guages that support program development by refining stateful specifications
into imperative code, while preserving in Coq the separation of concerns be-
tween layered modelling in a language with a comparatively simple model of
execution, and translation to a richer implementation language.

Acknowledgments. We wish to thank all the other members of the Pip Develop-
ment Team, especially Gilles Grimaud and Samuel Hym, Vlad Rusu and the
anonymous reviewers for feedback and discussion. This work has been funded
by the European Celtic-Plus Project ODSI C2014/2-12.

Formalising Executable Specifications 19

A Appendix: Denotational Semantics

We can define a denotational semantics of IL relying on a monadic translation
similar to the one in [16] based on a state monad M with fixed state type W .
The semantics is defined by a translation of IL to the monadic metalanguage
(4–7), for types (Θt), expressions (Θe), expression lists (Θes) and functions (Θf),
using the auxiliary definitions here also included (1–3).

condM : M Bool→M t1 →M t1 →M t1 :=
λx0 x1 x2. bind x0
(λv0. bind x1 (λv1. bind x2 (λv2. if then else v0 v1 v2)))

(1)

mapM : (∀t. Exp t→M t)→ Exps ts →M ts :=
λf es. match es with [] ⇒ []

| e :: es′ ⇒ bind (f e) (λx. (bind (mapM f es′)
(λxs. ret (x :: xs))))

(2)

iterateM (ts : Typs) (t : Typ) (e0 : ts→M t)
(e1 : (ts→M t)→ (ts→M t))
(n : Nat) (xs : ts) :M t := match n with
0 ⇒ e0 xs | S n′ ⇒ e1 (iterateM ts t e0 e1 n′) xs

(3)

Θt (Exp t) := M t
Θt (Exps ts) := M ts
Θt (Fun t ts) := ts→M t
Θt (Act t ts) := ts→M t

(4)

Θe : ∀t. Exp t→M t
Θe (val x) = ret x
Θe (binds e1 (λx : t. e2)) = bind (Θe e1) (λx : t. Θe e2)
Θe (cond e1 e2 e3) = condM (Θe e1) (Θe e2) (Θe e3)
Θe (call fc es) = bind (Θes es) (Θf fc)
Θe (xcall a es) = bind (Θes es) a

(5)

Θes : Exps ts→M ts
Θes es = mapM Θe es

(6)

Θf : Fun t ts→ ts→M t
Θf (fun (λ x : ts. e0) (λ (r : ts→ Exp t) (x : ts). e1) n) =

iterateM ts t (λ x : ts. Θe e0)
(λ (r : ts→M t) (x : ts). Θe e1)) n

(7)

20 P. Torrini et al.

References

1. Torrini, P., Nowak, D., Cherif, M.S., Jomaa, N.: The repository of DEC (2018) https:
//github.com/2xs/dec.git.

2. Gu, R., Shao, Z., Chen, H., C., W.S., Kim, J., Sjoberg, V., Costanzo, D.: CertiKOS: an
extensible architecture for building certified concurrent OS kernels. In: OSDI. (2016)
653–669

3. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tich, H., Winwood, S.: seL4:
formal verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles. (2009) 207–220

4. Jomaa, N., Torrini, P., Nowak, D., Grimaud, G., Hym, S.: Proof-oriented design of
a separation kernel with minimal trusted computing base. In: AVOCS’18, Proceed-
ings. (2018) 16 pages

5. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

6. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-
order Logic. Springer-Verlag (2002)

7. Bergougnoux, Q., Grimaud, G., Iguchi-Cartigny, J.: Porting the Pip proto-kernel’s
model to multi-core environments. In: IEEE-DASC’18. (2018) 8 pages

8. Yaker, M., Gaber, C., Grimaud, G., Wary, J.P., Sanchez-Leighton, V., J., I.C., Han, X.:
Ensuring IoT security with an architecture based on a separation kernel. In: Fi-
Cloud’18. (2018) 8 pages

9. Bergougnoux, Q., Grimaud, G., Jomaa, N., Hauspie, M., Helluy-Lafont, E., Hym, S.,
Iguchi-Cartigny, J., Nowak, D., Torrini, P., Yaker, M.: The repository of Pip (2018)
http://pip.univ-lille1.fr.

