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Recurrence in the dynamical system (X, (Ts)ses)
and ideals of 58S

Neil Hindman *'  Dona Strauss ¥  Luca Q. Zamboni ?

Abstract

A dynamical system is a pair (X, (Ts)scs), where X is a compact
Hausdorff space, S is a semigroup, for each s € S, Ts is a continuous
function from X to X, and for all s,t € S, Ts o Ty = Ts. Given a
point p € BS, the Stone-Cech compactification of the discrete space S,
T, : X — X is defined by, for z € X, Tp(z) = p—lienéTS(x). We let
S have the operation extending the operation of S such that S is a
right topological semigroup and multiplication on the left by any point
of S is continuous. Given p,q € BS, Tp o Ty = Tpq, but T}, is usually
not continuous. Given a dynamical system (X, (Ts)ses), and a point
z € X, welet Uz) = {p € BS : Tp(x) is uniformly recurrent}. We
show that each U(z) is a left ideal of 8S and for any semigroup we can
get a dynamical system with respect to which K(8S) =, U(z) and
AK(BS) = {U(z) : € X and U(z) is closed}. And we show that weak
cancellation assumptions guarantee that each such U(z) properly contains

K(BS) and has U(z) \ c¢K(BS) # 0.

1 Introduction

We take the Stone-Cech compactification of a discrete semigroup (S,-) to be the
set of ultrafilters on S, identifying the points of S with the principal ultrafilters.
Given A C S, weset A= {p e B35 :A¢cp} Theset {A: AC S}isa
basis for the open sets and a basis for the closed sets of 5S5. The operation on
S extends uniquely to 8S so that (55, ) is a right topological semigroup with
S contained in its topological center, meaning that p, is continuous for each
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p € BS and A is continuous for each z € S, where for ¢ € 8S, pp(q) = q-p
and A\;(¢) = x-q. So, for every p,q € 55, pq = lim lim st, where s and ¢ denote

s—=pt—q
elements of S. If AC S, A€ p-qifandonlyif {x €S:27tA € q} € p, where
r'A={yeS:xye A}. (We are following the custom of frequently writing
xy for z - y.)

The algebraic structure of S is interesting in its own right, and has had
substantial applications, especially to that part of combinatorics known as Ram-
sey Theory. See the book [4] for an elementary introduction to the structure of
BS and its applications.

We are concerned in this paper with the relationship between the algebraic
structure of 58S and recurrence in dynamical systems.

Definition 1.1. A dynamical system is a pair (X, (Ts)ses) such that

(1) X is a compact Hausdorff topological space (called the phase space of the
system);

(2) S is a semigroup;
(3) for each s € S, T is a continuous function from X to X; and

(4) for all s,t € S, Ts 0Ty = T;.

Associated with any semigroup S are at least two interesting dynamical
systems, namely (B8S, (\s)scs)), and (50,1}, (Ty)ses) where 9{0,1} is the set
of all functions from S to {0,1} with the product topology and Ts(z) = x o ps.
(We shall verify that this latter example is a dynamical system shortly.)

It is common to assume that the phase space of a dynamical system is a
metric space, but we make no such assumption. If S is infinite, then 8.5 is not
a metric space. Everything we do here is boring if S is finite so whenever we
write “let S be a semigroup” we shall assume that S is infinite. The interested
reader can amuse herself by determining which of our results remain valid if
that assumption is dropped.

The system (85, (As)ses)) has significant general properties as can be seen
in [4, Section 19.1], but will not be used much in this paper.

Given a product space S{O, 1}, recall that the product topology has a sub-
basis consisting of sets of the form 7; '[{a}] for t € S and a € {0,1}, where, for

z € 900,1}, m(z) = 2(t).

Lemma 1.2. Let R be a semigroup and let S be a subsemigroup of R. Let
Z = R{O, 1}, the set of all functions from R to {0,1} with the product topology.
Forxz e Z and s € S, define Tg(x) = x o ps. Then (Z,(Ts)ses) is a dynamical
system.



Proof. Tt is routine to verify that for s,t € S, Ty o Ty = Ts. To see that Ty
is continuous for each s € S, let s € S be given. It suffices to show that the
inverse image of each subbasic open set is open, so let t € R and a € {0,1} be
given. Then T, ! [Wt_l[{a}ﬂ = [{a}]. O

Recall that, if T is any discrete space, p € BT, (x;)ier is any indexed family
in a Hausdorff topological space X, and y € X, then p—lir% x; = y if and only if
€

for every neighborhood U of y, {t € T : & € U} € p. In compact spaces p-limits
always exist.

Definition 1.3. Let (X, (Ts)ses) be a dynamical system and let p € 8S. Then
T, : X = X is defined by, for ¢ € X, Tp(z) = p— lirréTs(x). So Tp(z) =
se

lim T, (z) where s denotes an element of S.
sS—p

Using [4, Theorem 4.5] one easily sees that for p,q € 85, T, o Ty, = Tpq.
However, (X, (Ts)scps) is not in general a dynamical system, since T}, is not
likely to be continuous when p € 8S\ S. However, for each z € X, the map
p— T,(x) : BS — X is continuous. To see this, define f,(p) = Tp(z). If U
is a neighborhood of f,(p) and A = {s € S : Ty(x) € U}, then U € p and
fz[A] C U. Alternatively, one may note that p — T,(x) is the continuous
extension to S of the function s — Ty(x): S — X.

As a compact Hausdorff right topological semigroup, 85 has a number of
important algebraic properties, and we list some of those that we shall use.
(Proofs can be found in [4, Chapters 1 and 2]. Assume that T is a compact
Hausdorff right topological semigroup. A non-empty subset V of T is a left ideal
if tV C V for every t € T, a right ideal if Vt C V for every t € T, and an ideal
if it is both a left and a right ideal.

(1) T contains an idempotent.

(2) T has a smallest ideal K(T'), which is the union of the minimal left ideals
of T and the union of the minimal right ideals of T'.

(3) For every t € K(T), Tt is a minimal left ideal of T and ¢T is a minimal
right ideal of T'.

(4) The intersection of any minimal left ideal and any minimal right ideal of
T is a group.

(5) Every left ideal of T' contains a minimal left ideal, and every right ideal of
T contains a minimal right ideal.

(5) Every minimal left ideal of T' is compact.

(6) If {t € T : \; is continuous} is dense in T, then the closure of every ideal
in T is also an ideal.



We introduce the main objects of study in this paper now. Given a set X,
we let P¢(X) be the set of finite nonempty subsets of X.

Definition 1.4. Let S be a semigroup and let A C S. We say the set A is
syndetic if and only if there exists F' € P¢(S) such that S = J,.pt 7 A.
In the semigroup (N, +) a set is syndetic if and only if it has bounded gaps.
Definition 1.5. Let (X, (Ts)s € S) be a dynamical system and let x € X.
(a) The point x is uniformly recurrent if and only if for every neighborhood
Vofz, {s€S:Ts(x) €V} is syndetic.
(b) U(z) =Ux(x) = {p € 8S : Tp(x) is uniformly recurrent}.
In Section 2 of this paper we present well known results about U(x) that are

valid in arbitrary dynamical systems as well as the few simple results that we
have in the dynamical system (55, (As)ses)-

In Section 3 we present results about the dynamical systems described in
Lemma 1.2.

In Section 4 we consider the effect of slightly modifying the phase space in
the dynamical systems described in Lemma 1.2.

In Section 5 we consider surjectivity of T;, and the set NS = NSx = {p €
BS T, : X — X is not surjective} which is a right ideal of 3S whenever it is
nonempty.

2 General results

We begin with some well known basic facts.

Lemma 2.1. Let (X, (Ts)ses) be a dynamical system, let L be a minimal left
ideal of BS, and let x € X. The following are equivalent:

(a) x is uniformly recurrent.

(b) There exists g € L such that T,(z) = x.

