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Abstract

Given a finite coloring (or finite partition) of the free semigroup A+ over a set A, we consider vari-
ous types of monochromatic factorizations of right sided infinite words x ∈ Aω. Some stronger ver-
sions of the usual notion of monochromatic factorization are introduced. A factorization is called
sequentially monochromatic when concatenations of consecutive blocks are monochromatic. A
sequentially monochromatic factorization is called ultra monochromatic if any concatenation of
arbitrary permuted blocks of the factorization has the same color of the single blocks. We establish
links, and in some cases equivalences, between the existence of these factorizations and funda-
mental results in Ramsey theory including the infinite Ramsey theorem, Hindman’s finite sums
theorem, partition regularity of IP sets and the Milliken-Taylor theorem. We prove that for each
finite set A and each finite coloring ϕ : A+ → C, for almost all words x ∈ Aω, there exists y in
the subshift generated by x admitting a ϕ-ultra monochromatic factorization, where “almost all”
refers to the Bernoulli measure on Aω.
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1. Introduction and preliminaries

Let A be a non-empty set, or alphabet, and A+ denote the free semigroup over A, i.e., the set
of all finite words x = x0x1 · · ·xn with xi ∈ A, 0 ≤ i ≤ n. Adding to A+ an identity element ε,
usually called empty word, one obtains the free monoid A∗. Let Aω denote the set of all right sided
infinite words x = x0x1 · · · with xi ∈ A, i ≥ 0. For x ∈ Aω we let Fact(x) = {xixi+1 · · ·xi+j |
i, j ≥ 0} denote the set of (non-empty) factors of x. A word x ∈ Aω is said to be (purely) periodic
if x = uω, u ∈ A+, and ultimately periodic if some suffix of x is periodic. A word x is called
aperiodic if it is not ultimately periodic.

Let ϕ : A+ → C be any mapping of A+ into a finite non-empty set C. We call the elements
of C colors and ϕ a finite coloring of A+. We consider three general notions of monochromatic
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factorization of x relative to the coloring ϕ.

Definition 1. Let ϕ : A+ → C be a finite coloring of A+ and x ∈ Aω. A factorization x =

V0V1V2 · · · with each Vi ∈ A+ is called

• ϕ-monochromatic if ∃c ∈ C such that ϕ(Vi) = c for all i ≥ 0.

• ϕ-sequentially monochromatic if ∃c ∈ C such that ϕ(ViVi+1 · · ·Vi+j) = c for all i, j ≥ 0.

• ϕ-ultra monochromatic if ∃c ∈ C such that for all k ≥ 1, and all 0 ≤ n1 < n2 < · · · < nk,

and all permutations σ of {1, 2, · · · , k} we have ϕ(Vnσ(1)Vnσ(2) · · ·Vnσ(k)) = c.

Clearly any ϕ-ultra monochromatic factorization is ϕ-sequentially monochromatic and any ϕ-
sequentially monochromatic factorization is ϕ-monochromatic. We begin with some examples.

Let ϕ : A+ → C be any finite coloring, and let x = uω, u ∈ A+, be a periodic infinite word.
Then the factorization x = u · u · u · · · is ϕ-monochromatic. In general this factorization need not
be ϕ-sequentially monochromatic.

Let T = t0t1t2 · · · ∈ {0, 1}ω denote the Thue-Morse infinite word, where tn is defined as the
sum modulo 2 of the digits in the binary expansion of n.

T = 011010011001011010010 · · ·

The origins of T go back to the beginning of the last century with the works of A. Thue [17, 18]
in which he proves amongst other things that T is overlap-free i.e., contains no word of the form
uuu′ where u′ is a non-empty prefix of u.

Consider ϕ : {0, 1}+ → {0, 1} defined by ϕ(u) = 0 if u is a prefix of T and ϕ(u) = 1

otherwise. It is easy to see that T may be factored uniquely as T = V0V1V2 · · · where each Vi ∈
{0, 01, 011}. Since each Vi is a prefix of T, it follows that this factorization is ϕ-monochromatic.
Since V1V2 = 010 is not a prefix of T, this factorization of T is not ϕ-sequentially monochromatic.
Next consider the coloring ϕ′ : {0, 1}+ → {0, 1, 2} defined by ϕ′(u) = 0 if u is a prefix of
T ending with 0, ϕ′(u) = 1 if u is a prefix of T ending with 1, and ϕ′(u) = 2 otherwise. We
claim that T does not admit a ϕ′-monochromatic factorization. In fact, suppose to the contrary
that T = V0V1V2 · · · is a ϕ′-monochromatic factorization. Since V0 is a prefix of T, it follows
that there exists a ∈ {0, 1} such that each Vi is a prefix of T terminating with a. Pick i ≥ 1 such
that |Vi| ≤ |Vi+1|. Then aViVi ∈ Fact(T). Writing Vi = ua, (with u empty or in {0, 1}+), we see
aViVi = auaua is an overlap, contradicting that T is overlap-free.

