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Abstract

We introduce and study a complexity function on words cx(n), called cyclic complexity, which counts
the number of conjugacy classes of factors of length n of an infinite word x. We extend the well-known
Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic
if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity
distinguishes between Sturmian words of different slopes. We prove that if x is a Sturmian word and y
is a word having the same cyclic complexity of x, then up to renaming letters, x and y have the same
set of factors. In particular, y is also Sturmian of slope equal to that of x. Since cx(n) = 1 for some
n ≥ 1 implies x is periodic, it is natural to consider the quantity lim infn→∞ cx(n). We show that if x
is a Sturmian word, then lim infn→∞ cx(n) = 2. We prove however that this is not a characterization of
Sturmian words by exhibiting a restricted class of Toeplitz words, including the period-doubling word,
which also verify this same condition on the limit infimum. In contrast we show that, for the Thue-Morse
word t, lim infn→∞ ct(n) = +∞.

Keywords: Cyclic complexity, factor complexity, Sturmian words.

1. Introduction

The factor complexity px(n) of an infinite word x = x0x1x2 · · · ∈ AN (with each xi belonging to a
finite nonempty alphabet A) counts the number of distinct factors xixi+1 · · ·xi+n−1 of length n occurring
in x. It provides a measure of the extent of randomness of the word x and more generally of the subshift
generated by x. Periodic words have bounded factor complexity while digit expansions of normal numbers
have full complexity. A celebrated result of Hedlund and Morse in [17] states that every non-periodic word
contains at least n+1 distinct factors of each length n.Moreover, there exist words satisfying px(n) = n+1
for each n ≥ 1. These words are called Sturmian words, and in terms of their factor complexity, are regarded
to be the simplest non-periodic words.

Sturmian words admit many different characterizations of combinatorial, geometric and arithmetic na-
ture. In the 1940’s, Hedlund and Morse showed that each Sturmian word is the symbolic coding of the orbit
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of a point x on the unit circle under a rotation by an irrational angle θ, called the slope, where the circle
is partitioned into two complementary intervals, one of length θ and the other of length 1 − θ. Conversely,
each such coding defines a Sturmian word. It is well known that the dynamical/ergodic properties of the
system, as well as the combinatorial properties of the associated Sturmian word, hinge on the arithmeti-
cal/Diophantine qualities of the slope θ given by its continued fraction expansion. Sturmian words arise
naturally in various branches of mathematics including combinatorics, algebra, number theory, ergodic the-
ory, dynamical systems and differential equations. They also have implications in theoretical physics as
1-dimensional models of quasi-crystals.

Other measures of complexity of words have been introduced and studied in the literature, including
abelian complexity, maximal pattern complexity, k-abelian complexity, binomial complexity, periodicity
complexity, minimal forbidden factor complexity and palindromic complexity. With respect to most word
complexity functions, Sturmian words are characterized as those non-periodic words of lowest complexity.
One exception to this occurs in the context of maximal pattern complexity introduced by Kamae in [12].
In this case, while Sturmian words are pattern Sturmian, meaning that they have minimal maximal pattern
complexity amongst all non-periodic words, they are not the only ones. In fact, a certain restricted class of
Toeplitz words which includes the period-doubling word are also known to be pattern Sturmian (see [13]).
On the other hand, the Thue-Morse word, while closely connected to the period-doubling word, is known
to have full maximal pattern complexity (see Example 1 in [12]).

In this paper we consider a new measure of complexity, cyclic complexity, which consists in counting
the factors of each given length of an infinite word up to conjugacy. Two words u and v are said to be
conjugate if and only if u = w1w2 and v = w2w1 for some words w1, w2, i.e., if they are equal when read
on a circle. The cyclic complexity of a word is the function which counts the number of conjugacy classes
of factors of each given length. We note that factor complexity, abelian complexity and cyclic complexity
can all be viewed as actions of different subgroups of the symmetric group on the indices of a finite word
(respectively, the trivial subgroup, the whole symmetric group and the cyclic subgroup generated by the
permutation (1, 2, . . . , n)).

We establish the following analogue of the Morse-Hedlund theorem:

Theorem 1. A word x is ultimately periodic if and only if it has bounded cyclic complexity.

The factor complexity does not distinguish between Sturmian words of different slopes. In contrast, for
cyclic complexity the situation is quite different. Indeed, we prove:

Theorem 2. Let x be a Sturmian word. If y is an infinite word whose cyclic complexity is equal to that of
x, then up to renaming letters, x and y have the same set of factors. In particular, y is also Sturmian.

A word is (purely) periodic if and only if there exists an integer n such that all factors of length n are
conjugate. Therefore, the minimum value of the cyclic complexity of a non-periodic word is 2. We prove
that if x is a Sturmian word then lim infn→∞ cx(n) = 2.We show however that this is not a characterization
of Sturmian words by exhibiting a family of Toeplitz words, which includes the period-doubling word, for
which lim infn→∞ cx(n) = 2. We further show that if x is a paperfolding word, then for every n ≥ 1 one
has cx(4 · 2n) = 4. In contrast, we prove that for the Thue-Morse word, lim infn→∞ cx(n) = +∞.