(¢) There exists an idempotent q¢ € L such that Ty(z) = .
(d) There exists y € X and q € L such that Ty(y) = .

(e) There exists g € K(BS) such that Ty(x) = x.

(f) There exists y € X and g € K(BS) such that T,(y) = .



Proof. The equivalence of (a)-(d) is shown in [4, Theorem 19.23]. Since (c)
implies (e), and (e) implies (f), we shall show (f) implies (c¢) and this will
establish the equivalence of all six statements. So assume that (f) holds. Let
u denote the identity of the group L N ¢BS. Since ug = ¢, it follows that
Tu(z) = TuTy(y) = Ty(y) = . O

Corollary 2.2. Let (X, (Ts)ses) be a dynamical system and let x € X.

(1) If x is uniformly recurrent, U(z) = BS.
(2) For each x € X, U(x) is a left ideal of BS.
(3) For every x € X, K(BS) CU(z).

(4) Nyex U(x) is a two sided ideal of BS.

Proof. (1) Suppose that z is uniformly recurrent. Then T, (x) = x for some u €
K(BS). Thus for every v € 55, T,(x) = T, Ty (z) = Tyu(x); since vu € K(BS),
by Lemma 2.1(f), T, (x) is uniformly recurrent.

(2) Let x € X, let p € U(z), and let » € 5S. By Lemma 2.1(e), pick ¢ €
K(BS) such that T, (T,(z)) = Tp(z). Then T,p(z) = T (T4 (Tp(2))) = Trgp().
Now rgp € K(8S), so by Lemma 2.1(f), T, (z) is uniformly recurrent.

(3) This is immediate from Lemma 2.1(f).

(4) By (3), Nyex U(x) is nonempty, so by (2) (¢ x U(x) is a left ideal of 5,
so it is enough to show that (), .y U(z) is a right ideal of S. So suppose that
z€X,p€NyexUlr) and ¢ € BS. Since p € U(Ty(x)), Tpe(x) is uniformly
recurrent and so pq € U(z). O

The statements of Lemma 2.3 below are modifications of basic well known
facts that are proved in [2]. (Furstenberg assumes that the phase space is metric,
but the proofs given do not use this assumption.) We shall say that a subspace
Z of X is invariant if T4[Z] C Z for every s € S. Of course, if Z is closed and
invariant, then T,,[Z] C Z for every p € 8S. (Let x € Z. Then Ts(z) € Z for
each s € § so p— £16rrslTS(:r) €Z)

Lemma 2.3. Let (X, (Ts)ses) be a dynamical system. Let L be a minimal left
ideal of BS.

(1) A subspace Y of X is minimal among all closed and invariant subsets of

X if and only if there is some v € X such that Y = {T,(x):p € L}.

(2) LetY be a subspace of X which is minimal among all closed and invariant
subsets of X. Then every element of Y is uniformly recurrent.

(8) If x € X is uniformly recurrent and Y = {T,(z) : p € BS}, then Y is
manimal among all closed and invariant subsets of X.



(4) If x € X is uniformly recurrent, then T,(x) is uniformly recurrent for
every p € 5S.

Proof. (1) Suppose that Y is a subspace of X which is minimal among all closed
and invariant subsets of X. Pick z € Y and let Z = {T),(z) : p € L}. We claim
that Z is a closed and invariant subspace of Y and is therefore equal to Y. If
p € L and s € S, then T, (T,(z)) = Tsp(x) and sp € L, so Z is invariant and
obviously Z C Y. To see that Z is closed, it suffices to show that any net in
Z has a cluster point in Z. To this end, let (pa)acp be a net in L and pick a
cluster point p in L of (pa)aecp. Then Tp(z) is a cluster point of (T}, (%))acpn-

Conversely, let z € X and let Y = {T,,(z) : p € L}. Then Y is invariant and
one sees as above that Y is closed. We shall show that Y is minimal among all
closed and invariant subsets of X. To see this, suppose that Z is a subset of
Y which is closed and invariant. We shall show that Y C Z, so let y € Y be
given. Pick z € Z. Then y = T),(z) and z = T, () for some p and ¢ in L. Since
Lqg = L, there exists € L such that r¢ = p. It follows that T,.(z) = y and
hence that y € Z as required.

(2) Let Y be a subspace of X which is minimal among all closed and invariant
subsets of X and let z € Y. Pick y € X such that Y = {T},(y) : p € L}. Pick
p € L such that © = T,,(y). By Lemma 2.1(f), « is uniformly recurrent.

(3) Let x be a uniformly recurrent point of X and let Y = {T,,(x) : p € 8S}.
By Lemma 2.1(b), pick ¢ € L such that T,(z) = z. By (1) it suffices that
Y = {T,(z) : p € L}. To see this, let y € Y and pick p € S such that
y =Ty(x). Then y = T,(Ty(z)) = Tpq(x) and pq € L.

(4) Let = be a uniformly recurrent point of X and let Y = {T,(z) : p €
BS}. By (3) Y is minimal among all closed and invariant subsets of X so (2)
applies. O

We conclude this section with a few results about the dynamical system
(8S, (As)ses). We observe that, if we define A, : 3S — (35 in this system by
Ap(g) = h_I)Il As(q), where s denotes an element of S, then \,(¢) = pq for every

5—p

p and ¢ in 3S. So this does not conflict with the previous definition of A\, given
in the introduction.

Theorem 2.4. Let S be a semigroup and let x € 5S. Statements (a) and (b)
are equivalent and imply (c). If BS has a left cancelable element, all three are
equivalent.

(a) x € K(BS).
(b) x is uniformly recurrent in the dynamical system (B85, (As)ses)-

(¢c) BSx is a minimal left ideal of BS.



Proof. To see that (a) implies (b), let z € K(8S) and let u be the identity
of the group in K(5S) to which = belongs. Then x = \,(x) so by Lemma
uniformrecurrence(e), x is uniformly recurrent.

To see that (b) implies (a), assume that x is uniformly recurrent. By Lemma
2.1(f) pick y € 8S and g € K(5S) such that A\,(y) = . Then z = qy € K(85S).

To see that (a) implies (c), assume that x € K(8S) and pick the minimal
left ideal L of S such that x € L. Then 8Sx is a left ideal of 8S contained in
L and so Sz = L.

Now assume that $S has a left cancelable element z and that SSxz is a
minimal left ideal of 3S. Pick an idempotent w € SSx. Then zx € Sz so by
[4, Lemma 1.30], zx = zzu and therefore x = zu € fSz C K(BS). O

Corollary 2.5. Let S be an infinite semigroup and let © € K(8S). Then
U(x) = BS with respect to the dynamical system (85, (\s)ses)-

Proof. By Theorem 2.4, z is uniformly recurrent, so by Lemma 2.3(4), U(x) =
BS. O

Corollary 2.6. Let S be a semigroup and let p,q € 8S. Statements (a) and
(b) are equivalent and imply statement (c). If S has a left cancelable element,
then all three statements are equivalent.

(a) qp € K(BS).
(b) q € U(p) with respect to the dynamical system (85, (As)ses)-
(c) BSqp is a minimal left ideal of BS.

Proof. We have that ¢ € U(p) if and only if A;(p) is uniformly recurrent and
Aq(p) = gp so Theorem 2.4 applies. O

It is an old and difficult problem to characterize when K(/35) is prime or
when ¢/K (3S) is prime. There are trivial situations where the answer is known.
For example if S is left zero or right zero, then so is 58S and thus K(5S) =
BS, and is necessarily prime. It is not known whether K (SN, +) is prime or
clK (BN, +) is prime. (Some partial results were obtained in [3].)

Corollary 2.7. Let S be a semigroup. The following statements are equivalent.

(a) There exists p € BS \ K(BS) such that, with respect to the dynamical
system (B85S, (As)ses), K(8S) C U(p).

