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Abstract Localization of infarcted regions is essential to determine the
most appropriate treatment for patients with cardiac ischemia. Myocar-
dial strain partially reflects the location of infarcted regions, which demon-
strated potential use in clinical practice. However, strain patterns are
complex and simple thresholding is not sufficient to locate the infarcts.
Besides, many strain-based parameters exist and their sensitivities to
myocardial infarcts have not been directly investigated. In our study,
we propose to evaluate nine strain-based parameters to locate infarcted
regions. For this purpose, we designed a large database (n=200) of syn-
thetic pathological finite-element heart models from 5 real healthy left
ventricle geometries. The infarcts were incorporated with random loca-
tion, shape and degree of severity. In addition, we used a state-of-the-
art learning algorithm to link deformation patterns and infarct location.
Based on our evaluation, we propose to sort the strain-based parameters
into three groups according to their performances in locating infarcts.

Keywords: Finite-element model, myocardial infarct, myocardial strain,
infarct diagnosis, machine learning

1 Introduction

The clinical value of determining myocardial viability to help the physicians
decide on the best treatment for patients with cardiac ischemia has been estab-
lished [5]. Late Gadolinium Enhancement - an MR imaging method - is generally
accepted as the gold standard to assess myocardial viability and therefore to loc-
ate myocardial infarcts. However, it requires contrast injection, is costly and not
available for all patients. Myocardial strains - extracted from cardiac MR [14] or
echocardiography [3] - have also been used to identify dysfunctional regions of
the heart [1]. However, due to the complex strain patterns, simple thresholding is
not sufficient and further processing is required [12]. Learning-based algorithms
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have been investigated for better detecting [9] and locating [2,4] infarcts from
strain data. These methods are promising and can be generalized to different
modalities and subjects, in addition to showing high accuracy of infarct detec-
tion.

Several strain-based parameters have been investigated for infarct localiza-
tion. However, many more exist and their potential has not been evaluated. In
our study, we propose to evaluate the following nine strain-based parameters;
principal strain, effective strain, fractional anisotropy [13], three local directional
strains (radial, circumferential, longitudinal), and three stretch-dependent in-
variants (in fiber, cross-fiber, and sheet-normal directions). They were assessed
in terms of their localization performance (sensitivity and specificity) given a
learning algorithm to locate the infarcts. The algorithm uses a regression to find
the transfer function between the tested parameters and the infarct location
[4]. To do so, we designed a large database of synthetically-generated patholo-
gical cases that incorporates infarcts with different locations, shapes, sizes, and
degrees of severity. Notably, we demonstrated that by properly designing and
exploiting a large and sufficiently varied database of pathological cases, we were
able to really push the limits of each strain parameter used in the detection
algorithm and to better estimate their localization performances.

2 Materials and methods

Five LV meshes (3552 hexahedral elements) from healthy volunteers were ob-
tained from an open access source [6]. A finite-element model of each healthy
LV in the diastolic (filling) phase was simulated. Afterwards, 40 pathological
cases were generated based on each LV geometry - resulting in 200 patholo-
gical cases - and the nine strain-based parameters were computed. Finally, the
learning algorithm was applied to evaluate the localization performance of each
parameter.

2.1 Database of pathological cases

Simulation of healthy cases. The diastolic simulation for the healthy LV
model follows the principles detailed in [6,11]. Rule-based fiber orientation was
incorporated into the LV geometry by first defining a pseudoprolate spheroidal
coordinate system that consists of radial (orthogonal to the LV surface), circum-
ferential and longitudinal (tangential to the LV surface) directions. Subsequently,
an orthogonal fiber coordinate system was defined, which is comprised of fiber,
sheet and sheet-normal directions. The fibers are oriented with an elevation angle
distribution of -60° to +60° from the epicardium to the endocardium [7].

The constitutive law was the transversely isotropic Fung-type law [6] (Eq. 1).
The strain energy density function is divided into two parts; the isochoric term,
which is based on the Green-Lagrange strain tensor E, and the volumetric term:
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where C, bs,b; and by, are the material parameters to be personalized for each
subject; J is the determinant of the deformation gradient tensor F; whereas D
was set to 0.001 to enforce quasi-incompressibility. The subscripts f, s and n
denote the fiber, sheet and sheet-normal directions, respectively. Active tension
was not taken into account as we only simulated the diastolic phase in this study.
The models were solved using the finite-element software ABAQUS!, and the
constitutive law was implemented in ABAQUS user material subroutine UMAT.

The material parameters were personalized for each subject based on the
end-diastolic pressure-volume relationships described in [8]. The beginning- and
end-diastolic volumes of each subject were known; the corresponding pressures
were set to 0 and 9 mmHg, respectively.

