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On the character of words of sub-linear complexity

Luca Q. Zamboni

Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 boulevard du 11
novembre 1918, F69622 Villeurbanne Cedex, France

Abstract

Let A∗ denote the free monoid generated by a finite nonempty set A. For each infinite word

x = x0x1x2 · · · ∈ Aω, the factor complexity px(n) counts the number of distinct blocks

xixi+1 · · ·xi+n−1 of length n occurring in x. In other words, the factor complexity of x

is the complexity of the language of its factors Facx = {xixi+1 · · ·xj | 0 ≤ i ≤ j}. Our

starting point in this paper is the following characterisation of infinite words of sub-linear

factor complexity obtained recently by the author together with J. Cassaigne, A. Frid and

S. Puzynina: Let x ∈ Aω. Then px(n) = O(n) if and only if Fac(x) ⊆ S2 for some S ⊆ A∗

with lim sup pS(n) < +∞. In other words, px(n) ≤ Cn for some constant C if and only if

there exists a set S of bounded complexity such that every factor w of x can be factored as

w = uv with u, v ∈ S. Given an infinite word x ∈ Aω, we define its character, denoted χ(x),

to be the least value for lim sup pS(n) over all languages S such that Facx ⊆ S2. Clearly

χ(x) ∈ [1,+∞] and it follows from the above characterisation that px(n) = O(n) if and

only if χ(x) < +∞. We prove that χ(x) = 1 if and only if x is ultimately periodic and that

χ(x) = 2 whenever x is a Sturmian word.

Keywords: Combinatorics on words, complexity.
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1. Introduction

Let A be a finite non-empty set. For each infinite word x = x0x1x2 · · · ∈ Aω, the complex-

ity or factor complexity px(n) counts the number of distinct blocks xixi+1 · · ·xi+n−1 ∈ An of

length n occurring in x. First introduced by Hedlund and Morse in their seminal 1938 paper

[20] under the name of block growth, the factor complexity measures the extent of random-

ness of x : Periodic (meaning ultimately periodic) words have bounded factor complexity

while digit expansions of normal numbers have maximal complexity. A celebrated theorem

of Morse and Hedlund in [20] states that every aperiodic (meaning non-ultimately periodic)

word contains at least n+ 1 distinct factors of each length n. Words having precisely n+ 1
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factors of each given length n are called Sturmian words. From the point of view of the

Morse-Hedlund theorem, they are those aperiodic words of minimal factor complexity. They

arise naturally in various branches of mathematics including combinatorics, algebra, number

theory, ergodic theory, dynamical systems and differential equations. In theoretical physics,

Sturmian words constitute 1-dimensional models for quasi-crystals, and in theoretical com-

puter science they are used in computer graphics as digital approximation of straight lines.

Perhaps the most studied Sturmian word is the so-called Fibonacci word

x = 0100101001001010010 · · ·

defined as the fixed point of the substitution 0 7→ 01, 1 7→ 0.

There are several variations and extensions of the Morse-Hedlund theorem associated with

other notions of complexity including Abelian complexity [9, 24], Abelian first returns [23],

maximal pattern complexity [15], palindrome complexity [1], cyclic complexity [5] and group

complexity [8] to name just a few. In most cases, these alternative notions of complexity

may be used to detect (and in some cases characterize) ultimately periodic words. Generally,

amongst all aperiodic words, Sturmian words have the lowest possible complexity, although

in some cases they are not the only ones. For instance, a restricted class of Toeplitz words

is found to have the same maximal pattern complexity as Sturmian words (see section 4 of

[16]). There have also been numerous attempts at extending the Morse-Hedlund theorem in

higher dimensions. A celebrated conjecture of M. Nivat states that any 2-dimensional word

having at most mn distinct m×n blocks must be periodic. In this case, it is known that the

converse is not true. To this day the Nivat conjecture remains open although the conjecture

has been verified for m or n less or equal to 3 (see [10, 25]). A very interesting higher

dimensional analogue of the Morse-Hedlund theorem was obtained by Durand and Rigo in

[12] in which they re-interpret the notion of periodicity in terms of Presburger arithmetic.