(b) K(BS) is not prime.

Proof. This is an immediate consequence of Corollary 2.6. O



3 Dynamical systems with phase space R{O, 1}

Throughout this section we assume that R is a semigroup, S a subsemigroup of
R, and (Z,(Ts)ses) is the dynamical system of Lemma 1.2. While our results
are valid in this generality, in practice we are interested in just two situations,
one in which R = S and the other in which R = S U {e} where e is a two sided
identity adjoined to S.

Our first results in this section are aimed at showing that for any semi-
group S, there is a dynamical system such that both K(8S) and c/K(3S) are
intersections of sets of the form U(x).

Definition 3.1. Given z € Z we denote the continuous extension of = from SR
to {0,1} by Z.

Of course, for each z € Z, each p € S and each t € R, T,(z)(t) =
p— herré Ts(z)(t) = p— hené x(ts) and so Tp(z)(t) = Z(tp).

Lemma 3.2. Let x € Z, let p € 8S, and let L be a minimal left ideal of 5S.
The following statements are equivalent:

(a) p € U(x).
(b) There exists q € L such that T(tp) = x(tqp) for all t € R.

(c) There exists an idempotent ¢ € L such that Z(tp) = Z(tqp) for allt € R.

Proof. To see that (a) implies (c), assume that T},(x) is uniformly recurrent. By
Lemma 2.1(c), pick an idempotent ¢ € L such that T, (T, (z)) = T(p)(x). Then
Typ(x) = T, (x) so as noted above, for all ¢ € R, Z(tqp) = Z(tp).

Trivially (c) implies (b). To see that (b) implies (a), pick ¢ € L such that
Z(tp) = Z(tqp) for all t € R. Then Tp,(z) = Typ(x) = Ty(T,(z)), so by Lemma
2.1(b), Tp(x) is uniformly recurrent. O

Lemma 3.3. Letx € Z and let p € S. Then p € U(x) if and only if for every
manimal left ideal L of BS and every F' € Pf(R), there exists qp € L such that
for allt € F, Z(tp) = Z(tqrp).

Proof. The necessity is an immediate consequence of Lemma 3.2(b).

For the sufficiency, let L be a minimal left ideal of 5S. For each F' € Py(R),
pick gr € L as guaranteed. Direct P;(R) by agreeing that F' < G if and only if
F C G. Pick a cluster point g € L of the net (gr) pep,(r)- It is then routine to
show that for all t € R, Z(tqp) = Z(tp) so that by Lemma 3.2(b), p € U(z). O

Theorem 3.4. (1) K(8S) C(,c, U(x).



(2) If p e Nyey Ulx), then, for every minimal left ideal L of BS, BSp = Lp
and so BSp is a minimal left ideal of BS.

(3) If R contains a left cancelable element, then K(BS) = (\,c,U(x). In
particular, if R has a left identity, then K(B8S) = (e, U(x).

Proof. (1) K(BS) € (,cz U(x) by Corollary 2.2(3).

(2) Assume that p € (,c, U(z). Let L be a minimal left ideal of 3S. We
shall show that, for every ¢t € R, tp € tLp. To see this, assume the contrary.
Then for some ¢t € R, there exists A C R such that A € tp and ANtLp = (.
Let o = X4. So 7 is the characteristic function of A. Since p € U(x), it follows
from Lemma 3.2 that Z(tp) = Z(tgp) for some ¢ € L. However, Z(tp) = 1 and
Z(tgp) = 0. This contradiction establishes that tp € tLp for every t € R. In
particular, 5Sp = clgsSp C Lp. So BSp C Lp. By [4, Theorem 1.46], Lp is a
minimal left ideal of 55, and so SSp = Lp.

(3) Now suppose that R contains a left cancelable element ¢ and let p €
N,z U(x) Since t is left cancelable in SR by [4, Lemma 8.1] and tp = tqp for
some q € L, it follows that p = gp € K(3S). O

Recall that a subset A of a semigroup S is piecewise syndetic if and only if
there is some G € Py(S) such that for every F € P;(S), there is some z € S
with F'z C J,cq t~'A. The important fact about piecewise syndetic sets is that
they are the subsets of S whose closure meets K(8S), [4, Theorem 4.40].

Definition 3.5. Q=Qz ={z € Z: z~[{1}]Nn SN K(BS) = 0}.

Thus Q = {z € Z : 27 1[{1}] N S is not piecewise syndetic in S}. Note that,
since K(BS) is usually not topologically closed, we have by Theorem 3.4 that
not all sets of the form U(z) are closed.

Definition 3.6. Let x € Z. N(z) ={p€ 8S: (Vt € R)(Tp(z)(t) =0)}.

Lemma 3.7. Let © € Z. Then N(z) is closed and N(x)
U(zx), then x € Q. If S is a left ideal of R, then N(x) =
x €.

C Ule). If N(z) =
U(z) if and only if

Proof. To see that N(x) is closed, let p € 3S \ N(z), pick t € R such that
T,(z)(t) =1}, and let A ={se€ S :Ts(x)(t) =1}. Then A € pand ANN(x) =
U

p

If T, (x) is constantly equal to 0 on R, then T,(x) is uniformly recurrent and
thus p € U(z).

Let A=z [{1}]nS.

First assume that N(x) = U(x) and suppose that z ¢ Q. Since ANK (85) #

0, pick p € AN K(BS). By Corollary 2.2(3), p € U(x) and so for all t € R,
T,(x)(t) = 0. Since K(S) is a union of groups, there exists ¢ € K(8S) such



that gp = p. Pick t € S such that t7'4 € p. Also Tp(z)(t) =0so {s € S :
x(ts) = 0} € p. Pick s € t71 A such that z(ts) = 0, a contradiction.

Now assume that S is a left ideal in R. Let x € Q and let p € U(z). We claim
that p € N(z). To see this, suppose we have some ¢t € R such that Tp,(x)(t) = 1.
By Lemma 3.2, there exists an idempotent ¢ € K(3S5) such that Z(tgp) = 1. By
[4, Theorem 2.17], 8S is a left ideal of SR so tgp € S and so A € tqp = tqqp.
Thus there is some s € S such that tsqp € A. Since ts € S, tsqgp € K(3S), a
contradiction. O

Lemma 3.8. Letp € (.o U(z) and lett € R. Iftp € S, thentp € clK(SS).
In particular, 8Sp C LK (SS).

Proof. Assume that tp € 85\ /(K SS). We can choose A € tp such that A C S
and ANK (3S) = (. Let = be the characteristic function of 4 in R, so that = € Q
and hence p € U(z). Observe that T is the characteristic funcion of ¢fgr(A) in
BR and that clgr(A) C S, because 85 is clopen in SR. Since Z(tp) = 1, it
follows from Lemma 3.2(b) that there exists ¢ € K(5S) such that Z(tgp) = 1,
and so A € tgp. Now {r € 8S : tqr € S} is non-empty and is a right ideal
of BS. There exists an idempotent u in the intersection of this right ideal with
the left ideal 8Sq of 5S. Since ¢ € BSu, qu = q. So tgp = tquup € K(5S),
because tqu € 85 and u € 8Sq C K(8S). This contradicts the assumption that
ANK(BS) =0. O

Corollary 3.9. Each of the following statements implies that (),cq U(x) C
clK(BS).

(a) There ezists e € R such that es = s for every s € S.

(b) S contains a left cancelable element.

Proof. 1t follows from Lemma 3.8 that (a) implies that (., U(z) C clK(BS).
So assume that s is a left cancelable element in S and let p € (.o U(x). By
[4, Lemma 8.1], s is left cancelable in 5S. By Lemma 3.8, sp € </K(8S).
Now 535 = sS is clopen in 8S. So sp € cl(K(B8S) N sBS). We claim that, if
q € K(BS)NspS, then g € sK(8S). To see this, suppose that ¢ € K(3S) and
that ¢ = sv for some v € 3S. There is an idempotent v € K(8S) for which
qu = ¢. This implies that sv = svu and hence that v = vu € K(8S). So
sp € cl(sK(BS)) = sclK(BS) and hence p € clK(BS). O

Corollary 3.10. Assume that S is a left ideal of R. Then each of the hypotheses
(a) and (b) of Corollary 3.9 implies that [ . U(z) = clK(BS).

