
HAL Id: hal-01829317
https://hal.science/hal-01829317v1

Submitted on 4 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On prefixal factorizations of words
Aldo de Luca, Luca Q. Zamboni

To cite this version:
Aldo de Luca, Luca Q. Zamboni. On prefixal factorizations of words. European Journal of Combina-
torics, 2016, 52, pp.59–73. �hal-01829317�

https://hal.science/hal-01829317v1
https://hal.archives-ouvertes.fr


On prefixal factorizations of words

Aldo de Lucaa, Luca Q. Zambonic,b

aDipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Italy
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Abstract

We consider the class P1 of all infinite words x ∈ Aω over a finite alphabet A admitting a
prefixal factorization, i.e., a factorization x = U0U1U2 · · · where each Ui is a non-empty prefix of
x. With each x ∈ P1 one naturally associates a “derived” infinite word δ(x) which may or may
not admit a prefixal factorization. We are interested in the class P∞ of all words x of P1 such
that δn(x) ∈ P1 for all n ≥ 1. Our primary motivation for studying the class P∞ stems from its
connection to a coloring problem on infinite words independently posed by T. Brown and by the
second author. More precisely, let P be the class of all words x ∈ Aω such that for every finite
coloring ϕ : A+ → C there exist c ∈ C and a factorization x = V0V1V2 · · · with ϕ(Vi) = c for
each i ≥ 0. In a recent paper (A coloring problem for infinite words, J. Combin. Theory (Ser. A)
125 (2014) 306–332), we conjectured that a word x ∈ P if and only if x is purely periodic. In this
paper we prove that P ( P∞, so in other words, potential candidates to a counter-example to our
conjecture are amongst the non-periodic elements of P∞. We establish several results on the class
P∞. In particular, we prove that a Sturmian word x belongs to P∞ if and only if x is nonsingular,
i.e., no proper suffix of x is a standard Sturmian word.

Keywords: Combinatorics on words, Prefixal factorization, Sturmian word, Coloring problems
2010 MSC: 68R15

1. Introduction

Let P denote the class of all infinite words x ∈ Aω over a finite alphabet A such that for every
finite coloring ϕ : A+ → C there exist c ∈ C and a factorization x = V0V1V2 · · · with ϕ(Vi) = c

for all i ≥ 0. Such a factorization is called ϕ-monochromatic. In [5] we conjectured:

Conjecture 1. Let x be an infinite word. Then x ∈ P if and only if x is (purely) periodic.

Various partial results in support of Conjecture 1 were obtained in [5, 6, 14]. Given x ∈ Aω, it
is natural to consider the binary coloring ϕ : A+ → {0, 1} defined by ϕ(u) = 0 if u is a prefix
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of x and ϕ(u) = 1 otherwise. Then any ϕ-monochromatic factorization is nothing more than a
prefixal factorization of x, i.e., a factorization of the form x = U0U1U2 · · · where each Ui is a
non-empty prefix of x. Thus a first necessary condition for a word x to belong to P is that x admits
a prefixal factorization. Not all infinite words admit such a factorization, in fact as is shown in [5],
square-free words and Lyndon words do not admit a prefixal factorization.

Thus in the study of Conjecture 1, one can restrict to the class of words P1 admitting a pre-
fixal factorization. But in fact more is true. We prove that if x ∈ P1, then x has only finitely
many distinct unbordered prefixes and admits a unique factorization in terms of its unbordered
prefixes. This allows us to associate with each x ∈ P1 a new infinite word δ(x) on an alphabet
corresponding to the finite set of unbordered prefixes of x. In turn, the word δ(x) may or may not
admit a prefixal factorization. In case δ(x) /∈ P1, then δ(x) /∈ P and from this one may deduce
that x itself does not belong to P. This is for instance the case of the famous Thue-Morse infinite
word t = t0t1t2 · · · ∈ {0, 1}ω where tn is defined as the sum modulo 2 of the digits in the binary
expansion of n,

t = 011010011001011010010 · · ·

The origins of t go back to the beginning of the last century with the works of A. Thue [15, 16]
in which he proves amongst other things that t is overlap-free, i.e., contains no word of the form
uuu′ where u′ is a non-empty prefix of u. It is readily checked that t admits a prefixal factorization,
in particular t may be factored uniquely as t = V0V1V2 · · · where each Vi ∈ {0, 01, 011}. On the
other hand, as is established later (see Example 4), the derived word δ(t) is the square-free ternary
Thue-Morse word fixed by the morphism 1 7→ 123, 2 7→ 13, 3 7→ 1. Hence δ(t) /∈ P1. This in
turn implies that t /∈ P. Concretely, consider the coloring ϕ′ : {0, 1}+ → {0, 1, 2} defined by
ϕ′(u) = 0 if u is a prefix of t ending with 0, ϕ′(u) = 1 if u is a prefix of t ending with 1, and
ϕ′(u) = 2 otherwise. We claim that t does not admit a ϕ′-monochromatic factorization. In fact,
suppose to the contrary that t = V0V1V2 · · · is a ϕ′-monochromatic factorization. Since V0 is a
prefix of t, it follows that there exists a ∈ {0, 1} such that each Vi is a prefix of t terminating with
a. Pick i ≥ 1 such that |Vi| ≤ |Vi+1|. Then aViVi ∈ Fact(t). Writing Vi = ua, (with u empty or in
{0, 1}+), we see aViVi = auaua is an overlap, contradicting that t is overlap-free.

In the study of Conjecture 1, one can further restrict to the subset P2 of P1 consisting of all
x ∈P1 for which δ(x) ∈P1. In this case, one can define a second derived word δ2(x) = δ(δ(x))

which again may or may not belong to P1. In case δ2(x) /∈P1, then not only is δ2(x) /∈ P, but as
we shall see neither are δ(x) and x. Continuing in this way, we are led to consider the class P∞ of
all words x in P1 such that δn(x) ∈P1 for all n ≥ 1. We prove that P ⊆P∞, so in other words
any potential counter-example to our conjecture is amongst the non-periodic words belonging to
P∞. However, P 6= P∞. In fact, we prove in Sect. 6 that a large class of Sturmian words belong
to P∞, while as proved in [5], no Sturmian word belongs to P.

The paper is organized as follows: In Sect. 2 we give a brief overview of some basic definitions
and notions in combinatorics on words which are relevant to the subsequent material. In Sect. 3 we
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study the basic properties of words admitting a prefixal factorization and in particular prove each
admits a unique factorization in terms of its finite set of unbordered prefixes. From this we define
the derived word δ(x). We prove amongst other things that if x is a fixed point of a morphism, then
the same is true of δ(x).

In Sect. 4 we recursively define a nested sequence · · · ⊂ Pn+1 ⊂ Pn ⊂ · · · ⊂ P1 where
Pn+1 = {x ∈Pn | δ(x) ∈Pn}, and study some basic properties of the set P∞ =

⋂
n≥1 Pn.

In Sect. 5 we study the connection between the class P and the class P∞ and prove that
P ⊂P∞. We also prove that if x ∈P∞, then x is uniformly recurrent, from which we recover a
result previously proved in [5] via different techniques.

Sect. 6 is devoted to prefixal factorizations of Sturmian words. Any Sturmian word x 6= aS,
where a ∈ {0, 1} and S a standard Sturmian word, admits a prefixal factorization. The main result
of the section is that a Sturmian word x belongs to P∞ if and only if no proper suffix of x is a
standard Sturmian word.

