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ABELIAN MAXIMAL PATTERN COMPLEXITY OF WORDS

TETURO KAMAE, STEVEN WIDMER, AND LUCA Q. ZAMBONI

ABSTRACT. In this paper we study the maximal pattern complexity of infinite words up to Abelian

equivalence. We compute a lower bound for the Abelian maximal pattern complexity of infinite

words which are both recurrent and aperiodic by projection. We show that in the case of binary

words, the bound is actually achieved and gives a characterization of recurrent aperiodic words.

1. INTRODUCTION

Let A be a finite non-empty set. We denote by A∗, AN and AZ respectively the set of finite

words, the set of (right) infinite words, and the set of bi-infinite words over the alphabet A. Given

an infinite word α = α0α1α2 . . . ∈ AN with αi ∈ A, we denote by Fα(n) the set of all factors of α
of length n, that is, the set of all finite words of the form αiαi+1 · · ·αi+n−1 with i ≥ 0. We set

pα(n) = # (Fα(n)).

The function pα : N → N is called the factor complexity function of α.
We recall that two words u and v in A∗ are said to be Abelian equivalent, denoted u ∼ab v, if

and only if |u|a = |v|a for all a ∈ A, where |u|a denotes the number of occurrences of the letter a
in u. It is readily verified that ∼ab defines an equivalence relation on A∗. We define

Fab
α (n) = Fα(n)/ ∼ab

and set

pab
α (n) = # (Fab

α (n)).

The function pab
α : N → N which counts the number of pairwise non Abelian equivalent factors of

α of length n is called the Abelian complexity of α (see [8]).

There are a number of similarities between the usual factor complexity of an infinite word and

its Abelian counterpart. For instance, both may be used to characterize periodic bi-infinite words

(see [7] and [1]). A word α is periodic if there exists a positive integer p such that αi+p = αi for

all indices i, and it is ultimately periodic if αi+p = αi for all sufficiently large i. An infinite word

is aperiodic if it is not ultimately periodic. The factor complexity function also provides a charac-

terization of ultimately periodic words. On the other hand, Abelian complexity does not yield such

a characterization. Indeed, both Sturmian words and the ultimately periodic word 01∞ = 0111 · · ·
have the same, constant 2, Abelian complexity.

As another example, both complexity functions give a characterization of Sturmian words amongst

all aperiodic words:

Theorem 1. Let α be an aperiodic infinite word over the alphabet {0, 1}. The following conditions

are equivalent:
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• The word α is balanced, that is, Sturmian.

• (M. Morse, G.A. Hedlund, [7]). The word α satisfies pα(n0) = n+ 1 for all n ≥ 0.

• (E.M. Coven, G.A. Hedlund, [1]). The word α satisfies pab
α (n) = 2 for all n ≥ 1.

In [3], the first and third authors introduced a different notion of the complexity of an infinite

word called the maximal pattern complexity:

For each positive integer k, let Σk(N) denote the set of all k-element subsets of N. An element

S = {s1 < s2 < · · · < sk} ∈ Σk(N) will be called a k-pattern. We put

α[S] := α(s1)α(s2) · · ·α(sk) ∈ Ak.

For each n ∈ N, the word α[n+S] is called a S-factor of α, where n+S := {n+s1, n+s2, · · · , n+
sk}. We denote by Fα(S) the set of all S-factors of α. We define the pattern complexity pα(S) by

pα(S) = #Fα(S)

and the maximal pattern complexity p∗α(k) by

p∗α(k) = sup
S∈Σk(N)

pα(S).

In [3] the authors show that maximal pattern complexity also gives a characterization of ulti-

mately periodic words :

Theorem 2. Let α ∈ AN. Then the following are equivalent

(1) α is eventually periodic

(2) p∗α(k) is uniformly bounded in k
(3) p∗α(k) < 2k for some positive integer k.