Proof. Assume that one of the hypotheses of Corollary 3.9 holds. Then

Moo Ulx) € clK(BS).
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To see that clK(BS) C (,cqU(x), let x € Q be given. By Lemma 3.7, U(z) =
N(z) and so U(x) is closed. By Corollary 2.2(3), K(8S) C U(xz) and hence
clK(BS) CU(x). O

For the statement of the following corollary we depart from our standing
assumptions about R, S, and (Z, (Ts)ses)-

Corollary 3.11. Let S be a semigroup. There exist a dynamical system
(X, (Ts)ses) and a subset M of X such that K(BS) = (,cx U(x) and clK(BS)

= Naen U(2).

Proof. If S has a left identity, let R = S. Otherwise, let R = SU{e} where e is
an identity adjoined to S. The conclusion then follows from Theorem 3.4 and
Corollary3.10. O

In the proof of the above corollary, we could have simply let R = S U {e}
where e is an identity adjoined to S, regardless of whether S has a left identity, as
was done in [4, Theorem 19.27] to produce a dynamical system for any semigroup
S establishing the equivalence of the notions of central and dynamically central.
We shall investigate the relationship between the systems with phase space

X =40,1} and ¥ = 5{0, 1} in the next section.

We note that it is possible that (., U(z) # K(3S) and there is no subset
M of Z such that (,,, U(x) = clK(BS). To see this, let S be an infinite zero
semigroup. That is, there is an element 0 € S such that st = 0 for all s and ¢
in S. Then pg = 0 for all p and ¢ in 8S and so /K (8S) = K(BS) = {0}. Let
R=S5. Given z € T, if a = z(0), then for all p € 85, T,(z) is constantly equal
to a and so Tp(x) is uniformly recurrent. That is, for any z € Z, U(x) = 5.

In [1] it was shown that ¢/K(SN) is the intersection of all of the closed two
sided ideals that strictly contain it. In a similar vein, we would like to show
that each U(z) properly contains K(£S). One cannot hope for this to hold
in general. For example, as we have already noted, if S is either left zero or
right zero then so is 8S and then K(3S) = 3S. Results establishing that U(x)
properly contains K (3S) require some weak cancellation assumptions.

Definition 3.12. Let S be a semigroup and let A C S.

(a) A is a left solution set if and only if there exist u and v in S such that
A={x e S :uxr=v}.

(b) A is a right solution set if and only if there exist v and v in S such that
A={zeS:zu=v}

As is standard, we denote by w the first infinite ordinal, which is also the
first infinite cardinal. That is, w = Ny.

Definition 3.13. Let S be a semigroup with |S| =k > w.

11



(a) S is weakly left cancellative if and only if every left solution set in S is
finite.

(b) S is weakly right cancellative if and only if every right solution set in S' is
finite.

(¢) S is weakly cancellative if and only if S is both weakly left cancellative
and weakly right cancellative.

(d) S is very weakly left cancellative if and only if the union of any set of fewer
than k left solution sets has cardinality less than «.

(e) S is very weakly right cancellative if and only if the union of any set of
fewer than k right solution sets has cardinality less than k.

(f) S is very weakly cancellative if and only if S is both very weakly left
cancellative and very weakly right cancellative.

Given a set X and a cardinal k, we let U,(X) be the set of x-uniform
ultrafilters on X. That is, Uy(X) = {p € X : (VA € p)(|A| > k)}.

Theorem 3.14. Assume that |R| = |S| = k > w, S is very weakly cancellative,
and has the property that |{e € S : (3s € S)(es = s)}| < k. Then for allxz € Z,
U(z) NUL(S) \ LK (BS) # 0.

Proof. Let E ={e € S:(3s € S)(es =s)}. Let v € Z and pick ¢ € K(3S). Let
y = T4(z). By Corollary 2.2(3), y is uniformly recurrent. For each F' € Py(R),
let Bp = {s € S: (Vt € F)(x(ts) = y(t))}. Since

Br = {5 €s: Ts(m) € ﬂtGF ng[{y(t)}]}v

we have Bp € ¢. By [4, Lemma 6.34.3], K(85) C U,(S) and so |Br| = k. Note
that if F g H, then BH Q BF.

Enumerate Ps(R) as (Fq)a<x. Choose tyg € Bp, \ E. Let 0 < o < k and as-

sume that we have chosen (t5)s< satisfying the following inductive hypotheses.

1) For each § < a, t5 € Bp;.

2) For each § < a, FP(<t@>/3§5) NE=10.

(1)
(2)
(3) For each 6 < a, if 6 > 0, then t5 ¢ FP({tg)s<s)-
(4)

4) For each 0 < «, if 6 > 0, s € FP({tg)p<s), and v < 0, then sts # t,.

The hypotheses are satisfied for § = 0. Let

My, = {teS:(3H € Ps(a)) ((HﬁEH tg)t € E)}} and let
My = {teS:(3se FP({ta)p<a))(Fy < a)(st =1t,)}.

12



Note that |FP((tg)s<a)| < |Pf(a)| < k. Also, given H € Ps(a) and s € E,
{t €S : (Ilgents)t = s} is aleft solution set so [Mo| < . Note also that, given
s € FP((tg)p<a) and v < a, {t € S : st =t} is a left solution set so |M;| < k.
Thus we may choose t, € Bp, \ (EUFP({tg)g<a) U My U M;). The induction
hypotheses are satisfied for a.

Let B={to:a <r}andlet C =, . clFP((tg)acp<r). By [4, Theorem
4.20], C is a compact subsemigroup of 3S. We claim that B N K(C) = 0.
Suppose instead that we have p € BN K(C). Pick r € K(C) such that p = pr.
(By [4, Lemma 1.30], an idempotent in the minimal left ideal L of C' in which
p lies will do.) Let D = {s € S:s !B er}. Then D € pso DNB #

so pick o < & such that t;'B € r. Then t5'B N FP((tg)acp<r) # 0 so pick
finite H C {# : a < 8 < &} such that [[z.yts € t;'B. Pick v < & such
that to [[gepts = ty. Let maxH = poand let K = H\ {u}. If K =0,
then tot, = t,. If K # 0, then to([[gepts)ty =t If v > p we get a
contradiction to hypothesis (3). If 4 = v we either get to € E or to [[5c ts €
E, contradicting hypothesis (2). If v < p we get a contradiction to hypothesis
(4). Thus BN K(C) = 0 as claimed.

Now we claim that BNK(8S) = (). Suppose instead we have p € BNK(BS).
By [4, Lemma 6.34.3] we have that p € U,(S) and consequently, p € C. Thus
K(BS)NC # 0 and so, by [4, Theorem 1.65], K(C) = K(8S)NC, contradicting
the fact that BN K(C) = (). Since B is clopen, we thus have B N c/K(3S) = 0.

Now let C = {Bp : F € P;(S)} U{B}. We claim that C has the x-uniform
finite intersection property. To see this, let F € P(P(S)) and let H = J F.
If 6§ < xand H C F;, then ts € BN (\per Br. Since {6 < k: H C Fs}| =
{F € Ps(S) : H C F}| = k, we have that |[C| = &k as required. Pick by [4,
Corollary 3.14] p € U,(S) such that C C p.

Since Br € p for each F' € P¢(R), we have T,(z) = y so p € U(x). Since
Bep,pd¢clK(BS). O

Corollary 3.15. Assume that |R| = |S| = £ > w and that S is right cancellative
and very weakly left cancellative. Then for allx € Z, U(x)NU,(S)\ clK (8S) #
0.