2. Basics

Given a finite nonempty ordered set A (called the alphabet), we let A∗ and AN denote respectively the
set of finite words and the set of (right) infinite words over the alphabet A. The order on the alphabet A can
be extended to the usual lexicographic order on the set A∗.
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For a finite word w = w1w2 · · ·wn with n ≥ 1 and wi ∈ A, the length n of w is denoted by |w|. The
empty word is denoted by ε and we set |ε| = 0. We let An denote the set of words of length n and A+ the
set of nonempty words. For u, v ∈ A+, |u|v is the number of occurrences of v in u. The Parikh vector of
w is the vector whose components are the number of occurrences of the letters of A in w. For example, if
A = {a, b, c}, then the Parikh vector of w = abb is (1, 2, 0). The reverse (or mirror image) of a finite word
w is the word w̃ obtained by reading w in the reverse order.

Given a finite or infinite word ω = ω1ω2 · · · with ωi ∈ A, we say that a word u ∈ A+ is a factor of ω
if u = ωiωi+1 · · ·ωi+|u|−1 for some i ∈ N. We let Fact(ω) denote the set of all factors of ω, and Alph(ω)
the set of all factors of ω of length 1. If ω = uν, we say that u is a prefix of ω, while ν is a suffix of ω.
A factor u of ω is called right special (resp. left special) if both ua and ub (resp. au and bu) are factors
of ω for distinct letters a, b ∈ A. The factor u is called bispecial if it is both right special and left special.
Furthermore, a bispecial factor u of ω is strongly bispecial if aub ∈ Fact(ω) for every possible choice of a
and b in A.

For each factor u of ω, we set

ω
∣∣
u
= {n ∈ N | ωnωn+1 · · ·ωn+|u|−1 = u}.

We say that ω is recurrent if for every u ∈ Fact(ω) the set ω
∣∣
u

is infinite. We say that ω is uniformly
recurrent if for every u ∈ Fact(ω) the set ω

∣∣
u

is syndetic, i.e., of bounded gap. A word ω ∈ AN is (purely)
periodic if there exists a positive integer p such that ωi+p = ωi for all indices i, while it is ultimately
periodic if ωi+p = ωi for all sufficiently large i. Finally, a word ω ∈ AN is called aperiodic if it is not
ultimately periodic. For a finite word w = w1w2 · · ·wn, we call p a period of w if wi+p = wi for every
1 ≤ i ≤ n − p. Two finite or infinite words are said to be isomorphic if the two words are equal up to a
renaming of the letters.

A (finite or infinite) word ω overA is balanced if and only if for any u, v factors of ω of the same length
and for every letter a ∈ A, one has ||u|a − |v|a| ≤ 1. More generally, ω is C-balanced if there exists a
constant C > 0 such that for any u, v factors of ω of the same length and for every letter a ∈ A, one has
||u|a − |v|a| ≤ C.

The factor complexity of an infinite word ω is the function

pω(n) = |Fact(ω) ∩An|,

i.e., the function that counts the number of distinct factors of length n of ω, for every n ≥ 0 (cf. [17]). By
the Morse-Hedlund theorem, a word ω is aperiodic if and only if pω(n) ≥ n + 1 for each n. Words with
pω(n) = n+ 1 for each n ∈ N are called Sturmian words.

The factor complexity counts the factors appearing in the word. A dual point of view consists in counting
the shortest factors that do not appear in the word. This leads to another measure of complexity called the
minimal forbidden factor complexity. Let ω be a (finite or infinite) word over an alphabet A. A finite
nonempty word v is a minimal forbidden factor for ω if v does not belong to Fact(ω) but every proper
factor of v does. We let MF(ω) denote the set of all minimal forbidden words for ω. The minimal forbidden
factor complexity of an infinite word ω is the function

mfω(n) = |MF(ω) ∩An| ,

i.e., the function that counts the number of distinct minimal forbidden factors of length n of ω, for every
n ≥ 0 (cf. [16]).

Another approach in measuring the complexity of a words consists in counting its factors up to an
equivalence relation. The abelian complexity can be framed in this context. Two finite words u, v are
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abelian equivalent (denoted u ≈ v) if they have the same Parikh vector. Note that ≈ is an equivalence
relation over A∗. More formally, the abelian complexity of a word ω is the function

aω(n) =

∣∣∣∣Fact(ω) ∩An

≈

∣∣∣∣ ,
i.e., the function that counts the number of distinct Parikh vectors of factors of length n of ω, for every
n ≥ 0 (cf. [8]).

We now introduce a new measure of complexity. Recall that two finite words u, v are conjugate if there
exist words w1, w2 such that u = w1w2 and v = w2w1. The conjugacy relation is an equivalence over A∗,
which is denoted by ∼, whose classes are called conjugacy classes.

The cyclic complexity of an infinite word ω is the function

cω(n) =

∣∣∣∣Fact(ω) ∩An

∼

∣∣∣∣ ,
i.e., the function that counts the number of distinct conjugacy classes of factors of length n of ω, for every
n ≥ 0.

Remark 1. For any infinite word ω it holds that

aω(n) ≤ cω(n) ≤ pω(n)

for every n. Indeed, the second inequality is obvious, while the first follows from the fact that two factors
that are conjugate must have the same Parikh vector.

Another basic property of the cyclic complexity is stated in the following proposition.

Proposition 3. An infinite word has full cyclic complexity if and only if it has full factor complexity.

Proof. Clearly, full factor complexity implies full cyclic complexity. Conversely, if ω is an infinite word
having full cyclic complexity, then for every w ∈ A∗, some conjugate of ww is an element of Fact(ω). But
as every conjugate of ww contains w as a factor, we have w ∈ Fact(ω).

