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We regard a finite word u = u 1 u 2 • • • u n up to word isomorphism as an equivalence relation on {1, 2, . . . , n} where i is equivalent to j if and only if u i = u j . Some finite words (in particular all binary words) are generated by palindromic relations of the form k ∼ j +i-k for some choice of 1 ≤ i ≤ j ≤ n and k ∈ {i, i + 1, . . . , j}. That is to say, some finite words u are uniquely determined up to word isomorphism by the position and length of some of its palindromic factors. In this paper we study the function µ(u) defined as the least number of palindromic relations required to generate u. We show that if x is an infinite word such that µ(u) ≤ 2 for each factor u of x, then x is ultimately periodic. On the other hand we establish the existence of non-ultimately periodic words for which µ(u) ≤ 3 for each factor u of x, and obtain a complete classification of such words on a binary alphabet (which includes the well known class of Sturmian words). In contrast, for the Thue-Morse word, we show that the function µ is unbounded.

Introduction

Palindromes play an important role in various areas of mathematics including diophantine approximation and number theory (see for instance [START_REF] Adamczewski | On complexity of algebraic numbers, II. Continued fractions[END_REF][START_REF] Col | Palindromes dans les progressions arithmétiques (French)[END_REF]), discrete math (see for instance [START_REF] Glen | Palindromic richness[END_REF][START_REF] Brlek | On the palindromic complexity of infinite words[END_REF]), algebra (see for instance [START_REF] Kassel | A palindromization map for the free group[END_REF][START_REF] Deloup | Palindromes and orderings in Artin groups[END_REF]), biomathematics (see for instance [START_REF] Kari | Watson-Crick palindromes in DNA computing[END_REF]), geometric symmetry in translation surfaces associated with various dynamical systems including interval exchange transformations (see for instance [START_REF] Ferenczi | Eigenvalues and simplicity of interval exchange transformations[END_REF]) and theoretical physics in the spectral properties of discrete Schrödinger operators defined on quasicrystals (see for instance [START_REF] Hof | Singular continuous spectrum for palindromic Schrödinger operators[END_REF]).

Let A be a finite non-empty set of letters. For each positive integer n, let

S(n) = {(i, j) | 1 ≤ i ≤ j ≤ n}. Let u = u 1 u 2 • • • u n ∈ A n
be a word of length n with values in A.

Let Alph(u) = {u i | 1 ≤ i ≤ n} denote the subset of A consisting of all letters occurring in u. For each pair (i, j) ∈ S(n), we denote by u[i, j] the factor u i u i+1 • • • u j . In case i = j, we write u[i] in lieu of u [i, i]. Finally, let P denote the collection of all palindromes. Definition 1. Let u ∈ A n and S ⊆ S(n). We say that S palindromically generates u if the following three conditions are verified:

• u[i, j] ∈ P for all (i, j) ∈ S,

• for all k ∈ {1, 2, . . . , n}, there exists (i, j) ∈ S with i ≤ k ≤ j,

• for each non-empty set B and word v ∈ B n , if v[i, j] ∈ P for all (i, j) ∈ S then there exists a mapping c : Alph(u) → B which extends to a morphism c : Alph(u) * → B * of words such that c(u) = v.

We call the elements of S generators (or palindromic generators). It follows from the definition that if a set S ⊆ S(n) palindromically generates two words u ∈ A n and v ∈ B n of length n, then u and v are word isomorphic, i.e., there is a bijection ν : Alph(u) → Alph(v) which extends to a morphism of words such that ν(u) = v. In particular, the last condition in Definition 1 states that Alph(u) has the largest cardinality such that the first two conditions are satisfied.

Example 2. For each letter a ∈ A, the singleton set S = {(1, 1)} palindromically generates a. The set S = {(1, 2)} palindromically generates the word a 2 = aa, while S = {(1, 1), (2, 2)} palindromically generates the word ab. For n ≥ 3, the set S = {(1, n -1), (1, n)} as well as S = {(1, n), (2, n)} palindromically generate a n .

Given a word u ∈ A n , let µ(u) denote the infimum of the cardinality of all sets S ⊆ S(n) that palindromically generate u, i.e., µ(u) = inf{Card S | S ⊆ S(|u|) palindromically generates u}.

As usual, we let inf(∅) = +∞. It is easily checked that, for instance, µ(a n ) = 1 for n = 1, 2 and µ(a n ) = 2 for n ≥ 3. Also µ(u) < +∞ whenever u ∈ A * is a nonempty word and Card A = 2, i.e., whenever u is a binary word. Indeed, it is readily verified that for each nonempty word u ∈ {0, 1} * , the set [START_REF] Berstel | Sturmian and Episturmian Words (A Survey of Some Recent Results)[END_REF][START_REF] Brlek | On the palindromic complexity of infinite words[END_REF], [START_REF] Berstel | Sturmian words, Lyndon words and trees[END_REF][START_REF] Carpi | Codes of central Sturmian words[END_REF], (4, 7), [START_REF] Deloup | Palindromes and orderings in Artin groups[END_REF][START_REF] De Luca | Sturmian words: structure, combinatorics, and their arithmetics[END_REF]} palindromically generates u. In this example, also [START_REF] Carpi | Codes of central Sturmian words[END_REF][START_REF] Col | Palindromes dans les progressions arithmétiques (French)[END_REF] is in S u , but it is not needed in the generating set. The set S is the smallest palindromic generating set whence µ(00101100) = 5. In contrast, for the ternary word abca no subset S of S(4) palindromically generates abca. For this reason, we shall primarily restrict ourselves to binary words.

