
HAL Id: hal-01829332
https://hal.science/hal-01829332v1

Submitted on 4 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kite Recognition by means of Graph Matching
Kamel Madi, Hamida Seba, Hamamache Kheddouci, Charles-Edmont Bichot,
Olivier Barge, Christine Chataigner, Rémy Crassard, Emmanuelle Régagnon,

Emmanuelle Vila

To cite this version:
Kamel Madi, Hamida Seba, Hamamache Kheddouci, Charles-Edmont Bichot, Olivier Barge, et al..
Kite Recognition by means of Graph Matching. Graph-based Representations in Pattern Recognition
(GbR2015), May 2015, Beijing, China. �hal-01829332�

https://hal.science/hal-01829332v1
https://hal.archives-ouvertes.fr


Kite Recognition by means of Graph Matching

Kamel Madi1, Hamida Seba1, Hamamache Kheddouci1,
Charles-Edmont Bichot2, Olivier Barge3, Christine Chataigner3,
Remy Crassard3, Emmanuelle Reganon3, and Emmanuelle Vila3
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Abstract. Kites are remnants of long stone walls that outline the shape
of a child’s kite. But the kites are huge, their big size makes them of-
ten clearly visible on high-resolution satellite images. Identified at first
in the Near East, their area of distribution is getting larger and larger.
This wide distribution gives new dimensions in the interpretation of these
structures. Consequently, a large scale recognition of kites will help arche-
ologists to understand the functionality of these enigmatic constructions.
In this paper, we investigate how the satellite imagery can be exploited
in this purpose using a graph representation of the kites. We propose a
similarity measure and a kite identification process that can highlights
the preservation state of the kites. We also construct from real images a
benchmark of kite graphs that can be used by other researchers.

Keywords: Kite recognition, graph matching, edit distance, satellite
image

1 Background an Motivation

Kites are archaeological structures made of long walls converging on an enclo-
sure that have small cells in its periphery (see Figure 1(a)). Kites have been
discovered in the Middle East since the 1920s. Despite several studies, the is-
sues related to their age and function remain without satisfactory answers [4,8].
The kites are thus an underestimated phenomenon. Establishing the duration
of their utilization, outlining their use and functioning, and trying to identify
the population who are behind these constructions are the challenges that would
highlight the significance of this unknown phenomenon. However, these issues
cannot be seriously addressed without an almost exhaustive inventory of these
structures.

In this paper, we investigate how the satellite imagery can be exploited in
this purpose using a graph representation of the kites. Kites are naturally rep-
resentable with graphs. A graph G = (V,E) is a representation tool composed
of a set of vertices V and a set of edges E with the cardinalities |V (G)| = n and
|E(G)| = m where n is called the order of the graph and m its size. The set of
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edges E is a subset of V × V such that (u, v) ∈ E means that vertices u and v

are connected. Usually, a finite number of labels are associated with vertices and
edges. Graphs are commonly used as representation tools in many applications of
structural pattern recognition and classification. For these kind of applications,
graph comparison is a fundamental issue. Graph matching and more generally
graph comparison is a powerful tool for structural pattern recognition [1, 5, 19].
Its has been used in the recognition process of architectonic/urbanistic elements
in aerial/satellite images such as building or Gable-Roof detection [2,20]. Graph
comparison solutions are classified into two wide categories: exact approaches
and fault-tolerant approaches. Exact approaches, such as those that test for
graph isomorphism or sub-graph isomorphism [13,18], refer to the methods that
look for an exact mapping between the vertices and edges of a query graph
and the vertices and edges of a target graph. Fault-tolerant graph comparison
computes a distance between the compared graphs. This distance measures how
similar are the graphs and allows to deal with the errors that are introduced by
the processes needed to model objects by graphs. Several similarity measures are
proposed in the literature using different approaches: graph kernels, graph em-
bedding, maximum common subgraph, graph invariants, etc. We refer the reader
to [1, 19] for more exhaustive surveys. We focus here on two main approaches
that we use in the rest of the paper: graph edit distance (GED) and graph in-
variants. GED is one of the most powerful fault-tolerant graph matching tool.
GED is based on a kind of graph transformations called edit operations. An edit
operation is either an insertion, a suppression or a re-labeling of a vertex or an
edge in the graph. A cost function associates a cost to each edit operation. The
edit distance between two graphs is defined by the minimum costing sequence
of edit operations that are necessary to transform one graph into the other [17].
This sequence is called an optimal edit path. However, computing the exact value
of the edit distance between two graphs is NP-Hard for general graphs and in-
duces a high computational complexity. This motivated several heuristics that
approaches the exact value of GED in polynomial time using different methods
such as dynamic programming and probability (see [6] for a detailed survey).
In this context, [15] proposes a polynomial-time framework based on a fast bi-
partite assignment procedure mapping nodes and their local structures of one
graph to nodes and their local structures of another graph. Similar approaches
are also presented in [14]. Graph invariants have been efficiently used to solve
the graph comparison problem in general and the graph isomorphism problem
in particular. They are used for example in Nauty [13] which is one of the most
efficient algorithm for graph and subgraph isomorphism testing. A vertex invari-
ant, for example, is a number i(v) assigned to a vertex v such that if there is
an isomorphism that maps v to v′ then i(v) = i(v′). Examples of invariants are
the degree of a vertex, the number of cliques of size k that contain the vertex,
the number of vertices at a given distance from the vertex, etc. Graph invariants
are also the basis of graph probing [12] where a distance between two graphs
is defined as the norm of their probes. Each graph probe is a vector of graph
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invariants. A generalization of this concept is also used in in [21] to compare
biological data.

