N

N
N

HAL

open science

Plate-like and shell-like inclusions with high rigidity

Anne-Laure Bessoud, Francoise Krasucki, Michele Serpilli

» To cite this version:

Anne-Laure Bessoud, Frangoise Krasucki, Michele Serpilli.

with high rigidity. Comptes Rendus.
10.1016/j.crma.2008.03.002 . hal-01829179

HAL Id: hal-01829179
https://hal.science/hal-01829179
Submitted on 3 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Plate-like and shell-like inclusions
Mathématique, 2008, 346 (11-12), pp.697 - 702.


https://hal.science/hal-01829179
https://hal.archives-ouvertes.fr

Plate-like and shell-like inclusions with high rigidity

Anne-Laure Bessoud P Francoise Krasucki?®, Michele Serpilli® |
2Institut de Mathématiques et de Modélisation de Montpellier — UMRS5149, Université Montpellier II
CC 051 Place Eugéne Bataillon, 34095 Montpellier cedex 5, France
b Laboratoire de Mécanique et Genie Civil — UMR 5508, Université Montpellier II
CC 048 Place Eugéne Bataillon, 3,095 Montpellier cedex 5, France

Received *****; accepted after revision +-++-++

Abstract

We study the problem of an elastic inclusion with high rigidity in a 3D domain. First we consider an inclusion
with a plate-like geometry and then in the more general framework of curvilinear coordinates, an inclusion with a
shell-like geometry. We compare our formal models to those obtained by Chapelle-Ferent and by Bessoud et al..
To cite this article: A.L. Bessoud, F. Krasucki, M. Serpilli, C. R. Acad. Sci. Paris

Résumé

Inclusions élastiques de grande rigidité de type plaque ou coque On étudie le probléme d’une inclusion
élastique de grande rigidité dans un domaine 3D. Cette inclusion est d’abord vue comme un domaine géométrique
de type plaque, puis plus généralement comme un domaine géométrique de type coque. On compare les modéles
obtenus formellement & ceux de Chapelle-Ferent et de Bessoud et al.. Pour citer cet article : A.L. Bessoud, F.
Krasucki, M. Serpilli, C. R. Acad. Sci. Paris

1. Introduction

After the pioneering works of Pham Huy-Sanchez [1], Brezis et al [2] and Caillerie [3], the thin inclu-
sion of a third material between two other ones when the rigidity properties of the inclusion are highly
contrasted with respect to those of the surrounding material has been deeply investigated. More recently,
Chapelle-Ferent [4] in order to justify some methods used in FEM approximation have studied the asymp-
totic behavior of a shell-like inclusion of Eip—rigidity (p=1o0rp=3)in a 3D domain. In a slightly different
geometrical and mechanical context, Bessoud et al. [5] have studied the behavior of a e-thin 3D layer of
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%—rigidity. More precisely, they assume that the thin layer can be written as wx] — ¢,¢[ where w is a
projectable 2D surface, and that all the materials are linearly elastic anisotropic. Then the limit problem
is a Ventcel-type transmission problem between two 3D linearly elastic anisotropic bodies. When w is
planar and in the isotropic case, the associated surface energy term can be interpreted as the membranal
energy of a Kirchhoff-Love plate.

Here two situations are considered using a two fields approach analogous to [4]. In section 2 we study the
same geometrical situation as in [5] when the material in the thin layer is isotropic and with a sip—rigidity
(p=1or p=3). When p = 3, in the formal limit problem the associated surface energy corresponds to a
flexural energy for a Kirchhoff-Love plate. When p = 1, the associated surface energy corresponds to the
membranal energy of [5].

In section 3 we study a new situation where the shell-like thin layer is obtained by the translation
in the normal direction of a general 2D surface, see (2). Using a system of curvilinear coordinates we
deduce the formal limit problem for the two cases p = 1 and p = 3. In this way we obtain the same limit
problems as in [4], also if the kinematical assumptions for the physical problem are not the same. Indeed
in [4] the authors a priori assume a shell-like energy in the thin layer. As in [4] one must stress that the
well-posedness of the limit problems is essentially linked to the well-posedness of the shell models [6],[7].

[8].