10. Zhao, Y., Sanan, D., Zhang, F., Liu, Y.: High-assurance separation kernels: a survey
on formal methods. arXiv preprint arXiv:1701.01535 (2017)

11. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verification
of information flow security for a simple ARM-based separation kernel. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security. CCS ’13, ACM (2013) 223–234

12. Hym, S., Oudjail, V.: The repository of Digger (2017) https://github.com/2xs/
digger.

13. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
Journal of Automated Reasoning (2009) 263–288

14. Torrini, P., Nowak, D.: DEC 1.0 specification (2018) https://github.com/2xs/dec.
git.

15. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2) (1992) 235–271

16. Moggi, E.: Notions of computation and monads. Information and computation
(1991) 55–92

17. Churchill, M., Mosses, P.D., Sculthorpe, N., Torrini, P.: Reusable components of se-
mantic specifications. In: TAOSD 12. LNCS 8989. Springer (2015) 132–179

18. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Pro-
gram. 60-61 (2004) 17–139

19. Leroy, X.: Using Coq’s evaluation mechanisms in anger (2015) http://gallium.
inria.fr/blog/coq-eval/.

20. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refine-
ment. In: Theorem Proving in Higher Order Logics, 21st International Conference,

https://github.com/2xs/dec.git
https://github.com/2xs/dec.git
http://pip.univ-lille1.fr
https://github.com/2xs/digger
https://github.com/2xs/digger
https://github.com/2xs/dec.git
https://github.com/2xs/dec.git
http://gallium.inria.fr/blog/coq-eval/
http://gallium.inria.fr/blog/coq-eval/

Formalising Executable Specifications 21

TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings. Volume 5170 of
Lecture Notes in Computer Science., Springer (2008) 167–182

21. Swierstra, W.: A Hoare logic for the state monad. In: Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, Au-
gust 17-20, 2009. Proceedings. Volume 5674 of Lecture Notes in Computer Science.,
Springer (2009) 440–451

22. Wadler, P.: Comprehending monads. Mathematical Structures in Computer Science
(1992) 461–493

23. Cherif, M.S.: Project report – modelling and verifying the Pip protokernel in a deep
embedding of C (2017) https://github.com/2xs/dec.git.

24. Gibbons, J., Wu, N.: Folding domain-specific languages: Deep and shallow em-
beddings (functional pearl). In: Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, ICFP. Volume 49. (2014)

25. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding of domain-
specific languages. Computer Languages, Systems & Structures 44 (2015) 143–165

26. Jovanovic, V., Shaikhha, A., Stucki, S., Nikolaev, V., Koch, C., Odersky, M.: Yin-yang:
Concealing the deep embedding of dsls. In: Proceedings of the 2014 International
Conference on Generative Programming: Concepts and Experiences. GPCE 2014,
ACM (2014) 73–82

27. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: Tagless staged
interpreters for simpler typed languages. J. Funct. Program. 19 (2009) 509–543

28. Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow versus deep
embedding. In: Theorem Proving in Higher Order Logics, 17th International Con-
ference, TPHOL ’04. (2004) 305–320

29. O’Connor, L., Chen, Z., Rizkallah, C., Amani, S., Lim, J., Murray, T.C., Nagashima,
Y., Sewell, T., Klein, G.: Refinement through restraint: bringing down the cost of
verification. In: Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP’16, ACM (2016) 89–102

30. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive synthesis of
abstract data types in a proof assistant. In: Proc. POPL’15, ACM (2015) 689–700

31. Chlipala, A.: The Bedrock structured programming system: Combining generative
metaprogramming and Hoare logic in an extensible program verifier. In: ICFP’13,
Springer (2013)

32. Vijayaraghavan, M., Chlipala, A., Arvind, Dave, N.: Modular deductive verification
of multiprocessor hardware designs. In: Computer Aided Verification - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part II. (2015) 109–127

33. Gu, R., Koenig, J., Ramananadro, T., Shao, Z., Wu, X.N., Weng, S.C., Zhang, H., Guo,
Y.: Deep specifications and certified abstraction layers. In: Proc. POPL’15, ACM
(2015) 595–608

https://github.com/2xs/dec.git

	Formalising Executable Specifications of Low-Level Systems

