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Abstract: Pigs are highly affected by dietary mycotoxin contamination and particularly by fumonisin.
The effects of fumonisin on pig intestinal health are well documented, but little is known regarding
its impact on gut microbiota. We investigate the effects of the fumonisin (FB1, 12 mg/kg feed) on
the fecal microbiota of piglets (n = 6) after 0, 8, 15, 22, and 29 days of exposure. A control group
of six piglets received a diet free of FB1. Bacterial community diversity, structure and taxonomic
composition were carried out by V3–V4 16S rRNA gene sequencing. Exposure to FB1 decreases
the diversity index, and shifts and constrains the structure and the composition of the bacterial
community. This takes place as early as after 15 days of exposure and is at a maximum after 22 days of
exposure. Compared to control, FB1 alters the ecological succession of fecal microbiota species toward
higher levels of Lactobacillus and lower levels of the Lachnospiraceae and Veillonellaceae families,
and particularly OTUs (Operational Taxonomic Units) of the genera Mitsuokella, Faecalibacterium and
Roseburia. In conclusion, FB1 shifts and constrains age-related evolution of microbiota. The direct or
indirect contribution of FB1 microbiota alteration in the global host response to FB1 toxicity remains
to be investigated.

Keywords: fumonisin; microbiota; pigs; MiSeq 16S rDNA sequencing

Key Contribution: Dietary fumonisin (FB1) exposure in pigs hinders age-related dynamic of fecal
microbiota. FB1 shifts and constrains the structure, the diversity and the taxonomic composition of
the fecal bacterial community as early as after 15 days of exposure.

1. Introduction

Food safety is a major issue throughout the world. Therefore, much attention needs to be
paid to the possible contamination of food and feed by fungi and the potential risk of mycotoxin
production. Mycotoxins are fungal secondary metabolites, potentially hazardous to human and animal
health following consumption of contaminated food or feed. These metabolites are very resistant to
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technological treatments and difficult to remove. Therefore, they can be present in human food and
animal feed [1]. Feed materials are often contaminated with fungi and their metabolites, which pose
a potential threat to human and animal health [2,3]. Contamination of cereals with mycotoxin is a
worldwide problem leading to important economic losses for the agricultural industry. Cereals and
soybean are the main components of pig diets and due to the high ingestion of cereals and their
sensitivity, pigs are highly impacted by the presence of mycotoxins [4]. The toxicological syndromes
caused by ingestion of mycotoxins range from sudden death to reproductive disorders and growth
impairment. Consumption of fungal toxins may also decrease resistance to infectious diseases. Pigs are
considered to be the farm animals that are the most affected by mycotoxins in general and horses
and pigs are the animals that are the most sensitive to fumonisins in particular [5]. Mycotoxin
contamination levels in pig feedstuffs are usually not high enough to cause a clinical disease but may
result in economic loss through changes in growth, production and immunosuppression [4].

From an intestinal health perspective, the most notorious mycotoxins are fumonisins, especially
fumonisin B1 (FB1), and trichothecenes, deoxynivalenol and zearalenone [6]. FB1 is the diester
of propane-1,2,3-tricarboxylic acid and 2-amino-12,16-dimethyl-3,5,10,14,15-pentahydro xyeicosane.
Pierron et al. [5], reported the toxicity of FB1 and the effects of this mycotoxin on pig intestine, because
the intestinal tract is the first barrier and, consequently, the first target of mycotoxins ingested with
food. The toxicity of FB1 differs according to several parameters such as the dose, the duration of
exposure, the age and the sex of the animal, in additional to nutritional factors. Performances and
health are most impacted in young animals and males [7]. The main effects of FB1 are a reduction of
feed intake and animal growth, an alteration of the absorptive functionality of the intestine, histological
damages on intestinal tissue, an impairment of intestinal barrier functions, a systemic decrease and/or
local immune response, as well as lung and liver damages [8].