2. Plate-like inclusion: asymptotic behavior

In the three-dimensional Euclidean space £2 referred to the Cartesian coordinate frame (O;eq, es, e3),
let @ and Q~ be two disjoint open domains with smooth boundaries 9Q* and 9Q~. Let w = {9Q+t N 9Q~}°,
which is assumed to be a domain in R? having a positive two-dimensional measure and let y = (y,) de-
note a generic point of @. We insert the intermediate layer moving Q7F, (resp. Q7) in the e; (resp. —ej3)
direction of an amount equal to € > 0, a small dimensionless real parameter. Then let Q%° := {2° :=
r+ees; € QF}, Q™ = wx| —¢,¢[, and QF := QU QT U Q™. The structure is clamped on
Iy C (0Q\T"¢) and I'"° := Qwx] — ¢, €] is traction free. We suppose that the materials occupying Q°
are linearly elastic and isotropic. Let

Ve ={(V,v) e H(Q5R?) x H' (Q™*;R%); V|gm.e = v; Vp, =0}

The physical variational problem defined over the variable domain 2° can be written as

{Find (U, u®) € V© such that for all (V,v) € V< M

ATE(UF, V) 4 AU, V) 4 A7 (uf, o) = L(V),
where

)

BV = [0 (U%)eg, (V) + 205, (U)ol (V)

A o) = [ e (u)eg, (0°) + 20 el (w)efy (o)
The functional L(-) is the linear application associated with the applied forces.
Let us suppose that the Lamé’s constants of the isotropic materials satisfy

1 1
)\i,a _ )\i7 ui,e _ Mia ATE — _p)\m’ Mm,s — _p’um’
& &

where p € {1,3}, and A*, \™ (resp. pu*, and p™) are of the same order of magnitude.
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In order to study the asymptotic behavior of the solution of the physical problem (1) when & tends
to zero, we apply the usual change of variable (see [9]), which transforms the problem posed on a e-
dependent domain into a problem over the fixed domain  := Q%! U Q™ where Q™ := wx] — 1,1] is
the rescaled domain of Q™. The rescaled problem assumes the following form, with V' = {(V,v) €
HY (R x HY (O™, R3); Vigm =v; Vip, =0}:

Find (U (¢), u(e)) € V such that for all (V,v) e V
AU, V) + AT U, V) + o ATy (w(e), 0) + = ATy (w(6), 0) + s AT (u(e), 0) = L(V),

where A% (-, ) is the natural bilinear form on 2%, and the bilinear forms A7 (-, ) are defined as follows:

Als(u,v) = /m ()\mew(u)eTT(v) +2u"eqp(u)eqas(v) + %&lu;;aavg)dx,

Al (u,v) = /m (%(%u?ﬁgva + 03ua00v3) + A" (epo (u)ess(v) + egg(u)ew(v)))dac,

A (u,v) = /m (()\m +2u™)essz(u)ess(v) + gaguaaggva)dm.
We look for the following formal a priori asymptotic expansion of the solution (U(¢), u(e)):
U)=U+cU'+2U%+ ..., u(e) =u’ +cul +2u?+ ... .
The leading terms (U o u) of the asymptotic expansion satisfy the limit problems:

(i) p=1

Find (U°, u°) € Vs such that for all (V,v) € Vi,
AU, V) + AT (U, V) + AT (u’, v) = L(V),

where
Vir = {(V,v) € H*(Q;R?) x H(w; R?); Viw=wv, Vip, =0},
gyt v) = [ (o (wers (o) + 4™ cos(w)ens(v) ) dy

is the bilinear form associated with the membrane behavior of the plate.
(i) p=3:

Find (U, u°) € Vi such that for all (V,v) € Vi

{A‘(UO, V) + ATU, V) + AR (u’ v) = L(V),

where

Ve ={(V,v) € H(R?) x H*(w;R?); Vi, =v, Vi, =0, eqp(v) =0},
1 AN ™
AT (u,v) = E/w (WATUSATUB + 4umaaﬂugaaﬁvg)dy
is the bilinear form associated with the flexural behavior of the plate. A denotes the two-dimensional

Laplacian operator in w.