S u = {(i, j) | u[i, j] = ab k a for {a, b} = {0, 1}, k ≥ 0} palindromically generates u. Typically µ(u) < Card S u , e.g., if u = 00101100, then the set S = {(1, 2),
Given an infinite word x ∈ A N , we are interested in the quantity

ψ(x) = sup{µ(u) | u is a factor of x}.
We begin by showing that if x ∈ A N is aperiodic (i.e., not ultimately periodic), then ψ(x) ≥ 3. This is stated in Proposition 10. We will also prove that ψ(T) = +∞ for the Thue-Morse infinite word T defined as follows. Let T = 01101001100101101001 . . . denote the Thue-Morse infinite word defined as the fixed point beginning in 0 of the morphism τ : {0, 1} * → {0, 1} * given by τ (0) = 01 and τ (1) = 10. Indeed, in Proposition 11 we will show that for each integer n > 0 there exists a factor u of T with µ(u) ≥ n.

The main result of this paper is to establish the existence of aperiodic binary words x for which ψ(x) = 3 and in fact to obtain a complete classification of such words. Recall that an infinite binary word x ∈ {0, 1} N is called Sturmian if x contains exactly n + 1 factors of each given length n ≥ 1. As is well known, each Sturmian word x is aperiodic and uniformly recurrent, i.e, each factor of x occurs in x with bounded gap. In order to state our main result we will make use of the following morphisms: For each subset A ⊆ {0, 1}, we denote by d A : {0, 1} * → {0, 1} * the doubling morphism defined by the rule 

d A (a) = { aa if a ∈ A a if a / ∈ A. Definition 3. A word y ∈ {0, 1} N is called double Sturmian if y is a suffix of d A (x)

Preliminaries

Throughout this section A will denote a finite non-empty set. We denote by A + the set of all words (or finite sequences) of the form w = a 1 a 2 • • • a n with a i ∈ A. We write |w| = n for the length of w. We denote the empty word by ε and set

A * = A + ∪ {ε}. Given w, u, v ∈ A + with w = uv, we write v = u -1 w and u = wv -1 . For w = a 1 a 2 • • • a n ∈ A n
we denote by w R the reversal (or mirror image) a n • • • a 2 a 1 . A word w is a palindrome if w = w R . Let P denote the set of all palindromes (over any alphabet).

Given two non-empty words u and v, we say u is a border of v if u is both a proper prefix and a proper suffix of v. If v has no borders then it is said to be unbordered.

A word u ∈ A + is said to be overlap-free if it has no factors of the form vzvzv where v and z are nonempty words.

An infinite word ω ∈ A N is aperiodic if it is not of the form ω = uv N = uvv • • • for some words u, v ∈ A * with v ̸ = ε. The following result was shown by Saari in [START_REF] Saari | Lyndon words and Fibonacci numbers[END_REF]. It improves an earlier result of Ehrenfeucht and Silberger in [START_REF] Ehrenfeucht | Periodicity and unbordered segments of words[END_REF]. We shall give a simplified proof of this result. Lemma 6. Each aperiodic infinite word ω contains an infinite number of Lyndon words. In particular ω has arbitrarily long unbordered factors.

Proof. Let ≼ be a lexicographic ordering of words, and suppose to the contrary that ω contains only finitely many Lyndon factors. We write ω = u 1 u 2 • • • where for each i ≥ 2 we have that u i is the longest Lyndon word that is a prefix of the suffix (u

1 • • • u i-1 ) -1 w.
Then, for all i, we have u i+1 ≼ u i since otherwise u i u i+1 would be a Lyndon prefix longer than u i . Thus there exists a positive integer j such that w = u 1 • • • u j-1 u ω j , contradicting that ω is aperiodic.

The last claim now follows from the well known fact that every Lyndon word is unbordered. Indeed, if u = vuv is a Lyndon word with respect to the order ≼, then vvu ≼ vuv (since vu ≼ uv), and hence v is the empty word.

For each pair I = (i, j) ∈ S(n), we define a function ρ I : {i, i + 1, . . . , j} → {i, i + 1, . . . , j} called a reflection by ρ I (k) = i + j -k. The function ρ I is an involution, i.e., it is a permutation that satisfies ρ I (ρ

I (k)) = k for all i ≤ k ≤ j. For u ∈ A n we have that u[i, j] ∈ P if and only if u[k] = u[ρ I (k)] for each i ≤ k ≤ j. If J = (i ′ , j ′ ) with i ≤ i ′ ≤ j ′ ≤ j,
we denote by ρ I (J) the reflected pair (ρ I (j ′ ), ρ I (i ′ )). The following lemma gives essentially a reformulation of Definition 1: Lemma 7. Let u ∈ A n be such that all letters of A occur in u. Let S ⊆ S(n). The following conditions are equivalent: (i) S palindromically generates u.

(ii) for each k ∈ {1, 2, . . . , n}, there exists an (i, j) ∈ S such that i ≤ k ≤ j, and for each

1 ≤ i, j ≤ n, we have u[i] = u[j] if and only if
there exists a finite sequence (or path)

(I t ) r t=1 ∈ S r (⋆) such that j = ρ Ir ρ I r-1 • • • ρ I 1 (i).
Proof. We first define relation θ as follows. Let iθj if and only if there exists an I ∈ S such that j = ρ I (i). Denote by θ * the reflexive and transitive closure of θ. The relation θ is symmetric by the definition of the mappings ρ I and thus θ * is an equivalence relation.