Gut microbiota plays a key role in physiological, developmental, nutritional and immunological
processes of the host, and impacts host health and performance [9]. An appropriate composition
of the intestinal microbiota of animals, as well as the quantitative and qualitative stability of that
ecosystem, is an essential factor to guarantee animal health. Microbiota provides nutritional and
protective functions to animals, by stimulating of host immunity, producing fermentation outputs,
and preventing colonization by pathogens [10].

The effect of mycotoxins on the intestinal microbiota is gaining interest [11–13]. Nevertheless,
the effect of mycotoxins, especially FB1 on the intestinal microbiota is poorly documented [14,15].
The aim of this work was to study the impact of adding FB1 (12 mg/kg) in the diet of piglets on
their fecal microbiota during a four-week period of time using high throughput Illumina MiSeq 16S
V3–V4 amplicon sequencing. These results complete the data previously published on fumonisin diet
contamination host response [8].

2. Results

2.1. Diversity and Structure Dynamics of the Fecal Bacterial Community

The effect of fumonisin (FB1) on the gut microbiota of piglets was first assessed on the fecal
bacterial community diversity using the Shannon and the InvSimpson indexes (Table 1 and Figure 1).
After 4 weeks of exposure to a control diet or a fumonisin-contaminated diet (12 mg/kg) the Shannon
and the InvSimpson diversity indexes tended (p = 0.057) or was (p = 0.003) lower, respectively, in feces
from fumonisin-exposed animals compared to those in the Control group. However, for both indexes,
significant interaction between age and treatment reveals a differential evolution with age according
to groups. In contrast to the Control group where bacterial community diversity is stable over the
4 weeks, the InvSimpson and Shannon indexes decreases after 15 and 22 days of exposure respectively
(Figure 1) in fumonisin-exposed piglets.
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Table 1. Effect of FB1 exposure in the diet on piglet fecal microbiota Shannon and InvSimpson
diversity indexes.

Diversity Index Treatment p Value

Control FB1 SEM Group Day Group × Day
Shannon 4.00 3.67 0.062 0.057 0.067 0.010

InvSimpson 21.9 11.0 1.28 0.003 0.052 0.037
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Figure 1. Time effect of dietary FB1 exposure on piglet fecal microbiota Shannon and InvSimpson
diversity indexes. In blue, control animals (n = 6) and in red, FB1-exposed piglets. (Mean ± SD).
LS-means with a common superscript did not differ at p = 0.05 level according to linear mixed model
analysis of variance.

The principal coordinate analysis (PCoA) based on the Bray–Curtis distance (Figure 2a) segregates
samples into two groups corresponding to the treatment. Percentages of variance explained by the
principal coordinates 1, 2 and 3 are 32.7%, 12.7% and 8.3% respectively. Pairwise ADONIS tests
performed on the Bray-Curtis distance matrix (Table S1) indicate that the bacterial community evolves
slightly throughout the days of the experiment in both groups of piglets (R2-ADONIS < 0.27, p < 0.05).
When the PCoA axis 1 is plotted against age (Figure 2b) a complete separation of FB1 and Control
group can be observed after 22 days of treatment (ADONIS-R2 = 0.51, p < 0.01, Table S1). To compare
the stability of the bacterial community, the distance within two consecutive ages for both groups is
calculated (Figure 2c). Except for the 0–8 day interval, the distance between two consecutive ages is
lower in the FB1 group than in Control one, suggesting that ingestion of fumonisin contaminated diet
hinders the normal rate of age-related evolution of microbiota. Moreover, in the FB1 group, the lowest
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variation between two consecutive ages is observed for the intervals 15–22 and 22–29 days (p < 0.05)
suggesting a constraint effect of FB1 on microbiota evolution. Finally, we calculated within-group
dispersion, which is the variation of the distance between piglets within an age group (Figure 2d).
Individual variations within the group remain unchanged with age in the Control group whereas
they sharply decrease in the FB1 group. After 15 days of treatment, the FB1 group exhibits lower
within-group distance compared to the Control group. The highest similarity between individuals in
the FB1 group is observed at 22 days of age. This result demonstrates that fumonisin exposure exerts a
constraint on piglet fecal microbiota evolution that strongly decreases inter-individual variability.
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Concerning the taxonomic composition of the bacterial community, the Firmicutes phylum is 
the most abundant one in the microbiota of animals from both groups, with 82% of relative 
abundance (Figure 3 and Table S2). Bacteroidetes is the second most abundant phylum (14%) 
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Figure 2. (a) Principal coordinate analysis (PCoA) ordination 3D-plot based on the Bray-Curtis distance
matrix. Circles and squares are for samples from FB1–exposed and Control animals, respectively.
(b) PCoA axis1 coordinates plotted against days of treatment. (c) Stability between two consecutive
age groups calculated from the Bray-Curtis distance for pairwise comparison. (d) Age evolution of the
individual dispersion within each group using the Bray-Curtis distance. Red triangles: FB1-exposed
animals; blue circles: Control animals. * = (p < 0.05), † = (p < 0.1) and ns = (p > 0.1) between groups.
a,b = mean with unlike superscripts in a group are significantly different from each other (p < 0.05)
(n = 6 pigs per group, mean ± SEM).