The following question1 was independently posed by T. Brown in [3] and by the second author
in [19]:

1The original formulation of the question was stated in terms of finite colorings of Fact(x) instead of A+.
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Question 1. Let x ∈ Aω be non-periodic. Does there exist a finite coloring ϕ : A+ → C relative
to which x does not admit a ϕ-monochromatic factorization?

Various partial results in support of an affirmative answer to this question were obtained in
[5, 6, 14]. In particular, it is shown that Question 1 admits an affirmative answer for all non-
uniformly recurrent words and various classes of uniformly recurrent words including Sturmian
words. What is immediate to see is that if x ∈ Aω is not periodic, then there exists a finite coloring
ϕ : A+ → {0, 1} relative to which no factorization of x is ϕ-sequentially monochromatic. In
fact, it suffices to define ϕ(u) = 0 if u is a prefix of x and ϕ(u) = 1 otherwise. We claim that x
does not admit a ϕ-sequentially monochromatic factorization. In fact, suppose to the contrary that
x = V0V1V2 · · · is a ϕ-sequentially monochromatic factorization. Then since V0 is a prefix of x,
it follows that ϕ(V0) = 0 and hence ϕ(ViVi+1 · · ·Vi+j) = 0 for each i, j ≥ 0. In particular taking
i = 1 we deduce that V1V2 · · ·Vj is a prefix of x for each j ≥ 1. It follows that x = V1V2V3 · · · ,
and hence x = V0x, whence x is periodic, a contradiction.

In the next sections, we establish links, and in some cases equivalences, between the existence
of the factorizations given in Definition 1 and fundamental results in Ramsey theory including
the infinite Ramsey theorem, Hindman’s finite sums theorem, partition regularity of IP sets, and
the Milliken-Taylor theorem. One of the main results is that for each finite set A and each finite
coloring ϕ : A+ → C, for almost all words x ∈ Aω, there exists y in the subshift generated
by x admitting a ϕ-ultra monochromatic factorization, where “almost all” refers to the Bernoulli
measure on Aω.

We conclude this section by introducing some notations and definitions which are relevant to
subsequent sections. Given a set S and a positive integer k, let Σk(S) denote the set of k-element
subsets of S and Fin(S) the set of all finite subsets of S. We let N = {0, 1, 2, . . .} denote the set
of natural numbers and N+ = N \ {0} the set of positive integers. For F,G ∈ Fin(N), we write
F < G if max(F ) < min(G).

Let x = x1x2 · · ·xn, xi ∈ A, 1 ≤ i ≤ n, be a word. The quantity n is called the length of x
and is denoted |x|. The length of ε is 0. For each word x and a ∈ A, we let |x|a denote the number
of occurrences of a in x. The reversal of x is the word x∼ = xn · · · x1. A factor y of a finite or
infinite word x is called right special (resp., left special) if there exist two different elements a and
b of A such that ya and yb (resp., ay and by) are factors of x.

Let x ∈ Aω. The factor complexity of x is the map λx : Fact(x) → N defined as follows:
for any n ≥ 0, λx(n) counts the number of distinct factors of x of length n. An occurrence of
u ∈ Fact(x) in x is any integer n ≥ 0 such that xnxn+1 · · ·xn+|u|−1 = u. A factor u of x ∈ Aω

is called recurrent if u occurs infinitely many times in x and uniformly recurrent if there exists
an integer k such that in any factor of x of length k there is at least one occurrence of u. An
infinite word x is called recurrent (resp., uniformly recurrent) if each of its factors is recurrent
(resp., uniformly recurrent). As is well known [8] for any infinite word x there exists a uniformly
recurrent word y such that Fact(y) ⊆ Fact(x).
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We endow Aω with the topology generated by the metric

d(x, y) =
1

2n
where n = min{k | xk 6= yk}

whenever x = (xn)n∈N and y = (yn)n∈N are two elements of Aω. The resulting topology is genera-
ted by the collection of cylinders [a0, . . . , an], where for each n ≥ 0 and ai ∈ A, 0 ≤ i ≤ n,

[a0, . . . , an] = {x ∈ Aω |xi = ai for 0 ≤ i ≤ n}.