In other words, α is aperiodic if and only if p∗α(k) ≥ 2k for each positive integer k. We say α ∈
AN is pattern Sturmian if p∗α(k) = 2k for each positive integer k. Two types of recurrent pattern

Sturmian words are known: rotation words (see below) and a family of ‘simple’ Toeplitz words

(see [3]). Unfortunately, to date there is no known classification of recurrent pattern Sturmian

words (as in the case of Theorem 1).

The connection between items (1) and (3) in Theorem 2 was generalized by the first author and

R. Hui in [5]. We say α ∈ AN is periodic by projection if there exists a set ∅ 6= B $ A, such that

1B(α) := 1B(α(0))1B(α(1))1B(α(2)) · · · ∈ {0, 1}N.

is eventually periodic (where 1B denotes the characteristic function of B). We say α is aperiodic

by projection if α is not periodic by projection. Then:

Theorem 3. Let #A = r ≥ 2, and α ∈ AN be aperiodic by projection. Then p∗α(k) ≥ rk for each

positive integer k.

In other words, low pattern complexity (relative to the size of the alphabet) implies periodic by

projection. Notice that if #A = 2, then α is periodic by projection if and only if α is eventually

periodic.

In this paper we introduce and study an Abelian analogue of maximal pattern complexity: Given

a k-pattern S ∈ Σk(N), we define

Fab
α (S) = Fα(S)/ ∼ab
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and the associated Abelian pattern complexity

pab
α (S) = #Fab

α (S)

which counts the number of pairwise non Abelian equivalent S-factors of α. We define the Abelian

maximal pattern complexity

p∗ab
α (k) = sup

S∈Σk(N)
pab
α (S).

It is clear that for each positive integer k and for each pattern S ∈ Σk(N) we have

pab
α (S) ≤ pα(S) and p∗ab

α (k) ≤ p∗α(k).

In this paper we show :

Theorem 4. Let #A = r ≥ 2 and α ∈ AN be recurrent and aperiodic by projection. Then for

each positive integer k we have

p∗ab
α (k) ≥ (r − 1)k + 1

In case r = 2 equality always holds. Moreover for k = 2 and general r, there exists α satisfying

the equality.

For example, if α ∈ {0, 1}N is a Sturmian word and S ∈ Σk(N) is a k-block pattern, i.e.,

S = {0, 1, 2, . . . , k − 1}, then we have pab
α (S) = 2 (since α is balanced) while pα(S) = k + 1.

Since α is both recurrent and aperiodic, it follows from the above theorem that the Abelian maximal

pattern complexity p∗ab
α (k) takes the maximum value k + 1 for each positive integer k. Moreover,

all recurrent pattern Sturmian words share this property.

For a rotation word α ∈ AN with r = #A ≥ 3, we show that p∗ab
α (k) = rk for each positive

integer k (see Theorem 6). Since p∗α(k) = rk, the abelianization doesn’t decrease the complexity

in this case. On the other hand, in the proof of Theorem 4, we show that p∗ab
α (2) = 2r− 1 for any

Toeplitz word α ∈ AN with #A = 2.
We define two classes of words with A = {0, 1, · · · , r − 1} and r ≥ 2. Let θ be an irrational

number and c0 < c1 < · · · < cr−1 < cr be real numbers such that cr = c0 + 1. Define α ∈ Ak

by α(n) = i if nθ ∈ [ci, ci+1) (mod 1) for any i ∈ A and n ∈ N. We call such α a rotation word.

Let Z2 be the 2-adic compactification of Z and γ ∈ Z2. For n ∈ Z2, let τ(n) ∈ N ∪ {∞} be the

superimum of k ∈ N such that 2k devides n. Let Bi (i ∈ A) be infinite subsets of N ∪ {∞} such

that Bi ∩Bj = ∅ for any i, j ∈ A with i 6= j and ∪i∈ABi = N∪ {∞}. Define α ∈ AN by α(n) = i
if τ(n− γ) ∈ Bi for any i ∈ A and n ∈ N. We call such α a Toeplitz word.