Beyond Sturmian words, there are many other rich families of infinite words having

low (meaning sub-linear) factor complexity. They include all words generated by primitive

substitutions and more generally all linearly recurrent words [11], automatic sequences [2],

Arnoux-Rauzy sequences [4] and symbolic codings of interval exchange transformations [3].

In [13], S. Ferenczi proved that the language of any uniformly recurrent word having sub-

linear factor complexity is S-adic, meaning that for any such x there exist a finite set S of

morphisms over some finite alphabet A, a ∈ A and an infinite sequence (τn)n≥0 ∈ Sω such

that x = limn→∞ τ0 · · · τn(aω). An important open question along these lines is the so-called

S-adic conjecture which involves finding some condition (*) such that for any word x, the

factor complexity of x is sub-linear if and only if x is an S-adic word verifying condition (*).

See for instance [17] and the references therein.

Our starting point in this paper is a different characterisation of infinite words x ∈ Aω

of sub-linear factor complexity recently obtained by the author together with J. Cassaigne,

A. Frid and S. Puzynina in [6]:
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Theorem 1 (Theorem 1 in [6]). Let A be a finite non-empty set and x ∈ Aω. Then px(n) =

O(n) if and only if Facx ⊆ S2 for some S ⊆ A∗ with lim sup pS(n) < +∞.

In other words, px(n) ≤ Cn for some constant C if and only if there exists a set S of bounded

complexity such that every factor w of x can be factored as w = uv with u, v ∈ S. The proof

of Theorem 1 in [6] is constructive in the sense that if px(n) = O(n), it describes a way

of constructing a set S of bounded complexity such that Facx ⊆ S2. However, it is natural

to ask what is the smallest value for lim sup pS(n) < +∞ over all languages S for which

Facx ⊆ S2. More precisely, for each x ∈ Aω, we define the character of x by

χ(x) = inf{lim sup pS(n) : S ⊆ A∗, Facx ⊆ S2}

where we take the convention that inf ∅ = +∞. Thus χ(x) ∈ [1,+∞]∩Z and by Theorem 1

we have that px(n) = O(n) if and only if χ(x) < +∞. In this paper we prove that χ(x) = 2

whenever x is a Sturmian word. More precisely, given a Sturmian word x ∈ {0, 1}ω there

exists a set S such that Card(S ∩ {0, 1}n) = 2 for all n ≥ 1 and Facx ⊆ S2. Moreover, this

is optimal in the sense that χ(x) = 1 if and only if x is ultimately periodic.

The paper is organised as follows: In §2 we recall some fundamental notions concerning

finite and infinite words. In §4 we establish the main result of the paper, namely that an

infinite word x is ultimately periodic if and only if χ(x) = 1. In §5 we prove that χ(x) = 2

whenever x is a Sturmian word.

2. Preliminaries

In this section we briefly recall some basic definitions and notations concerning finite and

infinite words which are relevant to the subsequent sections. For a more detailed exposition,

the reader is referred to one of the standard texts in combinatorics on words such as the

Lothaire books [18, 19].

The set A∗ consisting of all finite words over the alphabet A is naturally a free monoid

under the operation of concatenation, with the empty word ε playing the role of the identity.

Given a finite word u = a1a2 . . . an with n ≥ 1 and ai ∈ A, we denote the length n of u by

|u|. For each a ∈ A, we let |u|a denote the number of occurrences of the letter a in u. Let Aω

denote the set of (right) infinite words x = x0x1x2 · · · with xi ∈ A. Given an infinite word

x ∈ Aω, a word u ∈ A∗ is called a factor of x if either u = ε or if u = xixi+1 · · ·xi+n for some

natural numbers i and n. We denote by Facx(n) the set of all factors of x of length n, and

set

Facx =
⋃
n∈ω

Facx(n).

Let px : N→ N denote the factor complexity of x defined by:

px(n) = Card(Facx(n)).
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An infinite word x is called ultimately periodic if x = uvvv · · · = uvω for some non-empty

words u, v ∈ A∗. An infinite word is said to be aperiodic if it is not ultimately periodic. A

celebrated theorem of Morse and Hedlund in [20] states that every aperiodic word contains

at least n + 1 distinct factors of each length n. Sturmian words are infinite words having

exactly n+ 1 distinct factors of each length n ≥ 1.