2.2. Taxonomic Assignation

Concerning the taxonomic composition of the bacterial community, the Firmicutes phylum is the
most abundant one in the microbiota of animals from both groups, with 82% of relative abundance
(Figure 3 and Table S2). Bacteroidetes is the second most abundant phylum (14%) followed by
Proteobacteria (1.8%) Spirochaetes (1.5%) and Actinobacteria (0.7%). Tenericutes and Fibrobacteres
are detected at abundances lower than 0.05% below a quantitative statistical analysis threshold.
Actinobacteria and Proteobacteria tend to be observed in higher proportion in Control fecal microbiota
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than in that of FB1 (1.12% vs. 0.25% and 2.29% vs. 1.18%, respectively, p-adjusted < 0.10). Spirochaetes
tends to be higher in FB1 than in Control (2.03% vs. 1.01%, p-adjusted < 0.10).
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Between treatments: † = p-adjusted < 0.10.

The most abundant families in the samples are Lactobacillaceae, Lachnospiraceae, Ruminococcaceae
and Prevotellaceae with more than 10%, Clostridiaceae (4.38%), Peptostreptococcaceae (4.37%) and
Veillonellaceae (4.21%) (Figure 4 and Table S3). Compared to Control piglets, fumonisin exposure increases
the relative abundance of Lactobacillaceae (p-adjusted = 0.031), Peptococcaceae (p-adjusted = 0.001),
the Bacteroidales RF16 group (p-adjusted < 0.001) and the Rickettsiales Incertae Sedis (p-adjusted < 0.001)
families, and decrases Lachnopiraceae (p-adjusted = 0.006), Veillonaceae (p-adjusted = 0.005) Eubacteriaceae
(p-adjusted = 0.009), Succinivibrionaceae (p-adjusted = 0.006) and Coriobacteriaceae (p-adjusted = 0.031)
in fecal microbiota. Among the most abundant families, there is an effect of day on the proportion of
Lachnospiraceae that decreases with time, respectively, whereas Veillonaceae increases until day 15 and
return to initial values afterward in control group (Figure S1, p-adjusted < 0.05).