It can also be described as being the product topology on Aω with the discrete topology on A. In
particular this topology is compact. The Bernoulli measure on Aω, where A is finite, is defined
as the unique measure µ on the σ-algebra of Aω such that µ([a0, . . . , an]) = d−(n+1) with d =

card(A).
Let T : Aω → Aω denote the shift transformation defined by T : (xn)n∈N 7→ (xn+1)n∈N. The

shift orbit of x is the set orb(x) = {T k(x) | k ≥ 0}, i.e., the set of all suffixes of x. By a subshift
on A we mean a pair (X,T ) where X is a closed and T -invariant subset of Aω. A subshift (X,T )

is said to be minimal whenever X and the empty set are the only T -invariant closed subsets of X.
With each x ∈ Aω is associated the subshift (X,T ) where X is the shift orbit closure of x. This
subshift, denoted by Ω(x), is usually called the subshift generated by x. As is well known (see, for
instance, [1, Theorem 10.8.9]) one has that

Ω(x) = {y ∈ Aω | Fact(y) ⊆ Fact(x)}.

If x is uniformly recurrent, then Ω(x) is minimal, so that any two words y and z in Ω(x) have
exactly the same set of factors.

A word x ∈ {0, 1}ω is called Sturmian (cf., [11, Chap. 2]) if it is aperiodic and balanced, i.e.,
for all factors u and v of x such that |u| = |v| one has

||u|a − |v|a| ≤ 1, a ∈ {0, 1}.

It follows that each Sturmian word contains exactly one of the two factors 00 and 11. Alternatively,
a binary infinite word x is Sturmian if x has a unique left (or equivalently right) special factor of
length n for each integer n ≥ 0. This is equivalent to saying that for each n ≥ 0 the number
of distinct factors of x of length n is exactly equal to n + 1. As a consequence one derives that
a Sturmian word x is closed under reversal, i.e., if u is a factor of x, then so is its reversal u∼

(see, for instance, [11, Proposition 2.1.19]). The most famous Sturmian word is the Fibonacci
word f = 0100101001001010010 · · · which is the fixed point of the morphism F defined by
F : 0 7→ 01, 1 7→ 0.

For a ∈ {0, 1}, we consider the injective endomorphism La of {0, 1}∗ defined by La : a 7→
a, b 7→ ab. We recall [11, Proposition 2.3.1] that the image La(y) of any Sturmian word y is a
Sturmian word. Moreover, for any word y ∈ {0, 1}ω if La(y) is a Sturmian word, then y is also
Sturmian [11, Proposition 2.3.2].

An infinite word x ∈ Aω is r-power free, r > 1, if for each u ∈ Fact(x) one has ur 6∈ Fact(x).
For instance, the word T is 3-power free and f is 4-power free (see, for instance, [4]).
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2. Main results

Given any finite coloring ϕ of A+ and any infinite word x ∈ Aω, while it may happen as we
have previously seen, that x does not admit a ϕ-monochromatic factorization, M. P. Schützenberger
proved that for each finite coloring ϕ of A+ and each infinite word x ∈ Aω there exists always
a suffix of x admitting a ϕ-monochromatic factorization (see [15]). The next theorem however
provides a remarkable strengthening of Schützenberger’s result.

Theorem 1. The following statements are equivalent:

1. For any finite coloring ϕ : A+ → C and any word x ∈ Aω, there exists a suffix x′ of x which
admits a ϕ-sequentially monochromatic factorization.

2. For each finite coloring ϕ : Σ2(N) → C, there exist c ∈ C and an infinite set N ⊆ N such
that Σ2(N ) ⊆ ϕ−1(c).

Proof. We note that item (2) is a special case of the Infinite Ramsey’s Theorem (see [9]). We begin
by showing that (2) =⇒ (1). Let ϕ : A+ → C be any finite coloring, and x = x0x1x2 · · · ∈ Aω.

Then ϕ induces a finite coloring ϕ′ : Σ2(N) → C given by ϕ′({m < n}) = ϕ(xmxm+1 · · ·xn−1).
By (2) there exists c ∈ C and an infinite subset N = {n0 < n1 < n2 < · · · } of N such that
for all m,n ∈ N with m < n we have ϕ′({m < n}) = c. It follows that the factorization of the
suffix x′ = xn0xn0+1xn0+2 · · · given by x′ = V0V1V2 · · · where |Vi| = ni+1 − ni is ϕ-sequentially
monochromatic.

To see that (1) =⇒ (2), let ϕ : Σ2(N) → C be any finite coloring of Σ2(N). Let x ∈ {0, 1}ω
be any aperiodic word. Then ϕ induces a finite coloring ϕ′ : A+ → C ∪ {∗}, where ∗ denotes
a symbol not in C, defined as follows: For each u ∈ A+, if u /∈ Fact(x), then set ϕ′(u) = ∗.
Otherwise, let m(u) be the least natural number m such that u = xmxm+1 · · ·xm+|u|−1, that is
m(u) is the first occurrence of u in x. Then we put

ϕ′(u) = ϕ({m(u),m(u) + |u|}).

