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Abstract

In this work we explore the possibilities of reduced order modeling for aug-

mented reality applications. We consider parametric reduced order models

based upon separate (affine) parametric dependence so as to speedup the as-

sociated data assimilation problems, which involve in a natural manner the

minimization of a distance functional. The employ of reduced order methods

allows for an important reduction in computational cost, thus allowing to

comply with the stringent real time constraints of video streams, i.e., around

30 Hz. Examples are included that show the potential of the proposed tech-

nique in different situations.
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1. Introduction

The so-called virtuality continuum is a continuous scale between reality

and a complete virtual world. In between, every imaginable combination of

real and virtual objects can be envisaged: real objects in a virtual environ-

ment, virtual objects in a real world or any other possible combination you

can think of. In general, despite the plethora of different names that have

been proposed to name different situations, augmented reality is usually con-

sidered as being placed somewhere in the middle of the continuum, see Fig. 1.

While Google usually refers to the continuum as immersive computing, Mi-

crosoft usually employs the term mixed reality.

Reality Augmented Reality Virtual Reality

Figure 1: The virtuality continuum.

In that sense, it seems that there is no consensus in the exact difference

between terms like augmented reality, AR, or mixed reality, MR, for instance.

Instead, it is often preferred to see the different possibilities as different points

in the continuum sketched in Fig. 1. To date, most of the existing AR appli-

cations embed static virtual characters in a real environment (think of the

famous PokèmonGo app, for instance). However, what is really challenging

is to be able to embed physically realistic virtual objects in a real environ-

ment (through video streams, glasses, etc.) and make them interact. The

challenge comes precisely from the fact that modern video standards record

at some 30 frames per second (fps). For instance, a modern smartphone

usually offers the possibility to record at 30 or 60 fps. Therefore, to embed
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a virtual object in a video stream will imply to be able to generate synthetic

images —compliant with the laws of physics— at those 30 fps so as to make

it realistic.

In this work we aim at producing physically-based synthetic images at

such rates. This could have a vast range of possible applications, from moni-

toring and decision making in the framework of industry 4.0, to assistance for

laparoscopic surgery, to name but a few [1]. For instance, augmented reality

could allow us to project in different formats (such as tablets or smartphones,

glasses, ...) hidden information within a manufacturing process (stresses, de-

fects, ...). In laparoscopic surgery, on the other hand, critical information

such as the precise location of blood vessels is often hidden for the surgeon

[2]. In this work we are considering the possibility of enriching existing ob-

jects with hidden information as well as incorporating synthetic objects to

the scene so as to help in the industrial design process, for instance. Project-

ing all this information on top of video streams could be of utmost interest

for these and many other applications. Very few applications consider, on the

other side of the virtuality continuum, the possibility of manipulating reality

so as to make it appear as modified by virtual objects. The sole exceptions

seems to be [3], where each video frame is considered as a two-dimensional

elastic continuum that can be deformed according to the presence of a virtual

object. Reality appears thus modified by the presence of virtual objects if

wee it solely through the video stream.

If the information to be added to the video is to be extracted from nu-

merical simulation, the difficulties are mainly two-fold. On one hand, there

is the need to couple the computer model (usually obtained by means of

finite element techniques) to the physical environment, through the lens of

the camera. This process is known as registration. After registration, our
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method must be able to track the evolution of the physical environment so

as to interact with it. If the environment is rigid and we have one single but

moving camera, the problem is known to be well posed and to have a unique

solution. This problem is called Structure from Motion, SfM, in the com-

puter vision community [4]. It includes the problem of determining the pose

—location and orientation— of the camera. If one or more objects in the real,

physical scene is deformable, the problem turns out to be ill posed, although

good solutions exist under different assumptions [5]. Non-Rigid Structure

from Motion, NRSfM, [6] [7] and Shape from Template, SfT, methods [8] [9]

are some good examples of different approaches to this problem.

On the other hand, our model should be able to generate results at the

prescribed rate (as mentioned before, think of some 30 Hz). If we consider, for

instance, deformable solids with general non-linear constitutive laws under

finite strain settings, the problem of solving such a model some thirty times

per second becomes an evident bottleneck. To avoid such problems, we are

employing in this work reduced order models. These enable us to minimize

the computational cost of the evaluation of the model while guaranteeing a

prescribed level of accuracy. In fact, as will be noticed hereafter, the problem

will be cast in the form of a classical data assimilation problem, for which the

minimization of a functional will be needed. This minimization procedure is

greatly beneficed from the separated (affine) parametric form of the unknown

field of the model.