In this paper, we propose a graph comparison approach that deals with the
following issues related to kite recognition:

1. to distinguish between two isomorphic graphs that have different geometry
by using angles between two adjacent edges as well as distances between
connected vertices in the similarity measure. In fact, almost all existing graph
similarity measures compare the structures of graphs in terms of vertices,
edges and and their labels but they do not consider the geometric forms
of these graphs. This must be very important when the graphs represent
objects with specific forms as for kite graphs presented later in the paper,

2. to deal with an important number of graphs: the challenge is to be able to
process an important number of images in almost real-time.

3. to deal with disconnected graphs : depending on the state of preservation of
the kites, the kite graphs may have several connected components.

The proposed approach combines the speed of graph invariant computation with
the resilience of GED, in a multilevel framework consisting of: (1) a fast com-
putable global similarity measure based on graph invariants computed on the
compared graphs. This similarity aims to rapidly discard the graphs that can
not be kites and avoid unnecessary and more costly comparisons; (2) a more ac-
curate local similarity measure based on the geometric form and the structured
features extracted from the graphs. This similarity uses GED to deal with the
state of preservation of the kites; and (3) a reconstruction process that verifies
if the different connected components of the graph constitute a kite.

We also provide a benchmark of kite graphs that we constructed from real
images. This benchmark can be used to evaluate other graph matching methods.

The rest of the paper is organized as follows: in Section 2 we describe how the
kites are represented by graphs and the proposed similarity measure. Section 3
gives the results of our experiments. Section 4 concludes the paper and describe
our future work.

2 A Graph Based Approach for Kite Recognition

In this section, we present our contribution which is twofold:

1. The construction of a valuable dataset of kite graphs extracted from real
images. This dataset comes enriching the existing graph databases used by
researchers to evaluate graph matching and similarity measures.

2. A graph-based similarity measure for kite recognition.

We will use the notations summarized in Table 1 in the remaining of the paper.
We consider simple undirected graphs with labels on both vertices and edges.
Furthermore, we use the angles between two consecutive edges to record the
geometric form of the graphs. We first describe the process of extracting kite
graphs from images. Then, we give the detailed algorithms of our similarity
measure.
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Table 1: Notation
Symbol Description

G(V,E) undirected labeled graph with V its vertex set and E its edge set.
Both vertices and edges are labeled.

V (G) vertex set of graph G.
E(G) edge set of graph G.
deg(v) degree of vertex v.
∆(G) the greatest vertex degree in graph G.
`(e) the label of edge e.
A(G) the greatest angle in graph G.
L(G) the greatest edge label in graph G.
‖S‖ size of the set S.

2.1 From Kite images to kite Graphs: construction of the dataset

The structure of a Kite can be naturally represented by a graph. On satellite
images, Kites appears as flat surfaces delimited by a set of lines. To convert
kites’ images into attributed graphs, the first stage is to extract the kites from
the images by edge detection. Edge (segment or line) detection in images is an
intensively studied topic in image analysis [3,9]. Besides, several recent methods
such as [7, 11, 16] give good result on satellite images. The main difficulty with
such methods is to find the adequate settings to obtain an acceptable segment
detection for a specific application. For the kites, we investigated several solutions
with various settings and the LSD algorithm [7] gave us the most satisfactory
set of segments (see Figure 1(b)). However, we added a refinement step to delete
isolated segments and to merge adjacent ones (see Figure 1(c)). Then, a skeleton
is generated by thinning the segments (see Figure 1(d)). The graph is constructed
from the skeleton by representing lines by edges and ending points of lines by
vertices (Figure1(e)). Each vertex is labeled with a two-dimensional attribute
giving its position and an n-dimensional attribute containing the angles between
every pair of consecutive incident edges. According to the state of preservation of
the kite, a graph obtained by this process can have a single connected component
(i.e., the kite is totally preserved) or it can be composed by two or several
connected components (i.e., some parts of the kite have been destroyed).