The 10 most abundant genera (Figure 5) are Lactobacillus with (30.3%), Prevotella (7.5%),
Blautia (5.3%), Terrisporobacter (3.5%), Mitsuokella (3.3%), Faecalibacterium (3.0%), Roseburia (2.7%),
the Prevotellaceae NK3B31 group (2.4%), Sarcina (2.4%) and Ruminococcaceae UCG-008 (2.3%),
respectively. Out of the 20 genera whose proportions are affected by FB1 exposure (p-adjusted < 0.05;
Table S4), Lactobacillus and Ruminococcaceae UCG-005 are increased while Mitsuokella, Succinivibrio,
Roseburia and Ruminococcus proportions are depressed (p < 0.05).
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2.3. OTU Differential Abundance

To further investigate the FB1-related shift effect on the fecal bacterial community structure,
we explored the differential abundance at the OTU (Operational Taxonomic Unit) level. Of the
765 OTUs detected, in the three last days of sampling, 220, 249 and 197 OTUs were differentially
abundant between feces from Control and fumonisin-exposed animals (p < 0.05, Figure 6). A total
of 70 differential abundant OTUs are common to the three days of sampling. Among the 30 most
abundant OTUs (Figure 7), consecutive to FB1 exposure, the relative abundance of three of them
(OTUs 6, 11 and 17 assigned to the genera Lactobacillus, Prevotella and Treponema, respectively) was
increased, whereas the relative abundance of six others was decreased (OTUs 5, 9 12, 13, 16 and 19,
assigned to the genera Faecalibacterium, Roseburia, Prevotella, Mitsuokella and Dialister, respectively).
On day 22, the OTU 1 assigned to the Lactobacillus genus, reached more than 40% of abundance
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in FB1 samples (Figure 7b). Thus, the FB1-related shift effect on the fecal bacterial community is
mainly explained by the significant abundance changes in the major OTUs that make up fecal bacterial
community and that leads to the installation of some dominant OTUs which at least include the
two main OTUs assigned to the Lactobacillus genera.
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In total, the taxonomic composition analysis of the fecal bacterial community reveals that FB1
alters the ecological succession of fecal microbiota species toward higher levels of Lactobacillus and
lower levels of the Lachnospiraceae and Veillonellaceae families and, particularly OTUs of genera
Roseburia, Mitsuokella and Faecalibacterium.

3. Discussion

In spite of the economic and health impact of fumonisin diet contamination on livestock and
particularly in pigs, to our knowledge, this study is the first to investigate the dynamic effect of FB1
exposure in feed on fecal microbiota in young weaned pigs. In a companion paper, the detrimental
effect of FB1 on the same animals was demonstrated, decreasing the growth rate, increasing the ratio
Sa/So (which is a marker of the exposure to this mycotoxin in the liver) and decreasing villi length [8].
In the present study, we clearly demonstrate that FB1 exposure in feed impairs age-related evolution
of gut microbiota.

In agreement with the literature [16–20], Firmicutes and Bacteroidetes phyla represent more than
90% of the bacterial community OTUs. The bacterial community is dominated by the Lactobacillaceae,
Lachnospiraceae, Ruminococcaceae and Prevotellaceae families and Lactobacillus, Prevotella and
Blautia genera. Over the time of the experiment (from 35 to 57 days of age), Lachnospiraceae
decreased corresponding mainly to a decrease in Blautia and Roseburia genera. Over the 4 weeks
of the experiment, the diversity indexes were stable in the Control group and the structure of
the community evolved slightly with high inter-individual variations. Indeed, major changes in
diversity occur at birth when the colonization process takes place in neonates in contact with a
microbial metacommunity provided by the mother during and after the passage through the birth
canal and the surrounding environment [21]. The gut microbiota then undergoes a progressive
species age-related succession [17,19,22] driven by both extrinsic factors and intrinsic factors [23].
The extrinsic factors concern surrounding conditions such as housing [24,25], congener proximity [26]
and nutritional factors that act throughout the development of the animal. The most impacting one
is related to the feed transition from milk to solid feed [19]. The intrinsic factors are those related
to the host physiological state, the qualitative and quantitative availability of endogenous nutrients,
the motility of the intestinal tract, bile salts and other endogenous secretions, immune tolerance and
host-microbiota interactions through PRR and PAMPs (Pattern-Recognition Receptors and Pathogen
Associated Molecular Pattern) [27]. All these extrinsic and intrinsic factors shape each individual gut
microbial pattern, explaining the inter and intra-individual variability of gut microbiota.