Cyclic complexity, as many other mentioned complexity functions, is naturally extended to any factorial
language. Recall that a language is any subset of A∗. A language L is called factorial if it contains all the
factors of its words, i.e., if uv ∈ L⇒ u, v ∈ L. The cyclic complexity of L is defined by

cL(n) =

∣∣∣∣L ∩An

∼

∣∣∣∣ .
The cyclic complexity is an invariant for several operations on languages. For example, it is clear that if

two languages are isomorphic (i.e., one can be obtained from the other by renaming letters) then they have
the same cyclic complexity. Furthermore, if L is a language and L̃ is obtained from L by reversing (mirror
image) each word in L, then L and L̃ have the same cyclic complexity.
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3. Cyclic Complexity Distinguishes Between Periodic and Aperiodic Words

In this section we give a proof of Theorem 1. The following lemma connects cyclic complexity to
balancedness.

Lemma 4. Let ω ∈ AN and suppose that there exists a constant C such that cω(n) ≤ C for every n. Then
ω is C-balanced.

Proof. By Remark 1, aω(n) ≤ C for every n. It is proved in [19] that this implies that the word ω is
C-balanced.

Lemma 5. Let ω ∈ AN be aperiodic and let v ∈ A+ be a factor of ω which occurs in ω an infinite number
of times. Then, for each positive integer K there exists a positive integer n such that ω contains at least
K + 1 distinct factors of length n beginning with v.

Proof. Let y0, y1, . . . , yK be K+1 suffixes of ω beginning with v. Since ω is aperiodic, the yi are pairwise
distinct. Thus for all n sufficiently large, the prefixes of yi of length n are pairwise distinct.

Theorem 1. A word ω is ultimately periodic if and only if it has bounded cyclic complexity.

Proof. If ω is ultimately periodic, then it has bounded factor complexity by the Morse-Hedlund theorem,
and hence bounded cyclic complexity.

Let us now prove that if ω is aperiodic, then for any fixed positive integer M , cω(n) ≥ M for some
n. Short of replacing ω by a suffix of ω, we can suppose that each letter occurring in ω occurs infinitely
often in ω. First, suppose that for each positive integer C, ω is not C-balanced. Then, by Lemma 4, the
cyclic complexity of ω is unbounded and we are done. Thus, we can suppose that ω is C-balanced for some
positive integer C.

Since ω is C-balanced and each a ∈ Alph(ω) occurs in ω an infinite number of times, it follows that
there exists a positive integer N such that each factor of ω of length N contains an occurrence of each
a ∈ Alph(ω). Fix a ∈ Alph(ω). Then aN is not a factor of ω. Let ak be the longest suffix of aN which
occurs in ω an infinite number of times. Clearly, 1 ≤ k < n. So, there exists a suffix ω′ of ω for which
ak+1 is a forbidden factor of ω′. By Lemma 5, there exists a positive integer n0 such that ω′ contains at
least MN distinct factors of length n0 beginning with ak. We let u1, u2, . . . , uMN denote these factors.
There exist v1, v2, . . . , vMN , each in AN , such that uivi are factors of ω′ (of length n0 + N) for each
1 ≤ i ≤ MN. Since each vi contains at least one occurrence of a, it follows that there exists n > n0 such
that ω′ contains at least M distinct factors of length n beginning with ak and terminating in a. Since ak+1

is a forbidden factor of ω′, no two of these factors are conjugate to one another. Hence, cω′(n) ≥ M and
thus cω(n) ≥M .

4. Cyclic Complexity Distinguishes Between Sturmian Words with Different Languages

In this section we investigate the cyclic complexity of Sturmian words and give a proof of Theorem 2.
We begin by reviewing some basic properties of Sturmian words which are relevant to our proof of Theorem
2. See also [14, Chap. 2]. Throughout this section we fix the alphabetA = {0, 1}. An infinite word x ∈ AN

is called Sturmian if it satisfies any of the following equivalent conditions:

Proposition 6. Let x ∈ AN. The following conditions are equivalent:

1. x has exactly n+ 1 distinct factors of each length n;
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2. x is balanced and aperiodic;
3. x has exactly one right (resp. left) special factor for each length.

The best known example of a Sturmian word is the Fibonacci word F = 010010100100101001 · · · ,
obtained as the fixed point of the substitution 0 7→ 01, 1 7→ 0. It is easy to see the set of factors of a
Sturmian word x is closed under reversal, i.e., if u is a factor of x, then so is its reversal ũ (see, for instance,
[14, Chap. 2]). It follows that the right special factors of a Sturmian word are the reversals of its left special
factors. In particular, the bispecial factors of a Sturmian word are palindromes.

Remark 2. It follows from Proposition 6 that if x is a Sturmian word, then for each n ≥ 0 there exist a
unique factor u of length n such that both u0 and u1 belong to Fact(x) and a unique factor v of length n
such that both 0v and 1v belong to Fact(x). We consider two cases: Case 1: u 6= v, and Case 2: u = v. In
Case 1 it follows that u is a suffix of a unique factor w of length n+ 1 and both w0 and w1 are factors of x
of length n+ 2. Moreover, for each factor z 6= w of length n+ 1, let z′ denote the suffix of z of length n.
Then, as z′ is not right special, it follows that there exists a unique a ∈ {0, 1} such that x

∣∣
z′

= x
∣∣
z′a
, that

is, each occurrence of z′ in x is an occurrence of z′a. Hence x
∣∣
z
= x

∣∣
za
. In other words, in Case 1 we have

that Fact(x) ∩ {0, 1}n+1 uniquely determines Fact(x) ∩ {0, 1}n+2. In Case 2, as u = v we have that u is
a bispecial factor of x of length n, and hence each of u0, u1, 0u, 1u is a factor of x of length n+ 1. In this
case, exactly one of the following two cases occurs: Either 0u is right special, in which case by the balance
property we must have x

∣∣
1u

= x
∣∣
1u0
, or 1u is right special, in which case x

∣∣
0u

= x
∣∣
0u1
. Moreover, each of

these two cases is possible, meaning that there exists a Sturmian word x′ whose factors agree with those of
x up to length n+ 1 and differ at length n+ 2 : One admits the factor 0u0, while the other admits 1u1.