We executed our algorithm on an important number of images containing
kites with different state of preservation. We classified the obtained graphs into
three preservation levels:

1. State I: the kite is entire and well preserved. The kite graph may be discon-
nected but the disconnections are neither frequent nor important.

2. State II: the kite graph is very disconnected. Some parts of the kite are not
present.

3. State III: The graph is not a kite. These graphs are obtained by executing
the algorithm on images that do not contain kites.

Figure 2 depicts some examples in each case. We have actually 200 graphs in
each dataset with the characteristics summarized in Table 2.

With the help of the archeologists, we selected from the graphs in State-I
dataset, the most preserved kites and modified them manually to obtain proto-
type kite graphs. Also, to be able to deal with disconnected kite graphs without
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(a) (b)

(c) (d)

(e) (e)Enclosure (f)Antenna

Fig. 1: Illustration of kite detection

Table 2: Graph Dataset Characteristics
avg|V |: average number of vertices. avg|E|: average number of edges. max|V |: maximum number
of vertices. max|E|: maximum number of edges. avgAng : average value of the angles. maxAng

maximum angle value.
avg max avg max avg max

|V | |V | |E| |E| Ang Ang

13 622 14 754 124 180

adding significant computing costs, we constructed a prototype graph for each
kite component, namely : antenna and enclosure. Figures 1(e) and 1(f) give
respectively an exempale of a kite enclosure and a kite antenna.

2.2 A Multi-level Graph Comparison Approach for Kite

Recognition

The proposed kite recognition solution consists of three levels: a global similarity
measure, a local similarity measure and a reconstruction process.
The global similarity measure aims to rapidly discard objects that cannot be
kites based on the size and the form of the objects compared to the prototypes.
It computes graph invariants. The global similarity between two graphs G1 and
G2 is given by:

G Sim(G1, G2) = w1 ∗ dConvex(G1, G2) + w2 ∗ dEdges(G1, G2)

+ w3 ∗ dAngles(G1, G2) + w4 ∗ dV ertices(G1, G2)
(1)
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Preservation State I

Preservation state II

State III: non kite graphs

Fig. 2: Dataset.

where wi, i = 1, 4 are weighting coefficients with w1+w2+w3+w4 = 1 , dConvex(G1, G2)

and dAngles(G1, G2) compare the global geometric forms of the two kites based on
the convexity of the angles and the total value of the angles respectively:

dConvex(G1, G2) =
∣

∣

‖AnglesG1 < ConvexityThreshold‖

‖AnglesG1 ‖

−
‖AnglesG2 < ConvexityThreshold‖

‖AnglesG2 ‖

∣

∣

(2)

where ConvexityThreshold is at most equal to 180◦ but it will be defined according
the form of the kites, AnglesGi

denotes the set of angles of graph Gi.

dAngles(G1, G2) =
|
∑

Anglei,G1 −
∑

Anglej,G2 |

Max(
∑

Anglei,G1 ,
∑

Anglej,G2 )
(3)
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where Anglei,G denotes the ith angle of graph G. dEdges(G1, G2) compares the
global size of the two kites by comparing the distances reported on the edges of
the corresponding graphs.

dEdges(G1, G2) =

∣

∣

‖E(G1)‖
∑

`(ei)
i=1

−
‖E(G2)‖
∑

`(ej)
j=1

∣

∣

Max
(

‖E(G1)‖
∑

`(ei)
i=1

,
‖E(G2)‖
∑

`(ej)
j=1

)

(4)

dV ertices(G1, G2) compares the order of the two graphs.

dV ertices(G1, G2) =

∣

∣‖V (G1)‖ − ‖V (G2)‖
∣

∣

Max
(

‖V (G1)‖, ‖V (G2)‖
) (5)

The algorithm takes as inputs the three prototype graphs, i.e., GAntenna,
GEnclosure and GKite and a query graph. For each connected component of the
query graph, the algorithm returns the most similar kite component.

The second level of the proposed approach is a local similarity measure where
the graphs are compared based on their local descriptions using edit operations
as in [15] and [14]. However, we extended local descriptions by considering angles
degree and labels of the edges. We denote the obtained similarity measure by
GeoL Sim for Geometric Local similarity measure to distinguish it from L Sim

the local similarity measure of [15] and [14] that do not uses angles. Thus, with
GeoL Sim each vertex of the compared graphs is represented by a signature,
i.e. a vector, containing the degree of the vertex, the labels of its incident edges
and the angles between each pair of consecutive incident edges. The similarity
between two vertices v1 and v2 is computed as a distance between their signatures
S(v1) and S(v2) as follows:

d(S(v1), S(v2)) = ω1 ∗
|deg(v1) − deg(v2)|

Max(∆(G1), ∆(G2))

+ ω2 ∗

Max(∆(G1),∆(G2))
∑

k=1

|`(e1,k) − `(e2,k)|

Max(∆(G1), ∆(G2)) ∗ Max(L(G1),L(G2))

+ ω3 ∗

Max(∆(G1),∆(G2))−1
∑

k=1

|Ang1,k − Ang2,k|

(Max(∆(G1), ∆(G2)) − 1) ∗ Max(A(G1),A(G2))

(6)

where where ωi, i = 1, 4 are weighting coefficients with ω1 + ω2 + ω3 = 1 , Angi,k
is the kth angle of vertex vi.