A factor u of x is called right (resp., left) special if ua, ub ∈ Fac(x) (resp., au, bu ∈ Fac(x))

for distinct letters a, b ∈ A. A factor u of x is called bispecial if u is both left and right

special. It follows that every aperiodic word contains a right and a left special factor of each

length. More precisely, let x ∈ Aω be aperiodic. Given a factor u of x, let R(u) (L (u),

respectively ) denote the shortest right (left, respectively ) special factor of x beginning

(ending, respectively) in u. We note that if u is right (left, respectively) special, then L (u)

(R(u), respectively) is bispecial. Also, since x is aperiodic, for any factors u and v of x with

|u| < |v|, if u is both a prefix and a suffix of v, then R(u) is a prefix of v. Otherwise, every

occurrence of u in x is an occurrence of v in x and x would be ultimately periodic.

For each finite word u on the alphabet A we set

x
∣∣
u

= {n ∈ ω |xnxn+1 · · ·xn+|u|−1 = u}.

In other words, x
∣∣
u

denotes the set of all occurrences of u in x. We say x is recurrent if for

every u ∈ Facx the set x
∣∣
u

is infinite. We say x is uniformly recurrent if for every u ∈ Facx
the set x

∣∣
u

is syndedic, i.e., of bounded gap.

3. A characterisation for periodicity

We begin by establishing some preliminary results needed in the proof of our main result

(see Theorem 5). Throughout this section A will denote a finite nonempty set.

Lemma 2. Let C,N ∈ Z+ and x ∈ Aω be such that px(n) = n + C for all n ≥ N. 1 Then

there exist distinct letters a, b ∈ A and, for each n ≥ N, a unique factor rn ∈ Facx(n) having

exactly two right extensions in x of length n+ 1 given by rna and rnb, while all other factors

of x of length n have a unique right extension in x to a factor of length n+ 1.

Proof. Clearly for each n ≥ 0, each word u ∈ Facx(n) is a prefix of at least one word

v ∈ Facx(n + 1). Now since px(n + 1) − px(n) = 1 for each n ≥ N, it follows that for each

n ≥ N, there exists a unique factor rn of x of length n having exactly two right extensions

rnan and rnbn to a factor of x of length n + 1, where an and bn are distinct letters in A,
and all other factors of x of length n have a unique right extension to a factor of length

1Infinite words x of complexity px(n) = n + C for all n sufficiently large were studied and characterised

by A. Heinis in his doctoral thesis. He proved that every such word is a morphic image of a Sturmian word

(see also [14]).
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n+1. Moreover, since rn is necessarily a suffix of rn+1 it follows that {an, bn} = {an+1, bn+1},
whence there exist distinct letters a, b ∈ A such that {a, b} = {an, bn} for each n ≥ N.

Lemma 3. Let C,N ∈ Z+ and x ∈ Aω be such that px(n) = n + C for all n ≥ N. If x

is recurrent, then there exist distinct letters a, b ∈ A and, for each n ≥ N, a unique factor

ln ∈ Facx(n) having exactly two left extensions in x of length n+1 given by aln and bln while

all other factors of x of length n have a unique left extension in x to a factor of length n+ 1.

Proof. The proof is identical to that of Lemma 2 with prefix replaced by suffix and right

replaced by left.

Proposition 4. Let C,N ∈ Z+ and x ∈ Aω be such that px(n) = n+C for all n ≥ N. Then

there exists a uniformly recurrent suffix y of x.

Proof. We begin by showing that there exists a recurrent suffix y of x. Then we show this

same suffix is uniformly recurrent. Let a, b ∈ A and rn ∈ Facx(n) (n ≥ N) be as in Lemma 2.

Let

R = {u ∈ A+ : |u| ≤ N, Card(x
∣∣
u
) < +∞}.

In other words, R is the set of all non-recurrent factors u of x with |u| ≤ N. Pick a suffix

y of x such that y
∣∣
u

= ∅ for all u ∈ R. We claim that y is recurrent. In fact, supposing

y were not recurrent, let v be the shortest non-recurrent prefix of y and let y′ be a suffix

of y such that y′
∣∣
v

= ∅. Then |v| > N otherwise v belongs to R. Let u be the prefix of v

of length |v| − 1 so that v = uc for some c ∈ A. Set n = |u|. Then n ≥ N and since u is

recurrent in y and v = uc is not recurrent in y, it follows that u is a right special factor of x

and hence by Lemma 2 u = rn and c ∈ {a, b}. Moreover, since u is the unique right special

factor of x of length n and the only right extensions of u in x of length n+ 1 are ua and ub,

it follows that the suffix y′ of y contains no right special factors of length n. In other words,

py′(n+ 1) = py′(n) whence y′ is ultimately periodic, a contradiction.