Proof. Let E ={e € S : (ds € S)(es = s)}. It suffices to show that |E| < k.
Pick x € S. Given e € FE and s € S such that es = s, we have that zes = zs so
ze = . Thus F is contained in the left solution set {t € S : xt = x}. O

Corollary 3.16. Assume that |R| = |S| = & > w, that S is very weakly
cancellative, that S has a member e such that es = s for all s € S, and
[{e € S: (3s € S)(es = s)}| < k. Then K(8S) = (e, U(x) and for each
x € Z, U(x) properly contains K(B5S).

z€Z

Proof. This is an immediate consequence of Theorems 3.4 and 3.14. O
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Corollary 3.17. Assume that S is a left ideal of R, |R| = |S| =k > w, S is
very weakly cancellative, S has a member e such that es = s for all s € S, and
{e € S: (3s € S)(es = s)}| < k. Then clK(BS) = (\,cqU(x) and for each
x € Q, U(x) properly contains ctK(BS).

zeQ

Proof. By Corollary 3.10 ¢/K(3S) = (1,cq U(z). By Theorem 3.14, for each
x €, U(z) properly contains c/K (35). O

4 Relations between systems with phase spaces
X and Y

Throughout this section we will let S be an arbitrary semigroup and let ) =
S U {e}, where e is an identity adjoined to S, even if S already has an identity.
We will let (X, (T'x s)ses) be the dynamical system of Lemma 1.2 determined
by R=Q let (Y,(Tys)ses) be the dynamical system of Lemma 1.2 determined
by R = 5. For x € X we will let Ux(z) = {p € BS : Txp(z) is uniformly
recurrent} and let Uy (z) = {p € BS : Ty,p(z) is uniformly recurrent}.

We have from the results of the previous section that for any semigroup
S, K(BS) = Nyex Ux(w) and clK(BS) = ,eq, Ux(w). We are interested
in determining when the corresponding assertions hold with respect to Y. Of
course, the simplest situation in which they do is when for each z € X, Ux (x) =
Uy (7)) so we address this problem first, beginning with the following simple
observation.

Lemma 4.1. Let x € X. Then Ux(x) C Uy (x3).

Proof. Let y = r|g and note that y is the restriction of Z to 3S. Let L be a
minimal left ideal of 3S. By Lemma 3.2, p € Ux () if and only if there exists
q € L, such that z(tp) = Z(tqp) for all t € Q. And p € Uy (zg) if and only if
there exists ¢ € L such that y(tp) = y(tgp) for all t € S. O

Theorem 4.2. The following statements are equivalent.

(a) Forallx € X, Ux(x) = Uy(zg).

(b) There do not exist p € BS and x € X such that Tx p(x) is the character-
istic function of {e} in X.

(c) For everyp € 8S, p € BSp.
Proof. Assume that (a) holds and suppose we have p € S and = € X such that
Tx p(z) is the characteristic function of {e} in X. Then Ty, (z|) is constantly 0

sop € Uy(zjs). But V ={u € X : w(e) = 1} is a neighborhood of w = T'x ()
in X, while {s € S: Tx s(w) €V} =10, s0p¢ Ux(z).
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To see that (b) implies (¢), assume that (b) holds and suppose that we have
some p € 85 such that p ¢ 5Sp. Since BSp = p,[BS], BSp is closed. Pick A € p
such that AN BSp = (. Let x be the characteristic function of A in X. First let
s €. Then sp ¢ Aso s~ 1(S\ A) € p so to see that T'x ,(s) = 0, it suffices to
observe that s71(S\ A) C {t € S : Tx(z)(s) = 0}. Since A € p and for t € A,
Tx +(x)(e) = z(t) = 1, we have that Tx ,(z)(e) = 1.

By Lemma 4.1, we have Ux (z) C Uy (z|s) for all z € X, so to show that (c)
implies (a), it suffices to let x € X, let p € Uy (z|5), assume that p € Sp, and
show that p € Ux(x). By Lemma 3.3, it suffices to let L be a minimal left ideal
of 35 and let F' € P¢(Q) and show that there is some ¢ € L such that z(tp) =
Z(tgp) for every t € F. Fort € F, let B, = {s € S : z(ts) = Z(tp)}. Then
Nicr Bt € p and p € BSp = cl(Sp) so pick v € S such that (., B; € vp. Let
y = x|5. Now Fv € Pf(S) so pick by Lemma 3.3 ¢ € L such that for all t € F,
y(tvp) = y(tvgp). Let ¢’ = vq and note that ¢’ € L. Let t € F be given. Then
B, € vp so Z(tvp) = Z(tp) and thus Z(tp) = y(tvp) = y(tvgp) = Z(tq'p). O

Corollary 4.3. If for all p € BS, p € BSp, then K(BS) = 1,y Uy (z) and
clK(BS) = yeq, Uy (z).

Proof. The first assertion is an immediate consequence of Theorems 3.4 and 4.2.
The second assertion follows from Corollary 3.10 and Theorem 4.2. O

We have already mentioned the problem of determining whether K(55) or
clK(3S) is prime. Recall that an ideal I in a semigroup is semiprime if and
only if whenever ss € I, one must have s € I.

Corollary 4.4. (1) If K(BS) # ey Uy (x), then K(BS) is not semiprime.
(2) If clK(BS) # Nyeq, Uy (), then clK(BS) is not semiprime.
Proof. (1) If p € N,ey Uy (z) \ K(BS), then pp € 8Sp and by Theorem 3.4,
BSp C K(BS).
(2) If p € Nyeq, Ur(z) \ clK(BS), then pp € 3Sp and by Lemma 3.8,
BSp C clK(BS). O
By virtue of Theorem 4.2 we are interested in knowing when there is some
p € 8BS such that p ¢ 8Sp.
Lemma 4.5. Let p € 8S. Then p ¢ SSp if and only if there exists A C S such
that for allx € S, z=*A € p and A ¢ p.
Proof. Let C(p) = {A C S : (Vz € S)(z7'A € p)}. By [4, Theorem 6.18],
p € BSp if and only if C(p) C p. O

Theorem 4.6. Assume that |S| = k > w. There exists p € BS such that
p & BSp if and only if there exists (yr) pep,(s) n S such that
{yr: F e Pr(S)}NU{Fyr : F € P4(S)} = 0.
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Proof. Necessity. Pick p € S such that p ¢ 5Sp. By Lemma 4.5, pick A C S
such that for all z € S, 27!4A € pand A ¢ p. For F € Py(S) pick yp €
(S\NA)NNepz A

Sufficiency. Let A = J{Fyr : F € P;(S)}. Then {S\ A}U{z"1A: 2 € S}
has the finite intersection property so pick p € 35 such that {S\ A} U{z"tA:
x € S} Cp. By Lemma 4.5, p ¢ 8Sp. O

One of the assumptions in the following corollary is that S* = S\ S is a
right ideal of 8S. A (not very simple) characterization of when S* is a right
ideal of 85 is given in [4, Theorem 4.32]. By [4, Corollary 4.33 and Theorem
4.36] it is sufficient that S be either right cancellative or weakly cancellative.

Corollary 4.7. Assume that |S| = k > w and assume that
[S\{te S:(3selS)(st=0t)}|=k.

If either S™ is a right ideal of BS or S is very weakly left cancellative, then there
exists p in 8BS such that p ¢ BSp.

Proof. Assume first that S* is a right ideal of 55, and pick ¢ € S such that
there is no s € S with st =¢. Then t ¢ St and t ¢ S*t.

Now assume that S is very weakly left cancellative. Enumerate Py (S)
as (Fa)a<k- By Theorem 4.6, it suffices to produce (tn)a<x in S such that
{ta :a < 6} N U{Fata : a <K} =0.