Here iθ * j if and only if (⋆) holds for some sequence (I t ) r t=1 of elements from S. Let then v ∈ B n be any word such that the factor v[i, j] is a palindrome for each (i, j) ∈ S. Now,

iθj implies v[i] = v[j]. Consequently, iθ * j implies u[i] = u[j]
by transitivity. It follows that the cardinality of B is at most the number of equivalence classes of θ * .

If S palindromically generates the given word u, then, by the last condition of Definition 1, each equivalence class of θ * corresponds to a different letter in A. Therefore u[i] = u[j] if and only if iθ * j. This proves the claim from (i) to (ii).

Suppose then that S satisfies (ii). First, let I = (i, j) ∈ S, and

let i ≤ k ≤ j. Denote k ′ = ρ I (i). By (ii), we have that u[k] = u[k ′ ],
and therefore u[i, j] ∈ P. Hence the first condition of Definition 1 holds. The second condition is part of (ii). For the third condition, by the beginning of the proof, any word v ∈ B n for which v[i, j] is a palindrome for each (i, j) ∈ S, the cardinality of B is at most the cardinality of A. By (ii), we have that v

[i] = v[j] implies u[i] = u[j] which proves the claim.
Definition 8. Suppose S ⊆ S(n) palindromically generates a word u ∈ A n , and let m ∈ {1, 2, . . . , n}. We say m is a leaf with respect to S if there exists at most one pair

I = (i, j) ∈ S for which i ≤ m ≤ j and ρ I (m) ̸ = m. Lemma 9. Let u ∈ A + . Then µ(v) ≤ µ(u) for all factors v of u.
Proof. The result is clear in case µ(u) = +∞. So suppose S ⊆ S(|u|) palindromically generates u and set k = Card S. It suffices to show that if u = ax = yb for some words x and y and letters a, b ∈ A, then max{µ(x), µ(y)} ≤ k. We prove only that µ(x) ≤ k as the proof that µ(y) ≤ k is completely symmetric.

Suppose S = {I 1 , I 2 , . . . , I k } palindromically generates u and let m ∈ N be the largest integer such that It follows that S ′ also palindromically generates u and I is the only generator in S ′ containing the initial position 1. Whence 1 is a leaf w.r.t. S ′ , and hence

I = (1, m) ∈ S. Let D = {r ∈ {1, 2, . . . , k} | I r = (1, q) with q < m}. Let S ′ = S ∪ {I ′ r | r ∈ D} \ {I r | r ∈ D} where for each r ∈ D we set I ′ r = ρ I (I r ) = (m -q + 1, m); see Fig. 1. £ I r £ I ′ r ¢ ¡ I • • • w
S ′′ = S ′ ∪ {(2, m -1)} \ {I}
palindromically generates the suffix x = a -1 u. This proves the claim.

Proposition 10. If x ∈ A N is aperiodic, then ψ(x) ≥ 3.
Proof. Let r = Card A and let x ∈ A N be aperiodic. Suppose on the contrary that ψ(x) ≤ 2. By Lemma 6, x contains an unbordered factor w of length |w| ≥ 2r + 1. If w is palindromically generated by a singleton set {I} ⊆ S(|w|), then w contains at least r + 1 distinct symbols, a contradiction. If w is palindromically generated by a set {(1, p), (q, |w|)} ⊆ S(|w|) of size 2, then as w is unbordered, it follows that the palindromic prefix w [1, p] does not overlap the palindromic suffix w[q, |w|] (i.e., p < q). It follows again that w must have at least r + 1 distinct symbols, a contradiction. Hence by Lemma 9, ψ(x) ≥ 3.

Consider the Thue-Morse word T = 0110100110010110100101100110100110010110 . . . whose origins go back to the beginning of the last century with the works of the Norwegian mathematician Axel Thue [START_REF] Thue | Über unendliche Zeichenreihen[END_REF]. The nth entry t n of T is defined as the sum modulo 2 of the digits in the binary expansion of n. Alternatively, T is the fixed point beginning in 0 of the morphism τ : {0, 1} * → {0, 1} * given by τ (0) = 01 and τ (1) = 10. Proposition 11. For each integer n > 0 there exists a factor u of T with µ(u) ≥ n, i.e., ψ(T) = +∞.

Proof. Set t k = τ k (0) for k ≥ 0. We will show that µ(t 2k ) > µ(t 2k-2 ) for each k > 1 from which it follows immediately that ψ(T) = +∞. For each k ≥ 0 there exists S 2k ⊆ S (2 2k ) which palindromically generates t 2k and µ(t 2k ) = Card S 2k . We first observe that the prefix

t 2k of T of length 2 2k is a palindrome, since t 2k = t 2k-1 t R 2k-1 .
Also, since T is overlap-free (see e.g. [START_REF] Lothaire | Combinatorics on Words[END_REF]), it follows that if v is a palindromic factor of t 2k , either v lies completely in the prefix t 2k-1 or completely in the suffix t R 2k-1 , or its midpoint is the midpoint of t 2k . There necessarily exists a generator in S 2k that shares the middle point with t 2k in order to relate an occurrence of 0 in the prefix t 2k-1 with an occurrence of 0 in the suffix t R 2k-1 of t 2k . Such a generator can always be replaced by the pair F = (1, 2 2k ) corresponding to the full palindrome t 2k , and thus without loss of generality we can assume that F ∈ S 2k .