Next we show y is uniformly recurrent. It suffices to show that every prefix u of y of

length |u| ≥ N occurs in y with bounded gap. Since y is recurrent, every prefix u of y is

contained in a right special prefix of y. Thus it suffices to show that every right special prefix

u of y with |u| ≥ N occurs in y with bounded gap. So let us fix a right special prefix u

of y with |u| ≥ N. Set n = |u| and consider any factor w of y of length 2n + C. We claim

that u occurs in w. In fact, there are n+C + 1 occurrences in w of words of length n. Since

py(n) ≤ px(n) = n + C, there exists some factor v of y of length n occurring at least twice

in w. Let z be a factor of w which begins and ends in v and of length |z| > |v|. Since y is

aperiodic, there exists a right special prefix z′ of z of length |z′| ≥ |v| = n. Then by Lemma 2

we deduce that u is a suffix of z′ and hence u occurs in w as required.

Theorem 5. A word x ∈ Aω is ultimately periodic if and only if χ(x) = 1 where

χ(x) = inf{lim sup pS(n) : S ⊆ A∗, Facx ⊆ S2}
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Proof. One direction is straightforward. Suppose x = uvω for some u, v ∈ A+. Let

S = Facuv ∪ Pref(vω).

We claim Facx ⊆ S2 from which it follows that χ(x) = 1 (since pS(n) = 1 for all n ≥ |uv|+1).

In fact, let w ∈ Facx. If w ∈ Facuv, then w ∈ S and so w = w · ε ∈ S2. Otherwise, we can

write w = w′w′′ ∈ S2 where w′ is a suffix of uv and w′′ a prefix of vω.

For the reverse implication, let us assume that x ∈ Aω and χ(x) = 1. Fix S ⊆ A∗ and a

positive integer N0 with Facx ⊆ S2 and pS(n) ≤ 1 for all n ≥ N0.

Without loss of generality, we may assume that pS(n) = 1 for all n ≥ N0. In fact, we

could extend S to a set S̃ by adding to S an arbitrary element of An for each n such that

S ∩ An = ∅. Then Facx ⊆ S̃2 and pS̃(n) = 1 for all n ≥ N0.

Lemma 6. Assume x ∈ Aω, S ⊆ A∗ and N0 ∈ Z+ are such that Facx ⊆ S2 and pS(n) = 1

for all n ≥ N0. Then either x is ultimately periodic, or there exist positive integers C,N with

N ≥ 2N0 such that px(n) = n+ C for all n ≥ N.

Proof. Assume x is aperiodic. Let C0 = max{pS(n) | 0 ≤ n < N0}. Fix n ≥ 2N0. Each

w ∈ Facx(n) may be written as w = uv with u, v ∈ S. Thus an upper bound for px(n) is

obtained by counting the number words of the form uv with u, v ∈ S and |u| + |v| = n.

If u or v is in the range 1 ≤ |u|, |v| ≤ N0 − 1, then we obtain at most C0 distinct words

of the form uv with u, v ∈ S. While if u and v are in the range N0 ≤ |u|, |v| ≤ n − N0 or

{|u|, |v|} = {0, n}, then we obtain at most 1 word of the form uv with u, v ∈ S. Whence

px(n) ≤ 2C0(N0 − 1) + n− 2N0 + 3. (1)

Thus setting C1 = 2C0(N0 − 1)− 2N0 + 3 we have that px(n) ≤ n+C1 for all n ≥ 2N0. Let

C ≤ C1 be the largest positive integer for which we have px(n) = n + C for some n ≥ 2N0,

and pick N ≥ 2N0 such that px(N) = N + C. Then it is readily checked by induction that

px(n) = n+C for all n ≥ N. In fact, if for n ≥ N we have px(n) = n+C, then by maximality

of the choice of C we have px(n + 1) ≤ n + 1 + C. On the other hand since x is aperiodic,

px(n+ 1) ≥ px(n) + 1 = n+ 1 + C. Thus px(n+ 1) = n+ 1 + C as required.