The precise type of reduced order model is not an essential ingredient

of the technique here presented. For instance, Reduced Basis techniques

[10] [11] [12] have been employed successfully for data assimilation problems

[13] [14] [15]. Here, Proper Generalized Decompositions (PGD) have been

employed [16] [17] [18] [19] [20] [21] [22] [23]. This technique constructs the
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solution of the problem in the form of a finite sum of separate functions. This

particular form of the solution, which has a lot in common with Reduced

Basis techniques, greatly simplifies the task of inverse identification that will

be needed in this type of problems, as will become clear hereafter [24] [25]

[26] [27].

This paper is structured as follows. In Section 2 we describe the problem.

Particular attention is paid to the necessary link between the video stream

and the reduced order model of a (possibly non-existent) deformable solid. In

order to project a synthetic image on top of each frame under real-time con-

straints, it is first necessary to locate and orient the camera (in other words,

to determine its pose). This will allow to track deformations in the scene,

whose vast majority will be nevertheless rigid, in general. In Section 3 we will

briefly review the essentials of Proper Generalized Decompositions and intro-

duce how they will allow us to solve the resulting data assimilation problem

advantageously. In Section 4 we show how the separate representation of the

solution (affine parametrization) allows for an extreme simplification of the

problem, thus allowing to obtain the mentioned feedback rates. In Section

5 we show three different examples of application of the proposed technique.

First, we consider a linear elastic example in which fiducial markers have been

employed to determine the pose of the camera. The use of fiducial markers

could be possible in industrial environments, for instance, but is strictly not

permitted for laparoscopic surgery applications, on the contrary. In a second

example we consider a hyperelastic (thus, non-linear) example without any

fiducial marker. In a third example we consider the possibility of introducing

a purely synthetic (non-existing) object in the scene. These three examples

show the potential of the technique. The paper ends with a discussion and

some research lines to be pursued.
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2. Problem setting

Our vision of the problem of augmenting a video stream with informa-

tion arising from real time simulation is that of a data assimilation problem.

Under this rationale, the “experimental measurement” phase of the prob-

lem consists in extracting information about the deformation of the solid(s)

appearing in the video. In this section we review some of the essentials of

computer vision that will help us to perform this task. Excellent books on

the field are available for the interested reader, such as, for instance, [5] or

[28].

Soon after this brief review on the essentials of computer vision is per-

formed, we cast the problem in the form of a general data assimilation prob-

lem and introduce its main ingredients. Notably, the very stringent real-time

requirements imposed by video streaming (ranging usually from some 30 to

60 or even more frames per second) poses the main difficulties for any simu-

lation method.

2.1. Measurements: the non-rigid structure from motion problem

We assume that we are recording a scene with a standard, perspective

projection video camera (RGBD cameras, for instance, are not considered in

this work) [5]. This camera is producing, after calibration and lens distortion

correction [29], as it moves, two-dimensional images of the three-dimensional

environment. The passage from the three-dimensional world to the flat, two-

dimensional images is actually a perspective projection, which we will denote

by Π. The Structure from Motion, SfM, problem consists in determining the

three-dimensional structure of a rigid scene from a sequence of images taken

from different points of view, see Fig. 2.

The input image space is denoted by Ii ⊂ R
2, with i = 1, . . . , nimages, the
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Figure 2: Sketch of the Structure from Motion problem.

number of available images. This number of images is in general growing

continuously while we record with our camera, since a batch approach is in

general not allowed in this work.

The a priori unknown camera operator is here denoted by Π : ∂∗Ωt →
I. This camera projection can be expressed as Π = K[R|t], where K

corresponds to the camera intrinsic matrix and [R|t] represents the camera

extrinsic matrix. By denoting xc
t = (x, y, z)� and p = (p1, p2)

� we have,

⎡
⎢⎢⎢⎣
p1

p2

p3

⎤
⎥⎥⎥⎦ = λ

⎡
⎢⎢⎢⎣

f/dx 0 cx

0 f/dy cy

0 0 1

⎤
⎥⎥⎥⎦
⎡
⎣R t

0 1

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where xc
t represents the coordinates of xt in the camera system (a moving

frame of reference attached to the camera, not to be confused with the world
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reference frame, depicted in Fig. 2). ∂∗Ωt denotes the visible part of the

boundary of the object of interest, Ω, at time t. The camera extrinsic ma-

trix transforms 3D scene points into 3D points in the camera reference. It

establishes the rotation (R) and translation (t) between the corresponding

points. The camera intrinsic matrix K contains information about the pro-

jection centre (cx,cy), the pixel size (dx,dy) and the focal distance (f), which

is used to map 3D camera points into 2D pixel coordinates. The whole equa-

tion makes possible the transformation of real 3D points into image pixels.