2. Notation and Preliminaries

Given a non-empty set A, or alphabet, we let A∗ denote the set of all finite words u =

u1u2 · · ·un with ui ∈ A. The quantity n is called the length of u and is denoted |u|. The empty
word, denoted ε, is the unique element in A∗ with |ε| = 0. We set A+ = A∗ \ {ε}. For each word
v ∈ A+, let |u|v denote the number of occurrences of v in u. In the following we suppose that the
alphabet A is finite even though several results still hold for any alphabet.

Let u ∈ A∗. A word v is a factor of u if there exist words r and s such that u = rvs; v is a
proper factor if v 6= u. If r = ε (resp., s = ε), then v is called a prefix (resp., a suffix) of u.

Given words u, v ∈ A+ we say v is a border of u if v is both a proper prefix and a proper suffix
of u. In case u admits a border, we say u is bordered. Otherwise u is called unbordered.

Let Aω denote the set of all one-sided infinite words x = x0x1 · · · with xi ∈ A, i ≥ 0.
Given x ∈ Aω, let Fact+(x) = {xixi+1 · · ·xi+j | i, j ≥ 0} denote the set of all non-empty

factors of x. Moreover, we set Fact(x) = {ε} ∪ Fact+(x). The factor complexity of x is the map
λx : N→ N defined as follows: for any n ≥ 0

λx(n) = card(An ∩ Fact(x)),

i.e., λx(n) counts the number of different factors of x of length n. A factor u of a finite or infinite
word x is called right special (resp., left special) if there exist two different letters a and b such
that ua and ub (resp., au and bu) are factors of x. A factor u of x which is right and left special is
called bispecial.

Given x = x0x1x2 · · · ∈ Aω. A factor u of x ∈ Aω is called recurrent if u occurs in x an
infinite number of times, and is called uniformly recurrent if there exists an integer k such that
every factor of x of length k contains an occurrence of u. An infinite word x is called recurrent
(resp., uniformly recurrent) if each of its factors is recurrent (resp., uniformly recurrent).
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Let x ∈ Aω and S denote the shift operator. The shift orbit of x is the set orb(x) = {Sk(x) |
k ≥ 0}, i.e., the set of all suffixes of x. The shift orbit closure of x is the set Ω(x) = {y ∈ Aω |
Fact(y) ⊆ Fact(x)}.

An infinite word x is called (purely) periodic if x = uω for some u ∈ A+, and is called
ultimately periodic if x = vuω for some v ∈ A∗, and u ∈ A+. It is easy to see via the pigeon hole
principle that any recurrent ultimately periodic word is necessarily periodic. An infinite word x is
called aperiodic if x is not ultimately periodic.

We say that two finite or infinite words x = x0x1 . . . and y = y0y1 . . . on the alphabets A
and A′ respectively are word isomorphic, or simply isomorphic, and write x ' y, if there exists a
bijection φ : A→ A′ such that y = φ(x0)φ(x1) . . . .

For all definitions and notation not explicitly given in the paper, the reader is referred to the
books [1, 12, 13].

3. Prefixal factorizations

Definition 1. We say that an infinite word x ∈ Aω admits a prefixal factorization if x has a
factorization

x = U0U1U2 · · ·

where each Ui, i ≥ 0, is a non-empty prefix of x.

Some properties of words having a prefixal factorization have been proved in [5]. We mention
in particular the following:

Lemma 2. Let x ∈ Aω be an infinite word having a prefixal factorization. Then the first letter of x
is uniformly recurrent.

Given x = x0x1x2 · · · ∈ Aω, we let UP (x) denote the set of all (non-empty) unbordered
prefixes of x.

Proposition 3. Let x = x0x1x2 · · · ∈ Aω. The following conditions are equivalent:

1. x admits a prefixal factorization.
2. x admits a unique factorization of the form x = U0U1U2 · · · with Ui ∈ UP (x) for each
i ≥ 0.

3. card(UP (x)) < +∞.

Proof. Let us first prove that if x admits a factorization x = U0U1U2 · · · with Ui ∈ UP (x), then
such a factorization is necessarily unique. Indeed, suppose that there exists a different factorization
x = U ′0U

′
1U
′
2 · · · with U ′i ∈ UP (x). Let n ≥ 0 be the first integer such that Un 6= U ′n. Without loss

of generality we suppose that |Un| > |U ′n|. We can write Un = U ′nU
′
n+1 · · ·U ′n+pξ, with p ≥ 0 and

ξ prefix of U ′n+p+1. Hence, Un is bordered, a contradiction.
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We will now prove that 3.⇒ 2.⇒ 1.⇒ 3.

3. ⇒ 2. We begin by assuming card(UP (x)) < +∞ and show how to construct a fac-
torization of x in terms of unbordered prefixes of x. We define recursively an infinite sequence
U0, U1, U2, . . . ∈ UP (x) such that U0U1 · · ·Un is a prefix of x for each n ≥ 0, U0 is the longest
unbordered prefix of x, and for n ≥ 1, Un is the longest unbordered prefix of x which is a prefix
of (U0 · · ·Un−1)−1x. For n = 0 we simply set U0 to be the longest unbordered prefix of x. Note
U0 is well defined since card(UP (x)) < +∞. For the inductive step, let n ≥ 0 and suppose we
have defined U0, . . . , Un with the required properties. We show how to construct Un+1. Let V be
the prefix of x of length |U0 · · ·Un| + 1. Then since |V | > |U0| it follows that V is bordered. Let
v denote the shortest border of V. Then v ∈ UP (x) and by induction hypothesis that Un is unbor-
dered it follows that |v| = 1. In other words, (U0 · · ·Un)−1x begins with an unbordered prefix of x.
Thus we define Un+1 to be the longest unbordered prefix of x which is a prefix of (U0 · · ·Un)−1x.

It follows immediately that U0 · · ·UnUn+1 is a prefix of x. Thus we have proven that 3.⇒ 2..
2.⇒ 1. This implication is trivially true.
1.⇒ 3. If x = V0V1V2 · · · is a prefixal factorization of x, then each prefix of x longer than |V0|

is necessarily bordered. Hence, card(UP (x)) ≤ |V0|.

A direct proof of the equivalence of conditions 1. and 3. in the preceding proposition is in [5,
Lemma 3.7]. Following a well known result of Ehrenfeucht and Silberger, we also observe that an
infinite word having a finite number of unbordered factors is purely periodic [9].

Let P1 denote the set of all infinite words x = x0x1x2 · · · over any finite alphabet satisfying
any one of the three equivalent conditions given in Proposition 3. For x ∈P1 let

x = U0U1U2 · · · (1)

be the unique factorization of x with Ui ∈ UP (x) for i ≥ 0. Let UP ′(x) = {Ui | i ≥ 0} ⊆ UP (x),

and set nx = card(UP ′(x)).

Given distinct elements U, V ∈ UP ′(x), we write U ≺ V if

min{i |Ui = U} < min{i |Ui = V },

in other words if the first occurrence of U in (1) is before the first occurrence of V in (1). Let

φ : {1, 2, . . . , nx} → UP ′(x)

denote the unique order preserving bijection. We define δ(x) ∈ {1, 2, . . . , nx}ω by

δ(x) = φ−1(U0)φ
−1(U1)φ

−1(U2) · · · .