By (1) there exists n ≥ 0 such that the suffix x′ = xnxn+1xn+2 · · · of x admits a ϕ′-sequentially
monochromatic factorization x′ = V0V1V2 · · · . Put c = ϕ′(V0). Since V0 ∈ Fact(x) we have c ∈ C.
Also, as x is aperiodic, there exists s ≥ 0 such that n = m(V0V1 · · ·Vs). Indeed, set x = Ux′ with
|U | = n. The statement is clear if n = 0. Otherwise, if for each s, m(V0V1 · · ·Vs) < n, then by
the pigeonhole principle there exists 0 ≤ k < n such that k = m(V0V1 · · ·Vs) for infinitely many
values of s. This implies that x = T k(x) = T n(x), whence x is purely periodic and hence x is
ultimately periodic, a contradiction.

Similarly, for each r ≥ 1 there exists s ≥ r such that m(Vr · · ·Vs) = n+
∑r−1

i=0 |Vi|. Given any
increasing sequence 0 = n0 < n1 < n2 < · · · , put Wk = VnkVnk+1 · · ·Vnk+1−1. Then clearly the
factorization x′ = W0W1W2 · · · is also ϕ′-sequentially monochromatic. Thus we can assume that
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x′ admits a ϕ′-sequentially monochromatic factorization x′ = V0V1V2 · · · , such that m(V0) = n

and m(Vr) = n+
∑r−1

i=0 |Vi| for each r ≥ 1. Setting

N = {n < n+ |V0| < · · · < n+
r∑

i=0

|Vi| < · · · },

we have Σ2(N ) ⊆ ϕ−1(c) as required.

Example 1. Let x = 010110111011110 · · · . Consider the finite coloring ϕ : {0, 1}+ → {0, 1}
defined by ϕ(u) = 0 if u is a prefix of x, and ϕ(u) = 1 otherwise. Following [6, Lemma 3.4],
since 0 is not uniformly recurrent in x, it follows that x does not admit a prefixal factorization,
i.e., x is not a concatenation of its prefixes. It follows that x does not admit a ϕ-monochromatic
factorization. In contrast, by Theorem 1, for every finite coloring ϕ : {0, 1}+ → C, there exists a
suffix of x which admits a ϕ-sequentially monochromatic factorization. Finally, let ϕ : {0, 1}+ →
{0, 1} be defined by ϕ(u) = 0 if u is a factor of x, and ϕ(u) = 1 otherwise. We claim that no suffix
of x admits a ϕ-ultra monochromatic factorization. In fact, suppose to the contrary that some suffix
x′ of x admits a ϕ-ultra monochromatic factorization x′ = V0V1V2 · · · . By concatenating several
of the Vi together (as in the proof of Theorem 1), we can assume that each Vi contains at least two
occurrences of 0. Then, VjVi is not a factor of x whenever i < j. Thus 0 = ϕ(V0) 6= ϕ(VjVi) = 1.

The following proposition illustrates how in some very special cases, Theorem 1 can be used
to construct an ultra monochromatic factorization:

Proposition 2. Let C be a finite semigroup and ϕ : A+ → C a morphism. Let x ∈ Aω. There
exists a suffix x′ of x which admits a ϕ-ultra monochromatic factorization.

Proof. By Theorem 1 there exists a suffix x′ of x which admits a ϕ-sequentially monochromatic
factorization x′ = V0V1 · · ·Vn · · · . Thus there exists c ∈ C such that for all i ≥ 0, one has
ϕ(Vi · · ·Vi+j) = c, for all i, j ≥ 0. This implies ϕ(V0V1) = c = ϕ(V0)ϕ(V1) = c2. Therefore,
c is an idempotent of the semigroup C. Thus ϕ(u) = c for any u ∈ {Vi | i ≥ 0}+. Whence the
factorization x′ = V0V1 · · ·Vn · · · is also ϕ-ultra monochromatic.

In view of the preceding results, it is natural to ask the following question:

Question 2. Let ϕ : A+ → C be a finite coloring of A+ and x ∈ Aω. Does there exist y ∈ Ω(x)

admitting a ϕ-ultra monochromatic factorization?

It turns out that in general Question 2 does not admit an affirmative answer. We begin by
exhibiting a ϕ : A+ → C and x ∈ Aω such that no y ∈ Ω(x) admits a ϕ-ultra monochromatic
factorization.

Lemma 1. Let r ∈ N+ and x ∈ {0, 1}ω be a r-power free Sturmian word. Then for each infinite
sequence ω = V0, V1, V2, · · · with Vi ∈ {0, 1}+ there exist k ≥ 1, 0 ≤ n1 < n2 < · · · < nk, and a
permutation σ of {1, 2, . . . , k} such that Vnσ(1)Vnσ(2) · · ·Vnσ(k) /∈ Fact(x).
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Proof. For each ω = V0, V1, V2, · · · with Vi ∈ {0, 1}+, i ≥ 0, set N(ω) = |V0V1 · · ·Vr|. We
proceed by induction on N(ω) to show that for each ω = V0, V1, V2, · · · with Vi ∈ {0, 1}+, and
each r-power free Sturmian word x there exist k ≥ 1, 0 ≤ n1 < n2 < · · · < nk and a permutation
σ of {1, 2, . . . , k} such that Vnσ(1)Vnσ(2) · · ·Vnσ(k) /∈ Fact(x).