Finally, λ represents a scale factor.

Remark 1. Note that we have introduced two indexes, i and t, that may lead

to confusion. i is purely discrete and refers to the frame number. On the

contrary, t refers to time, and is therefore continuous. It will be subsequently

discretized, of course, but even in this case, i and t need not to refer to the

same quantity, nor the intervals Δt and [i, i+1] need to be of the same length.

Once discretized, frame i captures time instant t, and sometimes we employ

them indistinctly in an abuse of notation, but these indexes should not be

confused.

Note that, with one single image, there is no way to determine if the

image in the picture, p, has been produced by a big object located far away

from the camera or a smaller one located close to it. To locate both the

camera (its pose: position and orientation) and a rigid object we need more

than one single image. One of the key ingredients of the SfM problem is the

minimization of the reprojection error, i.e., the geometric error corresponding

to the image distance between a projected point and a measured one [5]. As

sketched in Fig. 2, when a camera captures a picture of the environment, it
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is actually performing a projection of the 3d points in the form

p = Π(x),

with p ∈ R
2 and x ∈ R

3 (we omit for simplicity the superscript t). However,

in practice we do not know exactly the true value of x. It can be estimated

by using well-known computer vision techniques, so as to give an estimate x̂

of the true 3d position of the point. The interested reader can consult [29]

or [5], for instance. We therefore can think of a projection (re-projection, in

fact) of this estimate, for each frame,

p̂ = Π(x̂),

such that the reprojection error would be d(p, p̂). In this work we are employ-

ing different techniques to determine the pose of the camera and to construct

a map of the environment. This is indeed an intended choice, just to show

that the proposed method works for any SfM problem. In the final example

we show how the proposed method does not need any fiducial marker, as it

employs the ORB-SLAM algorithm developed in [30].

When a deformable solid is located in the scene things become more in-

tricate. A deforming solid is equivalent to having one single image pt per

configuration xt = φ(X, t), and thus the problem becomes ill-posed. It is not

possible, in general, to determine the three-dimensional geometry of a solid

with one single image. However, since we take pictures every 1/30 seconds,

every configuration in the sequence of images, despite not being identical,

is indeed very similar to the previous ones. An impressive effort of research

has been devoted to solving the so-called Non-Rigid Structure from Motion

(NRSfM) problem. A non-exhaustive list of techniques in this field could con-

sider the Shape from Template (SfT) techniques [8] [9], an Extended Kalman

Filter approach employing linear elastic plate finite element to simulate the

9



visible surface of the solid [31] [6], or recent low-rank approaches to the that

initialize the sequence with rigid motion only and sequentially improve the

basis of the method [32], to name a few.

2.2. Assimilation of the data

Our approach to the problem will be that of deterministic data assim-

ilation [33] [24]. Even if it is possible to cast the problem in a Bayesian

framework (see, for instance, some recent references that employ different

types of Kalman filters in the context of reduced order modeling, [34] [35]

[36]) we assume that observations coming from video streams are exact. Mea-

surements coming from the NRSfM problem are indeed displacements of tose

points identified as belonging to deformable media. This constitutes a set of

punctual displacements u∗.

Under this rationale, we consider the parametric dependence of the solu-

tion on a set of parameters μ ∈ D ⊂ R
nparam . These parameters will represent

some hidden information to the user, such as the position of a load, for in-

stance, that may be not visible in any of the frames. From the video stream,

any of the aforementioned NRSfM techniques will provide a set of measure-

ments —typically, displacements at some particular positions in the solid—

by minimizing the reprojection error, for instance. These will be denoted as

u∗(μ). The problem will be given by the following two discretized PDEs:

State equation: A(u,μ)u(x,μ) = f(μ),

Observation equation: u∗(μ) = C(μ)u(x,μ).
(1)

We highlight here the fact that the stiffness matrix A(u,μ) could depend

(possibly in a non-linear manner) both on the unknown field u (usually,

the displacement field) and the parameters μ. u ∈ R
nFOM represents the

set of nodal (finite element full order model) degrees of freedom and u∗ ∈
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R
nobs represents the set of observations taken from the video stream. The

observation matrix C is assumed to be linear and is usually simply Boolean

and μ-independent.