Returning to the proof of Theorem 5, we wish to show that if x ∈ Aω, S ⊆ A∗ and

N0 ∈ Z+ are such that Facx ⊆ S2 and pS(n) = 1 for all n ≥ N0, then x is ultimately

periodic. In view Lemma 6 combined with Proposition 4, short of replacing x by a suffix

of x, we may assume without loss of generality that x itself is uniformly recurrent. So

henceforth in proof of Theorem 5, we will assume that x ∈ Aω is uniformly recurrent,

S ⊆ A∗ and N0 ∈ Z+ are such that Facx ⊆ S2 and pS(n) = 1 for all n ≥ N0. As before let

C0 = max{pS(n) | 0 ≤ n < N0}. We note C0 ≥ 1.
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We propose to show that x is ultimately periodic. So suppose to the contrary that x is

aperiodic. Let N and C be as in Lemma 6. Also set

d = 2(N0 − 1)(C0 − 1). (2)

We will show that for each K ≥ max{4, N, 6d+1} there exists z ∈ A2 such that zb
K
2
c ∈ Facx.

As x is assumed to be uniformly recurrent, this will give the desired contradiction.

For each i ≥ N0, let si denote the unique element of S of length i. For each n ≥ N, let

dn = Card{i : N0 ≤ i ≤ n−N0, sisn−i /∈ Facx}.

Recall that each factor w of x of length n is a product uv with u, v ∈ S. Thus dn corresponds

to the number of factorisations uv with N0 ≤ |u|, |v| ≤ n − N0 which are not needed in

generating all factors of x of length n. Hence, for each n ≥ N, a refinement of the estimation

used in the proof of Lemma 6 yields:

2C0(N0 − 1) + n− 2N0 + 3− dn ≥ px(n) ≥ n+ 1 (3)

where the last inequality is a consequence of the Morse-Hedlund theorem as we are assuming

that x is aperiodic. It follows from (2) and (3) that dn ≤ d.

For n ≥ N, let

U(n) = {u ∈ S |N0 ≤ |u| ≤ n−N0, and ∃v ∈ S with {uv, vu} ⊆ Facx(n)}.

We note that our assumption on pS(n) implies that if u ∈ U(n), then there exists a unique

v ∈ S with {uv, vu} ⊆ Facx(n) and v too belongs to U(n). In other words, if sisn−1 /∈ Facx(n)

for N0 ≤ i ≤ n−N0, then si /∈ U(n) and sn−1 /∈ U(n). Thus

CardU(n) ≥ n− 2N0 + 1− 2dn ≥ n− 2N0 + 1− 2d. (4)

Let Bx = {B0, B1, B2, . . .} denote the infinite set of bispecial factors of x and set bi =

|Bi|. We order Bx so that bm < bm+1 for each m ≥ 0. Recall that by Lemma 6, we have

px(n) = n+C for each n ≥ N and hence by application of Lemma 2 and Lemma 3 it follows

that x has a unique right and left special factor, denoted rn and ln, of each length n ≥ N.

Hence given any two bispecial factors of x each of length greater or equal to N, the shorter

of the two is both a prefix and a suffix of the other. Since x is uniformly recurrent, it follows

that lim infm→∞(bm+1− bm) = +∞. In fact, if bm ≥ N then setting πm = bm+1− bm we have

that πm is a period of Bm+1.

Let K be any positive integer verifying K ≥ max{4, N, 6d + 1}. We will show that for

each such K there exists z ∈ A2 such that zb
K
2
c ∈ Facx. Pick a positive integer m such that

bm+1 − 6K > bm > N,
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and set n = bm + 2K. For convenience, we summarise the inclusions thus far

1 ≤ N0 < N < bm < bm +K < n = bm + 2K < bm + 6K < bm+1.

We claim there exists

u ∈ U(n) ∩ U(n+ 1) ∩ U(n+ 2)

with

bm < |u| ≤ bm +K. (5)

In fact, consider all elements u ∈ S of length bm < |u| ≤ bm +K. Then by (4) at most 2d of

them do not belong to U(n). Of those which belong to U(n), at most 2d do not belong to

U(n+ 1). Of those which belong to U(n)∩U(n+ 1), at most 2d do not belong to U(n+ 2).