The base case of the induction is when N(ω) = r + 1, i.e., |V0| = |V1| = · · · = |Vr| = 1.

Let x be a r-power free Sturmian word. For a ∈ {0, 1}, put ā = 1 − a so that {a, ā} = {0, 1}.
Fix a ∈ {0, 1} so that āā /∈ Fact(x). First suppose that Vi = Vj = ā for some 0 ≤ i < j.

In this case ViVj /∈ Fact(x). Thus we can assume that at most one Vi = ā. In this case, there
exist 0 ≤ n1 < n2 < · · · < nr ≤ r such that Vni = a for each 1 ≤ i ≤ r. It follows that
Vn1Vn2 · · ·Vnr = ar /∈ Fact(x).

For the inductive step, let N > r + 1, and suppose that for each ω = V0, V1, V2, · · · with
Vi ∈ {0, 1}+ and N(ω) < N and for each r-power free Sturmian word x there exist k ≥ 1,

0 ≤ n1 < n2 < · · · < nk, and a permutation σ of {1, 2, . . . , k} such that Vnσ(1)Vnσ(2) · · ·Vnσ(k) /∈
Fact(x). Now let ω = V0, V1, V2, · · · with Vi ∈ {0, 1}+, i ≥ 0 and N(ω) = N and let x be a
r-power free Sturmian word. Without loss of generality we may assume 11 /∈ Fact(x) and that x
begins with 0. Note that if 11 /∈ Fact(x) and x begins with 1, we can replace x with 0x which is
Sturmian and r-power free. We claim that for some k ≥ 1, and 0 ≤ n1 < n2 < · · · < nk and
permutation σ of {1, 2, . . . , k} we have Vnσ(1)Vnσ(2) · · ·Vnσ(k) /∈ Fact(x). Suppose to the contrary
that for every k ≥ 1, 0 ≤ n1 < n2 < · · · < nk and permutation σ of {1, 2, . . . , k} we have
Vnσ(1)Vnσ(2) · · ·Vnσ(k) ∈ Fact(x). Since x is r-power free, we have lim supn→∞ |Vn| = +∞.

Suppose first that for some a ∈ {0, 1} there exist 0 ≤ i < j such that Vi begins with a and
Vj begins with ā. Pick j < m < n such that |Vn| > r|Vm|. Since VmVnVi, VmVnVj, VnVmVi,
and VnVmVj are each factors of x, it follows that each of VmVn and VnVm is a right special factor
of x. But since |VmVn| = |VnVm| and x has exactly one right special factor of each length, it
follows that VmVn = VnVm, from which one easily derives that V r

m is a prefix of Vn and hence in
particular V r

m ∈ Fact(x), a contradiction. Thus we may suppose that all Vi begin with the same
letter a ∈ {0, 1}. A similar argument shows that all Vi terminate with the same letter b ∈ {0, 1}.
Moreover, as 11 /∈ Fact(x), either a or b must equal 0. Since Fact(x) is closed under reversal, short
of replacing each Vi in ω by its reversal, we may suppose that a = 0, i.e., each Vi begins with 0.

Thus Vi0 ∈ Fact(x) for each i ≥ 0.

Now consider the morphism L0 : 0 7→ 0, and 1 7→ 01. For each i ≥ 0, define V ′i ∈ {0, 1}+
by L0(V

′
i ) = Vi and put ω′ = V ′0 , V

′
1 , V

′
2 , . . . . Finally, as x begins with 0, define x′ ∈ {0, 1}ω

by L0(x
′) = x. Then, as is well known, x′ is a Sturmian word. Moreover, since x is r-power

free, so is x′ and at least one Vi with 0 ≤ i ≤ r − 1 must contain an occurrence of 1. Thus
N(ω′) < N(ω). For each k ≥ 1, 0 ≤ n1 < n2 < · · · < nk and permutation σ of {1, 2, . . . , k},
we have Vnσ(1)Vnσ(2) · · ·Vnσ(k)0 ∈ Fact(x). Thus V ′nσ(1)V

′
nσ(2)
· · ·V ′nσ(k) ∈ Fact(x′), and this is a

contradiction to our inductive hypothesis.

We mention that very recently Anna Frid [7] has extended the validity of previous lemma to
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the case of any infinite word of linear factor complexity.

Proposition 3. Let r ∈ N+ and x ∈ {0, 1}ω be a r-power free Sturmian word. Define ϕ :

{0, 1}+ → {0, 1} by ϕ(u) = 0 if u is a factor of x and ϕ(u) = 1 otherwise. Then no y ∈ Ω(x)

admits a ϕ-ultra monochromatic factorization.