The slope of a finite nonempty word w over the alphabet A is defined as s(w) = |w|1
|w| . The slope of an

infinite word over A, when it exists, is the limit of the slopes of its prefixes. The set of factors of a Sturmian
word depends only on the slope:

Proposition 7 ([17]). Let x, y be two Sturmian words. Then Fact(x) = Fact(y) if and only if x and y have
the same slope.

Central words play a fundamental role in the study of Sturmian words. A word over the alphabet A
is central if it has relatively prime periods p and q and length p + q − 2. We make use of the following
characterizations of central words (see [3] for a survey):

Proposition 8. Let w be a word over A. The following conditions are equivalent:

1. w is a central word;
2. 0w1 and 1w0 are conjugate;
3. w is a bispecial factor of some Sturmian word;
4. w is a palindrome and the words w0 and w1 (resp. 0w and 1w) are balanced;
5. 0w1 is balanced and is the least element (relative to the lexicographic order) in its conjugacy class;
6. w is a power of a single letter or there exist central words p1, p2 such that w = p101p2 = p210p1.

Moreover, in this latter case |p1| + 2 and |p2| + 2 are relatively prime periods of w and min(|p1| +
2, |p2|+ 2) is the minimal period of w.

Let w be a central word, different from a power of a single letter, having relatively prime periods p
and q and length p + q − 2. The words 0w1 and 1w0, which, by Proposition 8, are conjugate, are called
Christoffel words. Let r = |0w1|0 and s = |0w1|1. It can be proved that {r, s} = {p−1, q−1} modulo p+ q
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A5,3 =



0 0 1 0 0 1 0 1
0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0
1 0 0 1 0 0 1 0
1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 0


Figure 1: The Christoffel array A5,3.

[2, Proposition 2.1]. Moreover, the conjugacy class of 0w1 and 1w0 contains exactly |w|+ 2 words. If we
sort these words lexicographically and arrange them as rows of a matrix, we obtain a square matrix with
remarkable combinatorial properties (see [4, 11, 15]). This matrix depends only on the pair (r, s); we call
it the (r, s)-Christoffel array and denote it by Ar,s. Two consecutive rows of Ar,s differ only by a swap of
two consecutive positions [4, Corollary 5.1]. Moreover, the columns are also conjugate and in particular the
first one is 0r1s, while the last one is 1s0r (cf. [15]). For example, consider the Fibonacci word F and its
bispecial factor w = 010010, which has periods p = 5 and q = 3. We have s = q−1 = 3 < 5 = r = p−1.
In Figure 1 we show the (5, 3)-Christoffel array A5,3. The rows are the lexicographically sorted factors of
F with Parikh vector (5, 3). The other factor of length 8 of F is 10100101.

Every aperiodic word (and therefore, in particular, every Sturmian word) contains infinitely many bis-
pecial factors. If w is a bispecial factor of a Sturmian word x, then w is central by Proposition 8. Moreover,
there exists a unique letter a ∈ A such aw is right special, or equivalently wa is left special. Also, the next
(by length) bispecial factorw′ of x is the shortest palindrome beginning withwa. If p and q are the relatively
prime periods of w such that |w| = p + q − 2, then the word w′ is central with relatively prime periods p′

and q′ verifying |w′| = p′+ q′− 2 and either p′ = p+ q and q′ = p, or p′ = p+ q and q′ = q, depending on
the letter a. For example, 010 is a bispecial factor of the Fibonacci word F and has relatively prime periods
3 and 2 (and length 3+2−2). The successive (in length order) bispecial factor of F is 010010, which is the
shortest palindrome beginning with 010 · 0 and has relatively prime periods 5 and 3 (and length 5 + 3− 2).
There exist other Sturmian words having 010 as a bispecial factor and for which the successive bispecial
factor is 01010 (i.e., the shortest palindrome beginning with 010 · 1) whose relatively prime periods are 5
and 2. These combinatorial properties of central words are needed in our proof of Theorem 2.

While Sturmian words have unbounded cyclic complexity (see Theorem 1), their cyclic complexity
takes value 2 infinitely often. More precisely, we have the following result.

Lemma 9. Let x be a Sturmian word. Then cx(n) = 2 if and only if n = 1 or there exists a bispecial factor
of x of length n − 2. Moreover, when cx(n) = 2, one conjugacy class has cardinality n and the other has
cardinality 1.

Proof. If n = 1 clearly cx(n) = 2, so let us suppose n > 1. If w is a bispecial factor of length n − 2 of a
Sturmian word, then there exists a letter a such that the factors of x of length n are precisely awa, and all
the conjugates of awb for the letter b 6= a (cf. [9]). Hence cx(n) = 2. Conversely, suppose cx(n) = 2 for
some n > 1. Then the cyclic classes of factors of x of length n correspond to the abelian classes of factors
of x of length n. Let w (possibly empty) be the left special factor of x of length n− 2. Then 01w and 10w
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are factors of x. Since 01w and 10w are abelian equivalent, they must be conjugate. Thus by Proposition 8,
w is a palindrome, whence w is a bispecial factor of x.