Let E={teS:(3se€ S)(st =t)}. Picktg € S\ E. Let 0 < a < k and
assume we have chosen (t5)5<qo in S\ E such that if 6 > 0, then ts ¢ |J,_s Futu

n<d
and for each x € Fy, ats ¢ {t, : p < d}.

For z € Sand p < a, let H, , = {t € S: xt =t,}. Then each H, , is a left
solution set so [ J{H,, : © € F, and p < a}| < k. Pick

ta €S\ (BEUU{Hsp 2 € Fyand p<a}lUlU,, Futy)-

Suppose we have some p < & such that t, € (J{Fata : @ < k} and pick
a < k and x € F, such that t, = zt,. Then o # p because t, ¢ E. If o < p,
we would have t, € Fot,. So we must have ¢ < o. But then ¢, € H;,, a
contradiction. O

We conclude this section by exhibiting a sufficient condition which guaran-
tees K(BS) = ,cy Uy (z). We shall see that this does not require equality
between Ux (z) and Uy (z|g) for all z € X.

Theorem 4.8. Assume that for all p € (),cy Uy(z) and all A € p the as-
sumption that {t € S : t='sA € p} is syndetic for every s € S, implies that
{teS:t7'Aep}#0. Then K(8S) = ey Uy (2).
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Proof. Assume that p € [,y Uy(z) \ K(8S). By Theorem 3.4(2), 3Sp C
K(BS) so p ¢ Sp. Pick A € p such that ANBSp =10. Thus {t € S:t7 1A €
p} = 0. We claim that for all s € S, {t € S : t"'sA} is syndetic. So let
s € S. By [4, Theorem 4.48] it suffices to let L be a minimal left ideal of 35S
and show that there is some ¢ € L such that {t € S : t71sA € p} € ¢. By
Theorem 3.4(2), sp € Lp so pick ¢ € L such that sp = gp. Then sA € ¢p so
{te S:t71sA € p} € q as required. O

Note that by Theorem 3.4(3), K(BN,+) = (,cy Uy (z) while 1 ¢ SN + 1
so by Theorem 4.2, it is not the case that for all z € X, Ux(z) = Uy (2|5). On
the other hand, given p € K(SN,+) one has p = g + p for some p € K(5N,+)
so automatically for any A € p, {t € N: —t + A € p} # () so the hypotheses of
Theorem 4.8 are valid.

5 Recurrence and surjectivity of 7,

So far in this paper we have been considering the notion of uniform recurrence.
We now introduce a notion which is usually weaker.

Definition 5.1. Let (X, (Ts)ses) be a dynamical system. The point x € X is
recurrent if and only if for each neighborhood V of z in X, {s € S : Ts(z) € V'}
is infinite.

If all syndetic subsets of a semigroup S are infinite, then any uniformly
recurrent point of X is recurrent. This is not always the case. For example,
if S is a left zero semigroup and x € S, then z is uniformly recurrent in the
dynamical system (35, (As)ses) but is not recurrent. (We have that {x} is a
neighborhood of z and {s € S : A;(z) € {z}} = {z}, which is syndetic, but
finite.)

The following characterization of recurrence is very similar to the characteri-
zation of uniform recurrence in [4, Theorem 19.23]. Part of the results depend on
the assumption that S* is a subsemigroup of 55. There is a characterization of
S* as a subsemigroup in [4, Theorem 4.28]. By [4, Corollary 4.29 and Theorem
4.31] it is sufficient that S be right cancellative or weakly left cancellative.

Theorem 5.2. Let (X, (Ts)ses) be a dynamical system. Statements (a) and
(b) are equivalent and imply statements (¢) and (d), which are equivalent. If S*
1s a subsemigroup of BS, then all four statements are equivalent.

(a) There exists an idempotent p € S* such that Ty(x) = .
(b) There existy € X and an idempotent p € S* such that T,(y) = x.
(c) There exists p € S* such that Ty(z) = x.

(d) x is recurrent.
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Proof. Trivially (a) implies (b) and (a) implies (c). To see that (b) implies (a),
pick y € X and an idempotent p € S* such that T,,(y) = x. Then z = T,(y) =
Tpp(y) =1, (Tp(y)) = Tp(x)

To see that (c) implies (d), pick p € S* such that T,(z) = z. Let V be a
neighborhood of . Then {s € S : Ty(z) e V} € pso{s € S : Ts(x) € V} is

infinite.

To see that (d) implies (c), assume that x is recurrent and for each neigh-
borhood V' of z, let Dy = {s € S : Ts(xz) € V}. Then any finite subfamily of
{Dy : V is a neighborhood of z} has infinite intersection so pick by [4, Corol-
lary 3.14] some p € S* such that {Dy : V is a neighborhood of z} C p. Then
T,(x) = .

Now assume that S* is a semigroup. To see that (c) implies (a), pick p €
S* such that T,(z) = = and let E = {q € S* : Ty(xz) = x}. Since S* is a
subsemigroup of S, we have that E is a subsemigroup of 8S. We claim that
E is closed. To see this, let ¢ € 8S\ E. If ¢ € S, then {q} is a neighborhood
of ¢ missing F, so assume that ¢ € S*. Pick an open neighborhood U of T, (z)
such that ¢ /U and let A= {s € S: Ts(x) € U}. Then A is a neighborhood
of ¢ which misses E. Since F is a compact right topological semigroup, there is
an idempotent in E. O

Recall that in any dynamical system, (X, (Ts)ses), K(BS) € (Nyex Ux(x)
and we have obtained sufficient conditions for equality.

Theorem 5.3. Let (X, (Ts)scs) be a dynamical system, let p € 8S, and assume
that T, : X — X is surjective and K (BS) = (,cx Ux(x). Then for anyq € S,
qp € K(BS) if and only if g € K(BS).

Proof. Let ¢ € 8S. The sufficiency is trivial, so assume that gp € K(8S). It
suffices to show that ¢ € (), .y U(z), so let x € X be given. Pick y € X such
that T,(y) = @. Then Ty(z) = Ty(Tp(y)) = Typ(y). Since gp € U(y) we have
Typ(y) is uniformly recurrent, and so T (x) € U(x) as required. O

Definition 5.4. Let (X, (Ts)scs) be a dynamical system. Then NS = NSx =
{p € BS : T}, is not surjective}.

We have seen that U(x) is always a left ideal of 3S.

Lemma 5.5. Let (X, (Ts)ses) be a dynamical system. If NS # (0, then NS is
a right ideal of 5S.

Proof. Given p € NS and ¢q € 35, the range of T}, is contained in the range of
Tp. O

Lemma 5.6. Let (X, (Ts)ses) be a dynamical system. If there is some x € X
such that x is not recurrent, then {p € S* : pp =p} C NS.
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Proof. Pick x € X such that z is not recurrent and let p be an idempotent in
S*. We claim that z is not in the range of T},, so suppose instead we have y € X
such that T},(y) = x. Then by Theorem 5.2, z is recurrent. O

We shall establish a strong connection between the surjectivity of T}, and p
being right cancelable in 3S. The purely algebraic result in Theorem 5.8 will
be useful.

Lemma 5.7. Let S be a countable right cancellative and weakly left cancellative
semigroup and let B be an infinite subset of S. There is an infinite subset D of
B with the property that whenever s and t are distinct members of S, there is a
finite subset F' of D such that sa # tb whenever a,b € D\ F.