Remarks: 1. This problem can be studied in the case of anisotropy of materials and with less restrictive
assumptions relative to the geometry of the central layer Q7¢.
2. In the case p = 1, the convergence is studied with a slightly different formulation in [5].
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3. Shell-like inclusion: asymptotic behavior

Let 8 € C?(w;R?) be an injective mapping such that the vectors aq(y) := 0,0(y) form the covariant
basis of the tangent plane to the surface S := 6(w) at the point 8(y); the two vectors a®(y) of the tangent
plane, defined by the relations a®(y) - as(y) = 63, form its contravariant basis. Also let a3(y) = a®(y) :=

a1(y)ha2(y)
la1(y)Na2(y)]
the first fundamental form, the covariant and mixed components b,z and bg of the second fundamental

form, and the Christoffel symbols I'] ; of the surface S are then defined by letting:

be the unit normal vector to S. The covariant and contravariant components aqg and a®? of

Uop = o - ap, a®’:=a%-a®, bus:=a® pas, b°:=d"b,,, I'%s:=a’ - 0pa,.

Let Q"¢ := wx] — ¢,¢[ be defined as previously, with T := w x {4¢}. Let 2° denote the generic
—m,c

point in the set ", with zf, = y,. We consider a shell-like domain with middle surface S = (@) and

thickness 2¢ > 0, whose reference configuration is the image @™<(Q""°)  R? of the set {2 through

the mapping ©"° : Q""" — R3 given by

O™ (2°) := O(y) + x5 as(y), for all 2° = (y,z5) = (y1,y2,25) € V. (2)

Moreover, we suppose that there exists an immersion ©° : Q" — R3 defined as follows:

—,e
et on 0
o — @i,a(l—wi,a) — (_)m,a(ri,g)’

—m,e ’

®"* on

. e . . =*.€ . o1 . =*.€
with ®F°: 07° — R3 immersions over (" defining the curvilinear coordinates on € .

The physical variational problem in these curvilinear coordinates on the variable domain ° is

Find (U®, u®) € V© such that for all (V®,v®) € V¢

(3)
AT (UP, Vo) + AV (U, V) 4 4™, v°) = L(V?),

where

AEE V) i [ AU (V) VA e

A o) i [ A ()6 (0 VT da

QW,E
Here AVkGE .= \egiieghte 4 2(gike gite 4 gitegike) are the contravariant components of the elasticity
tensor, g° := det(gs;), with (g5;) := (0:©° - 9;0%) and the (9") := (g5;) " respectively the covariant
and contravariant components of the metric tensor associated with ©°.
As in the previous section, in order to study the asymptotic behavior of the physical problem (3), we
apply the usual change of variable, which transforms )¢ into a fixed domain €.
Now, the leading terms (U°, u°) of the asymptotic expansion satisfy the following limit problems:

(i) p=1:
Find (U°, u°) € Vi, such that for all (V,v) € Vi,
AU V) + AU, V) + AR (u’, 0) = L(V),

where
Vi ={(V,v) € H' (% R?) x H' (w;R?); V|, = v, Vp, =0},

AT (u, 0) = / 0T ()0 (0)Va dy

w



A" af o1
/\m+2uma’ a”’ +

2u™(a*?aP™ + a®7aP?) are the contravariant components of the elasticity tensor of the shell and
Yop(u) = %(8aug + 9pua) — I'fsus — bapus are the covariant components of the change of metric
tensor.

is the bilinear form associated with the membrane behavior of the shell, a®%°7 :=

(ii) p=3:
Find (U°, u°) € Vi such that for all (V,v) € Vg
A(U°, V) + AU, V) + AR (u’,v) = L(V),
where
Ve ={(V,v) € H'(;R?) x H*(w;R?); Vi, =v, Vi, =0, Yap(v) =0 in w},
m 1 apoT
Ap(w.0) = 3 [ 07 puc (wpas(0)Va dy
is the bilinear form associated with the flexural behavior of the shell and pag(u) = Onpus —

['7300u3 — bagus + b3 (0pus — UG ur) + b5(Oatty — I'g us) + (0abf + I 505 — I'7 507 Jur are the
covariant components of the change of curvature tensor.

Remark: As in [4] the well-posedness of the limit problems (i) and (ii) depends both on the Hilbertian
character of Vi; and Vp, and the coerciveness of the bilinear form A7Y;. For the well-posedness of the
flexural shell model see [10], [11] and for the well posedness of the membrane shell model see [12], [13].
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