Since K ≥ 6d+ 1 the result follows. Thus there exists

{u, v(0), v(1), v(2)} ⊆ S

with bm < |u| ≤ bm + K and {uv(i), v(i)u} ⊆ Facx(n + i) for each 0 ≤ i ≤ 2. We note that

|v(i+1)| = |v(i)|+ 1 and since |v(0)| = n− |u| = bm + 2K − |u| it follows from (5) that

2K > |v(0)| ≥ K. (6)

We now consider three possible cases: Case 1: uv(2) is a prefix of R(u) and v(2)u is a

suffix of L (u). Case 2: There exists a proper prefix w of uv(2) of length |w| ≥ |u| which is a

right special factor of x. Case 3: There exists a proper suffix w of v(2)u of length |w| ≥ |u|
which is a left special factor of x.

In Case 1, every occurrence of u in x is an occurrence of uv(2). Hence v(1) is a prefix v(2).

Similarly, every occurrence of u in x is immediately preceded by v(2) whence v(1) is also a

suffix of v(2). Hence v(2) = ck for some c ∈ A. Since k = |v(2)| = |v(0)|+ 2 ≥ K + 2, by taking

z = c2 we have that zb
K
2
c ∈ Facx.

In Case 2, we first claim that w is unique, i.e., w = R(u). In fact, suppose that w and w′

are both proper right special prefixes of uv(2) with |w′| > |w| ≥ |u|. Then as w is also a suffix

of w′ it follows that w occurs twice in uv(2). Then L (w) is a bispecial factor of x contained

in uv(2) whence

bm < |u| ≤ |w| ≤ |L (w)| ≤ |uv(2)| = n+ 2 = bm + 2K + 2 < bm+1

a contradiction since bm and bm+1 are the lengths of consecutive bispecial factors of x. We

next claim that at least two v(i) are prefixes of one another. In fact, if uv(0) is not a prefix

of uv(1), then for some choice of distinct letters a, b ∈ A we would have that wa is a prefix of

uv(0) and wb is a prefix of uv(1). We recall that by Lemma 2, w has only two right extensions

in x of length |w| + 1, namely wa and wb. Thus if in addition uv(0) is not a prefix of uv(2),
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then wb is a prefix of uv(2). But then, since wb is a both a prefix of uv(1) and uv(2) and every

occurrence in x of wb is an occurrence in x of uv(2), it follows that uv(1) is a prefix of uv(2).

Finally we claim that no suffix w′ of v(2)u with |w′| ≥ |u| is left special. In fact, if L (u)

were a suffix of v(2)u, then L (w) = L (R(u)) is a bispecial factor of x contained in v(2)uv(2),

whence

bm < |u| ≤ |L (R(u))| ≤ |v(2)uv(2)| = |u|+2|v(2)| < bm+K+2(2K+2) = bm+5K+4 < bm+1

again a contradiction since bm and bm+1 are the lengths of consecutive bispecial factors of x.

Thus in summary we have that each of the v(i) are suffixes of one another and at least two

of the v(i) are prefixes of one another. Whence either v(1) or v(2) has period equal to 1 or 2.

In either case we have zb
K
2
c is a factor of x for some z ∈ A2.

Case 3 works similarly to Case 2. Using Lemma 3 we argue that each of the v(i) are

prefixes of one another and at least two of the v(i) are suffixes of one another and hence

either v(1) or v(2) has period equal to 1 or 2. This completes our proof of Theorem 5.

4. The character of Sturmian words

Let x = x0x1x2 · · · ∈ {0, 1}ω be a Sturmian word, i.e., px(n) = n + 1 for each n ≥ 0.

We will also make use of the balance characterisation of Sturmian words due to Morse and

Hedlund in [21] and Coven and Hedlund in [9]: x ∈ {0, 1}ω is Sturmian if and only if x is

aperiodic and for any two factors u and v of x of equal length we have ||u|0 − |v|0| ≤ 1. The

slope s(x) is defined as the frequency of the symbol 1 in x, i.e.,

s(x) = lim
n→∞

|x0x1 · · ·xn−1|1
n

.