It follows that lim infn→∞ cx(n) = 2. However, as we see in Section 5, this is not a characterization of
Sturmian words.

Theorem 2. Let x be a Sturmian word. If a word y has the same cyclic complexity as x then, up to renaming
letters, y is a Sturmian word having the same slope as x.

Proof. Since y has the same cyclic complexity as x, we have that in particular 2 = cx(1) = cy(1), so y is a
binary word. We fix for x and y the alphabet {0, 1}. Since x is aperiodic, by Theorem 1 cx is unbounded.
Since x and y have the same cyclic complexity we have, still by Theorem 1, that y is aperiodic.

Up to exchanging 0 and 1 in x, we can assume that x contains the factor 00 so that the factors of x of
length 2 are 00, 01, 10.We claim that y too has exactly three factors of length 2. In fact, since y is aperiodic,
y has at least three distinct factors of length 2. If y had four factors of length 2, then y would have three
abelian classes of length 2 and hence cy(2) = 3, a contradiction. Thus, up to exchanging 0 and 1 in y, we
can assume that x and y have the same factors of length 2.

We now prove that x and y have the same set of factors. This implies that y is a Sturmian word and has
the same slope as x by Proposition 7. Suppose to the contrary that there exists a least positive integer n > 0
such that the factors of x and y of length n+ 2 differ. In what follows, we assume:

(*) Let x, y ∈ {0, 1}N be infinite aperiodic words having the same factors of length 2. Assume further
that x is Sturmian and Fact(x) 6= Fact(y). Let n be the least positive integer such that the factors of x and
y of length n + 2 differ. Let a ∈ {0, 1} and w ∈ {0, 1}n be such that aw is the unique right special factor
of x of length n+ 1. Let b = 1− a so that {a, b} = {0, 1}.

Lemma 10. Assume x and y satisfy (*). Then x and y have a common bispecial factor of length n.

Proof. This is essentially Case 2 in Remark 2. We begin by observing that w is the unique right special
factor of x and of y of length n. We claim that w is a bispecial factor of both x and y. If not, then aw is
the unique right special factor of both x and y of length n + 1, and so x and y would have the same set of
factors of length n+ 2, a contradiction.

Lemma 11. Assume x and y satisfy (*). Then cx(n+ 2) = 2.

Proof. This follows immediately from the previous lemma together with Lemma 9.

Lemma 12. Assume x and y satisfy (*). Then either cy 6= cx, or bw is the unique right special factor of y
of length n+ 1 and every occurrence of aw in y is followed by b.

Proof. Assume cy = cx. Then by the previous lemma we have cx(n + 2) = cy(n + 2) = 2. It follows
that exactly one of aw or bw is right special in y. Since y is aperiodic, at least one of the two must be right
special. On the other hand, if both were right special, then y would have at least 3 abelian classes of factors
of length n+2 (namely those of awa, bwb and awb) whence cy(n+2) ≥ 3, a contradiction. We claim that
bw is right special in y. In fact, suppose to the contrary that aw is right special in y. In this case, exactly
one of bwb and bwa is a factor of y. If bwb is a factor of y, then as above y would have at least three abelian
classes of factors of length n+ 2 and hence cy(n+ 2) ≥ 3, a contradiction. If bwa is a factor of y, then x
and y have the same factors of length n+ 2, a contradiction. This proves that bw is the unique right special
factor of y of length n + 1. As before, exactly one of awa and awb is a factor of y. If awa is a factor of
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y, then as argued above y would have at least three abelian classes of factors of length n + 2 and hence
cy(n+ 2) ≥ 3, a contradiction. Thus y

∣∣
aw

= y
∣∣
awb

.

By Remark 2, there exists a Sturmian word y′ such that x and y′ have the same set of factors up to length
n + 1, after which aw is right special in x while bw is right special in y′. Thus by the previous lemma, if
cx = cy, then y and y′ have the same factors of length n + 2. Let wx (resp. wy) be the shortest bispecial
factor of x (resp. of y) whose length is strictly greater than |w| = n. Note that wy is also bispecial for y′.
Then Fact(y′) ∩Aj = Fact(y) ∩Aj for every j ≤ |wy|+ 1.

Lemma 13. Assume x and y satisfy (*). Then either cy 6= cx, or |wx| > |wy|.

Proof. Assume cy = cx. Then as in the previous lemma we have cx(n + 2) = cy(n + 2) = 2. Let p′ and
q′, with p′ > q′, be the two relatively prime periods of w such that n = |w| = p′ + q′ − 2. We have that
{|wx|, |wy|} = {2p′ + q′ − 2, p′ +2q′ − 2}, hence wx and wy cannot have the same length. If |wx| < |wy|,
then by Lemma 9

2 = cx(|wx|+ 2) = cy(|wx|+ 2) = cy′(|wx|+ 2) > 2,

a contradiction.

Let p′ and q′, with p′ > q′, be the two relatively prime periods of w. By the previous lemma we have
|wx| > |wy|. So wx has periods p′ + q′ and p′ and length 2p′ + q′ − 2, while wy has periods p′ + q′ and q′

and length p′+2q′− 2. Set p = p′+ q′ and q = p′, so that |wy| = 2p− q− 2 and |wx| = p+ q− 2. Notice
that p+ q > 2p− q since p′ > q′. We use this fact in what follows without explicit mention.