If I = (i, j) ∈ S 2k lies in the suffix t R 2k-1 of t 2k , i.e., if i > 2 2k-1 , then we replace I by its reflection I ′ = ρ F (I) which lies entirely in the first half of t 2k . Since ρ I = ρ F ρ I ′ ρ F on the domain of ρ I , the set (S 2k \ {I}) ∪ {I ′ } generates t 2k . In this fashion we obtain a generator set S ′ 2k consisting of F and a set of pairs (i, j) where j ≤ 2 2k-1 . Thus S ′ 2k \ {F } palindromically generates the prefix t 2k-1 of t 2k . Since t 2k-2 is a factor of t 2k-1 , it follows from Lemma 9 that µ(t 2k ) > µ(t 2k-1 ) ≥ µ(t 2k-2 ) as required.

The following lemmas will be used in the subsequent section: Lemma 12. Suppose u ∈ A n is palindromically generated by a set S ⊆ S(n). Suppose further that there exist p, q ∈ N such that (p, p + 2q) ∈ S. Then for

A = {u[p + q]} we have µ(d A (u)) ≤ Card S.
Proof. Let a = u[p+q], and write d a for d {a} . We define first a mapping p da : {1, 2, . . . , n} → N ∪ {(j, j + 1) | j ∈ N} for the positions of u ∈ A n . It maps every position of u to a corresponding position of d a (u) or to a pair of positions of d a (u) depending on whether the position of u has a label a that will be doubled or some other label. For convenience let us denote the prefix u [1, i] of u by u i and let u 0 be the empty word.

p da (i) = { |d a (u i )| if u[i] ̸ = a (|d a (u i )| -1, |d a (u i )|) if u[i] = a. Let S ′ = {(i ′ , j ′ ) | (i, j) ∈ S} where i ′ = |d a (u i-1 )| + 1 and j ′ = |d a (u j )|.
In other words, we dilate each generator (i, j) by applying d a to the corresponding factor u[i, j]. Clearly Card S ′ = Card S. We shall show that S ′ palindromically generates d a (u). We claim first that if a position i 1 of u is reflected to i 2 by a generator (i S , j S ) ∈ S then p da (i 1 ) is reflected to p da (i 2 ) by a generator (i S ′ , j S ′ ) ∈ S ′ . Here (i S ′ , j S ′ ) is the generator in S ′ corresponding to the generator (i S , j S ) in S.

Now U = u[i S , i 1 -1] = u[i 2 + 1, j S ] R , and thus |d a (U )| = |d a (U R )| = |d a (u[i 2 + 1, j S ])|; see Figure 2. So if u[i 1 ] ̸ = a then p da (i 1 ) -i S ′ = j S ′ -p da (i 2 ) and otherwise p da (i 1 ) -(i S ′ , i S ′ + 1) = (j S ′ -1, j S ′ ) -p da (i 2 ).
Thus p da (i 1 ) is reflected to p da (i 2 ) as a single or as a pair of positions. Let us denote, for any x ∈ A,

u i S U s i 1 s i 2 U R j S d a (u) i ′ S £ ¢ ¡ |d a (U )| s p da (i 1 ) s p da (i 2 ) £ ¢ ¡ |d a (U R )| j ′ S
Ω u,x = {i | 1 ≤ i ≤ n and u[i] = x},
i.e., Ω u,x is the set of occurrences of x in u. By Lemma 7, for each i, j ∈ Ω u,x there exists a sequence i = i 1 , i 2 , . . . , i l = j of positions i m ∈ Ω u,x such that i m is reflected to i m+1 by some generator in S. As we just showed there also exists a sequence i ′ = p da (i 1 ), p da (i 2 ), . . . , p da (i l ) = j ′ such that p da (i m ) is reflected to p da (i m+1 ) by some generator in S ′ . Thus if i ∈ Ω u,x then p da (i) ∈ Ωda(u),x where

Ωda(u),x = {p da (i) | i ∈ Ω u,x }.
In fact, if x ̸ = a then Ωda(u),x is the same set as Ω da(u),x . The only problematic set is Ωda(u),a = {(i ′ , i ′ + 1) | 1 ≤ i ′ < |d a (u)| and for which ∃i ∈ Ω u,a s.t. p da (i) = (i ′ , i ′ + 1)}. Now, consider the generator (p ′ , q ′ ) ∈ S ′ that is obtained from (p, p + 2q) ∈ S, i.e. (p ′ , q ′ ) = (|d a (u p-1 )| + 1, |d a (u p+2q )|). The length of the palindrome determined by the generator (p ′ , q ′ ) is even because

|d a (u[p, p + q -1])| = |d a (u[p + q + 1, p + 2q])| and |d a (u[p + q])| = 2.
Hence a pair of two consecutive positions of d a (u), namely the positions of p da (p + q) ∈ Ωda(u),a , is now in the middle of this palindrome (p ′ , q ′ ) thus these two positions reflect to each other and they have to have the same letter in word d a (u). Because of the pairwise reflections among the set Ωda(u),a , the positions of u according to the pairs in this set contain the same letter a.

So we have that Ωda(u),x = Ω da(u),x for x ̸ = a. In the case x = a the positions covered by the pairs in Ωda(u),a are exactly the positions in Ω da(u),a . This shows that there exists a path as described in Lemma 7 between each positions in Ω da(u),x for any x ∈ A thus S ′ palindromically generates the doubled word d a (u) and this ends the proof.