Clearly φ(δ(x)) = x. We call δ(x) the derived word of x with respect to the morphism induced by
the bijection φ : {1, 2, . . . , nx} → UP ′(x).
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Example 1. Let A = {0, 1} and let f be the Fibonacci word over A,

f = 010010100100101001010010010100 · · · ,

which is fixed by the morphism (Fibonacci morphism) defined by 0 7→ 01, 1 7→ 0. It is readily
verified that UP (f) = UP ′(f) = {0, 01} and that 01 ≺ 0. One has nf = 2 and φ(1) = 01, φ(2) =

0. The unique factorization of f in terms of UP (f) is

f = (01)(0)(01)(01)(0)(01)(0)(01)(01)(0)(01)(01)(0)(01)(01)(0) · · ·

Hence,
δ(f) = 1211212112112121121 · · · ,

and δ(f) ' f .

Example 2. Let x = 121312112131212131211213121312112131212131211213 · · · denote the
Tribonacci word fixed by the morphism defined by 1 7→ 12, 2 7→ 13, 3 7→ 1. It is readily verified
that UP ′(x) = UP (x) = {1, 12, 1213}, and 1213 ≺ 12 ≺ 1. It follows that nx = 3 and φ(1) =

1213, φ(2) = 12, and φ(3) = 1. The unique factorization of x in terms of UP (x) begins with

x = (1213)(12)(1)(1213)(12)(1213)(12)(1)(1213)(1213)(12)(1)(1213)(12)(1213)(12)(1)(1213) · · ·

and hence
δ(x) = 123121231123121231 · · · .

Remark 1. In general, if x ∈P1, the set UP ′(x) may be a proper subset of UP (x). For instance,
consider x = 10f where f is the Fibonacci word. Then it is readily verified that UP (x) =

{1, 10, 100} while UP ′(x) = {10, 100}.

We extend φ to a morphism φ : {1, 2, . . . , nx}+ → UP ′(x)+.

Lemma 4. The morphism φ : {1, 2, . . . , nx}+ → UP ′(x)+ is injective.

Proof. Suppose w = φ(v) = φ(v′) with v, v′ ∈ {1, 2, . . . , nx}+. Then w factors as a product of
elements in UP ′(x). Since any such factorization is necessarily unique, it follows that v = v′.

While, as is readily verified, every prefix w of x may be written uniquely as a product of
unbordered prefixes of x, in general, as we saw in the example of 10f (see Remark 1), it may not
be possible to factor w over UP ′(x). However, the following lemma proves that if w occurs in a
prefixal factorization of x, then w = φ(v) for some factor v of δ(x).

Lemma 5. Let x = V0V1V2 · · · be a prefixal factorization of x. Then there exists a (unique) fac-
torization δ(x) = v0v1v2 · · · such that φ(vi) = Vi for each i ≥ 0.
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Proof. Let x = U0U1U2 · · · be the factorization of x in unbordered prefixes. Define r0 = 0 and
rn =

∑n−1
i=0 |Ui|. In other words, rn corresponds to the position ofUn in the preceding factorization.

Similarly we define s0 = 0 and sn =
∑n−1

i=0 |Vi|. Then we claim that {sn |n ≥ 0} ⊆ {rn |n ≥ 0}.
In fact, suppose to the contrary that there exist indices i, j such that rj < si < rj+1. This implies
that there exists k ≥ i, such that a prefix of Vk (possibly all of Vk) is a proper suffix of Uj. This
is a contradiction since Uj is unbordered. Thus we have proven that any prefixal factorization of
x is also a factorization of x viewed as an infinite word over the alphabet UP ′(x). The result now
follows.

Combining the two previous lemmas we obtain:

Corollary 6. Let x = V0V1V2 · · · be a prefixal factorization of x. Then for each i ≥ 0 there exists
a unique factor vi of δ(x) such that φ(vi) = Vi.

As another consequence:

Corollary 7. Suppose x ∈ P1 is a fixed point of a morphism τ : A+ → A+. Then there exists a
morphism τ ′ : {1, 2, . . . , nx}+ → {1, 2, . . . , nx}+ fixing δ(x) such that φ ◦ τ ′ = τ ◦ φ.

Proof. Applying τ to the unique factorization x = U0U1U2 · · · with Ui ∈ UP ′(x),we obtain a pre-
fixal factorization x = τ(U0)τ(U1)τ(U2) · · · . Writing δ(x) = a0a1a2 · · · with ai ∈ {1, 2, . . . , nx}
and φ(ai) = Ui, by Lemma 5 there exists a unique factorization δ(x) = v0v1v2 · · · such that
φ(vi) = τ(Ui) = τ(φ(ai)) for each i ≥ 0. The result now follows by defining τ ′(ai) = vi.

Example 3. As we saw in Example 2, the Tribonacci word x is in P1. It follows from the previous
corollary that δ(x) is also a fixed point of a morphism τ ′ : {1, 2, 3}+ → {1, 2, 3}+ which we can
compute using the relation τ ′ = φ−1 ◦ τ ◦ φ where τ denotes the Tribonacci morphism defined by
1 7→ 12, 2 7→ 13, 3 7→ 1. So

1
φ7→ 1213

τ7→ 1213121
φ−1

7→ 123

2
φ7→ 12

τ7→ 1213
φ−1

7→ 1

3
φ7→ 1

τ7→ 12
φ−1

7→ 2.

Thus δ(x) is fixed by the morphism defined by 1 7→ 123, 2 7→ 1, 3 7→ 2. It may be verified that in
this example, δ(x) has the same factor complexity as x, namely it contains 2n + 1 distinct factors
of each length n ≥ 0. However, unlike x which has a unique right and left special factor of each
length, δ(x) has a unique left special factor of each length, and two right special factors of each
length. It is also readily verified that δ(x) ∈ P1. In fact UP ′(δ(x)) = UP (δ(x)) = {1, 12, 123},
and 123 ≺ 12 ≺ 1. Thus we obtain the infinite word δ2(x) = δ(δ(x)) ∈ {1, 2, 3}ω which is a fixed
point of a morphism τ ′′ verifying τ ′′ = φ′−1 ◦ τ ′ ◦ φ′. We compute τ ′′ as before:

1
φ′7→ 123

τ ′7→ 12312
φ′−1

7→ 12
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2
φ′7→ 12

τ ′7→ 1231
φ′−1

7→ 13

3
φ′7→ 1

τ ′7→ 123
φ′−1

7→ 1

and hence τ ′′ = τ, whence δ2(x) = x. Thus for each n ≥ 1 we have that δn(x) ∈ P1 and
δn(x) = x for n even and δn(x) = δ(x) for n odd.

Remark 2. We note that by Lemma 2, if x ∈P1, the first letter xF of x is uniformly recurrent in
x, so that one can also define (see [8]) the bijection σ : {1, . . . , card(RxF )} → RxF , whereRxF is
the finite set of the first returns of xF to xF in x, and define the derived word DxF (x) with respect
to the morphism induced by σ [5]. The two derived words δ(x) and DxF (x) can be equal, as in the
case of x equal to Fibonacci word; they can be different as in the case of Tribonacci word. In the
case of a word aS where a ∈ {0, 1} and S is a standard Sturmian word, one has that δ(aS) is not
defined (cf. Lemma 19), whereas Da(aS) is defined.

4. A hierarchy of words admitting a prefixal factorization

We may recursively define a nested collection of words · · · ⊆Pn+1 ⊆Pn ⊆ · · · ⊆P1 by

Pn+1 = {x ∈Pn | δ(x) ∈Pn}

and

P∞ =
∞⋂
n=1

Pn.