The deterministic approach to this (inverse) problem could thus be cast

in the following form:

μ∗ = argmin
μ∈Rnparam

1

2
‖u∗ − C(μ)u(x,μ)‖22, (2)

i.e., we seek to minimize the discrepancy between the observations u∗ and

the model predictions u(μ) at particular locations given by matrix C. Fre-

quently, this formulation is regularized by employing Tikhonov methods [14],

but in this case we have not found it necessary.

The computational complexity of problem (2) prevents nowadays com-

puters to obtain the desired feedback response at 30 Hz. This is so, at least,

for state-of-the-art (possibly non-linear) models involving hundreds of thou-

sands (if not millions) of degrees of freedom. This is at the origin of the need

for some type of model order reduction. In this work, we have employed

Proper Generalized Decompositions, whose basics are reviewed next. This

will allow us to avoid the usage of high dimensional vectors u ∈ R
nFOM , but

to substitute them by surrogate reduced order approximations u ∈ R
nROM ,

with nROM � nFOM.

3. A brief review of Proper Generalized Decomposition

We will not go into every detail concerning Proper Generalized Decompo-

sitions, given the vast corps of literature available since the initial proposition

of the method in [37] and its subsequent identification with the strategy also

proposed by P. Ladeveze as an ingredient of his famous LaTIn method [16].

The interested reader can consult recent books on the methods such as [17]

[19] [38] or review papers such as [39] [20].
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The essential ingredient in PGD methods is the assumption that the

solution can be expressed as a finite sum of separate functions or, in other

words, that the field u(x,μ) admits an affine parametric dependence, i.e.,

u(x,μ) ≈
nmodes∑
i=1

F i(x) ◦G1
i (μ1) ◦ . . . ◦Gnparam

i (μnparam), (3)

where the symbol “◦” represents the Hadamard or Schur component-wise

product. Functions F i, G
j
i are also known as “modes” to highlight their

strong link to the modes employed in Proper Orthogonal Decomposition-

based model order reduction methods. To determine their precise expression,

Eq. (3) is substituted into the weak form of the problem at hand, from which

Eq. (1.a) emanates. Let us assume that the strong form of the problem is:

find u(x,μ) in an appropriate functional space such that

L(u) = f(x),

equipped with suitable boundary conditions. Here, L represents the differ-

ential operator acting on the essential variable, u(x,μ). The precise form

of this operator will be made clear for each of the examples in Section 5.

To obtain the weak form of the problem, we multiply both sides by a test

function and integrate over the high-dimensional domain,

∫
Ωx×Ω1×...×Ωnparam

u∗(L(u)−f)dx dμ1 · · · dμnparam = 0 ∀u∗ ∈ H1
0(Ωx)×L2(μ).

(4)

The separated form assumed for u, when substituted into Eq. (5.1), allows

to perform integration in a separated manner. Of course, for this to be

possible, the operator L must satisfy some separability assumptions as well.

We refer the interested reader to [40] for a detailed analysis on the separability

of differential operators, or to [41] in a hyperelastic context. We thus proceed
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by assuming that a rank-n approximation has just been constructed,

un(x,μ) =
n∑

i=1

F i(x) ◦G1
i (μ1) ◦ . . . ◦Gnparam

i (μnparam),

and look for a rank-1 improvement,

un+1(x,μ) = un(x,μ) + F n+1(x) ◦G1
n+1(μ1) ◦ . . . ◦Gnparam

n+1 (μnparam).

In this same spirit, the test function will look

u∗(x,μ) = F ∗
n+1(x) ◦G1

n+1(μ1) ◦ . . . ◦Gnparam
n+1 (μnparam)

+ F n+1(x) ◦ (G1
n+1)

∗(μ1) ◦ . . . ◦Gnparam
n+1 (μnparam) + . . .

+ F n+1(x) ◦G1
n+1(μ1) ◦ . . . ◦ (Gnparam

n+1 )∗(μnparam).

Once substituted into Eq. (5.1), the assumed separated form of the unknown

and the test function allow to perform the integration also in a separated way.

The PGD algorithm is thus comprised by a greedy loop to determine the

approximating sum plus a fixed-point, alternated directions scheme to find

each of the modes. The interested reader could consult any of the mentioned

references for further details and, in particular, [19] or [42] for detailed Matlab

implementations.

In order to determine the number of modes in the approximation, n, a

stopping criterion is mandatory. Error estimators have been proposed for

PGD approximations that could be employed to this end [43] [44] [45].