Corollary 13. Let a ∈ A and u

∈ A n . Then for A = {a} we have µ(d A (u)) ≤ µ(u) + 1.
Proof. The result is clear if the symbol a does not occur in u since in this case d A (u) = u. Thus we can assume that a occurs in u. Suppose S ⊆ S(n) palindromically generates u and µ(u) = Card S. If S contains a generator that determines a palindrome of odd length whose center is equal to a, then by Lemma 12 we deduce that µ(d A (u)) ≤ µ(u) < µ(u) + 1. If no such generator exists, then we can add a "trivial" generator (i, i) where i is such that u[i] = a. Now S ∪ {(i, i)} has µ(u) + 1 elements and the result follows again from Lemma 12.

Example 14. Consider a palindrome u = aba which can be generated by one palindromic generator [START_REF] Adamczewski | On complexity of algebraic numbers, II. Continued fractions[END_REF][START_REF] Berstel | Sturmian words, Lyndon words and trees[END_REF]. The doubled word d {a} (u) = aabaa can be generated by the set {(1, 5), (1, 2)} and µ(d {a} (u)) = µ(u) + 1. If we instead double the letter b then we do not need any additional generators, i.e., the doubled word d {b} (u) = abba can be generated by [START_REF] Adamczewski | On complexity of algebraic numbers, II. Continued fractions[END_REF][START_REF] Brlek | On the palindromic complexity of infinite words[END_REF] and µ(d {b} (u)) = µ(u). Lemma 15. Let w ∈ {0, 1} * be an unbordered word of length n which is palindromically generated by a set S ⊆ S(n) with Card S = 3. Then w has at most four leaves. Moreover, there are at most two leaves with label 0, and at most two leaves with label 1.

Proof. We note first that since w is unbordered, the longest palindromic prefix U and the longest palindromic suffix V of w do not overlap. Indeed, if U = ux and V = xv then w has a border x R ; a contradiction.

Let S = {(1, i), (j, n), (k, m)}. Since the maximal palindromes U and V do not overlap, we have i < j, and hence every path starting from a leaf has a unique continuation to a new position until the path enters another leaf. Therefore, there is at most one path for the letter 0 and at most one for the letter 1. These two paths necessarily consume every position of w, and the endpoints of these paths are the leaves of S.

A characterization of binary words with ψ(x) = 3

We begin by recalling a few basic facts concerning Sturmian words (see [START_REF] Berstel | Sturmian and Episturmian Words (A Survey of Some Recent Results)[END_REF][START_REF] Lothaire | Combinatorics on Words[END_REF]). An infinite binary word ω ∈ {0, 1} N is called Sturmian if ω contains exactly n + 1 factors of each given length n ≥ 1. Each Sturmian word ω is aperiodic, uniformly recurrent, closed under reversal (i.e., if u is a factor of ω then so is u R ) and balanced (for any two factors u and v of the same length, ||u| a -|v| a | ≤ 1 for each a ∈ {0, 1}, where |w| a denotes the number of occurrences of a in w). In fact an infinite binary word ω ∈ {0, 1} N is Sturmian if and only if it is aperiodic and balanced.

A factor u of a Sturmian word ω is called right special (resp. left special) if both u0 and u1 (resp. 0u and 1u) are factors of ω. Thus ω contains exactly one right special (resp. left special) factor of each given length, and u is right special if and only if u R is left special. A factor u of ω is called bispecial if u is both right and left special. Thus, if u is a bispecial factor of ω, then u is a palindrome. A binary word x ∈ {0, 1} * is called a central word if and only if x ∈ P and x0 and x1 are both balanced. We recall the following fact which is a consequence of a result in [START_REF] De Luca | Sturmian words: structure, combinatorics, and their arithmetics[END_REF] (see also [START_REF] Carpi | Codes of central Sturmian words[END_REF]): Lemma 16 (Proposition 22 in [START_REF] Berstel | Sturmian and Episturmian Words (A Survey of Some Recent Results)[END_REF]). A word x ∈ {0, 1} * is a central word if it is a power of a single letter or if it satisfies the equations x = u01v = v10u with u, v ∈ {0, 1} * . Moreover in the latter case u and v are central words and setting p = |u| + 2 and q = |v| + 2, we have that p and q are relatively prime periods of x and min{p, q} is the least period of x.

We will also need the following result. Lemma 17. Let u be an unbordered factor of a Sturmian word ω ∈ {0, 1} N . Then either u ∈ {0, 1} or u = axb, where {a, b} = {0, 1}, and x is a central word.

Proof. If u / ∈ {0, 1}, then we can write u = axb with {a, b} = {0, 1}. We claim that x is a palindrome. In fact, suppose vc (resp. dv R ) is a prefix (resp. suffix) of x with v ∈ {0, 1} * and {c, d} = {0, 1}. Since u is balanced it follows that c = b and d = a. Since av R b and avb are both factors of ω, it follows that v is a bispecial factor of ω, and hence a palindrome. Thus avb is both a prefix and a suffix of u. Since u is unbordered, it follows that u = avb, and hence x = v. Thus x is central.

We also recall the following extremal property of the Fine and Wilf theorem [START_REF] Fine | Uniqueness theorem for periodic functions[END_REF] concerning central words due to de Luca and Mignosi [START_REF] De Luca | Some combinatorial properties of Sturmian words, Theoret[END_REF] Lemma 18 (Proposition 23 in [START_REF] Berstel | Sturmian and Episturmian Words (A Survey of Some Recent Results)[END_REF]). A word x is a central word if and only if there exist relatively prime positive integers p and q with |x| = p + q -2 such that x has periods p and q.

We will also use the following property by Lothaire [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF] several times to find a period of a palindrome which has a palindromic prefix (and suffix).

Lemma 19 ([19]

). If uv = vu ′ , then |u| is a period of uv.