Proof. Let A = {(s,s) : s € S} and enumerate (S x S) \ A as ((sp,tn))02.
Pick a1 € B. Assume n € N and we have chosen (a;)? ;. Let W,, = {b e S :
there exist i, j € {1,2,...,n} such that s;a; = t;b or s;b = t;a;}. Then W, is
the union of finitely many left solution sets, so is finite. Pick a1 € B\ (W, U
{al, az, ..., an})

Let D = {a, : n € N}. Let s and ¢ be distinct members of S and pick n
such that (s,t) = (sn,t,). Let F = {a; : i € {1,2,...,n}}. To see that F is
as required, let a,b € D\ F and suppose sa = tb. Then by right cancellation,
a # b. Pick m > n and r > n such that a = a,, and b = a,.. If m < r, then
ar € Wy_q. If r <m, then a,, € Wp,_1. O

Theorem 5.8. Let S be a countable cancellative semigroup. If p € BS\ K(55S),
then there exists an infinite D C S such that for every r € D*, rp is right
cancelable in 3S.

Proof. Choose ¢ € K(S). We first claim that for each s € S, sp ¢ K(BS5)
and in particular, sp ¢ 8Sgp. So suppose we have sp € K(3S). Then sp is
in a minimal left ideal L of 8S. Pick an idempotent r € L. By [4, Lemma
1.30], sp = spr. By [4, Lemma 8.1] s is left cancelable in 55 so p = pr, and
thus p € K(8S). This contradiction establishes the claim. For each s € S, pick
Us € sp such that Us N 3Sgp = 0. For each s,t € S, there exists Vs ; € ¢ such
that Us NtV ,p = 0 because \; o p,y(q) € BS \ Us.

By [4, Theorem 3.36], there exists an infinite subset B of S such that B* C
ﬂs,tGS Vst Then for every r € B* and every s,t € S, trp ¢ Us.

By Lemma 5.7 pick an infinite subset D of B such that, whenever s and ¢
are distinct elements of S, there is a finite subset F' of D such that sa # tb
whenever a,b € D\ F. Enumerate D as (d, )22, and for each distinct s and ¢
in S, pick ns+ € N such that sd,, # td,, whenever m,n > ng ;.

We claim that, for every r € D*, rp is right cancelable in 5S. We shall apply
[4, Theorem 3.40] three times.
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Assume that ¢q17mp = gorp, where ¢; and ¢o are distinct elements of 8S. Let
A; and As be disjoint subsets of S which are members of ¢; and ¢, respectively.
Since q17p € cl(A1rp) and garp € cl(Aarp), an application of [4, Theorem 3.40]
shows that either AjrpNcl(Aarp) # 0 or AsrpNcl(Airp) # 0, and without loss
of generality, we may assume that the former holds. Thus we have some s € A
and ¢’ € Ay such that srp = ¢'rp. Now srp € cl(sDp) and ¢'rp € c£((S\{s})rp),
so either sDpNel((S\ {s})rp) # 0 or (S\ {s})rpNcl(sDp) # 0. We thus have
either

(i) sDpNcl((S\ {s})rp) # 0, in which case we choose d € D and y € 85
such that sdp = yrp; or

(ii) sDpNcl((S\ {s})rp) = 0, in which case we pick ¢t € S\ {s} and ' € D
such that sr'p = trp. Since sDp N cl((S\ {s})rp) = 0, we have v’ € D*.

Suppose that (i) holds. Then Uy € sdp so {v € S : v" U € rp} € y, s0
pick v € S such that Usq € vrp. But r € V4, so this is a contradiction. Thus
(ii) holds.

Now sr'p € cl{sdmp : m > ng} and trp € cl{td,,p : m > ng.} so, es-
sentially without loss of generality, we have {sdp,p : m > ng:} N cl{tdnp :
m > ng.} # 0. (We have distinguished between s and ¢ at this stage, but the
arguments below with s and ¢ interchanged remain valid.) Thus either

(ili) there exist m,n > ns, such that sd,,p = td,p; or

(iv) there exist m > ny, and 7" € D* such that sd,,p = tr''p.

If (iii) holds, then by [4, Lemma 6.28], sd,, = td,, contradicting the choice
of ng 4. So (iv) holds. But 7"’ € Vg, + so tr''p ¢ Usg,,, a contradiction. O

We now present several results about the dynamical systems considered in
Section 3.

Lemma 5.9. Let S be a semigroup and let p be a right cancelable element of
BS. Then for any clopen subset E of BSp, there is some A C S such that
E=ANpSp.

Proof. Let E be a clopen subset of 3Sp. Let D ={DNBSp: D C S and DN
BSp C E}. Since {DNBSp: D C S} is a basis for the topology of 3Sp and E is
open in BSp, we have that £ = |JD. Since F is compact, pick finite F C P(S)
such that E = (Jp. (DN 3Sp) and let A =JF. O

Theorem 5.10. Let S be a semigroup. Let (Y, (Ts)scs) be the dynamical system
of Lemma 1.2 determined by R = S. Let p € 3S. If p is right cancelable in 3.,
then T, : Y — Y is surjective.
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Proof. Note that since p, : 55 — 5Sp is injective and takes closed sets to closed
sets, it is a homeomorphism.

To see that T, is surjective, let z € Y, let B ={s € S : z(s) = 1}, and let
E = p,[B]. Then E is clopen in 8Sp so by Lemma 5.9 pick A C S such that
E = AN BSp. Let x be the characteristic function of A4 in Y. We claim that
T,(x) = z. For this, it suffices that for each s € S, {t € S : Ty (x)(s) = 2(s)} € p.
So let s € S. Note that {t € S: Ty(z)(s) =1} = {t € S : 2(st) = 1} = s 1A
Also s7'A € pif and only if s € p, [ AN BSp] so s € B if and only if s™*A € p.

If 2(s) =1, then s € Bsos 1A € pso{teS:Tiz)(s) =2(s)} €p If
2(s) =0,then s ¢ Bsos 'A¢pso{teS:Tizx)(s)=z2(s)} €p. O

Notice that the hypotheses of the following corollary hold if S has any right
cancelable element.

Corollary 5.11. Let S be a semigroup. Let (Y, (Ts)ses) be the dynamical sys-
tem of Lemma 1.2 determined by R = S. Letp € BS. Assume that for whenever
q and r are distinct elements of 55, there exists s € S such that sq # sr. Then
T, :Y =Y is surjective if and only if p is right cancelable in 5.

Proof. The necessity is Theorem 5.10.

So assume that T}, is surjective and suppose that we have distinct ¢ and r in
BS such that gp = rp. We claim that T, = T;.. To see this, let € Y be given.
Pick z € Y such that T),(2) = z. Then Ty(z) = T, (T,(2)) = Typ(2) = Trp(2) =
T, (Ty(2)) = T, (x).

Pick s € S such that sq # sr, pick A € sq\ sr, and let « be the characteristic
function of A in Y. Then A C {t € S : Ty(z)(s) = 1} so Ty(z)(s) = 1 and
S\NAC{te S :Ty(z)(s) =0} so T-(z)(s) = 1. O

Theorem 5.12. Let S be a semigroup and let Q = S U {e} where e is an
identity adjoined to S. Let (X, (Ts)ses) be the dynamical system of Lemma 1.2
determined by R = Q and let p € 8S. Then T, : X — X is surjective if and
only if p is right cancelable in BQ.

Proof. Sufficiency. Note that p, : 85 — BSp is a homeomorphism. Note also
that p ¢ BSp. (If we had p = ¢p for some g € 5, then we would have ep = ¢p.)
Let x € X and let B = {s € S: z(s) = 1}. By Lemma 5.9, pick A C S such
that p,[B] = AN BSp. Pick P € p such that PN 3Sp = 0. If z(e) = 1, let
D=A\P. If z(e) =0, let D =AU B. Let z be the characteristic function of
Din X.

We claim that T,(2) = . As in the proof of Theorem 5.10, we see that
for s € S, T,(2)(s) = z(s). Regardless of the value of z(e), we have that
P C{seS:Ts(z)(e) =z(e)}, so Tp(z)(e) = z(e).