4. PGD-based data assimilation

The procedure previously reviewed allows us to substitute u in Eq. (1.a)

by its just computed rank-n approximation. Since this approximation is com-

puted off-line and once for life, the savings in computational cost is usually

of several orders of magnitude. Once a reduced-order approximation to u
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has been determined, the minimization in Eq. (2) is performed here by em-

ploying the well-known Levemberg-Marquardt method [25] [46] [27]. In this

method, one has to determine the sensibilities of the solution with respect to

the optimization parameters, i.e.,

∂u

∂μj

(x,μ) ≈
n∑

i=1

F i(x) ◦G1
i (μ1) ◦ . . . ◦ ∂Gj

i (μj)

∂μj

◦ . . . ◦Gnparam
i (μnparam).

Thanks to the separated (affine) structure of the parametric dependence,

sensibilities could also be computed off-line and stored in memory so as to be

particularized during the runtime procedure. The reader can notice the ex-

tremely well suited structure of PGD approximations for such type of inverse

problems.

In what follows we introduce three different examples in linear and non-

linear elasticity that show the performance of the method and its suitability

for augmented reality applications.

5. Examples

5.1. A linear elastic example employing fiducial markers

The first example is a linear elastic cantilever beam subjected to a punc-

tual load applied at a variable position s, see the sketch in Fig. 3.

21 �

P

s

x

z

Figure 3: Cantilever beam problem. A moving load P is parameterized through its position

coordinate s.

The beam is made of aluminum (Young’s modulus = 69 GPa, Poisson

ratio ν = 0.334) and the experiments were conducted in the linear elastic
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regime. The displacement field was assumed to have a form

u = u(x, s),

where x ∈ Ω represents the coordinates of the considered point and s the

position of the applied load along the upper face of the beam, see Fig. 3.

Following standard PGD postulates, an approximation of this parametric

displacement field of the type

u(x, s) ≈
n∑

i=1

F i(x)Gi(s)

was computed. In this case the classical elasticity problem is assumed to

govern the physics. Its weak form consists in finding the displacement u ∈
H1(Ω)× L2(Γt2) such that for all u∗ ∈ H1

0 × L2(Γt2):∫
Γ

∫
Ω

∇su
∗ : σdΩdΓ =

∫
Γ

∫
Γt2

u∗ · tdΓdΓ

where Γ = Γu ∪ Γt represents the boundary of the beam, divided into es-

sential and natural regions, and where Γt = Γt1 ∪ Γt2, i.e., regions of homo-

geneous and non-homogeneous, respectively, natural boundary conditions.

Here, t = P · δ(x− s)ek, where δ represents the Dirac-delta function and ek

the unit vector along the z-coordinate axis (we consider here, for the ease of

exposition, a load P directed towards the negative z axis of reference).

Once regularized, the Dirac-delta term is approximated by a truncated

series of separable functions in the spirit of the PGD method, i.e.,

tj ≈
m∑
i=1

f i
j(x)g

i
j(s)

where m represents the order of truncation and f i
j , g

i
j represent the j-th com-

ponent of vectorial functions in space and boundary position, respectively.

For this particular example, only j = k (i.e., the third component of the

vector) is assumed to exist.
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In this example, fiducial markers were employed to help locate the de-

formed configuration of the beam. See Fig. 4 for a picture of the experimental

device.

Figure 4: Experimental device for the aluminum beam example. Note the fiducial mark-

ers for the location of the beam and camera pose determination (big four circles) and

the markers (small blue dots adhered to the beam) for the determination of the beam

deflection.

The use of fiducial markers is particularly advantageous for some indus-

trial applications (structural health monitoring, for instance), for which there

is no limitation to the presence of small adhered paper or plastic pieces, for

instance. If this is not possible —for aesthetic reasons, for instance, or just

because we have no a priori access to the studied solid— feature-based ap-

proaches must be preferred. These will be analyzed in Section 5.3 below.

The number of modes n employed in this example was 19, even if for this

problem much less are enough —see the big relative decay in modulus of the

modes—. The first four spatial modes are represented in Fig. 5, while modes

on s are depicted in Fig. 6.

Results of the real-time assimilation procedure are reported in Fig. 7,

where different snapshots of the raw video, assimilated load position and
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Figure 5: Modes F i(x), i = 1, 2, 3, 4 for the aluminum beam example. These are vectorial

modes. The colour map corresponds to the vertical displacement, the most relevant one.