We do not know whether the inequality in Theorem 4 is tight when r ≥ 3 and k ≥ 3.

2. BACKGROUND & NOTATION

Given a finite non-empty set A, we endow AN with the topology generated by the metric

d(x, y) =
1

2n
where n = inf{k : xk 6= yk}

whenever x = (xn)n∈N and y = (yn)n∈N are two elements of AN. For ω ∈ AN, let O(ω) denote

the closure of the orbit O(ω) := {T nω : n ∈ N} of ω with respect to the shift T on AN, where

(Tω)(n) = ω(n+ 1) (n ∈ N).
Given a finite word u = a1a2 . . . an with n ≥ 1 and ai ∈ A, we denote the length n of u by |u|.

For each a ∈ A, we let |u|a denote the number of occurrences of the letter a in u.



4 T. KAMAE, S. WIDMER, AND L.Q. ZAMBONI

For each u ∈ A∗, we denote by Ψ(u) the Parikh vector or abelianization of u, that is the vector

indexed by A
Ψ(u) = (|u|a)a∈A.

Given Ξ ⊂ A∗, we set

Ξab := Ξ/ ∼ab
and

Ψ(Ξ) := {Ψ(ξ) | ξ ∈ Ξ}.

There is an obvious bijection between the sets Ξab and Ψ(Ξ) where one identifies the Abelian class

of an element u ∈ A∗ with its Parikh vector Ψ(u).
Given a nonempty set Ω ⊂ AN, S ∈ Σk(N) and an infinite set N ⊂ N we put

Ω[S] := {ω[S] |ω ∈ Ω} ⊂ Ak

and

Ω[N ] := {ω[N ] |ω ∈ Ω} ⊂ AN

where ω[N ] ∈ AN is defined by ω[N ](n) = ω(Nn) (n ∈ N).
Analogously we can define the maximal pattern complexity of Ω by

p∗Ω(k) = sup
S∈Σk(N)

pΩ(S)

where

pΩ(S) = #Ω[S]

and the Abelian maximal pattern complexity of Ω

p∗ab
Ω (k) = sup

S∈Σk(N)
pab
Ω (S)

where

pab
Ω (S) = #Ω[S]ab.

3. SUPERSTATIONARY SETS & RAMSEY’S INFINITARY THEOREM

Lemma 3.1. Let ω ∈ AN be a recurrent infinite word. Then there exists an infinite set N = {N0 <
N1 < N2 < · · · } ⊂ N satisfying the following condition:

(∗) ∀i ≥ 0, ∀k ≥ 0 ωi+N0
ωi+N1

· · ·ωi+Nk−1
ω∞
i+Nk

∈ O(ω)[N ]

Proof. We show by induction on k that for each k ≥ 0 there exists natural numbers N0 <
N1 < · · · < Nk such that for each j ≤ k, if u0u1 · · ·uj ∈ O(ω)[{N0, N1, . . . , Nj}] then

u0u1 · · ·u
k−j+1
j ∈ O(ω)[{N0, N1, . . . , Nk}]. Clearly we can take for N0 any natural number in N.

Next suppose we have chosen natural numbers N0 < N1 < · · · < Nk with the required property.

Fix a positive integer L such that if u ∈ O(ω)[{N0, N1, . . . , Nk}], then there exists i ≤ L − Nk

with u = ωi+N0
ωi+N1

· · ·ωi+Nk
. Since ω is recurrent, there exists a positive integerNk+1 > Nk

such that ωi = ωi+Nk+1
for each i ≤ L. We now verify that N0 < N1 < · · · < Nk+1 satis-

fies the required property. So assume j ≤ k + 1 and u0u1 · · ·uj ∈ O(ω)[{N0, N1, . . . , Nj}]. We

must show that u0u1 · · ·u
k+1−j+1
j ∈ O(ω)[{N0, N1, . . . , Nk+1}]. This is clear in case j = k + 1,

thus we can assume j ≤ k. Then by induction hypothesis we have that u = u0u1 · · ·u
k−j+1
j ∈

O(ω)[{N0, N1, . . . , Nk}]. Fix i ≤ L−Nk such that u = ωi+N0
ωi+N1

· · ·ωi+Nk
. Then
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u0u1 · · ·u
k+1−j+1
j = u0u1 · · ·u

k−j+1
j uj

= ωi+N0
ωi+N1

· · ·ωi+Nk
ωi+Nk

= ωi+N0
ωi+N1

· · ·ωi+Nk
ωi+Nk+1

.