Studies on mycotoxin actions on gut microbiota are rare [11,13] and they mainly concern the
effect of deoxynivalenol [12,28–30] and aflatoxins [31,32]. After two weeks of dietary exposure
to FB1, the diversity of the fecal bacterial community decreases. Concomitantly, a shift in the
structure together with a decrease in the rate of the evolution of the bacterial community is observed.
In agreement, exposure to FB1 for 29 days in 11 week-old specific pathogen-free pigs modifies the
CE-SCCP (Capillary Electrophoresis Single Strand Conformation Polymorphism) bacterial community
profiles [14]. Additionally, exposure to FB1 constrains the bacterial community evolution, driving
it in a new extremely homogenous equilibrium with low inter-individual variations. Altogether,
these results indicate the establishment of some dominant species in the fecal bacterial community
that adapt to FB1-related conditions. Considering taxonomic composition of major genera, exposure
to FB1 leads to a sharp increase in Lactobacillus and Ruminococcaceae UCG-005 and a decrease in
Mitsuokella, Roseburia, Ruminococcus and Succinivibrio. Several hypothesis might explain solely or in
combination these microbiota modifications following FB1 exposure: a direct effect of FB1 on gut
microbiota, and/or a direct or an indirect host mediated effect.

One hypothesis to explain the constraint effect of FB1 on piglet fecal microbiota would be an
intrinsic antimicrobial effect of mycotoxin. The addition of FB1 to in vitro incubation of cecal chime
decreased the anaerobic bacteria, whereas Lactobacillus and total bacteria increased [15]. In contrast,
20 years ago, Becker et al. [33] used culture techniques and observed no inhibition of bacterial
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growth including Lactobacillus acidophilus, Lactobacillus johnsoni, Lactobacillus plantarum and Lactobacillus
reuteri. Finally, two independent studies [34,35] found no antibiotic effect of FB1, thus excluding an
antimicrobial effect to explain a fumonisin-related shaping action on gut microbiota.

Considering bacterial community structure evolution and inter individual dispersion criteria
and the number of OTUs found to be differentially abundant, the greatest effect of fumonisin
on fecal microbiota seems to occur after 22 days of exposure in the diet, whereas at 29 days of
exposure, this effect seems to be alleviated, although taxa relative abundance has not yet recovered
to levels similar to those observed in the Control group. It may be speculated that the bacterial
community might evolve toward a new equilibrium adapted to the exposure to fumonisin. In this latter
perspective, microorganisms might metabolize this mycotoxin. Although, 20 years ago, under culture
conditions, there was no indication that fumonisin was metabolized by intestinal bacteria [33], it is now
admitted that some bacteria isolated from soil and plants are known to degrade and thereby detoxify
fumonisins [36]. It was recently reported in pigs that an oral single dose exposure of fumonisin leads
to a 47% fumonisin degradation into their partially hydrolyzed forms in the gastro-intestinal tract,
thus indicating the ability of the microbiota to hydrolyze fumonisin [37]. The capacity to degrade
or remove FB1 in vitro was emphasized for Lactobacillus brevis, L. plantarum L. pentosus and some
yeasts [38,39]. The mechanism of action of Lactobacillus to remove FB1 was related to a process of
physical adsorption involving various components of cell wall [39]. Peptidoglycans was the main
binding sites, and its structural integrity was necessary. Therefore, the high proportion of Lactobacillus
in our work might result from a competitive advantage linked to their ability to metabolize FB1.