A word y ∈ {0, 1} N is called double Sturmian if y is a suffix of d A (x) for some Sturmian word x and A ⊆ {0, 1} (where d A is the doubling morphism defined in section 1). By taking A = ∅, each Sturmian word is double Sturmian. Proposition 20. Let y be a factor of a double Sturmian word ω ∈ {0, 1} N . Then µ(y) ≤ 3.

Proof. Let y be a factor of a double Sturmian word ω. Thus there exists a Sturmian word ω ′ ∈ {0, 1} N and a subset A ⊆ {0, 1} such that ω is a suffix of d A (ω ′ ). Let y ′ be the shortest unbordered factor of ω ′ such that y is a factor of d A (y ′ ). Because ω ′ is aperiodic and uniformly recurrent, such a factor y ′ always exists. Now by Lemma 9 it is enough to show that d A (y ′ ) is palindromically generated by a set with at most three generators. By Lemma 12 it suffices to show that y ′ is palindromically generated by a set S ′ with Card S ′ ≤ 3 and containing two generators which determine two palindromes of odd length in y ′ with distinct central symbols .

Since y ′ is unbordered, by Lemma 17, we may write y ′ = axb where x ∈ {0, 1} * is a central word and {a, b} = {0, 1}. Without loss of generality we can assume that a = 0 and b = 1. We first consider the case where x is a power of a single letter. If x is empty, then y ′ = 01 is palindromically generated by

S ′ = {(1, 1), (2, 2)}. If x = 0 n with n ≥ 1, then y ′ = 0 n+1 1 is palindromically generated by S ′ = {(1, n), (1, n + 1), (n + 2, n + 2)}. If x = 1 n with n ≥ 1, then y ′ = 01 n+1 is palindromically generated by S ′ = {(1, 1), (2, n + 1), (2, n + 2)}.
z begins in 0. On the other hand, since 10u is a suffix of x of length p and p divides p ′ , it follows that z begins in 1. This contradiction proves that 0u0 is the longest palindromic prefix of 0x1. Similarly one deduces that 1v1 is the longest palindromic suffix of 0x1.

By Lemma 16, p and q are relatively prime so two of the three palindromes {x, 0u0, 1v1} have odd length and by Lemma 15 the central symbols of these have to be different.

We next prove the converse of Theorem 4, namely: Proposition 22. Suppose w ∈ {0, 1} + is such that µ(w) ≤ 3. Then w is a factor of a double Sturmian word ω.

In the following lemmas we use a and b as variables of letters such that {a, b} = {0, 1}. Lemma 15 on the number of leaves entails some immediate restrictions on w.

Lemma 23. Suppose w ∈ {a, b} * be such that µ(w) ≤ 3. Then (i) The words a 3 and b 3 do not both occur in w.

ii) For odd k, ba k b and a k+2 do not both occur in w.

(iii) The words ba k b and a k+3 do not both occur in w for any k ≥ 1.

(iv) All three words a k+2 , ba k+1 b and ba k b do not occur in w for any k ≥ 1.

Proof. In each of the cases we assume that w with |w| = n is a minimal counter example, i.e., none of its proper factors is a counter example. By the minimality assumption, w begins and ends in the expressed forbidden words. Since also the reverse w R is a counter example, we may assume that the first letter of w is b.

For Case (i), let w = b 3 ua 3 for some u. By the minimality assumption, w is unbordered, and w is palindromically generated by the set S = {(1, 3), (n -2, n), (i, j)} for some (i, j) that determines the palindrome w[i, j]. Here either i > 3 or j < n-2, since the palindrome w[i, j] starts and ends with the same letter. However, this means that there are three leaves for a or three leaves for b. This contradicts Lemma 15. § ¤ For Case (ii), let w = ba k bua k+2 for some u. Since w is minimal, it is unbordered, and it is palindromically generated by S = {(1, k + 2), (n -k -1, n), (i, j)} for some (i, j). For Case (iii), let w = ba k bua k+3 . Since w is minimal, w is unbordered, and it is palindromically generated by S = {(1, k + 2), (n -k -2, n), (i, j)} for some (i, j). The palindrome w[i, j] misses at least the last three a's of w. Again Lemma 15 yields a contradiction.

ba k b § ¤ a k+2 ¦ ¥ w[i, j]
For Case 4, consider first any factor of the form v = ba k bua k+1 of w, where ba k b occurs only as a prefix and a k+1 only as a suffix of v. Again v is unbordered, and S contains a generator (i, j), where i > 1 and j < |v|, i.e., the palindrome v[i, j] misses at least the suffix a and the prefix b of v. By Case (ii), u ̸ = ab (for otherwise k + 1 ≥ 3), and hence, by Lemma 15, u ∈ {ε, b}. Similarly, if v = a k+1 uba k b then u ∈ {ε, b}. This proves the case since if a k+2 and ba k b occur in w, by the above ba k+1 b does not occur in w.

The key result for the converse is stated in Lemma 25 which gives a simplified criterion for pairs witnessing that a word is unbalanced when compared to the general case of Lemma 24. We have Lemma 24 (Proposition 2.1.3 in [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF]). If w ∈ {a, b} * is unbalanced then there is a palindrome u such that both aua and bub are factors of w.

Lemma 25. Suppose w ∈ {a, b} * is unbalanced and µ(w) ≤ 3. Let aua and bub be any palindromic factors of w. Then u = a k or u = b k for some even k ≥ 0.

Proof. By Lemma 23 we can assume without loss of generality that b 3 is not a factor of w. Also, the case for u = ε is clear, and thus we can assume that u ̸ = ε.