Hence u0u1 · · ·u
k+1−j+1
j ∈ O(ω)[{N0, N1, . . . , Nk+1}] as required. �

It is readily verified that:

Lemma 3.2. Let N = {N0 < N1 < N2 < · · · } ⊂ N be an infinite set satisfying the condition (*)

above, and let N ′ be any infinite subset of N . Then N ′ also satisfies (*).

Proposition 3.3. Let Ω ⊂ AN be non-empty and let N = {N0 < N1 < N2 < · · · } ⊂ N be an

infinite set. Then for every positive integer k, there exists an infinite subset N ′ of N (depending on

k) such that for any two finite subsets P and Q of N ′ with 1 ≤ |P | = |Q| ≤ k, we have

Ω[P ] = Ω[Q].

Proof. We will recursively construct a sequence of nested infinite patterns

N ′ = Nk ⊂ · · · ⊂ N2 ⊂ N1 = N

such that for each 1 ≤ i ≤ k we have

Ω[P ] = Ω[Q]

for all finite subsets P and Q of Ni with 1 ≤ |P | = |Q| ≤ i.
We begin with N2. Given two finite sub-patterns P and Q of N1 with |P | = |Q| = 2, we write

P ∼2 Q ⇐⇒ Ω[P ] = Ω[Q].

Then ∼2 defines an equivalence relation on the set of all sub-patterns of N1 of size 2, and hence

naturally defines a finite coloring on the set of all size 2 sub-patterns of N1, or equivalently on the

set of all 2-element subsets of the natural numbers N, where two patterns P and Q are monochro-

matic if and only if P ∼2 Q. We now recall the following well known theorem of Ramsey:

Theorem 5 ([2], Ramsey). ] Let k be a positive integer. Then given any finite coloring of the set of

all k-element subset of N, there exists an infinite set A ⊂ N such that any two k-element subsets

of A are monochromatic.

Thus applying the above theorem we deduce that there exists an infinite pattern N2 ⊂ N1 such

that any two sub-patterns P and Q of N2 of size 2 are ∼2 equivalent.

Having constructed Nk ⊂ Nk−1 ⊂ · · · ⊂ N2 ⊂ N1 = N with the required properties, we next

construct Nk+1 as follows: Given any two sub-patterns P and Q of Nk of size k + 1, we write

P ∼k+1 Q ⇐⇒ Ω[P ] = Ω[Q].

Again this defines a finite coloring of the set of all size k + 1 sub-patterns of Nk, or equivalently

on the set of all (k + 1)−element subsets of N. Hence by Ramsey’s theorem, we deduce that

there exists an infinite pattern Nk+1 ⊂ Nk such that any two sub-patterns of Nk+1 of size k + 1
are monochromatic, i.e., ∼k+1 equivalent. Moreover, since Nk+1 ⊂ Nk, it follows that any two

sub-patterns P and Q of Nk+1 of size 1 ≤ |P | = |Q| ≤ k are ∼|P | equivalent.

�

Definition 3.4. Let k ≥ 2. A nonempty set Ω ⊂ AN is called a k-superstationary set if

Ω[S] = Ω[S ′]

for any S and S ′ ∈ Σk(N) (see [6]).
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As an immediate consequence of Proposition 3.3 we have

Corollary 3.5. Let Ω ⊂ AN be non-empty and let N ⊂ N be an infinite set. Then for every positive

integer k, there exists an infinite subset N ′ such that Ω[N ′] is k-superstationary.