Lemma 14. Assume x and y satisfy (*). Then either cy 6= cx, or wy is a strongly bispecial factor of y, i.e.,
0wy0, 0wy1, 1wy0 and 1wy1 are all factors of y.

Proof. Assume that cy = cx. Then one of the following cases must hold:

1. Neither 0wy nor 1wy is right special in y;
2. 0wy is right special in y and every occurrence of 1wy is followed by 1 in y;
3. 0wy is right special in y and every occurrence of 1wy is followed by 0 in y;
4. 1wy is right special in y and every occurrence of 0wy is followed by 0 in y;
5. 1wy is right special in y and every occurrence of 0wy is followed by 1 in y;
6. Both 0wy and 1wy are right special factors of y.

In Case 1 y does not have right special factors of length |wy|+1, hence y would be ultimately periodic,
a contradiction.

Case 2 also implies that y is ultimately periodic. If no nonempty prefix of 1wy is right special in y, then
every occurrence of 1 in y is an occurrence of 1wy1, and hence y is ultimately periodic. Let z (possibly
empty) be the longest prefix of wy such that 1z is right special in y. Clearly, |z| < |wy|. So we can write
1wy = 1zu for some nonempty word u. Since 1z is right special in y and hence in y′, we have that z̃1 is
left special in y′ and hence in y. Thus z̃1 is a prefix of wy, whence u begins with 1 and z = z̃. Therefore
each occurrence of 1z1 is an occurrence of 1zu1 = 1wy1. Since 1wy1 and 1z1 are both palindromes, 1z1
is also a suffix of 1wy1, whence y is ultimately periodic.

In Case 3, either Fact(y′)∩Aj = Fact(y)∩Aj for every j ≤ |wy|+2, and hence 2 = cy′(|wy|+2) =
cy(|wy|+ 2) = cx(|wy|+ 2) > 2, contradiction, or by Remark 2 there exists a Sturmian word y′′ such that
Fact(y′′)∩Aj = Fact(y)∩Aj for every j ≤ |wy|+2, in which case 2 = cy′′(|wy|+2) = cy(|wy|+2) =
cx(|wy|+ 2) > 2, again a contradiction.
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Case 4 is symmetric to Case 2 and Case 5 is symmetric to Case 3, so the only remaining case is that
both 0wy and 1wy are right special factors of y as required.

Lemma 15. Assume x and y satisfy (*). Then either cy 6= cx, or cy(|wy|+ 2) = cy(2p− q) = 3.

Proof. Assume cx = cy. Then from the previous lemma we have that wy is a strong bispecial factor of y.
Thus, the factors of y of length |wy| + 2 are precisely the factors of y′ of the same length, plus one other
factor which is either 0wy0 or 1wy1, whence cy(|wy|+ 2) = cy(2p− q) = 3.

Returning to the proof of Theorem 2, let r = |0wx1|0 and s = |0wx1|1. Since we supposed that 11 is
not a factor of x, we have r > s. In what follows we assume that cx = cy. In view of the previous lemmas,
we have that if x and y satisfy (*), then |wx| > |wy| and cy(|wy|+ 2) = cy(2p− q) = 3. We consider four
cases depending on s : s = 1, s = 2, s = 3 and s > 3. Each gives rise to a contradiction.

Case s = 1. This case cannot happen since otherwise we would have wx = 0n+1, w = 0n and
wy = 0n10n, against the hypothesis that |wx| > |wy|.

Case s = 2. In this case we have w = 0n, wx = 0n10n and wy = 0n+1. Since wx is right special in x,
we have that 10n1 and 0n+1 are factors of x. Let us look at the factors of x of length 2n+ 4. Among them,
we have v1 = 10n10n+11, v2 = 10n+110n1 and v3 = 0j10n10k, for some j, k such that j + k = n + 2.
Moreover, since one of 10n10n1 and 10n+110n+1 is a factor of x, we also have that either v4 = 10n10n10
or v′4 = 10n+110n+1 is a factor of x. Since these four factors are not conjugate to one other, we have
cx(2n+ 4) ≥ 4.

Let us now prove that cy(2n+ 4) = 3. Since wy = 0n+1 is strongly bispecial in y, we have that 0n+21
is a factor of y and hence there exists a factor of y of length 2n+3 beginning with 0n+21. This factor must
be equal to 0n+210n since otherwise y would contain both 0t+2 and 10t1 for some t ≤ n − 1, and hence
also x would contain these factors, against the hypothesis that x is Sturmian and therefore balanced. We
have thus proved that y contains a factor of length 2n+ 3 with exactly one 1. Since 2n+ 3 is the length of
a bispecial factor of x plus 2, we have by Lemma 9 that cy(2n + 3) = cx(2n + 3) = 2. Since y contains
factors of length 2n+ 3 with two 1’s, these must be all conjugates one to each other. Since wy is a strongly
bispecial factor of y, we have that 10n+11 is a factor of y and therefore the factors of length 2n + 3 of y
with two 1’s are all conjugate to 10n+110n.