Simulation of pathological cases. Forty synthetically-generated cases were
generated from each of the 5 healthy LV models, resulting in 200 cases. Infarct
regions were incorporated through a binary value at each mesh element. These
regions were defined as follows: first, the intra-ventricular junction and apex
of each LV were manually selected from the MR images, which enabled us to
define the left anterior descending (LAD) coronary artery territory on each LV.
The infarcts had truncated ellipsoidal or spheroidal shapes with arbitrary sizes
ranging from 0.5-99.7 ml, whose center points were constrained to be on the
endocardial surface and within the LAD territory. This territory was chosen due
to its high prevalence [10]. The material properties of the infarct were set to
be stiffer compared to the healthy ones, and they were assigned in a uniformly-
distributed manner by changing the material parameter C' (Eq. 1) from 1 up
to 2.50 times of the personalized healthy values. The resulting infarcts have an
average myocardial mass of 22.9 4+ 21.3 g and an average volume of 21.6 & 20.1
ml, corresponding to 15.6 + 13.2% of the myocardium total volume.

2.2 Strain-based parameters

Nine strain-based parameters were evaluated in this study (Table 1). Starting
from the deformation gradient tensor F extracted from ABAQUS simulations,
the right Cauchy stretch tensor C and the Green-Lagrange strain tensor E were

calculated: C = FT F; E = %(C — I); where I is the identity tensor.

"http://www.3ds.com/products-services/simulia/products/abaqus/
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Table 1: Strain-based parameters evaluated in this study

Parameters

Formulae / Comments

Radial strain
Circ. strain
Long. strain

With respect to pseudoprolate coordinate system

Fiber invariant
Cross-fiber invariant
Sheet-normal invariant

fo.(Cfy) fo: fiber direction
S0.(Cso)  so: cross-fiber direction
no.(Cng) ng: sheet-normal direction

Principal strain

The max positive Eigenvalue of E

Effective strain

2

S[(Bax = By)? + (Byy = Be)? + (Fux — Buc)?

+6(Ez, + Ey. + EZ.)]

Fractional anisotropy

A= ()\1 + Ao + )\3)/3
A1, A2, A3: Eigenvalues of E

3 A1=2)2+Aa =02+ (A3 —))?
2T T

2.3 Infarct localization

Data alignment. Due to the use of different geometries, the strain parameters
were not directly comparable and spatial correspondence should be obtained.
Thus, normalized local coordinates were computed on each geometry corres-
ponding to the pseudoprolate coordinate system explained in Sec. 2.1. Then, a
reference geometry was computed by Procrustes analysis with similarity trans-
formation. Local coordinates were also computed for this reference geometry.
Finally, local data (the strain parameters and the infarct binary labels) were
transported to the reference geometry using the correspondence of the local co-
ordinates. The data transportation involved interpolation, addressed by ridge
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Figure 1: Left: The five LV and the calculated reference. Right: The local normal-
ized pseudoprolate coordinates (radial, circumferential, longitudinal) and the average
alignment error due to the interpolation of the local coordinates onto the reference.
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Figure 2: Infarct localization for some pathological cases based on principal strain and
sheet-normal invariant; amongst the best and the worst parameters, respectively.

regression with a Gaussian kernel, with a balanced weight between similarity
and regularization terms. The interpolation resulted in negligible errors. The
whole process is summarized in Fig.1.

Regression. The aligned strain parameters and infarct location were treated
as column vectors of length equal to the number of elements for the reference
mesh. The link between each strain parameters and infarct location was learned
via kernel ridge regression, inspired by the algorithm described in [4]. Direct
regression was preferred over going through an intermediate space of reduced
dimensionality, whose purpose is mainly for uncertainty modeling without sub-
stantially affecting the localization performance.

Each healthy LV geometry was used to generate 40 out of the total 200
pathological cases, which in turn might present some biases in the detection al-
gorithm due to a substantial amount of relatively similar cases, thereby limiting
the difference in deformation patterns and in the distribution of the evaluated
parameters. To avoid this bias when a case was investigated, all other cases de-
rived from the same geometry were not included in the training set. The training
set was randomly constructed from the remaining cases with a certain percent-
age, which was in the range of 5-40% of the total population. The localization
performance of each parameter was then tested against the size of the training
set. The limit of 40% was set since it was observed that the algorithm was able to
accurately detect the infarcts with this percentage of population as the training
set.

The regression output consisted of a non-binary scalar value at each mesh
element due to the linear combination of infarct locations. A binary localization
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Figure 3: Performance of the strain-based parameters (median over the tested cases).
The color bar depicts the distance to an ideal localization. Horizontal axis: a normalized
combination of the degree of severity and the size of the infarct. Vertical axis: the
percentage of the population used as the training set. The histogram shows the number
of cases that correspond to the infarct size-severity measure on the horizontal axis.

of the infarct was obtained after thresholding this output by an appropriate
value, as inspired by the two-step process described in [4]: 1) ROC analysis
was first performed for each case to obtain a set of best individual thresholds.
However, this analysis relies on the ground truth infarct location for each case,
which is unrealistic in real-world clinical application, thus 2) the same optimal
threshold was applied to all cases, whose values were chosen as the median of the
set of the best individual thresholds. Thus, we ended up with a single consensual
threshold, which is used in the rest of this paper.