Hence, a word x ∈ P∞ if and only if x ∈ P1 and δn(x) ∈ P1 for all n ≥ 1. The previous
example proves that the Tribonacci word belongs to P∞. Similarly, following Example 1, the
Fibonacci word also belongs to P∞. In contrast, the following example proves that the Thue-
Morse word does not belong to P∞.

Example 4. The Thue-Morse word t = 0110100110010110 · · · is fixed by the morphism τ defined
by 0 7→ 01, 1 7→ 10. It is readily verified that t ∈P1. In fact, UP ′(t) = UP (t) = {0, 01, 011} and
011 ≺ 01 ≺ 0. Let φ : {1, 2, 3} → UP ′(t) be given by 1 7→ 011, 2 7→ 01, 3 7→ 0. Then δ(t) is the
fixed point of the morphism τ ′ which we compute as in Example 3:

1
φ7→ 011

τ7→ 011010
φ−1

7→ 123

2
φ7→ 01

τ7→ 0110
φ−1

7→ 13

3
φ7→ 0

τ7→ 01
φ−1

7→ 2.

We thus obtain that τ ′ is defined by 1 7→ 123, 2 7→ 13, 3 7→ 2 which is the well known Hall
morphism [10]. Thus δ(t) is the so-called ternary Thue-Morse word which is well known to be
square-free (cf. [1], [12]). It follows (cf. [5]) that δ(t) does not admit a prefixal factorization, i.e.,
δ(t) /∈P1. Thus t /∈P2 and hence t /∈P∞.
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Let ≤p denote the prefixal order in A∗, i.e., for u, v ∈ A∗, u ≤p v if u is a prefix of v. We write
u <p v if u is a proper prefix of v. For any word u ∈ A+ we let uF denote the first letter of u.

Lemma 8. Let Γ = {u1, u2, . . . , uk} be a finite set of unbordered words over the alphabet A =

{1, 2, . . . , k} such that uk <p uk−1 <p · · · <p u1. Let uF1 = 1 and f be the morphism defined by
i 7→ ui, i = 1, . . . , k. Then the word x = fω(1), fixed point of f , is such that δ(x) = x.

Proof. Let x = fω(1) = x0x1 · · ·xn · · · . Since x is fixed by f , one has

x = f(x) = f(x0)f(x1) · · · .

Hence, x admits a unique factorization in unbordered prefixes of the set {f(xi) | i ≥ 0} =

UP ′(x) ⊆ Γ. Let φ : {1, 2, . . . , nx} → UP ′(x) be the unique order preserving bijection. One has:

δ(x) = φ−1(f(x0))φ
−1(f(x1)) · · ·

Since φ−1(f(xn)) = xn, n ≥ 0, it follows δ(x) = x.

Proposition 9. Pn+1 is a proper subset of Pn for each n ≥ 1.

Proof. Let t be the Thue-Morse word on two symbols t = 0110100110010110 · · · . We have
previously seen (see Example 4) that t ∈P1 \P2. Let F be the Fibonacci morphism and F (t) =

01000100101000101001001 · · · . The word F (t) has a prefixal factorization and δ(F (t)) ' t ∈
P1 \P2. It follows that F (t) ∈ P2 \P3. It is easily verified that for any n > 1 one has that
δ(F n(t)) ' F n−1(t). From this it easily follows that δn(F n(t)) ' t and δn+1(F n(t)) = δ(t) 6∈
P1. Hence, F n(t) ∈Pn+1 \Pn+2.

Given an infinite word x with card(UP (x)) <∞, we let N(x) denote the length of the longest
unbordered prefix of x. Now, for x ∈P∞, we define the map νx : N→ N by

νx(n) = N(δn(x)), n ≥ 0,

where δ0(x) = x. This is well defined and the sequence (νx(n))n≥0 is a sequence of natu-
ral numbers (≥ 2) which may be bounded or unbounded. If x is the Tribonacci word we have
(νx(n))n≥0 = 4, 3, 4, 3, 4, 3, . . .

Let a ∈ A = {0, 1} and put b = 1 − a. In the following for a ∈ {0, 1}, we let La be the
injective endomorphism of {0, 1}∗ defined by

La : a 7→ a, b 7→ ab. (2)

Proposition 10. If x ∈P∞ and (νx(n))n≥0 = 2, 2, 2, 2, ...., then x is isomorphic to the Fibonacci
word.
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Proof. Without loss of generality we can assume that x begins with 0. Since N(x) = 2, it follows
that x begins with 01 and 01 is the longest unbordered prefix of x. It follows that x is a concate-
nation of 01 and 0 so we can write x = L0(x

′) for some binary word x′ beginning with 1, where
x′ is isomorphic to δ(x). Since N(δ(x)) = N(x′) = 2, it follows that x′ begins with 10 and 10 is
the longest unbordered prefix of x′. Hence x′ is a concatenation of 10 and 1 so that x′ = L1(x

′′)

where x′′ begins with 0 and x′′ is isomorphic to δ(x′) = δ2(x). Since N(x′′) = 2, it follows that
x′′ begins with 01 and 01 is the longest unbordered prefix of x′′. Thus x′′ = L0(x

′′′) for some x′′′

beginning with 1 and isomorphic to δ3(x). Continuing in this way for each k we have (L0L1)
k(0)

is a prefix of x. Hence, x is isomorphic to the Fibonacci word.

Let us observe that in general the sequence (ν(n))n≥0 does not determine x. For instance, let
x be the word fixed by the morphism 0 7→ 00001, 1 7→ 0 and y be the word fixed by the morphism
0 7→ 00101, 1 7→ 001. Then (νx(n))n≥0 = (νy(n))n≥0 = 5, 5, 5, ....

The following question naturally arises:

Question 1. What can be said about the nature of x if (νx(n))n≥0 is ultimately periodic? Is x
necessarily a fixed point of a morphism? Conversely, if x ∈ P∞ is a fixed point of a primitive
morphism, is (νx(n))n≥0 ultimately periodic (in particular bounded) ?

5. A coloring problem

Let P be the class of all infinite words x over any finite alphabet A such that for every finite
coloring ϕ : A+ → C there exists c ∈ C and a factorization x = V0V1V2 · · · with ϕ(Vi) = c for
all i ≥ 0. Such a factorization is called ϕ-monochromatic. Thus if x /∈ P, then there exists a finite
coloring ϕ : A+ → C such that for every factorization x = V0V1V2 · · · we have ϕ(Vi) 6= ϕ(Vj) for
some i 6= j. Any such coloring will be called a separating coloring for x.

We conjectured [5] that P coincides with the set of all periodic words. Partial results in this
direction are given in [5] (see also [6, 14]).

Lemma 11. Let x ∈P1. The following holds:

x ∈ P⇐⇒ δ(x) ∈ P.

Proof. We begin by proving that if δ(x) ∈ P then x ∈ P. Since x ∈ P1, we have x = φ(δ(x)),
where φ is the morphism induced by the unique order bijection φ : {1, 2, . . . , nx} → UP ′(x). Thus
if x /∈ P, then by the morphic invariance property [3, Proposition 4.1], one obtains that δ(x) /∈ P.