Proof. Let y ∈ Ω(x) and consider any factorization y = V0V1V2 · · · . Then since V0 is a factor
of x, we have that ϕ(V0) = 0. On the other hand, since y is also Sturmian and r-power free,
by the previous lemma there exist k ≥ 1, 0 ≤ n1 < n2 < · · · < nk and a permutation σ of
{1, 2, . . . , k} such that Vnσ(1)Vnσ(2) · · ·Vnσ(k) /∈ Fact(y). Hence ϕ(Vnσ(1)Vnσ(2) · · ·Vnσ(k)) = 1 from
which it follows that no y ∈ Ω(x) admits a ϕ-ultra monochromatic factorization.

We next show (cf. Corollary 1) that if A is finite, then Question 2 admits an affirmative answer
for almost all x ∈ Aω, where “almost all” refers to the Bernoulli measure on Aω. We begin by
showing that Question 2 admits a positive answer in case x is periodic. Even this simplest case
however turns out to be somewhat nontrivial, and in fact is equivalent to the so-called Finite Sums
Theorem proved by N. Hindman in [10].

Theorem 4. The following statements are equivalent:

1. For every finite coloring ϕ : A+ → C, each periodic word x ∈ Aω admits a ϕ-ultra
monochromatic factorization.

2. For each finite coloring ϕ : N+ → C of the positive integers, there exist c ∈ C and an
infinite sequence (nk)∞k=0 such that FS((nk)∞k=0) = {

∑
i∈F ni |F ∈ Fin(N)} ⊆ ϕ−1(c).

Proof. We note that item (2) is the Finite Sums Theorem by Hindman. We begin by showing
that (1) =⇒ (2). Let ϕ : N+ → C be a finite coloring of the positive integers, and let x be the
periodic word x = aω, with a ∈ A. Then ϕ induces a finite coloring ϕ′ : {a}+ → C given by
ϕ′(an) = ϕ(n). By (1) there exists a ϕ′-ultra monochromatic factorization x = V0V1V2 · · · . Put
c = ϕ′(V0). For k ≥ 0, set nk = |Vk| so that each Vk = ank . Then for each finite subset F of N,
we have

ϕ(
∑
i∈F

ni) = ϕ(
∑
i∈F

|Vi|) = ϕ(|
∏
i∈F

Vi|) = ϕ′(
∏
i∈F

Vi) = c

since
∏

i∈F Vi = a
∑
i∈F ni and hence is a factor of x. Whence FS((nk)∞k=0) = {

∑
i∈F ni |F ∈

Fin(N)} ⊆ ϕ−1(c).

To see that (2) =⇒ (1), let ϕ : A+ → C, u ∈ A+, and x = uω. Define ϕ′ : N+ → C by
ϕ′(n) = ϕ(un). By (2) there exist c ∈ C and an infinite sequence (nk)∞k=0 such that FS((nk)∞k=0) =

{
∑

i∈F ni |F ∈ Fin(N)} ⊆ ϕ′−1(c). For each k ≥ 0 set Vk = unk . Then clearly the factorization
x = V0V1V2 · · · is ϕ-ultra monochromatic.

As an immediate consequence we obtain:
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Corollary 1. Let A be a finite set, and let µ be the Bernoulli measure on Aω. Let ϕ : A+ → C be
any finite coloring. Then for µ-almost all x ∈ Aω there exists y ∈ Ω(x) which admits a ϕ-ultra
monochromatic factorization.

Proof. As is well known almost all words x ∈ Aω with respect to the measure µ, are of full
complexity, meaning Fact(x) = A+ (see, for instance, [1, Theorem 10.1.6]). (As an example,
normal words [13, Chap. 8] are of full complexity). Thus for almost all words x ∈ Aω, relatively
to measure µ, there exists a ∈ A such that aω ∈ Ω(x). The result now follows from Theorem 4.

The above results suggest the following questions:

Question 3. Let x ∈ Aω be a uniformly recurrent word. Suppose that for each ϕ : A+ → C, there
exists y ∈ Ω(x) admitting a ϕ-ultra monochromatic factorization. Then does it follow that x is
periodic?

Let ϕ : A+ → C and x ∈ Aω. A factorization x = V0V1V2 · · · with Vi ∈ A+, i ≥ 0, is
called ϕ-conditionally monochromatic if ∃c ∈ C such that ∀k ≥ 1, for all n1 < n2 < · · · <
nk and for all permutations σ of {1, 2, . . . , k} we have either Vnσ(1)Vnσ(2) · · ·Vnσ(k) /∈ Fact(x) or
ϕ(Vnσ(1)Vnσ(2) · · ·Vnσ(k)) = c.