Consider a shortest factor z of w containing both aua and bub. Then z begins with aua and ends with bub, or vice verse, and z has unique occurrences of the factors aua and bub. We can suppose that z starts with a, since otherwise we take the reverse of z. Now, aua is a maximal palindromic prefix of z, since a longer palindromic prefix of z would contain aua as a suffix. Similarly bub is a maximal palindromic suffix of z.

By Lemma 9, µ(z) ≤ 3. Since u is a palindrome, the factors aua and bub do not overlap. Indeed, if z = au 1 bu 2 au 3 b, where u = u 1 bu 2 = u 2 au 3 , then by taking a reverse of u, we have u R 2 bu R 1 = u 2 au 3 , and so bu R 1 = au 3 ; a contradiction since a ̸ = b. Since aua and bub do not overlap and z is chosen to be minimal, z is unbordered, and thus Lemma 15 applies to z.

Let the palindromic generators of z be (1, p) (s, n) and (i, j). Then z [1, p] is a prefix of the maximal palindromic prefix aua of z, z[s, n] is a suffix of the maximal palindromic suffix bub of z, and z = xz[i, j]y, where x and y are non-empty. By Lemma 15, |x|+|y| ≤ 4, and |x|, |y| ≥ 1 since two of the leaves (one a and one b) reside at the ends of z. We have |x| ̸ = |y|, since the last letter of aua and the first letter of bub cannot be reflected to each other by the generator (i, j). Therefore, either |x| = 1 or |y| = 1. We assume that |y| = 1 (i.e., y = b) and |x| > 1, the proof for |x| = 1 and |y| > 1 being similar. We now have found three leaves, two in the prefix of z and one at the end. Hence, we have z = z [1, p]vz [s, n] where |v| ≤ 1 since the positions in v are also leaves.

Since bub is a maximal palindromic suffix of z and y = b, z[i, j] is preceded by the letter a. It follows that both leaves for the letter a occur in the prefix x, and the remaining fourth leaf resides at a position for the letter b. In particular, if v ̸ = ε then v = b. d A(x) (y) Suppose then that k = 0. Since now 11 occurs in u but 111 does not occur in w, we have 1 / ∈ A(w). By the definition of A(w), the word 010 must be a factor of u, and hence by the minimality of w, we have u = 00(10) r 11 for some positive r ≥ 1. From this also 0 / ∈ A(w) follows, and hence u = w. However, the palindromic generators of w are now (1, 2) that determines the prefix w [START_REF] Adamczewski | On complexity of algebraic numbers, II. Continued fractions[END_REF][START_REF] Berstel | Sturmian and Episturmian Words (A Survey of Some Recent Results)[END_REF] = 00, and (n -1, n) that determines the suffix w[n -1, n] = 11, and (i, j) that determines the factor w[i, j]. But the palindrome w[i, j] cannot overlap with both w [START_REF] Adamczewski | On complexity of algebraic numbers, II. Continued fractions[END_REF][START_REF] Berstel | Sturmian and Episturmian Words (A Survey of Some Recent Results)[END_REF] and w[n -1, n] and thus the two 0's in w [START_REF] Adamczewski | On complexity of algebraic numbers, II. Continued fractions[END_REF][START_REF] Berstel | Sturmian and Episturmian Words (A Survey of Some Recent Results)[END_REF] and the latter 0 are not equivalent or the two 1's in w[n -1, n] are not equivalent to a preceding 1; a contradiction. Proof of Proposition 22. By Lemma 26, if µ(w) ≤ 3, then w is a factor of the word d A(w) (u) for a balanced word u. Since the factors of Sturmian words are exactly the balanced words, see [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF], the claim follows. This also proves Theorem 4.

y J J J J J J v ¦ ¥ u § ¤ d A(x) (u) J J J J J J d A(x) (v)
Proof of Corollary 5. Let x ∈ {0, 1} N be aperiodic. By Proposition 10, ψ(x) ≥ 3.

If x is double Sturmian then, by Proposition 20, µ(w) ≤ 3 for all factors of x, and thus by definition, ψ(x) = 3.

For the converse, assume that ψ(x) = 3, and consider the set A(x) ⊆ {0, 1} together with the lean word y of x. Then x is a suffix of d A(x) (y). We need to show that y is Sturmian. Let v be a factor of y, and let u be a factor of y such that u contains v and d A(x) (u) contains a factor of the form ba 2k+1 b with k ≥ 0 for each a / ∈ A(x). Hence A(d A(x) (u)) = A(x), and therefore u is the lean word of d A(x) (u); see Figure 4. By Lemma 9, µ(d A(x) (u)) ≤ 3, and thus Lemma 26 yields that u, and hence also v, is balanced. It follows that y is Sturmian as required.
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 1 Figure 1: Reflecting the generators in S.

Figure 2 :

 2 Figure 2: Reflection complies with doubling morphism d a .

Figure 3 :

 3 Figure 3: The palindromic factors of w in Case 2.

  These generators determine the factors w[1, k + 2] = ba k b, w[n -k -1, n] = a k+2 and w[i, j], respectively, where the palindrome w[i, j] necessarily misses the first b of w[1, k + 2] and the last two a's of w[n -k -1, n]; see Figure 3. Also, w[1, k + 2] and w[n -k -1, n] are both of odd length, since k is assumed to be odd, and thus their middle positions are leaves. This contradicts Lemma 15.