We next prove the converse. Suppose δ(x) /∈ P. Then there exists a separating coloring ϕ :

A+ → C for δ(x). Put C ′ = C ∪ {+∞,−∞} where we assume +∞,−∞ /∈ C. The coloring ϕ
induces a coloring ϕ′ : A+ → C ′ defined as follows:
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ϕ′(u) =


ϕ(φ−1(u)) if u is a prefix of x and u = φ(v) for some v ∈ Fact(δ(x));

+∞ if u is a prefix of x and u /∈ φ(Fact(δ(x)));

−∞ if u is not a prefix of x.

We note that it follows from Lemma 4 that ϕ′ is well defined. We now claim that ϕ′ is a sep-
arating coloring for x. Suppose to the contrary that x admits a ϕ′-monochromatic factorization
x = V0V1V2 · · · in non-empty factors. Since V0 is a prefix of x, it follows that ϕ′(V0) 6= −∞, and
hence ϕ′(Vi) 6= −∞ for each i ≥ 0. Thus the factorization x = V0V1V2 · · · is a prefixal factoriza-
tion of x. It now follows from Lemma 5 that there exists a factorization δ(x) = v0v1v2 · · · such that
φ(vi) = Vi for each i ≥ 0. Since ϕ′(Vi) = ϕ(vi), it follows that δ(x) admits a ϕ-monochromatic
factorization, a contradiction.

Theorem 12. The following holds: P ⊆P∞.

Proof. Suppose that x 6∈ P∞. Thus there exists some n ≥ 1 such that x 6∈ Pn. First suppose
x 6∈P1. Since x does not admit a prefixal factorization, one has x /∈ P (see [5, Proposition 3.3]).
Next suppose x ∈ P1 but x 6∈ Pn for some n ≥ 2. Then δn(x) 6∈ P1 and hence as above
δn(x) /∈ P. By an iterated application of the preceding lemma it follows that x /∈ P.

Let us observe that if x is a periodic word of Aω, then for every finite coloring x has a
monochromatic factorization, so that by Theorem 12, or as one immediately verifies, x ∈ P∞.
From Theorem 12 one has that any counter-example to our Conjecture 1 belongs to the set P∞,
which is our main motivation for studying this class of words. However, the reverse inclusion in
Theorem 12 does not hold. For instance, as proved in [5], Sturmian words do not belong to P

whereas, as we shall see in the next section (see Theorem 25), a large class of Sturmian words
belong to P∞.

Lemma 13. If ϕ : A+ → C is a separating coloring for x, then ϕ̂ : A+ → C ∪{∞}, with∞ 6∈ C,
defined by

ϕ̂(u) =

{
∞ if u is not a prefix of x;

ϕ(u) if u is a prefix of x,

is a separating coloring for x.

Proof. Suppose that there exists a ϕ̂-monochromatic factorization

x = V0V1V2 · · ·

in non-empty factors Vi, i ≥ 0. Since V0 is a prefix of x, the preceding factorization has to be a
ϕ-monochromatic prefixal factorization, a contradiction as ϕ is separating for x.
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Proposition 14. Let x ∈ Aω and Ω(x) be the shift-orbit closure of x. If x 6∈ P∞, there exists
a separating coloring ϕ for x such that if y ∈ Ω(x) and y 6= x, then y has a ϕ-monochromatic
factorization.

Proof. By Theorem 12 one has x /∈ P. If y ∈ Ω(x) and y 6= x, then, as x is not periodic, y can
always be factorized as y = V0V1V2 · · · where each Vi, i ≥ 0, is not a prefix of x. Let ϕ̂ be the
separating coloring for x defined in the preceding lemma. Then one has that ϕ̂(Vj) = ∞ for all
j ≥ 0.

Proposition 15. Let x ∈ Aω and letA be any finite collection of words in Pc
∞ ∩Ω(x), where Pc

∞
denotes the complement of P∞. Then there exists a finite coloring ϕ : A+ → C such that for each
y ∈ Ω(x), ϕ is a separating coloring for y if and only if y ∈ A.

Proof. The result is clear if A = ∅. Indeed in this case it is sufficient to consider the coloring
ϕ : A+ → C defined as follows: for any u ∈ A+, ϕ(u) = c ∈ C. In this way any y ∈ Ω(x) will
have a ϕ-monochromatic factorization. Let us then suppose that A is not empty.

Let A = {y1, . . . , yr}. Since for i and j with 1 ≤ i < j ≤ r, yi 6= yj , there exists a positive
integer k such that any word of A∗ of length ≥ k can be prefix of at most one of the words of A.
As A ⊆ Pc

∞ by Theorem 12, no word yi ∈ A belongs to P. Hence, for each integer i ∈ [1, r]

there exists a coloring ϕi : A+ → Ci which is separating for yi. Let us observe that as A ⊆ Ω(x)

one has
r⋃
i=1

Fact(yi) ⊆ Fact(x).

We can define a finite coloring ϕ on A+ as follows. For u ∈ A+,

ϕ(u) =



u if |u| < k and u is a prefix of at least one word of A;

ϕ1(u) if u is a prefix of y1 of length ≥ k;
...

...

ϕr(u) if u is a prefix of yr of length ≥ k;

∞ if u is not a prefix of any of the words of A.

Let us first prove that for each y ∈ A, the coloring ϕ is separating. Let y = yi ∈ A and
suppose that there exists a ϕ-monochromatic factorization yi = V0V1V2 · · · where each Vi is non-
empty. Since V0 is a prefix of yi, the preceding factorization has to be a prefixal factorization. If
ϕ(Vi) = ϕ(V0) and |V0| < k it would follow that yi = V ω

0 a contradiction because yi /∈ P. Thus as
V0 is a prefix of yi of length ≥ k, it follows that ϕi(Vj) = ϕi(V0) for all j ≥ 0 and this contradicts
the fact that ϕi is separating for yi.

Let us now prove that if y 6∈ A, then y admits a ϕ-monochromatic factorization. Since for
each i ∈ [1, r] we have y 6= yi and yi is not periodic, one easily derives that y can be factored as
y = V0V1 · · · , where each Vj , j ≥ 0, is not a prefix of any of the words yi ∈ A, i = 1, . . . , r. From
this one has ϕ(Vj) =∞ for all j ≥ 0.
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Question 2. Let x ∈ Aω be uniformly recurrent. Given a finite coloring ϕ : A+ → C does there
exist a finite (possibly empty) set A ⊂ Ω(x) such that for each y ∈ Ω(x) we have that y admits a
ϕ-monochromatic factorization if and only if y /∈ A?

Let us observe that in the previous question the hypothesis that x is uniformly recurrent is
necessary. Indeed, let x = 0102120313 · · · and ϕ : {0, 1}+ → {0, 1, ∗} be the finite coloring
defined for all u ∈ Fact+(x) by ϕ(u) = 0, if u begins with 0, ϕ(u) = 1 if u begins with 1, and if
u 6∈ Fact+(x), by ϕ(u) = ∗ . In the shift orbit closure Ω(x) of x there are infinitely many words
0n1ω, n ≥ 1 which do not admit a ϕ-monochromatic factorization.

Proposition 16. Let x ∈P∞. Then x is uniformly recurrent.

Proof. We prove by induction on n ≥ 1 that for any infinite word x over a finite alphabet if the
prefix of x of length n is not uniformly recurrent, then x /∈ P∞. If the first letter of x is not
uniformly recurrent in x, then by Lemma 2 the word x does not admit a prefixal factorization,
hence x /∈P1.