Thus a ϕ-ultra monochromatic factorization of a word x ∈ Aω is a ϕ-conditionally monochro-
matic factorization, but not vice versa. For instance, consider x = 010110111011110 · · · . We saw
in Example 1 that relative to the coloring ϕ : {0, 1}+ → {0, 1} defined by ϕ(u) = 0 if u is a factor
of x, and ϕ(u) = 1 otherwise, no suffix of x admits a ϕ-ultra monochromatic factorization. On
the other hand given any coloring ϕ of {0, 1}+, by Theorem 1 there exists a suffix x′ admitting a
ϕ-sequentially monochromatic factorization x = V0V1V2 · · · . By concatenating several of the Vi
together (as in the proof of Theorem 1), we can assume that each Vi contains at least two occur-
rences of 0. The resulting ϕ-sequentially monochromatic factorization is then also ϕ-conditionally
monochromatic since the only concatenation of blocks which yields a factor of x are consecutive
concatenations.

Question 4. Let ϕ : A+ → C be a finite coloring of A+ and x ∈ Aω. Does there exist y ∈ Ω(x)

admitting a ϕ-conditionally monochromatic factorization?

We have not a single example of an aperiodic uniformly recurrent word in which we can give
an answer (positive or negative) to the above question.

3. Shift invariant monochromatic factorizations

Let ϕ : A+ → C be a finite coloring of A+, x ∈ Aω, and k be a positive integer. A ϕ-
monochromatic (resp., ϕ-sequentially monochromatic, ϕ-ultra monochromatic) factorization x =

V0V1V2 · · · is said to be k-shift invariant if for each 1 ≤ j ≤ k the induced factorization T j(x) =
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W0W1W2 · · · with |Wi| = |Vi|, i ≥ 0, is ϕ-monochromatic (resp., ϕ-sequentially monochro-
matic, ϕ-ultra monochromatic). A ϕ-monochromatic (resp., ϕ-sequentially monochromatic, ϕ-
ultra monochromatic) factorization x = V0V1V2 · · · is called shift invariant if for each positive
integer j, the induced factorization T j(x) = W0W1W2 · · · with |Wi| = |Vi| is ϕ-monochromatic
(resp., ϕ-sequentially monochromatic, ϕ-ultra monochromatic).

We begin with the following simple variation of the infinite Ramsey theorem, whose proof is
omitted as it is a simple iterated application of the usual version of Ramsey’s theorem.

Proposition 5. Let ϕ : Σ2(N) → C be a finite coloring and k a nonnegative integer. There exists
an infinite set N ⊆ N and a sequence (ci)

k
i=0 such that for each 0 ≤ i ≤ k we have ci ∈ C and

Σ2(N + i) ⊆ ϕ−1(ci).

As an immediate consequence we deduce that

Corollary 2. Let ϕ : A+ → C, x ∈ Aω, and k ≥ 1. Then there exists a suffix x′ of x which admits
a k-shift invariant ϕ-sequentially monochromatic factorization.

Proof. As in the proof of Theorem 1, we apply the above variation of Ramsey’s theorem to the
coloring ϕ′ : Σ2(N)→ C given by ϕ′({m < n}) = ϕ(xmxm+1 · · ·xn−1).

Proposition 6. A word x ∈ Aω is ultimately periodic if and only if for every finite coloring ϕ :

A+ → C there exists a suffix of x which admits a shift invariant ϕ-monochromatic factorization.

Proof. Clearly, if x is ultimately periodic, and hence of the form x = uvω for some u, v ∈ A∗ with
v 6= ε, then for any ϕ : A+ → C, the factorization v · v · v · · · · of the suffix vω is shift invariant
ϕ-monochromatic. Conversely, suppose x is aperiodic. Choose a recurrent word y ∈ Ω(x). Thus
each prefix of y occurs infinitely often in x. Let ϕ : A+ → {0, 1} be given by ϕ(u) = 0 if u is
a prefix of y and ϕ(u) = 1 otherwise. Let x′ be any suffix of x. We claim that x′ does not admit
a shift invariant ϕ-monochromatic factorization. In fact, suppose to the contrary that x′ admits
a shift invariant ϕ-monochromatic factorization x′ = V0V1V2 · · · . Since y is recurrent and each
prefix of y occurs infinitely often in x, there exist 0 ≤ i < j such that if we consider the shifted
factorizations T i(x′) = W0W1W2 · · · and T j(x′) = W ′

0W
′
1W

′
2 · · · , where |Wi| = |W ′

i | = |Vi| for
each i ≥ 0, both W0 and W ′

0 are prefixes of y. It follows that Wi and W ′
i are prefixes of y for each

i ≥ 0. But since they are of equal length, we have Wi = W ′
i for each i ≥ 0. Thus T i(x′) = T j(x′)

which implies that x is ultimately periodic, a contradiction.