Figure 4 :

 4 Figure 4: Proof of Proposition 5: The word v is extended to a lean factor u of d A(x) (u).

  but then d A(w) (u) has factors 0 2m+4 and 10 2m 1, and thus w has factors 0 2m+3 and 10 2m 1 contradicting Lemma 23(iii).
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In all of these cases there exist two generators which determine odd length palindromes with distinct central symbols.

Next we assume x is not a power of a single letter. By Lemma 16 there exist central words u and v such that y ′ = 0u01v1. Put U = 0u0 and V = 1v1. We claim that y ′ is palindromically generated by the set 

we deduce by Lemma 18 that x ′ is a central word. Thus x ′ is either a power of a single letter or it is isomorphic to x. In the first case w is also a power of a single letter. In the second case, w is word isomorphic to y ′ . Thus in either case there exists a mapping ν : We have an auxiliary result which shows that the generating set obtained in Proposition 20 for y = axb includes both the longest palindromic prefix and the longest palindromic suffix of y. This follows from the following refinement of Lemma 16.

Proposition 21. Let x ∈ {0, 1} * be a central word which is not a power of a single letter. Let u and v be as in Lemma 16. Then 0u0 (respectively 1v1) is the longest palindromic prefix (respectively suffix) of 0x1. Moreover, two of the three palindromes {x, 0u0, 1v1} are of odd length and have distinct central symbols.

Proof. Since u is a central word and hence a palindrome, we have that 0u0 is a palindromic prefix of 0x1. It remains to show that it is the longest such prefix. Suppose to the contrary that 0x1 admits a palindromic prefix 0u ′ 0 with |u ′ | > |u|. Then by lemmas 16 and 19, we have that p = |u| + 2, q = |v| + 2 and

follows from Lemma 16 that the min{p, q} = p. Also, as

But since both p and p ′ are periods of x, it follows from the Fine and Wilf Theorem [START_REF] Fine | Uniqueness theorem for periodic functions[END_REF] that x has period gcd(p, p ′ ) which by Lemma 16 is equal to p. Whence p divides p ′ . Let z denote the suffix of x of length p ′ . Since 0u ′ 0 is a palindromic prefix of 0x1 it follows that Suppose first that |u| is odd. If |v| = 1, and thus v = b, then the position of v is the fourth leaf, and z [1, p] = aua or z[s, n] = bub. Here z[s, n] ̸ = bub since otherwise the midpoint of bub would be a fifth leaf. Hence z [1, p] = aua and the midpoint of aua is a leaf. To avoid a fifth leave, it must be at position i = 2, i.e., |u| = 1, and consequently z = acabcb where c = a because b 3 does not occur in z. However, µ(aaabab) = 4. Therefore, by Lemma 15, v = ε, in which case, z [1, p] = aua and z[s, n] = bub, and they both have odd length. Again, necessarily |u| = 1 to avoid a fifth leaf, and as above z = aaabab with µ(z) = 4.

Consequently, |u| must be even. Let u = u 1 u 2 be such that z[i, j] = u 2 atbu 1 u 2 for some t and hence z = au 1 u 2 atbu 1 u 2 b. By the above, we have |t| ≤ 1, and if |t| = 1, then z [1, p] = aua and z[s, n] = bub. Here u 2 is a palindrome since z[i, j] is one. Also, in all cases both u 1 and t consist of leaves only, and hence 1 [1, p] = aua and z[s, n] = bub by Lemma 15, since the three positions of the prefix au 1 and the last position of z are leaves. Also, u 1 = ba since z[i, j] and thus also its middle factor abu 1 is a palindrome. Since z[i, j] is a palindrome, and |u 1 | is a period of u, we have z [1, p] = aua = a(ba) i+1 ba for some i. However, now |u| is odd; a contradiction. This proves the claim.

For w ∈ {0, 1} + ∪ {0, 1} N , we define A(w) ⊆ {0, 1} by the rule a ∈ A(w) if and only if w has no factors of the form ba 2k+1 b for any k ≥ 0 with a ̸ = b. If w is a finite word, we define the lean word of w to be the shortest word u such that d A(w) (u) contains w as a factor. We extend this notion to the infinite case as follows: If w ∈ {0, 1} N , we say u ∈ {0, 1} N is the lean word if d A(w) (u) contains w as a suffix and for all v ∈ {0, 1} N , if w is a suffix of d A(w) (v), then u is a suffix of v. Clearly, in each case the lean word of w is uniquely determined by w.

For instance, if w = 0010011, then A(w) = {0} and the lean word of w is u = 01011. Similarly if w = 011001, then A(w) = {0, 1} and the lean word u = 0101. For w = 0010110, we have A(w) = ∅ and hence w is its own lean word.

Lemma 26. Let w ∈ {0, 1} * be a binary word with µ(w) ≤ 3. Then the lean word u of w is balanced.

Proof. Let w be a shortest counter example to the claim such that its lean word u is unbalanced. By appealing to symmetry and Lemma 23(i), we can assume that w contains no occurrences of 111.

Since u is not balanced, it has factors 0v0 and 1v1 for some palindrome v according to Lemma 24. Now, also 0d A(w) (v)0 and 1d A(w) (v)1 are palindromes, and they are factors of w. By Lemma 25, we have d A(w) (v) = 0 k for some even integer k. It follows that v = 0 m for m = k/2 or m = k depending on whether 0 is in A(w) or not. Here u has factors 0 m+2 and 10 m 1.

Suppose first that k > 0. Since w has factors 0 k+2 and 10 k 1, it has no blocks of 0's of odd length by Lemma 23(iii) and (iv). Hence 0 ∈ A(w) by the definition of A(w),