Let n ≥ 1, and suppose the result holds up to n. Let x ∈ Aω and suppose the prefix of x of
length n + 1 is not uniformly recurrent in x. We will prove that x /∈ P∞. If x /∈ P1, we are
done. So we may assume that x ∈P1. Let φ : {1, 2, . . . , nx} → UP ′(x) denote the unique order
preserving bijection. Consider δ(x) ∈ {1, 2, . . . , nx}ω. Since x = φ(δ(x)) it follows that δ(x) is
not uniformly recurrent. If v is a prefix of δ(x) which is uniformly recurrent in δ(x), then φ(v)

is a uniformly recurrent prefix of x. Moreover, for every prefix v of δ(x) we have |v| < |φ(v)|.
Thus the shortest non-uniformly recurrent prefix of δ(x) is of length smaller than or equal to n. By
induction hypothesis, δ(x) /∈P∞, and hence x /∈P∞.

As a consequence of Proposition 16 and Theorem 12 we recover the following result first proved
in [5]:

Corollary 17. If x ∈ P then x is uniformly recurrent.

6. The case of Sturmian words

There exist several equivalent definitions of Sturmian words (see, for instance, [1? ]). We will
use the following one: A word x ∈ {0, 1}ω is called Sturmian if it is aperiodic and balanced, i.e.,
for all factors u and v of x such that |u| = |v| one has

||u|a − |v|a| ≤ 1, a ∈ {0, 1}.

Definition 18. Let a ∈ {0, 1}. We say that a Sturmian word is of type a if it contains the factor aa.

Clearly a Sturmian word is either of type 0 or of type 1, but not both.
Alternatively, a binary infinite word x is Sturmian if x has a unique left (or equivalently right)

special factor of length n for each integer n ≥ 0. In terms of factor complexity, this is equivalent
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to saying that λx(n) = n + 1 for n ≥ 0. As a consequence one derives that a Sturmian word x
is closed under reversal, i.e., if u is a factor of x, then so is its reversal u∼ (see, for instance, [13,
Chap. 2]).

A Sturmian word x is called standard (or characteristic) if all its prefixes are left special factors
of x. Since Sturmian words are uniformly recurrent (see for instance Proposition 2.1.25 in [13]), it
follows that for any Sturmian word x there exists a standard Sturmian word S such that Fact(x) =

Fact(S).
Following [4] we say that a Sturmian word x ∈ {0, 1}ω is singular if it contains a standard

Sturmian word as a proper suffix, i.e., there exist u ∈ {0, 1}+ and a standard Sturmian word S
such that x = uS. It is readily verified that the previous factorization is unique. A Sturmian word
which is not singular is said to be nonsingular.

Let a ∈ {0, 1} and b = 1 − a. In the following for a ∈ {0, 1}, we consider the injective
endomorphism La of {0, 1}∗ defined in (2) given by La : a 7→ a, b 7→ ab and the injective
endomorphism Ra of {0, 1}∗ defined by

Ra : a 7→ a, b 7→ ba.

We recall [13, Chap. 2] that the monoid generated by La and Ra, with a ∈ {0, 1} is contained in
the set of all endomorphisms f of {0, 1}∗ which preserve Sturmian words, i.e., the image f(y) of
any Sturmian word y is a Sturmian word.

Let us observe that for any infinite word x over {0, 1} we have La(x) = aRa(x). If x is a
Sturmian word and v is a left special factor of x, then La(v) is a left special factor of La(x). Thus
if S is a standard Sturmian word, then so is La(S) = aRa(S). Conversely, if S is a standard
Sturmian word of type a, then S = La(S

′) for some standard Sturmian word S ′.

Lemma 19. A Sturmian word x belongs to P1 if and only if x 6= aS where a ∈ {0, 1} and S a
standard Sturmian word.

Proof. Indeed, as is well known (see [2, 11]), the unbordered factors of length greater than 1 of a
Sturmian word x are exactly those factors of the form bUc with {b, c} = {0, 1} and U (possibly
empty) a bispecial factor of x. Therefore, if x = ax′ has infinitely many unbordered prefixes,
then x′ begins with infinitely many bispecial factors of x, and hence x′ is a standard Sturmian
word. Conversely, let x = aS where S is a standard Sturmian word and a ∈ {0, 1}. We claim
the Sturmian word aS does not admit a prefixal factorization. Indeed, aS begins with an infinite
number of distinct prefixes of the form aUb with U bispecial and {a, b} = {0, 1}. It follows that
aS begins with arbitrarily long unbordered prefixes and hence, by Proposition 3 does not admit a
prefixal factorization.

We begin by reviewing some terminology which will be used in the proof of the following
lemma. Let x ∈ Aω and a ∈ A. A word u ∈ A+ is called a left first return to a in x if ua is a
factor of x which begins and ends with a and |ua|a = 2, i.e., the only occurrences of a in ua are
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as a prefix and as a suffix. A word u ∈ A+ is called a right first return to a in x if au is a factor
of x which begins and ends with a and |au|a = 2. A word u ∈ A+ is called a complete return to a
in x if u is a factor of x which begins and ends with a and |u|a ≥ 2. It is a basic fact that if u is a
complete return to a in x, then ua−1 factors uniquely as a product of left first returns to a in x and
that a−1u factors uniquely as a product of right first returns to a in x.

Lemma 20. Let x ∈ {0, 1}ω be a Sturmian word of type a with card(UP (x)) < +∞, and N(x)

the length of the longest unbordered prefix of x. Then:

i) If N(x) = 2, there exists a Sturmian word y ∈ {0, 1}ω isomorphic to δ(x) and x = La(y).

ii) If N(x) > 2 and x begins with a, there exists a Sturmian word y ∈ {0, 1}ω beginning with a
such that x = La(y), N(y) < N(x), and δ(x) = δ(y).Moreover La establishes a one-to-one
correspondence between UP (y) and UP (x), i.e., La : UP (y)→ UP (x) is a bijection.

iii) If N(x) > 2 and x begins with b there exists a Sturmian word y ∈ {0, 1}ω beginning with b
such that x = Ra(y), N(y) < N(x), and δ(x) = δ(y). Moreover Ra establishes a one-to-
one correspondence between UP (y) and UP (x) \ {b}, i.e., Ra : UP (y)→ UP (x) \ {b} is
a bijection.

Proof. To prove i), suppose N(x) = 2. It follows that UP (x) = {c, cd} where {c, d} = {0, 1}.
Since x is of type a and admits a factorization over UP (x) and hence contains the factor cc, it
follows that a = c and hence UP (x) = {a, ab}. Thus the unique factorization of x over UP (x)

is equal to the factorization of x according to left first returns to a which is well known to be
Sturmian. Alternatively, there exists a unique Sturmian word y such that x = La(y). It follows that
δ(x) is word isomorphic to y.

To prove ii), suppose x begins with a and its longest unbordered prefix is of length N(x) >

2. Then x begins with aa; in fact if x begins with ab, since x is of type a we would have that
UP (x) = {a, ab} contradicting our assumption that N(x) > 2. Having established that x begins
with aa, it follows that there exists a unique Sturmian word y such that x = La(y) and moreover
y also begins with a. In fact, y is obtained from x by factoring x according to left first returns to a
where one codes the left first return to a by a, and the left first return ab by b.