0 100 200 300 400 500

-0.02

-0.01

0

0.01

0.02

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5

Figure 6: Modes Gi(s), i = 1, . . . , 5, for the aluminum beam problem.

augmented video are reported. Quantitative results are included in Table 1.

Note that the reported errors are absolute and represent the difference be-

tween the assimilated load position and the actual one. Except for load

positions very close to the clamped support, that produce almost no deflec-

tion in the beam, and therefore a large error in the assimilation procedure,

errors are less than 1% for most positions (for instance, 0.3% error for the

load at s = 460 mm, or 0.1% for s = 420 mm). These values can be improved

by employing more PGD modes, on one side, but are strongly limited by the

camera’s resolution and the proximity of the beam to the objective. In other
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words, it is the portion of the solid covered by a single pixel that usually

determines the level of precision.
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Actual Mean Difference Actual Mean Difference

Position Estimated abs. value Position Estimated abs. value

s (mm) Pos. (mm) s (mm) (mm) Pos. (mm) (mm)

0 0.14 0.14 260 262.21 2.21

20 7.98 12.02 280 281.10 1.10

40 26.64 13.36 300 301.30 1.30

60 57.66 2.34 320 320.44 0.44

80 82.09 2.09 340 338.33 1.67

100 102.54 2.54 360 358.57 1.43

120 122.67 2.67 380 383.49 3.49

140 143.89 3.89 400 401.35 1.35

160 164.55 4.55 420 420.70 0.70

180 182.25 2.25 440 440.27 0.27

200 204.27 4.27 460 458.40 1.60

220 222.75 2.75 480 477.69 2.31

240 242.22 2.22

Table 1: Experimental results for the cantilever beam problem. Actual load position

versus assimilated one. Errors are absolute.

The resulting video can be consulted at https://youtu.be/BK0sHfvjITo.

In it, the robustness of the proposed technique to the partial occlusion of

some of the fiducial markers or even a total occlusion of the camera are

tested. The system resulted to be very robust and recovered immediately

the load position without any problem.

5.2. A hyperelastic example without fiducials

A 797.5 × 200 × 105 mm3 foam beam was considered in this example.

The beam was meshed from a picture of a deformed configuration under

self-weight load, see Fig. 8.

An experimental campaign was accomplished so as to determine that

its (homogenized) constitutive law could be assimilated to a Kirchhoff-Saint

Venant law with E = 0.11 N/mm2 and Poisson coefficient ν = 0.2. The
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Figure 8: Geometry of the foam beam under self-weight load. This image was taken as

the reference configuration of the beam. Fiducial markers were employed at this stage,

that were later eliminated, to determine the pose of the camera and help to construct the

reference configuration of the beam.

Kirchhoff-Saint Venant model is characterized by the energy density func-

tional given by

Ψ =
λ

2
(tr(E))2 + μE : E,

where λ and μ are Lame’s constants and E the Green-Lagrange strain tensor.

In this case, the weak form of the problem, from which Eq. (1.a) emanates,

takes the form
∫
Γ

∫
Ω(t)

E∗ : C : EdΩdΓ =

∫
Γ

∫
Γt2

u∗ · tdΓdΓ,

where C represents the fourth-order constitutive tensor. Given the non-linear

strain measure E, the resulting problem is inherently non-linear.

Despite the well-known limitations of the Kirchoff-Saint Venant law un-

der compressive stresses, this law showed to fit much better than usual hy-

perelastic laws (neo-Hookean, Mooney-Rivlin) to the experiments. In fact,

some mild viscoelastic effects were observed, that are responsible of some

oscillations in the results —see the accompanying video—, but these were
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nevertheless neglected. For short-term periods, results showed to be in good

accordance to this law, as will be detailed hereafter.

A mesh of 18938 nodes and 98863 linear tetrahedral elements was created.

Boundary conditions were assimilated to a pinned support (foam-wood con-

tact surface showed to be nearly an adhesion) on the leftmost 40 mm. On

the right, a sliding support was accomplished by means of plastic laminates.

15 N loads were applied by means of lead disks with 80 mm diameter, whose

size was considered in detail in the simulation (due to the weak stiffness of

the foam, punctual loads provoked very poor results by greatly deforming

the upper surface of the foam).