3 Results

Fig. 2 depicts the infarct localization for pathological cases based on principal
strain and sheet-normal invariant, which were observed as one of the best and
worst parameters, respectively. The degree of severity of the infarct was based
on how much stiffer it was in comparison to the healthy ones, with respect to
the value of the material parameter C. The principal strain is able to localize
the infarcts substantially better than the sheet-normal invariant. The infarct
localization performance was evaluated in terms of sensitivity and specificity
after thresholding the regression output by the consensual value as explained
in Sec. 2.3. The results were summarized in terms of the distance to the ideal
localization performance, namely a sensitivity and a specificity equal to 1. Fig.
3 summarizes the performance of the nine strain-based parameters, with the
color bar depicting the distance to an ideal localization. The horizontal axis
represents a combination of the degree of severity and the size of the infarct
normalized from 0 to 1, where O signifies smaller infarcts and/or infarcts with
closer material properties to the healthy ones; whereas the vertical axis represents



This a pre-print version.

The final document is available at http://www.springerlink.com

the percentage of the population included in the training set. Lower values on
the color bar signify better accuracy. In addition, the histogram presents the
distribution of the number of pathological cases that correspond to each infarct
size-severity bin on the horizontal axis. As expected, the localization performance
of all parameters increases with bigger and more severe infarcts, as well as with
the size of the training set. Based on this, the performance of the evaluated
parameters can be divided into three groups. The best group consists of principal
strain, effective strain, and fractional anisotropy. The second-best group consists
of cross-fiber invariant and radial strain; whereas the last group consists of fiber
and sheet-normal invariant, circumferential and longitudinal strain.

4 Discussions

Our study details a novel strategy for evaluating different strain-based para-
meters for infarct diagnosis. We combined finite-element modeling to generate
a large synthetic database of pathological hearts based on healthy volunteers’
data and a state-of-the-art learning algorithm to localize myocardial infarct.
Nine strain-based parameters, several of which have yet to be investigated for
infarct localization, were evaluated. The large database allowed us to push the
algorithm to its limit and thoroughly evaluate the localization performance of
each parameter.

The differences between the evaluated parameters were subtle, but we could
identify them into three groups. The best group includes the principal strain,
effective strain, and fractional anisotropy. Their performances were very similar.
The second group shows slightly inferior, yet still good performance. It notably
comprises the radial strain, which is readily available in clinical setting. It is
interesting that the best parameters are those that are direction-independent,
which was somewhat expected as they may be able to better highlight and ex-
tract the general distribution of myocardial deformation. However, the invariant
in the fiber direction performed worse than the radial strain and the invariant
in cross-fiber direction. The reason for this might be due to the boundary con-
ditions applied for the diastolic-filling simulation, which forced the elements to
deform radially as the volume of the cavity increases and the incompressibil-
ity of the element is enforced. This should be investigated further. In addition,
the combination between parameters were not investigated and are also left for
future work.

Our synthetic database was derived only from five LV geometries. Although
these geometries come from MRI examinations of healthy volunteers - thereby
ensuring that the personalized healthy material parameters are physiological
- it is of interest in the future to be able to generate a database with larger
variability in terms of geometries and subsequently deformation patterns. It is
also well known that geometrical alterations of the LV might occur in chronic
ischemic patients, i.e. the thickening and thinning of ventricular wall around the
remote and infarcted myocardium, respectively. Since our database was derived
from healthy volunteers, this effect was not taken into account.



This a pre-print version.

The final document is available at http://www.springerlink.com

It is certainly essential to evaluate the infarct detection performance of the
strain-based parameters on real clinical data of ischemic patients. However, the
complexity in acquiring and processing strain data from images with clinical
routine quality is still very challenging. Thus, investigation on clinical data is
reserved for future studies. Additionally, the exclusion of clinical data allowed
us to evaluate the strain-based parameters on a fully-controlled setting. Our
study was also limited by the regression approach used for the learning, which
relies on a global distance between deformation patterns and linearly combines
the infarct candidates. Although the learning algorithm was simply used in our
study as a state-of-the-art infarct detection tool to test the performance of the
strain-based parameters, further work using different regression approaches or
learning algorithms needs to be explored.

5 Conclusions

We have proposed a thorough evaluation of various strain-based parameters in
locating myocardial infarct. We took advantage of finite-element modeling to
generate a large database of pathological hearts and test the limits of a given
localization algorithm against a variety of infarct configurations. Although the
strain-based parameters only showed slightly different performance towards loc-
ating infarcts, we were able to divide them into three groups, which we showed
to be coherent with physiological interpretations.
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