Next we prove that La establishes a bijection between UP (y) and UP (x). We use the key fact
that if u ∈ {0, 1}+ and ua is a factor of x which begins and ends with a, then there exists a unique
factor v of y such that u = La(v). In fact, ua is a complete return to a and hence v is obtained
from u by factoring u as a product of left first returns to a. In particular, if u ∈ {0, 1}+ is a factor
of x which begins with a and ends with b, then u = La(v) for some factor v of y.

We begin by proving that La(UP (y)) ⊆ UP (x), i.e., that La : UP (y) → UP (x). So let u be
an unbordered prefix of y. If |u| = 1, then u = a and hence La(u) = a which is an unbordered
prefix of x. If |u| > 1, then u begins with a and ends with b, and hence La(u) begins with a

and ends with b. If La(u) were bordered, then any border v of La(u) would also begin with a
and end with b, whence we can write v = La(v

′) for some border v′ of u, contradicting that u is
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unbordered. Since the mapping La : UP (y) → UP (x) is clearly injective, to prove that it is a
bijection it remains to prove that the mapping is surjective. So assume u is a unbordered prefix of
x; we will prove that u = La(u

′) for some unbordered prefix of y. This is clear if u = a, in which
case u′ = a. If |u| > 1, then u begins with a and ends with b and hence u = La(u

′) for some
prefix u′ of y. Moreover, if u′ were bordered (say v′ is a border of u′) then La(v′) is a border of u,
a contradiction.

It follows that if u is the longest unbordered prefix of y, then N(y) = |u| < |La(u)| ≤ N(x)

where the first inequality follows from the fact that u must contain an occurrence of both 0 and 1.

Finally, since card(UP (y)) < +∞, we have that y admits a factorization y = U0U1U2 · · · with
Ui ∈ UP (y), which by definition is isomorphic to δ(y). Applying La we obtain

x = La(U0)La(U1)La(U2) · · ·

with La(Ui) ∈ UP (x) which is isomorphic to δ(x). Hence, δ(x) = δ(y) as required. This com-
pletes the proof of ii).

Finally to prove iii), suppose x begins with b. Then there exists a unique Sturmian word y such
that x = Ra(y) and moreover y begins with b. As in the previous case, it is readily checked that
Ra : UP (y) → UP (x) \ {b} is a bijection. The idea is that if u ∈ {0, 1}+ and au is a factor of
x which begins and ends with a, then there exists a unique factor v of y such that u = Ra(v). In
fact, au is a complete return to a and hence u factors uniquely as a product of right first returns
to a. Thus in particular, if u ∈ {0, 1}+ is a factor of x which begins with b and ends with a, then
u = Ra(v) for some factor v of y. Finally, as in the previous case we deduce that N(y) < N(x)

and δ(y) = δ(x).

Remark 3. We note that if x is a Sturmian word with card(UP (x)) < +∞ and N(x) > 2, then,
applying repeatedly ii) and iii) of Lemma 20, we deduce that there exist a Sturmian word y and a
morphism f ∈ {L0, L1, R0, R1}+ such that x = f(y), N(y) = 2, and δ(y) = δ(x).

Corollary 21. Let x ∈ {0, 1}ω be a Sturmian word with card(UP (x)) < +∞. Then δ(x) is again
Sturmian.

Proof. First suppose N(x) = 2. In this case the result follows immediately from i) of Lemma 20.
Next suppose N(x) > 2. Then by Remark 3 there exists a Sturmian word y such that N(y) = 2

and δ(y) = δ(x). Hence δ(x) is Sturmian.

Corollary 22. If x is a standard Sturmian word, then so is δ(x).

Proof. By Lemma 19 any standard Sturmian word x has a prefixal factorization. Thus card(UP (x))

<∞. Moreover, if x is of type a, then it begins with the letter a. The proof is then easily obtained
by induction on N(x). If N(x) = 2 by i) of Lemma 20 there exists a Sturmian word y isomorphic
to δ(x) such that x = La(y). Since x is a standard Sturmian word, it follows that y, as well as δ(x),
is a standard Sturmian word. Let us now suppose N(x) > 2. By ii) of Lemma 20 there exists a
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Sturmian word y such that N(y) < N(x) and x = La(y) and δ(y) = δ(x). Since y is standard, by
induction δ(y) = δ(x) is a standard Sturmian word.

Remark 4. An infinite word x over the alphabet A is called episturmian [7] if it is closed under
reversal and x has at most one right special factor of each length. Corollary 21 cannot be extended
to episturmian words. Indeed, as we observed in Example 3, in the case of Tribonacci word x,
which is an episturmian word, δ(x) has a unique left special factor of each length and two right
special factors of each length, so that δ(x) is not episturmian.

Lemma 23. Let x ∈ {0, 1}ω be a Sturmian word with card(UP (x)) < +∞. Let x = U0U1U2 · · ·
be the unique factorization of x over UP (x). Then there exist distinct unbordered prefixes U and
V of x with |V | < |U | such that {Ui | i ≥ 0} = {U, V }. Moreover U is the longest unbordered
prefix of x and V is the longest proper unbordered prefix of U.

Proof. Following Corollary 21 we have that δ(x) is a Sturmian word. In particular, writing
x = U0U1U2 · · · with Ui ∈ UP (x), we have card({Ui | i ≥ 0}) = 2. Thus there exist distinct
unbordered prefixes U and V of x with |V | < |U | such that {Ui | i ≥ 0} = {U, V }. Since U0 is
the longest unbordered prefix of x, it follows that U0 = U. It remains to prove that V is the longest
proper unbordered prefix of U.

Without loss of generality we may assume that x is of type 0. We proceed by induction on the
length N(x) of the longest unbordered prefix of x to prove that V is the longest proper unbordered
prefix of U, where U and V are as above. If N(x) = 2, we have that UP (x) = {0, 01} and the
result follows taking V = 0 and U = 01. Next suppose N(x) > 2 and suppose that the result
is true up to N(x) − 1. Then by ii) and iii) of Lemma 20 it follows that there exists a Sturmian
word y such that x = L0(y) in case x begins with 0, and x = R0(y) in case x begins with 1.

Moreover, again using ii) and iii) it follows that N(y) < N(x). Hence, if U ′ denotes the longest
unbordered prefix of y, and V ′ denotes the longest proper unbordered prefix of U ′, then it follows
by induction hypothesis that y factors over {U ′, V ′}. If x begins with 0, then applying L0 to this
factorization we obtain a factorization of x over {L0(U

′), L0(V
′)} and hence U = L0(U

′) and
V = L0(V

′). Since L0 : UP (y) → UP (x) is a bijection, we deduce that V is the longest proper
unbordered prefix of U. Similarly, if x begins with 1, then applying R0 to this factorization we
obtain a factorization of x over {R0(U

′), R0(V
′)} and hence U = R0(U

′) and V = R0(V
′). Since

R0 : UP (y)→ UP (x) \ {1} is a bijection and U begins with 1 and ends with 00, and the shortest
prefix of U beginning with 1 and ending with 0 is a proper unbordered prefix of U, we deduce that
V is the longest proper unbordered prefix of U.