Lemma 3.6. Let α ∈ AN be aperiodic by projection and let N ⊂ N be any infinite set. Put

Ω := O(α)[N ]. Then for any {i < j} ⊂ N, the directed graph (A, Ei,j) is strongly connected,

where

Ei,j = {(ω(i), ω(j)) ∈ A× A; ω ∈ Ω, ω(i) 6= ω(j)}.

Proof. Fix {i < j} ⊂ N and N = {N0 < N1 < · · · }. For any l = 0, 1, · · · , Nj −Ni−1, let Al be

the set of a ∈ A such that α(n) = a holds for infinitely many n ∈ N with n ≡ l (mod Nj − Ni).
For any a, b ∈ A, if {a, b} ∈ Al for some l ∈ {0, 1, · · · , Nj − Ni − 1}, then a, b are two way

connected in the graph (A, Ei,j). Hence for a, b ∈ A, a, b are two way connected in the graph

(A, Ei,j) if there exist a0, a1, · · · , ak ∈ A and l1, · · · , lk ∈ {0, 1, · · · , Nj − Ni − 1} such that

(i) a0 = a, ak = b, and (ii) {ai−1, ai} ∈ Ali for any i = 1, · · · , k.

Suppose to the contrary that there exist a, b ∈ A such that a and b are not two way connected in

the graph (A, Ei,j). Let A be the set of a′ ∈ A such that a, a′ are two way connected in the graph

(A, Ei,j). Then, we have ∅ 6= A⊂
6=
A. Moreover, there exists S with ∅ 6= S ⊂ {0, 1, · · · , Nj−Ni−1}

such that Al ⊂ A for any l ∈ S and Al∩A = ∅ for any l ∈ {0, 1, · · · , Nj−Ni−1}\S. Therefore,

1A(α(0))1A(α(1))1A(α(2)) · · ·

is periodic with period Nj−Ni, which contradicts our assumption that α is aperiodic by projection.

Thus, the graph is strongly connected.

�

Combining lemmas 3.1, 3.2 and 3.6 with Proposition 3.3 we obtain:

Proposition 3.7. Let ω ∈ AN be recurrent and aperiodic by projection and k ≥ 2. Then there

exists an infinite set N ⊂ N such that Ω := O(α)[N ] is a k-superstationary set and

(1) For any ω ∈ Ω and i ∈ N,

ω(0)ω(1) · · ·ω(i− 1)ω(i)∞ ∈ Ω

(2) For any {i < j} ⊂ N, the directed graph (A, Ei,j) is strongly connected.

4. MAIN RESULTS

Proof of Theorem 4. Fix a positive integer k. By Proposition 3.7, there exists an infinite set N ⊂ N
such that Ω = O(α)[N ] ⊂ AN is k + 1-superstationary and satisfies conditions (1) and (2) of

Proposition 3.7. Since p∗ab
α (k) ≥ p∗ab

Ω (k), it is sufficient to prove that #Ωk
ab ≥ (r − 1)k + 1,

where Ωk := Ω[{0, 1, · · · , k − 1}].
Let (A, E0,1) be the strongly directed graph where

E0,1 = {(ω(0), ω(1)) ∈ A× A with ω(0) 6= ω(1); ω ∈ Ω}.

Then there exists a sequence a0a1 · · · al of elements in A containing all elements in A such that

(ai, ai+1) ∈ E0,1 (i = 0, 1, · · · , l − 1).
Define a non-directed graph (A, F ) by

F = {{a, b} ⊂ A with a 6= b and either akb∞ ∈ Ω or bka∞ ∈ Ω}.
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Since Ω is k + 1-superstationary, for any i = 0, 1, · · · , l − 1, there exists ω ∈ Ω such that

ω[{kr, kr + 1}] = aiai+1. Hence, by (1) of Proposition 3.7, there exists ξ ∈ Akr such that

ξaia
∞
i+1 ∈ Ω and ξa∞i ∈ Ω. Then, there exists b ∈ A occurring in ξ at least k times. Since

Ω is k + 1-superstationary, this implies that bkai and bkai+1 are in Ω[{0, 1, · · · , k}]. Therefore,

bka∞i ∈ Ω and bka∞i+1 ∈ Ω by (1) of Proposition 3.7. Hence, we have two cases according to

whether b ∈ {ai, ai+1} or not.