In addition to a direct effect on gut microbiota, FB1 might shape microbial composition through
its well-known actions on the host. In pigs, exposure to mycotoxins reduces feed intake [1]. Reducing
feed intake has been shown to affect both functioning and composition of microbiota [40]. Indeed,
reduction of nutrient supply decreases short-chained fatty acid concentration which in turn affect the
microbiota composition. In pigs, a favorable effect of feed restriction was observed on Lactobacillus
abundance [24]. Although, after oral exposure, FB1 is poorly absorbed in the intestine and feces is the
main excretory route [37], it induces abdominal pain and diarrhea [1]. In piglets in the present study,
it reduced villi length [8]. Impairment of the intestinal barrier function [41] has also been reported.
In the jejunum and the ileum of piglets fed deoxynivalenol alone or with fumonisin, the number of
goblet cells that synthesize and secrete mucins decreased significantly [42]. Mucins can be an important
factor in the shaping of the bacterial community since mucins provide attachment sites and are an
endogenous carbon and energy source for intestinal bacteria [43]. Altogether, the reduced feed intake
of host and alteration of its intestinal barrier function following exposure to FB1 might modify host
control of its symbiotic microbial community.

4. Conclusions

The present study investigated the effects of a 4-week dietary exposure to fumonisin on piglet fecal
microbiota. We demonstrate that dietary exposure to fumonisin in pigs hinders age-related dynamics
of fecal microbiota. Fumonisin decreases the diversity, and shifts and constrains the structure and
taxonomic composition of the fecal bacterial community as early as after 15 days of exposure and is
at a maximum at 22 days. Dietary exposure to fumonisin promotes the installation of an ecological
dominance since it decreases diversity and increases the abundance of Lactobacillus at the expense of
the abundance of Lachnospiraceae groups, Roseburia and Mitsuokella genera. The action mechanisms of
fumonisin that drive microbiota to this new equilibrium are not known and need further investigations.

5. Materials and Methods

5.1. Animals, Housing and Experimental Design

This work was done at the same time and with the same animals as the experiment made by
Régnier et al. [8]. The study was carried out with twelve 7-week-old weaned castrated male pigs.
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Animals were obtained from a local farm (Gaec de Calvignac, St. Vincent d’Autejac, France). They were
individually identified and divided into two groups and were acclimatized for one week in the animal
facility of the INRA ToxAlim Unit (Toulouse, France) prior to being used in experimental protocols.
The two groups of six animals, were housed in a separate block of the housing unit with free access to
feed and water. Pigs were randomly distributed within pens in order to avoid the effect of the lineage
(11.8 ± 1.0 kg and 13.9 ± 1.0 kg, p < 0.05, for FB1 and control pigs respectively). Pigs were examined
daily for body temperature and feces aspect. No morbidity or mortality was recorded during the
study. Room temperature and air velocity were automatically controlled, and pens were cleaned daily.
The experiments were carried out in accordance with European Guidelines for the Care and Use of
Animals for Research Purposes (accreditation number APAFIS#5917-2016070116429578 v3).

5.2. Experimental Diet, Growth Rate and Sample Collection

Diets were formulated as already described [44]. The detailed composition is provided in Table S5.
A control diet, and a diet supplemented with fumonisin enriched extract were prepared [8]. Fumonisin
extract was obtained from Dr Bailly at the Veterinary School of Toulouse. In brief, F. verticilliodes
strain NRRL 34281 was cultured on maize grains for 4 weeks at 25 ◦C. After incubation culture
material was dryed and grounded into powder and fumonisin extract content was determined by
HPLC/MS-MS. Required quantity of powder was then included in the premix before its inclusion
in the final diet. After an acclimation week, pigs were fed with the control or the experimentally
contaminated diet (10.2 mg FB1 + 2.5 mg FB2 + 1.5 mg FB3/kg), which constituted day 0 of the trial.
Because deoxynivalenol and zearalenone were naturally present in the cereals used, this results in
concentrations of 0.12 and 0.015 mg/kg feed, respectively. All other mycotoxins, including aflatoxins,
T-2 toxin, HT-2 toxin, and ochratoxin A, were below the limits of detection. Mycotoxins were analyzed
in the final diet in the Laboca laboratory (Ploufragan, France) with a LC-MS/MS method described [44].