Using these signatures, we construct a matrixM whereM [i, j] = d(S(vi), S(vj))
for each pair of vertices vi and vj such that vi ∈ V (G1) and vj ∈ V (G2). We
define the local similarity measure between G1 and G2 by:

GeoL Sim(G1, G2) = min
h

∑

vi∈V (G1),h(vi)∈V (G2)

d(S(vi), S(h(vi))) (7)

where h : V (G1)) → V (G2)) is a bijection.
Computing this distance is then equivalent to solve the affectation problem in the
matrix |V (G1| × |V (G2)| in which each element represents the distance between
the signature of the ith vertex of (G1)) and the signature of jth vertex of G2.
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To do so, we use the Hungarian algorithm [10] to obtain the minimum cost in
O(n3) time.

Similarly to the global similarity algorithm, the local similarity algorithm
takes as input a query graph representing an image and determines for each
connected component of the query graph the most similar kite component.

When a query graph passes the local similarity measure with more than one
connected component classified as a kite part, we need to know if these kite parts
are parts of the same kite or belongs to different kites. This is the aim of the
reconstruction step that uses the coordinates of the vertices to eventually recon-
struct the entire kite from different components: i.e, enclosure and antennas.

3 Evaluation

For evaluation, we used all the available graphs in the real dataset described in
Section 2. We undertook three series of experiments to evaluate the robustness
and the accuracy of our similarity measure. We compared our approach with
the initial framework based on local structures comparison presented in [15]
and [14] and described in Section 1. This approach is denoted L Sim and do
not use angles in the local structures of the vertices. In the first experiment, we
focused on determining the optimal values for Formthreshold and the weighting
coefficients of the global and the local similarity measures. Based on these exper-
iments that concerned mainly the well preserved kite graphs (State-I dataset)
and the non kite graphs (State-III dataset), we set Formthreshold = 0.5 and gave
an important value to the weight of the labels of the edges, i.e., the distances.
ConvexityThreshold was set to 150◦.

In the second series of experiments we evaluated the scalability of our ap-
proach over an increasing number of nodes in the query graphs. From the 600
graphs of the dataset, we constructed a set of query groups : Q10,...,Q620 each
of which contains 10 graphs. All the graphs of the same query group Qi have
the same number of vertices, i.e., i. This means that the number of vertices of
the query graphs varies from 10 to 620. This variation is obtained by adding
10 graphs till Q120 than by by adding 100 graphs. Figure 3 shows the average
runtime performance of G Sim, GeoL Sim and L Sim. The X-axis shows the
number of vertices contained in the query graph and the Y -axis the average
runtime, in log scale, obtained over the query group of the corresponding graph
size when compared to the 4 kite prototype graphs. This figure shows clearly
the interest of using the global similarity level which is largely faster than the
local similarity measure. The runtime performance of the the two local similar-
ity measures GeoL Sim and L Sim are equivalent and confirm their theoretic
polynomial time complexity.

Finally, we evaluated the accuracy of the proposed approach by perform-
ing classification. Table 3 depicts our results. We can see that GeoL Sim is
more accurate than L Sim on the three datasets. This confirms that considering
angles has an important added value for kite recognition. We can also see that
GeoL Sim and L Sim achieve better than G Sim in the positive datasets (those
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Table 3: Classification
Dataset G Sim GeoL Sim L Sim

State− I 61 94 90
State− II 46 80 60
State− III 71 67.5 43

that contains kites). However G Sim is better in the negative dataset. So, by
using successively G Sim and GeoL Sim we achieve good performance in both
cases.

4 Conclusions

In this paper, we make use of the structural information of kites in a graph-based
recognition framework, in which we take a query image, retrieve a graph repre-
sentation of the image, and perform detailed matching to verify the similarity of
the query graph with a database of kite prototype graphs. We propose a graph
comparison framework that deals with the geometric form of the kite graphs and
their disconnection. The key idea is to first discard the non kite graphs using
a rapidly computable similarity measure based mainly on the geometric form
of the kites. Our preliminary experimentation results are acceptable and en-
couraging. As a perspective, we are interested by comparing our approach with
other graph similarity measures mainly those based on kernels and also with non
graph based recognition solutions by implementing a feature and classifier based
approach.
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