Lemma 24. Let y ∈ {0, 1}ω be a Sturmian word, f ∈ {L0, L1, R0, R1}+ and set x = f(y). If x
is singular, then y is singular. Conversely, if y is singular and of the form y = u′S ′, where S ′ is a
standard Sturmian word and u′ ∈ {0, 1}+ with |u′| ≥ 2, then x is singular. More precisely, there
exist a standard Sturmian word S and u ∈ {0, 1}+ with |u′| ≤ |u| such that x = uS. Moreover, if
f admits at least one occurrence of either L0 or L1, then |u′| < |u|.
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Proof. Let us first suppose that S ′ is a standard Sturmian word and y is singular and of the form
y = u′S ′ with u′ ∈ {0, 1}+ and |u′| ≥ 2. Since |u′| ≥ 2, it follows that either 01S ′ or 10S ′ is a
suffix of y. In particular, u′ must contain an occurrence of both 0 and 1.Whence for each a ∈ {0, 1}
we have that |u′| < |La(u′)| and |u′| < |Ra(u

′)|.
For a ∈ {0, 1} let g ∈ {La, Ra}. Taking g = La we have g(y) = La(u

′S ′) = La(u
′)La(S

′) and
|u′| < |La(u′)|. Taking g = Ra we have g(y) = Ra(u

′S ′) = Ra(u
′)a−1aRa(S

′) = Ra(u
′)a−1La(S

′)

and |u′| ≤ |Ra(u
′)a−1|. Since La(S ′) is a standard Sturmian word, one has that g(y) is singu-

lar. Iterating we deduce that there exist a standard Sturmian word S and u ∈ {0, 1}+ such that
x = f(y) = uS and |u′| ≤ |u|. Moreover, if f admits at least one occurrence of either L0 or L1,

then |u′| < |u|.
Let us now suppose that x = f(y) is singular, i.e., x = uS with u ∈ {0, 1}+ and S a standard

Sturmian word. We wish to prove that y is singular. It suffices to prove the assertion for f ∈
{La, Ra}, a ∈ {0, 1}. Let us first take f = La. One has that x, as well as S, is a Sturmian word of
type a beginning with the letter a. Hence the word u either ends with the letter b or ends with the
letter a immediately followed by the letter a. Thus setting S ′ = L−1a (S) and u′ = L−1a (u), one has
y = u′S ′. Since S ′ is a standard Sturmian word, one has that y is singular.

Let us now take f = Ra. One has that x, as well as S, is a Sturmian word of type a. We have
to consider two cases. Case 1. The word u ends with the letter a. We can set u′ = R−1a (u). Since
the first letter of S is a, we can write y = u′aS ′ with S = Ra(aS

′) = aRa(S
′) = La(S

′). This
implies that S ′ is a standard Sturmian word and that y is singular. Case 2. The word u ends with
the letter b. Since S begins with the letter a, we can write x = u1baS

′′ with S = aS ′′ and u = u1b,
where the word u1 if it is different from ε, ends with the letter a. Setting u′ = R−1a (u1) one has
that y = u′bS ′ where bS = Ra(bS

′) = baRa(S
′) = bLa(S

′). Thus S = La(S
′) and S ′ is a standard

word. From this it follows that y is singular.

Remark 5. We note that the assumption in the preceding lemma that |u′| ≥ 2 is actually necessary.
For instance, if y is singular and of the form y = aS ′ with a ∈ {0, 1} and S ′ standard, then
Ra(y) = aRa(S

′) = La(S
′) is nonsingular.

Theorem 25. Let x be a Sturmian word. Then x ∈P∞ if and only if x is nonsingular.

Proof. We begin by proving that if x /∈ P∞ then x is singular. For this we prove by induction
on n, that if x /∈ Pn, then x is singular. For n = 1, we have that if x /∈ P1, then by Lemma
19, x = aS where a ∈ {0, 1} and S is a standard Sturmian word. Thus x is singular. Next let
n ≥ 2, and suppose by inductive hypothesis that if y is a Sturmian word and y /∈ Pn−1, then
y is singular. Let x be a Sturmian word with x /∈ Pn. By inductive hypothesis we can suppose
x ∈Pn−1. In particular, x ∈P1. If N(x) = 2, then by i) of Lemma 20 we have x = La(y) where
a ∈ {0, 1} and y is Sturmian and isomorphic to δ(x). Since x /∈Pn it follows that δ(x) /∈Pn−1,

whence y /∈Pn−1. Hence by induction hypothesis y is singular. Thus we can write y = uS where
u ∈ {0, 1}+ and S a standard Sturmian word. Thus x = La(y) = La(uS) = La(u)La(S) and
since La(S) is a standard Sturmian word, we deduce that x is singular as required.
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If N(x) > 2, then, following Remark 3, there exist a Sturmian word y and a morphism f ∈
{L0, L1, R0, R1}+ such that x = f(y), N(y) = 2, and δ(y) = δ(x). In particular, δ(y) /∈ Pn−1

and hence y /∈ Pn. Thus applying i) of Lemma 20 as above, we deduce that y is singular. Hence
there exist u ∈ {0, 1}+ and a standard Sturmian word S such that y = uS. On the other hand, since
δ(y) is defined (or equivalently y ∈ P1), it follows from Lemma 19 that |u| ≥ 2. Thus applying
Lemma 24 we deduce that x is singular.

Conversely, suppose x ∈ {0, 1}ω is a Sturmian word of the form x = uS with u ∈ {0, 1}+
and S a standard Sturmian word. We will prove by induction on |u| that x /∈ P∞. If |u| = 1,

i.e., x = aS for some a ∈ {0, 1}, then, by Lemma 19, x /∈ P1, whence x /∈ P∞. Next let
n ≥ 2 and assume by induction hypothesis that if y is a Sturmian word of the form y = u′S ′

where S ′ is a standard Sturmian word, and u′ ∈ {0, 1}+ with |u′| < n, then y /∈ P∞. Let x be a
Sturmian word of the form x = uS with S standard, u ∈ {0, 1}+ and |u| = n. Since n ≥ 2, by
Lemma 19, x admits a prefixal factorization so that card(UP (x)) <∞. We consider two cases. If
N(x) = 2, then by i) of Lemma 20 we can write x = La(y) where a ∈ {0, 1} and y is Sturmian
and isomorphic to δ(x). Since x is singular, it follows by Lemma 24 that y is singular. Thus we
can write y = u′S ′ for some u′ ∈ {0, 1} and some standard Sturmian word S ′. If |u′| = 1, then
y /∈ P1, whence δ(x) /∈ P1 and hence x /∈ P∞. If |u′| ≥ 2, again by Lemma 24 we deduce
that |u′| < |u| and hence by induction hypothesis we conclude that y /∈ P∞. Hence δ(x) /∈ P∞

whence x /∈P∞.

Finally suppose N(x) > 2. Then by Remark 3 there exist a Sturmian word y, and a morphism
f ∈ {L0, L1, R0, R1}+ such that x = f(y) and δ(x) = δ(y) and N(y) = 2. By i) of Lemma 20
there exists a Sturmian word y′ isomorphic to δ(y) such that y = La(y

′). Thus x = f ◦ La(y′)
and y′ is isomorphic to δ(x). Since x is singular, by Lemma 24 we deduce that y′ is singular. Thus
we can write y′ = u′S ′ for some u′ ∈ {0, 1}+ and some standard Sturmian word S ′. If |u′| = 1,

then y′ /∈P1, whence δ(x) /∈P1 and hence x /∈P∞. If |u′| ≥ 2, then by Lemma 24 we deduce
that |u′| < n, and hence by induction hypothesis we conclude that y /∈ P∞. Hence δ(x) /∈ P∞

whence x /∈P∞.

Acknowledgments: We thank the two anonymous reviewers for their many useful comments.
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