The goal of this experiment was to develop augmented reality videos

under real-time constraints (no batch processing was allowed) in which the

position of the load was determined and the displacement field was plotted

on top of the actual geometry of the beam, so as to indicate the user its

true magnitude. Therefore, the displacement field was —as in Section 5.1—

assumed to have a parametric form

u = u(x, s),

where x ∈ Ω represents the coordinates of the considered point and s the

position of the applied load along the upper face of the beam. A PGD

approximation of this parametric displacement field of the type

u(x, s) ≈
n∑

i=1

F i(x)Gi(s)

was constructed off-line. n = 19 modes were considered in this approxima-

tion, although some experiments with only 11 modes provided results with

very similar levels of accuracy. The load position coordinate, s was assumed

to be one-dimensional, since the load was placed centered on the upper sur-

face of the beam. The mesh along this dimension comprised 60 nodes in
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the central part of the beam (a portion of 100 mm of the beam at the right

and left ends was not considered, since the displacements provoked by the

load in these regions was not perceptible, due to the absence of bending).

A detailed derivation of the necessary linearization of the Kirchhoff-Saint

Venant law under the PGD framework was accomplished in [47]. The reader

is referred to this reference or to [19] for a complete Matlab implementation.

Figure 9 shows the first five Gi(s) modes of the model. Figure 10 shows

modes F i(x), i = 1, 2, 3 and 11. Figure 11 shows a frame (second 55 of the

video) in which we appreciate the accuracy of the assimilated displacement

field and, notably, the location of the load position, marked with an arrow.
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Figure 9: Modes 1, 2, 3 and 11on s, the position of the load coordinate. Note that, as it

is the case very often with PGD, the modes increase in frequency, the first one having the

lowest frequency content.

The video was recorded at a resolution of 1280 × 720 p. (which is the

resolution of an iPhone 6). Under these circumstances, the proposed method

is able to provide a response at 60 Hz. The mean error is on the order

of 1.5 mm. This value is also dependent on the relative proximity of the
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Figure 10: Modes F i(x), i = 1, 2, 3 and 11 for the foam beam example. Again, modes

increase in frequency as i increases. This a typical PGD result, although in some, very

rare cases, modes show a somewhat more irregular pattern, see [48], for instance.

deformable object (the foam beam) to the camera, of course. In other words,

to the actual, physical, displacement registered by each pixel in the image.

This error could therefore be improved by augmenting the resolution of the

camera, by taking a closer view or, once we have tried any of the previous

possibilities, by increasing the number of modes in the approximation of the

displacement field.

The resulting video has been made public at https://www.youtube.com/

watch?v=byhXy8aJ1J8.
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Figure 11: Frame of the resulting video (second 55) in which we appreciate the assimilated

position of the load (see the arrow). Superimposed, the displacement field of the beam.

Note that no fiducial marker is employed at this stage.

5.3. Neo-Hookean hyperelasticity

We consider in this example the process of design and analysis of an

automotive boot sealing made of a neo-Hookean rubber. The geometry of

the seal is shown in Fig. 12. The model is composed by a mesh of 8640 nodes

and 5940 linear hexahedral elements. The rubber is assumed to follow an

incompressible law

W = C1(I1 − 3),

where W represents the strain energy density function, C1 = 1166 MPa for

this particular example, and I1 represents the first invariant of the right

Cauchy-Green strain tensor. The material is thus considered incompressible.

The lever is assumed to be rigid, and rotates around a pinned support in the

plane where the boot seal lies.

In this particular example the boot seal does not exist physically in the

video. Instead, this example opens the possibility of employing augmented
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reality for engineering design purposes, by showing the performance and

appearance that the virtual object could have in the physical world.

Figure 12: Geometry of the rubbery boot seal (left) and a snapshot during the process

(right). The angle θ is the fundamental magnitude to be determined by the computer

vision system, since the boot seal is entirely virtual. It does not exist in the physical

reality.

In this particular example, the displacement field of the boot seal is pa-

rameterized by the angle of rotation of the lever, θ. As in the previous

examples, we hypothesize that this dependence can be affinely approximated

as

u(x, θ) ≈
n∑

i=1

F i(x)Gi(θ). (5)

5.3.1. Construction of the reduced order model.

For this particular example, the so-called non-intrusive PGD method has

been employed [49] [50]. In particular, we have employed the formulation

introduced in [50], that employs adaptive samplings of the parametric domain

and collocation approaches. We thus avoid complex linearization procedures
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while employing off-the-shelf commercial softwares to construct the sought

PGD approximation, Eq. (5). Some of the spatial modes F i(x) are shown

in Fig. 13.

Figure 13: Different modes F i(x), for the boot seal non intrusive approximation.