Case 1: b ∈ {ai, ai+1}. In this case, we have {ai, ai+1} ∈ F .

Case 2: b /∈ {ai, ai+1}. In this case, we have 2 edges {b, ai} and {b, ai+1} in F , by which ai and

ai+1 are connected.

Thus, we have a connected graph (A, F ). This implies there are at least r− 1 edges. If {a, b} ∈
F , then either akb∞ ∈ Ω or bka∞ ∈ Ω. Since Ω is k-superstationary, either ahbk−h ∈ Ωk (h =

0, 1, · · · , k) or bhak−h ∈ Ωk (h = 0, 1, · · · , k). Any case, there are k + 1 elements in Ωk
ab

consisting only of a and b.

Since #F ≥ r− 1, there are at least (r− 1)(k+ 1)− (r− 2) = (r− 1)k+ 1 elements in Ωk
ab

consisting only of 2 elements, where we subtract r − 2 since the number of overlapping counted

for constant words is 2(r − 1)− r = r − 2.

Thus, #Ωab
k ≥ (r − 1)k + 1.

If #A = 2, then p∗ab
α (k) ≤ k + 1 (k = 1, 2, · · · ) for any α ∈ AN, since the number of vectors

(|ξ|0, |ξ|1) over all ξ ∈ {0, 1}k is k + 1.

Let A = {0, 1, · · · , r − 1} with r ≥ 3. For n ≥ 1, let τ(n) be the maximum τ ∈ N such that 2τ

is a factor of n. Define α ∈ AN by α(n) = τ(n+1) (mod r). Then α is one of the Toeplitz words

defined in Introduction. It is clearly recurrent and aperiodic by projection.

Take any 2-pattern S = {s < t} ⊂ N. Let d = τ(t − s). Then there exists u ∈ N with

0 ≤ u < 2d such that either τ(s− u) = d, τ(t − u) > d or τ(s− u) > d, τ(t− u) = d. Assume

without loss of generality that the latter holds. Let c ∈ A be such that c ≡ d (mod r) and denote

by Ea ∈ RA the unit vector at a ∈ A. There are 3 cases for n ∈ Z.

Case 1: τ(n + u+ 1) > d. In this case, τ(n + t + 1) = d holds. Hence, Ψ(α[n + S]) = Ea + Ec

for some a ∈ A.

Case 2: τ(n + u+ 1) = d. In this case, τ(n + s + 1) = d holds. Hence, Ψ(α[n + S]) = Ea + Ec

for some a ∈ A.

Case 3: τ(n+u+1) < d. In this case, τ(n+s+1) = τ(n+ t+1) < d. Hence, Ψα[n+S]) = 2Ea

for some a ∈ A.

Therefore,

{Ψ(α[n+ S]) : n ∈ N} ⊂ {Ea + Ec; a ∈ A} ∪ {2Ea; a ∈ A},

and hence, p∗ab
α (2) ≤ 2r−1. Thus, p∗ab

α (2) = 2r−1 since we already have p∗ab
α (2) ≥ 2r−1. Note

that this proof remains true for any of the general Toeplitz words defined in the Introduction. �

Remark 4.1. Theorem 4 is not true without the assumption of recurrency. In fact, let α =

103103
2

103
3

1 · · · ∈ {0, 1}N. Then, p∗ab
α (3) = 3. To see this, suppose α[n + S] = 111 for some

n ∈ N, and some 3-pattern S = {i < j < k}. Then j − i = 3b − 3a and k − j = 3c − 3b for some

positive integers a < b < c. Moreover, this happens when n = 3a − i.
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Suppose α[m+ S] = 110 for some m. Then since there exists positive integers d < e such that

m+ i = 3d and m+ j = 3e, we have j− i = (m+ j)− (m+ i) = 3e−3d = 3b−3a. This implies

that 3e + 3a = 3b + 3d, concluding e = b and a = d by the uniqueness of 3-adic representation.