By Lemma 12, 10n1 is not a factor of y; neither is 10t1 for t < n. Let 10t1 be a factor of y, with
t > n+ 1. Then we can prove that t = 2n+ 2. Indeed, on the one hand we cannot have t > 2n+ 2 since
02n+3 is not a factor of y—because we know that the factors of length 2n+3 of y contain one or two 1’s. On
the other hand, we cannot have t < 2n+ 2 because we know that the factors of length 2n+ 3 with exactly
two 1’s are all conjugate to 10n+110n. We have therefore proved that in y two consecutive occurrences
of 1 are separated by either n + 1 or 2n + 2 many 0’s. This implies that at length 2n + 4 we have in y:
one conjugacy class containing all the factors with exactly one 1; one conjugacy class containing only the
factor 102n+21; one conjugacy class containing all the other factors, that are of the form 0j10n+110k, with
j + k = n+ 1. Hence, cy(2n+ 4) = 3 and we are done.

Case s = 3. In this case wx is a central word with two 1’s. The only central words with two 1’s not
containing 11 as a factor are of the form 0m10m10m or 0m10m+110m for some m > 0. This implies that
w = 0m10m, and since |wx| > |wy|, we deduce wy = 0m10m10m and wx = 0m10m+110m. Note that we
have m = p′ − 2 = q′ − 1, so that 2p− q = 3m+ 4.

It is readily verified that each of 0m+110m+110m, 0m+110m10m+1, 0m10m+110m1 and
0m−110m+110m+11 is a factor of x and no two of them are conjugate. Therefore, cx(2p− q) ≥ 4, contra-
dicting that cy(2p− q) = 3.
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A′r,s =



1 p− q p 2p− q
...

. . .
...

. . .
...

. . .
...

...
. . .

...
. . .

...
. . .

...
1 · · · · · · · · · · · · · · · 0
1 · · · 0 · · · · · · · · · 1
1 · · · 1 · · · 0 · · · 1
1 · · · 1 · · · 1 · · · 1


Figure 2: The matrix A′r,s in the Subcase s = p−1 in the proof of Theorem 2.

Case s > 3. As in the previous case, we prove that cx(2p−q) ≥ 4. It is known that among the p+q+1
factors of x of length p+ q, there is one factor with a Parikh vector Q and the remaining p+ q factors with
the other Parikh vector Q′, these latter being in the same conjugacy class, which is in fact the conjugacy
class of the Christoffel word 0wx1 (see Lemma 9).

We can build the (r, s)-Christoffel arrayAr,s (recall that r+ s = p+ q). The factors of length 2p− q of
x can be obtained by removing the last 2q − p columns from Ar,s (of course, in this way some rows can be
equal and therefore some factors appear more than once). LetA′r,s be the matrix made up of the first 2p−q
columns of Ar,s. In what follows, we let A′i denote the i-th row of A′r,s. Recall that {r, s} = {p−1, q−1}
mod (p+ q). We separate two subcases: s = p−1 or s = q−1.

Remark 3. Before treating the two remaining subcases in the proof of Theorem 2, we recall here some
properties of the arrays Ar,s and A′r,s which will be used. Each column of Ar,s and A′r,s has r+ s entries.
The first column in each case has r-many 0’s at the top followed by s-many 1’s at the bottom. Then each
subsequent column is obtained from the previous column by rotating upwards by an amount equal to s
as illustrated in Figure 1. Any two consecutive rows of the array Ar,s differ precisely in two consecutive
positions where the upper row has 01 and the lower row 10. Thus two consecutive rows A′i and A′i+1 of
A′r,s either differ in the same way in two consecutive positions, or are equal, or differ only in their last
entry. They are therefore abelian equivalent, except in the last case, in which case all rowsA′j for j ≤ i are
abelian equivalent and all rows A′j with j ≥ i+ 1 are abelian equivalent.

Subcase s = p−1. In this case, we prove that the bottom three rows in A′r,s are distinct and begin and
end with 1. It follows that each of these rows is unique in its conjugacy class since all other conjugates
contain an occurrence of 11. Together with the first row of A′r,s, which is not abelian equivalent to any
of the bottom three rows, we obtain at least four conjugacy classes of factors of x of length 2p − q. This
subcase is depicted in Figure 2.

Since s ≥ 3, it follows that the bottom three rows in A′r,s begin with 1. Because sp = 1 mod (p+ q),
writing 2p − q = 3p − (p + q) it follows that s(2p − q) = 3 mod (p + q) which means that the bottom
three rows each end with 1 and are pairwise abelian equivalent. Moreover, the bottom three rows in A′r,s
are distinct. In fact, since sp = 1 mod (p+ q), it follows that the bottom two rows differ in the p’th entry.
More precisely, the p’th column of A′r,s has (s − 1)-many 1’s at the top, followed by r-many 0’s then a
single 1 at the bottom. Similarly, because s(p− q) = 2 mod (p+ q), it follows that A′p+q−2 differs from
each of A′p+q−1 and A′p+q in the (p− q)’th entry (A′p+q−2 has a 0 while the other two have a 1).

Subcase s = q−1. In this case we prove that the top three rows of the matrix A′r,s are pairwise distinct,
neither is conjugate to another, and are pairwise abelian equivalent. Combined with the bottom row, which
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A′r,s =



1 p− q p 2p− q
0 v 0 1y 0 1z 0
0 v 0 1y 1 0z 0
0 v 1 0y 1 0z 0
... · · · 1 · · · 1 · · · 1
...

. . .
...

. . .
...

. . .
...

...
. . .

...
. . .

...
. . .

...


Figure 3: The matrix A′r,s in the Subcase s = q−1 in the proof of Theorem 2.

is not abelian equivalent to the top three rows, we obtain at least four distinct conjugacy classes of x of
length 2p− q.