We recall that a subset A of N+ is called an IP set if A contains FS((ni)
∞
i=1) for some infinite

sequence (ni)
∞
i=1. In terms of IP sets, Hindman’s theorem states that any finite coloring of N+ con-

tains a monochromatic IP set. By using the so-called Finite Unions Theorem, which is equivalent
to Hindman’s Finite Sums Theorem (cf. [2, 12]), one can show that IP sets in N+ are partition
regular, i.e., if A is an IP set and A =

⋃k
i=1Ai, then there exists 1 ≤ i ≤ k such that Ai is an IP

set. We recall also the following well-known theorem of Milliken-Taylor [12, 16]:
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Theorem 7. Let k be a positive integer and ϕ : Σk(N+) → C a finite coloring. Then there exist
c ∈ C and an infinite sequence (ni)

∞
i=1 such that

{
∑
i∈F1

ni,
∑
i∈F2

ni, . . . ,
∑
i∈Fk

ni} ∈ ϕ−1(c)

for each F1 < F2 < · · · < Fk with Fi ∈ Fin(N+), 1 ≤ i ≤ k.

The next theorem shows that for each finite coloring ϕ : A+ → C, and each periodic word
x ∈ Aω there exists a shift invariant ϕ-ultra monochromatic factorization of x. We present two
proofs, one uses the fact that IP sets are partition regular and the other uses the Milliken-Taylor
Theorem.

Theorem 8. For each finite coloring ϕ : A+ → C, each periodic word x ∈ Aω admits a shift
invariant ϕ-ultra monochromatic factorization.

Proof. (First proof) Let ϕ : A+ → C be given. Let u = u1u2 · · ·uk ∈ A+, ui ∈ A, i = 1, . . . , k

and x = uω. Consider the coloring ϕ1 : N+ → C defined by ϕ1(n) = ϕ(un). Then by Hindman’s
theorem there exists an infinite sequence (n

(1)
i )∞i=1 and c1 ∈ C such that FS((n

(1)
i )∞i=1) ⊆ ϕ−11 (c1).

This implies that the factorization

x = un
(1)
1 · un

(1)
2 · un

(1)
3 · · ·

is ϕ-ultra monochromatic. Next consider the coloring ϕ2 : FS((n
(1)
i )∞i=1)→ C defined by ϕ2(n) =

ϕ((u2 · · ·uku1)n). By partition regularity of IP sets it follows that there exists an infinite sequence
(n

(2)
i )∞i=1 and c2 ∈ C such that FS((n

(2)
i )∞i=1) ⊆ ϕ−12 (c2). It follows that the factorizations

x = un
(2)
1 · un

(2)
2 · un

(2)
3 · · ·

and
T (x) = (u2 · · ·uku1)n

(2)
1 (u2 · · ·uku1)n

(2)
2 (u2 · · ·uku1)n

(2)
3 · · ·

are both ϕ-ultra monochromatic. Continuing in this way up to stage k, we can find an infinite
sequence (n

(k)
i )∞i=1 such that for each 0 ≤ i ≤ k − 1 the factorization

T i(x) = (ui+1 · · ·uku1 · · ·ui)n
(k)
1 (ui+1 · · ·uku1 · · ·ui)n

(k)
2 (ui+1 · · ·uku1 · · ·ui)n

(k)
3 · · ·

is ϕ-ultra monochromatic. Since T k(x) = x the result now follows.

(Second proof) As before let ϕ : A+ → C be given, u = u1u2 · · ·uk ∈ A+, ui ∈ A, i = 1, . . . , k,
and x = uω. Then ϕ induces a finite coloring

Ψ : Σk(N+)→ Ck
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defined by

Ψ({n1 < n2 < · · · < nk}) = (ϕ((u1u2 · · ·uk)n1), ϕ((u2u3 · · ·uku1)n2), . . . , ϕ((uku1 · · ·uk−1)nk).

By Theorem 7 there exist c = (c1, c2, . . . , ck) ∈ Ck and (ni)
∞
i=1 such that

Ψ({
∑
i∈F1

ni,
∑
i∈F2

ni, . . . ,
∑
i∈Fk

ni}) = c (∗)

for each F1 < F2 < · · · < Fk with Fi ∈ Fin(N+), 1 ≤ i ≤ k.
Fix 1 ≤ j ≤ k and F ∈ Fin({k, k + 1, k + 2, . . .}). We claim that

ϕ((uj · · ·uku1 · · ·uj−1)
∑
i∈F ni) = cj.

This is a consequence of (∗) by taking Fi = {i} for 1 ≤ i < j, Fj = F, and Fj+i = {M + i} for
1 ≤ i ≤ k − j where M = max(F ). It follows that the factorization x = unkunk+1unk+2 · · · is
shift invariant ϕ-ultra monochromatic.

Acknowledgments: We are indebted to Neil Hindman for his suggestions and we thank the two
anonymous reviewers for their useful comments.
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