The parametric space θ ∈ [0◦, 52◦] —here, symmetry has been employed—

has been discretized into 193 finite elements. Probably much less degrees

of freedom could be necessary but, given the inherent non-linearity of the

problem due to the presence of contact phenomena, a very fine discretization

was employed that nevertheless did not prevent the method to reach the

real-time constraints.

5.3.2. Segmentation and registration.

In this example, as already mentioned repeatedly, there is no physical

boot seal. Therefore, the objective of the computer vision implementation is

to determine the degree of rotation θ of the lever. To that end, no fiducial

markers have been employed. In the absence of that markers, computer
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vision systems employ feature matching algorithms, capable of detecting and

tracking local frame features. In this work we employ ORB feature detectors

[51]. These are the green markers in Fig. 14. Within SLAM algorithms, ORB

detectors provide with a very efficient means of unveiling the environment in

which we move [30].

Figure 14: Raw video with the detected features in green. Note that there is no boot seal

in the physical reality.

SLAM methods were primarily designed for robot navigation in rigid

environments. But in this particular example the objective is to detect the

lever tilt angle θ. In other words: there is some part of the scene that is

not rigid. To detect θ an algorithm is proposed in which we proceed by

parts. First of all, it is necessary to detect the plate in which the lever is

mounted. To that end, we employ Random Sample Consensus (RANSAC)
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methods [52]. RANSAC methods allow to fit a model from experimental

data in the presence of a big number of outliers. This is precisely our case:

a significant portion of the ORB features lie on a plane (precisely the plate

in which the lever is mounted), while the rest of the detected features in

the environment are considered outliers. The resulting detection is shown in

Fig. 15, where the detected plate is depicted by means of red features, while

the environment is depicted in blue. In Fig. 16 the results of the ORB-SLAM

[30] reconstruction of the environment, together with the found pose of the

camera (blue squares) are shown. This method allows to track the movement

of the camera in a very accurate manner.

Figure 15: Detection by RANSAC methods of the plate where the lever is located (in red)

and reconstruction of the rigid environment (in blue).

Once the plate has been detected, the tilting angle of the lever is found

by filtering the white color of the lever from the images. This allows for a

very precise determination of the angle θ, see Fig. 17.
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Figure 16: Results of the ORB-SLAM tracking of the camera pose and reconstruction of the

environment [30]. Red points represent the detected features, blue squares represent the

came pose at different time instants and the green lines indicate common found structures

between frames.

5.3.3. Performance.

The resulting video from which frames in Fig. 17 have been extracted

can be seen at https://youtu.be/0whA92vFk1g. In it, a robustness test is

made for the proposed method in which the camera is moved away of the lever

position, so that it disappears from the image. The localization capabilities

of ORB-SLAM methods are able, nevertheless, to find the lever back with

great precision, thus closing the loop and restarting the augmentation with

no problems.
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Figure 17: Two different augmented frames of the video. Color map corresponds to the

modulus of the displacement field at the plane of symmetry (right) and von Mises stresses

(left).

6. Discussion

In this paper a new method for the physically realistic augmentation of

video streams through numerical simulation is proposed. The method, given

the stringent constraints imposed by modern video frame rates (30 or 60

frames per second in an iPhone, for instance) is based on the employ of

reduced order modeling and simulation. In particular, the affine (separate)

parametric approximation of most reduced order techniques is exploited for

a very efficient data assimilation procedure that enables us to obtain a very
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accurate registration between reality and our model.

The proposed method is valid for any augmented reality application in

which we are interested about hidden information in the video governed by

a PDE (such as stress, for instance), but also to create and augment with

objects not present in the physical reality. In any case, state-of-the-art com-

puter vision techniques have been employed so as to detect the camera pose

and to map the environment. Three different examples have been analyzed

in which we employ different approaches to the problem of simultaneous lo-

calization and mapping of the environment. In the first of them we employed

fiducial markers, a very versatile possibility in industrial settings, where we

can mark the object of interest with such badges. In the second one we em-

ployed some existing pattern in the solid so as to track deformations in it,

while in the third example we employed feature-based approaches (in partic-

ular, ORB-SLAM) to locate the solid, track its deformation and the camera

pose.

In any of the three different examples, the usage of reduced order methods

(here, Proper Generalized Decompositions) allowed for a very efficient and

accurate determination of the variables of interest at usual video frame rates.

A standard iPhone 6 camera was employed for every example.

The presented method opens the door for more complex augmented re-

ality applications that truly enable a linkage of simulation techniques with

video formats, thus widening the possibilities of modern CAE techniques.
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32
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