Necessity. Suppose that T}, is surjective and we have ¢ # r in 8@ such that
gp = rp. Assume first that e € {q,r}, so without loss of generality, ¢ = e. Let
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x be the characteristic function of S in X and pick z € X such that T,,(z) = .
Then 0 = z(e) = Tp(2)(e) = Trp(2)(e) = T, (Tp(2))(e) = Tp(x)(e) = 1, a

contradiction.

So we can assume that ¢ and r are in 8S. Pick A € ¢\ r and let A be
the characteristic function of A in X. Pick z € X such that T,,(z) = x. Then
0="T.(x)(e) = Trp(z)(e) = Typ(2)(e) = Ty (T,(2))(e) = Ty(z)(e) = 1, a contra-
diction. O

Theorem 5.13. Let S be a countable semigroup which can be embedded in a
group and assume that S can be enumerated as (s4)52, so that if u,v € S,
i, € w with i < j, and s;u = sjv, then sosi_lsj € S. Let (Y,(Ts)ses) be the
dynamical system of Lemma 1.2 determined by R = S and let p € BS. The T}, is
surjective if and only if there exists x € Y such that T,(x) is the characteristic
function of {sp} inY.

Proof. The necessity is trivial. Assume that we have x € Y such that T,(z)
is the characteristic function of {so} in Y. For m € N, let D,,, = {sos; 's; :
i,j €{0,1,...,m},i < j, and sos; 's; € S} and note that sy ¢ D,,. For each

m € N, let

Bp={s€S: Tu(x) e n  {IH N MLy 7 {0 N Nyep,, 7 {0}

and note that B,, € p. We claim that if m,k € N, uw € B,,, v € By, i €
{0,1,...,m}, j € {0,1,...,k}, and s;u = s;v, then ¢ = j. Suppose instead
we have such m,k,u,v,4,j with ¢ # j and assume without loss of generality
that i < j. Then u = s; 's;u. By assumption sos; 's; € S so sgs; 's; € Dy.
Since u € By,, 1 = Ty (x)(so) = z(sou). Since v € By and sosflsj € Dy,
0= T,(z)(s0s; 'sj) = 2(s0s; 's;v), a contradiction.

Now to see that T}, is surjective, let y € Y be given. Define w € Y as follows.
IfmeN,ué€ B, andiec{0,1,...,m}, then w(s;u) = y(s;). For s € S which

is not of the form s;u for some m € N, u € B,,, and i € {0,1,...,m}, define
w(s) at will. To see that T),(w) =y, let U be a neighborhood of y. Pick m € N
such that N~ 7; '[{y(s:)}] CU. Then B,, CU. O

The following is an immediate corollary of Theorem 5.13.

Corollary 5.14. Let S be a countable group with identity e, let (Y, (Ts)scs) be
the dynamical system of Lemma 1.2 determined by R =S, and let p € BS. The
following statements are equivalent.

(a) T, is surjective.

(b) For each s € S, there exists © € Y such that T,(x) is the characteristic
function of {s}.

(c) There exists x € Y such that T,(x) is the characteristic function of {e}.
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Notice that the hypotheses of the following theorem hold if S is very weakly
left cancellative and right cancellative. If k is regular, the assumption that
for any subset D of S with fewer than x members, [{e € S : (3s € D)(3t €
D\ {s})(se =te)}| < K can be replaced by the assumption that for all distinct
sand tin S, |[{e € §: se =te}| < k.

Theorem 5.15. Let S be a semigroup with |S| = k > w which is very weakly
left cancellative and has the property that for any subset D of S with fewer than
k members, |{e € S: (s € D)(3t € D\ {s})(se = te)}| < k. Let (Y, (Ts)ses)
be the dynamical system of Lemma 1.2 determined by R = S. There is a dense
open subset W of U, (S) such that for every p € W, p is right cancelable in BS
and T, : Y —Y is surjective.

Proof. We show that for any C' € [S]", there exists B € [C]" such that for every
p € BNU,(S), p is right cancelable in S and T, : Y — Y is surjective.

Enumerate S as (sy)y<x. Choose tg € C. Let 0 < o < k and assume that
we have chosen (t5)s<q in C satisfying the following inductive hypotheses:

(1) If v < 6, then t, # ts.
(2) Ify <6, p < B <9, and p # v, then syts # suts.

The hypotheses are satisfied for 6 = 0. Let E = {e € S : (Ju < 8 <
a)(sye =sge)t. For p< f<aandy<aletA,,zg={tecS:s,t=s,ts}
Then each A, , g is a left solution set. Pick

ta € C\N({ty iy <} UEU{U, <o Upea Upcp Ayns) -

Hypothesis (1) is trivially satisfied and if p < 8 < « and v < «, then
ta & Aypup SO Syta # Sutpg. If p < f = aand v < «, then t, ¢ E so
Syta 7 Sutgs.

Let B={to:a < r}andlet p € BNU,(S). To see that p is right cancelable
in B8S, let ¢ # r € BS and suppose that gp = rp. Pick subsets C' and D of S
such that CN D =0 and C € gand D € r. Then H = {syto : v < @ and s, €
C} € qp. (To see this, let s, € C. Then {t, : v < a <k} C s;lH) Similarly,
{sutp : < B and s, € D} € rp. Since these sets are disjoint by hypothesis (2),
we have a contradiction.

The fact that T, is surjective follows from Theorem 5.10. O
Lemma 5.16. Let S be a cancellative semigroup, let a € S, and let (Y, (Ts)secs)

be the dynamical system of Lemma 1.2 determined by R = S. If x is the char-
acteristic function of {a} inY, then = is not a recurrent point.

Proof. We claim that |[{s € S : Ts(z)(a) = 1}| < 1. Indeed, if z(as) = 1,

then as = a so by left cancellation, s is a left identity for S and then by right
cancellation, s is a two sided identity for S. O
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We have seen that U(x) is always a left ideal of S and that NS is a right
ideal of S provided it is nonempty.

Theorem 5.17. Let S be a countable cancellative semigroup. Let (Y, (Ts)scs)
be the dynamical system of Lemma 1.2 determined by R = S. Then NSy is not
a left ideal of BS.

Proof. By [4, Corollary 6.33] pick an idempotent p € 85\ K(8S). By Theorem
5.8 pick r € BS such that rp is right cancelable in 8S. By Lemma 5.16 and
Theorem 5.6, p € NS and by Theorem 5.10, rp ¢ NS. O

If S is commutative, then by [4, Exercise 4.4.9] and Theorem 5.5, if NS # 0,
then ¢/NS is a two sided ideal of 3S. The following theorem shows that this
may fail if S is not commutative.

Theorem 5.18. Let S be the free semigroup on the alphabet {a,b} (where a #
b). Let (Y, (Ts)ses) be the dynamical system of Lemma 1.2 determined by R = S.
Then NS # () and c¢NS is not a left ideal of 5S.

Proof. Let p be an idempotent in £S5 with {a" : n € N} € p. By Lemma 5.16 and
Theorem 5.6, p € NS. We will show that bp ¢ ¢/NS. Let B = {ba™ : n € N}.
Then B € bp. We shall show that BNNS = (. Solet ¢ € B. Let so = a and let
(sn)52; enumerate S\ {a} so that if the length of s; is less than the length of
s, then ¢ < j. By Theorem 5.13, to see that T is surjective, it suffices to show
that there is some = € Y such that T,(x) is the characteristic function of {a}.

Let « be the characteristic function of {aba™ : n € N} in Y. Let U be a neigh-
borhood of X (4} and pick F' € P¢(S\{a}) such that w ' [{1}]NN),cp ' [{0}] C
U. It suffices to show that B C {w € S : T,,(x) € 7, Y[{1}] N ﬂyeF’iszl[{OH}.
So let ba™ € B. Then Tyn(x)(a) = z(aba™) = 1 and for y € F, Tpen (2)(y) =
x(yba™) = 0. O

We remark that Theorem 5.18 remains valid if S is the free semigroup on a
countably infinite alphabet.
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