Hence, m = 3d − i = 3a − i, a contradiction.

If α[m+S] = 101 for some m, then since there exists positive integers d < e such that m+i = 3d

and m + k = 3e, we have k − i = (m + k) − (m + i) = 3e − 3d = 3c − 3a. This implies that

3e + 3a = 3c + 3d, concluding e = c and a = d by the uniquness of 3-adic representation. Hence,

m = 3d − i = 3a − i, a contradiction.

Finally, if α[m+ S] = 011 for some m, then since there exists positive integers d < e such that

m+ j = 3d and m+k = 3e, we have k−j = (m+k)− (m+ j) = 3e−3d = 3c−3b. This implies

that 3e + 3b = 3c + 3d, concluding e = c and b = d by the uniquness of 3-adic representation.

Hence, m = 3d − j = 3b − j = 3a − i, again a contradiction.

Thus if 111 ∈ {α[n + S]; n ∈ N} then {110, 101, 011} ∩ {α[n + S]; n ∈ N} = ∅. Thus,

p∗ab
α (3) ≤ 3. Since it is clear that p∗ab

α (3) ≥ 3, we have p∗ab
α (3) = 3.

Remark 4.2. We do not know whether there exist #A = r ≥ 3 and α ∈ AN which is recurrent

and aperiodic by projection and such that

p∗ab
α (k) = (r − 1)k + 1 (k = 1, 2, · · · ).

Let A = {0, 1, · · · , r − 1} and Ω = ∪r−2
i=0{i, i + 1}N. Then, it is readily verified that p∗ab

Ω (k) =
(r − 1)k + 1 (k = 1, 2, · · · ). But Ω is not equal to O(α) for any choice of α ∈ AN.

Theorem 6. Let α ∈ AN be a rotation word with #A = r. Then, we have p∗ab
α (k) = rk (k =

1, 2, · · · ).

Remark 4.3. For a rotation word α ∈ AN with #A = r, it is known [5] that p∗α(k) = rk (k =
1, 2, · · · ). Hence, Theorem 6 shows that the abelianization does not decrease the complexity in the

case of rotation words on more than 2 letters.

Proof of Theorem 6. Since p∗ab
α (k) ≤ p∗α(k) = rk (k = 1, 2, · · · ), it is sufficient to prove that

p∗ab
α (k) ≥ rk (k = 1, 2, · · · ). Let θ is an irrational number and c0 < c1 < · · · < cr−1 < cr be real

numbers with cr = c0 + 1. Let A = {0, 1, · · · , r − 1}. We may assume that α ∈ AN is such that

α(n) = i whenever nθ ∈ [ci, ci+1) (mod 1)
Fix 0 < ε < mini(ci+1 − ci). Set N = {N0 < N1 < · · · } ⊂ N such that

ε > {N0θ} > {N1θ} > · · · > 0

and limn→∞{Nnθ} = 0. Here { } denotes the fractional part. Then, it is easy to see that

{α[n+N ] ; n ∈ N} =
r−1⋃

i=0

{(i+ 1)ni∞ ; n ∈ N},

where we identify r with 0 as letters. Thus, for any k = 1, 2, · · · , we have

{α[n+Nk] ; n ∈ N} =

r−1⋃

i=0

{(i+ 1)nik−n ; 0 ≤ n ≤ k},

where Nk = {N0 < N1 < · · · < Nk−1}. There are exactly rk words as above. Thus, p∗ab
α (k) ≥

rk (k = 1, 2, · · · ), which completes the proof. �
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