5.3. DNA Extraction and PCR

Total genomic DNA was extracted from 0.5 g of fecal sample, combining a mechanical lysis with a
TissueLyser II instrument (Qiagen, Hilden, Germany) and the Quick-DNA™ Fecal/Soil Microbe 96 Kit
Zymo Research, Irvine, CA, USA), according to the manufacturer’s instructions [45]. The quality and
quantity of DNA extracts were checked using a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA).

The V3–V4 regions of 16S rRNA genes of samples were amplified from purified genomic DNA
with the primers F343 (5′-CTTTCCCTACACGACGCTCTTCCGATCTTACGGRAGGCAGCAG-3′; [46])
and reverse R784 (5′-GGAGTTCAGACGTGTGCTCTTCCGATCTTACCAGGGTATCTAATC CT-3′; [47]).
The PCR was carried out with an annealing temperature of 65 ◦C for 30 amplification cycles. Since
MiSeq sequencing machine enables paired 250-bp reads, the ends of each read are overlapped and
can be stitched together to generate high-quality, reads of the entire V3 and V4 region in a single run
412 ± 11 nucleotides. At the Genomic and Transcriptomic Platform (INRA, Toulouse, France) single
multiplexing was performed using 6 bp index sequences, which were added to R784 during a second
PCR with 12 cycles. The resulting PCR products were purified and loaded onto the Illumina MiSeq
cartridge (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. Each pair-end
sequence was assigned to its sample with the help of the previously integrated index. Sequencing
reads were deposited in the National Center for Biotechnology Information Sequence Read Archive
(NCBI SRA; SRP139897).

5.4. Sequence Analysis

A total of 1,810,933 16S ribosomal DNA amplicon sequences were sorted based on their respective
barcodes, representing the 59 fecal samples. Using FROGS [48], in keeping with the SOP, sequences
were filtered by removing sequences that did not match both proximal PCR primer sequences
(no mismatch allowed), erroneous sequencing length (<400 or >500 nucleotides), with at least one
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ambiguous base. Chimeric DNA sequences were detected using VSEARCH and removed. Reads were
clustered into OTUs using SWARM [49]. OTU taxonomic assignment was performed using the BLAST
algorithm against the SILVA SSU Ref NR 128 database [50]. A phyloseq R package [51] object was
generated to perform further statistical analysis.

5.5. Statistical Analyses

All statistical analyses were carried out using R software, version 3.4.2 [52] in RStudio software,
version 1.1.383 [53]. Shannon and InvSimpson diversity indexes were calculated and the structure of
the bacterial community was investigated after calculation of a Bray-Curtis distance matrix that was
plot using a Principal Coordinate Analysis, after matrix rarefaction normalization. Using a pairwise
Bray Curtis distance calculation, bacterial community stability and inter-individual variability within
a group were evaluated between two consecutive day group using the principle of moving window
analysis and within each day group respectively [54]. To check group differences an ADONIS pairwise
test with the Bray-Curtis distance was carried out. The differential abundance analysis for sequence
count data between groups was performed using the DESeq package [55]. Venn diagrams were
obtained with the jvenn plug-in [56]. The linear model used had treatment, time and the interaction
treatment x time as fixed effects and animal as the random effect.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/10/6/230/s1,
Table S1. Pairwise ADONIS tests between treatments for each day of sampling. Table S2. Phylum relative
abundance (%) in fecal microbiota from Control and FB1-exposed piglets. Table S3. Percentage (%) of main
bacterial families in fecal microbiota from Control vs. FB1-exposed pigs. Table S4. Percentage (%) of main genera
in fecal microbiota from Control vs. FB1-exposed pigs. Table S5. Diet composition in percentage (%). Figure S1
Relative abundance of main bacterial families in fecal microbiota from Control (blue) vs. FB1-exposed pigs (red).
Figure S2. Relative abundance of main bacterial genera in fecal microbiota from Control (blue) vs. FB1-exposed
pigs (red).
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