In [21], Hedlund and Morse showed that this limit always exists and that x is the symbolic

coding of the orbit of a point ρ(x), called the intercept, on the unit circle under a rotation

by an irrational angle s(x), where the circle is partitioned into two complementary intervals,

one of length s(x) and the other of length 1 − s(x). Conversely each such coding defines a

Sturmian word. Moreover, the set of factors of a Sturmian word depends only on the slope:

Let x, y be two Sturmian words. Then Facx = Facy if and only if x and y have the same

slope. Let O(x) = {y ∈ Aω : Facy = Facx}.
The condition px(n) = n+ 1 implies that x admits a unique left and right special factor

of each length n denoted ln and rn respectively. For each n ≥ 0 we have that ln is a prefix

of ln+1 and rn is a suffix of rn+1. Moreover, ln and rn are reversals of one another (see for

instance Chapter 2 of [19]). Let x∗ = limn→∞ ln denote the characteristic word of slope s(x),

i.e., x∗ is the unique word all of whose prefixes are left special factors of x.

Theorem 7. Let x ∈ {0, 1}N be a Sturmian word. Then χ(x) = 2.

9



Proof. Fix a Sturmian word x ∈ {0, 1}ω of slope α. As x is aperiodic, it follows from Theo-

rem 5 that χ(x) ≥ 2. Thus it suffices to show that Facx ⊆ S2 for some language S ⊆ {0, 1}∗
with lim sup pS(n) = 2. Set

S = {ε} ∪ {rn0 |n ≥ 0} ∪ {1ln |n ≥ 0}.

Then S consists of precisely 2 words of each given length n ≥ 1. It remains to show that

Facx ⊆ S2.

Lemma 8. Let x∗ denote the characteristic Sturmian word of slope s(x). Then for each

n ≥ 0 we have that rn01x∗ and rn10x∗ belong to O(x).

Proof. Since each prefix of x∗ is a left special factor of x it follows that each of 0x∗ and 1x∗

belong to O(x) and moreover each has a unique infinite left extension (otherwise x∗ would

be a suffix of itself and x∗ would be periodic). We recall that 0x∗ (1x∗, respectively) is the

lexicographically smallest (largest, respectively) element of O(x) (see for instance [22]). It

follows immediately from this lexicographic property that 0x∗ must extend to the left by 1

and that 1x∗ must extend to the left by 0 so that 10x∗, 01x∗ ∈ O(x). We now claim that

10x∗, 01x∗ have the same infinite left extension i.e., there exists a left infinite word w such

that each suffix of w10x∗ and of w01x∗ belongs to O(x). It follows immediately that each

suffix of w is a right special factor of x. To establish the claim let z (z′, respectively) be the

unique infinite left extensions of 10x∗ (01x∗, respectively). We will show that z = z′. Assume

to the contrary that z 6= z′. Then there exists u ∈ A∗ such that au is a suffix of z and bu is

a suffix of z′ where {a, b} = {0, 1}. Since au1 and bu0 are each factors of x, by the balance

property, we must have that a = 0 and b = 1. Since u is a left special factor of x we must

have that either u0 or u1 is a prefix of x∗. If u0 is a prefix of x∗, then 1u0 is a prefix of 1x∗

and hence 1u0 is the lexicographically largest factor of x to its length. It follows that 1u01x∗

is lexicographically larger than 1x∗, a contradiction. If on the other hand u1 is a prefix of

x∗, then 0u1 is a prefix of 0x∗ and hence 0u1 is the lexicographically smallest factor of x to

its length. It follows that 0u10x∗ is lexicographically smaller than 0x∗, a contradiction. This

completes the proof of Lemma 8.

Returning to the proof of Theorem 7, it follows from Lemma 8 that the word w(n) =

rn−101ln−1 is a factor of x of length 2n. We claim that for each n ≥ 1, w(n) contains n + 1

distinct factors of length n. To prove the claim, we proceed by induction on n. For n = 1,

we have w(1) = 01 which contains 2 factors of length 1. For the inductive step, let n ≥ 1,

and assume w(n) contains n+ 1 distinct factors of length n. We wish to show that w(n+ 1)

contains n+ 2 distinct factors of length n+ 1. Suppose to the contrary that some word u of

length n+ 1 occurs twice in w(n+ 1). We claim u = rn0, for otherwise the word u′ obtained

by deleting the last letter of u would occur twice in w(n), a contradiction. Similarly, if

u 6= 1ln, then the word u′′ obtained by deleting the first letter of u would occur twice in
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w(n), a contradiction. Thus u = rn1 = 0ln, which is a contradiction since, as rn and ln are

reversals of one another, |rn1|1 > |0ln|1. Having established the claim, it follows that each

factor of x of length n is a factor of w(n) and hence Facx ⊆ S2 as required.

5. Potential generalisations

It would be interesting to determine the character of other classes of infinite words of

sub-linear complexity including automatic words, words generated by primitive substitutions

and Arnoux-Rauzy words. The precise determination of the character of a Sturmian word

x consisted in showing that on one hand χ(x) ≥ 2 (Theorem 5) and on the other hand that

χ(x) ≤ 2 (Lemma 8). Given a word x of sub-linear complexity, the proof of Theorem 1 in [6]

yields an explicit method for constructing a set S of bounded complexity for which Facx ⊆ S2.

This construction, which makes use of so-called D-markers (see §4.1 in [6]), yields an upper

bound on the character of a given word of sub-linear complexity. The difficulty in general

is in obtaining a lower bound on the character. For example, let x ∈ {a1, a2, . . . , ak}N be an

Arnoux-Rauzy word on a k-letter alphabet. Let x̃ denote the corresponding characteristic

word, i.e., the unique element of the subshift generated by x each of whose prefixes is a left

special factor of x. It follows that for each n ≥ 1 there exist words u1(n), u2(n), . . . , uk(n) of

length n such that each ui(n) terminates in the letter ai and ui(n)x̃ belongs to the subshift

generated by x. In other words, ui(n)x̃ are the k-left extensions of length n of x̃. It is easy

to see that each factor w of x may be written in the form w = uv where u is either empty or

u = ui(n) for some 1 ≤ i ≤ k and n ≥ 1 and where v is either empty or a prefix of x̃. This

decomposition of w is obtained by setting v (possibly empty) equal to the longest suffix of

w which is a left special factor of x. It follows that Facx ⊆ S2 where

S = {ui(n) : 1 ≤ i ≤ k ; n ≥ 1} ∪ Pref(x̃) ∪ {ε}

and hence χ(x) ≤ k + 1. For example, if t is the Tribonacci word fixed by the substitution

a 7→ ab, b 7→ ac, and c 7→ a we obtain 2 ≤ χ(t) ≤ 4, where the lower bound is a consequence

of Theorem 5. We note that in case x is Sturmian, the above upper bound yields χ(x) ≤ 3

which as we saw earlier is not optimal. Similarly, in the case of the Tribonacci word, a more

careful analysis yields the upper bound χ(t) ≤ 3. We suspect that in fact χ(t) = 3 but we

do not know how to improve the lower found on the character. It would be reasonable to

conjecture in general that if x is an Arnoux-Rauzy word on a k-letter alphabet then χ(x) = k.

A similar analysis applies to the Thue-Morse word x = 0110100110010110 · · · fixed by

the uniform substitution ϕ : 0 7→ 01 and 1 7→ 10. For each n ≥ 0 let tn = ϕn(0) and

t′n = ϕn(1) and let S be the set of all prefixes and all suffixes of tn and t′n for all n ≥ 0.

Since tn+1 = tnt
′
n and t′n+1 = t′ntn it follows that S consists of at most 4 words of each given

length. Finally it is easy to see that Facx ⊆ S2 and hence χ(x) ≤ 4.
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For words of higher than linear complexity, things become even more difficult. For

example, in [6] it is shown that if x is a fixed point of the (non-primitive) morphism a 7→ ab,

b 7→ b and c 7→ ca (which is known to have quadratic complexity), then there does not exist

a language S of bounded complexity such that Facx ⊆ S3. On the other hand it is shown

that there exists a language S of bounded complexity such Facx ⊆ Sk for some k ∈ {4, 5, 6}.
It is also shown in [6] that for every real number α ∈ (0, 1), there exists an infinite word x

of complexity O(n2+α) such that Facx is not contained in Sk for any language S of bounded

complexity and any positive integer k.
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