Reasoning as in the previous subcase, since sp = −1 mod (p+ q), it follows that the first row differs
from the second and third rows in the p’th entry (the first row has a 0 while the other two have 1). Thus
A′1 6= A′2 and A′1 6= A′3. Since s(p − q) = −2 mod (p + q) it follows that A′2 differs from A′3 in
the (p − q)’th entry. And since s(2p − q) = −3 mod (p + q), it follows that the top three rows are in a
different abelian class than all other rows.

ClearlyA′1 begins with the maximum run of 0’s. SinceA′1 andA′2 differ only in positions p and p+1
and since both have a 1 in position p− q + 1, it follows that A′2 also begins with the maximum run of 0’s.
Since s(2p− q) = −3 mod (p+ q), it follows that A′3 differs from A′4 only in the last entry, and hence
A′3 ends with the maximum run of 0’s. Since A′2 and A′3 differ only in positions p − q and p − q + 1, it
follows that A′2 too ends with the maximum run of 0’s. Hence, A′2 is unique in its conjugacy class.

It remains to show that A′1 and A′3 are not conjugate. We can write A′1 = 0v01y01z0 and A′3 =
0v10y10z0 for words v, y, z such that |0v0| = p − q and |0v01y0| = p (see Figure 3). Let m be such that
0m+11 is a prefix ofA′1. Then 0m is a suffix ofA′1 since the top row ofAr,s has a 1 in column 2p− q+1.
Thus the only conjugate ofA′1 that is possibly a factor of x is v01y01z00, as all other conjugates contain the
forbidden factor 0m+2. IfA′1 andA′3 were conjugate, we would therefore have v01y01z00 = 0v10y10z0,
hence each of v, y, z would be a power of 0. Since w is the prefix of 0−1A′1 of length p− 2, we deduce that
|w|1 ≤ 1, whence |wx|1 ≤ 2, and thus s ≤ 3, contradicting our assumption that s > 3. This completes the
proof of Theorem 2.

Having established Theorem 2, one may ask: Given two infinite words x and y with the same cyclic
complexity, what can be said about their languages of factors? First, there exist two periodic words having
same cyclic complexity but whose languages of factors are not isomorphic nor related by mirror image.
For example, let τ be the morphism: 0 7→ 010, 1 7→ 011 and consider the words x = τ((010011)ω) and
x′ = τ((101100)ω). One can verify that x and x′ have the same cyclic complexity up to length 17 and,
since each has period 18, the cyclic complexities of x and y agree for all n. Furthermore, it is easy to show
that even two aperiodic words can have the same cyclic complexity but different languages of factors. For
example, let x be an infinite binary word such that MF(x) = {000111} and y an infinite binary word such
that MF(y) = {001111}. Then the languages of factors of x and y are not isomorphic, nor related by mirror
image, yet the two words have the same cyclic complexity. However, we do not know if this can still happen
with the additional hypothesis of linear complexity, for example.

We end this section by comparing cyclic complexity and minimal forbidden factor complexity. In [16]
the authors proved the following result.
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Theorem 16. Let x be a Sturmian word and let y be an infinite word such that for every n one has px(n) =
py(n) and mfx(n) = mfy(n), i.e., y is a word having the same factor complexity and the same minimal
forbidden factor complexity as x. Then, up to isomorphism, y is a Sturmian word having the same slope as
x.

In contrast with Theorem 2, the fact that y is a Sturmian word in Theorem 16 follows im-
mediately from the hypothesis that y has the same factor complexity as x. Let x be an infinite
binary word such that MF(x) = {11, 000} and y an infinite binary word such that MF(y) =
{11, 101}. Then x and y have the same minimal forbidden factor complexity, but it is readily
checked that cx(5) = 3 while cy(5) = 4. Note that x contains 7 factors of length 5 correspond-
ing to 3 cyclic classes (00100, 00101, 01001, 01010, 10010, 10100, 10101) while y contains the factors
00000, 10000, 10010, 10001 no two of which are cyclically conjugate.

5. The Limit Inferior of the Cyclic Complexity

We say that an aperiodic word x has minimal cyclic complexity if lim infn→∞ cx(n) = 2. In the pre-
vious section we proved that Sturmian words have minimal cyclic complexity. We now give other ex-
amples of words having minimal cyclic complexity which include the well-known period-doubling word.
This may be compared with an analogous situation in the context of maximal pattern complexity in which
a restricted class of Toeplitz words is found to have the same maximal pattern complexity as Sturmian
words (see [13]). We also show that for the paperfolding word we have lim infn→∞ cx(n) = 4. Clearly, if
lim infn→∞ cx(n) < +∞, then the factor complexity of x satisfies lim infn→∞ px(n)/n < +∞. This is
because each cyclic class of factors of length n has at most n elements. But the converse is not true. In fact,
we prove that for the Thue-Morse infinite word t, for which lim infn→∞ pt(n)/n = 3, see [5, Proposition
4.5], we have lim infn→∞ ct(n) = +∞.

5.1. Fixed Points of Uniform Substitutions with one Discrepancy
Proposition 17. Let A = {0, 1} and µ : 0 7→ u0v, 1 7→ u1v, for words u, v ∈ A∗ such that |uv| > 0. Let x
be a fixed point of µ. If x is aperiodic, then for every n ≥ 0 one has cx(kn) = 2, where k = |u|+ |v|+ 1.

Proof. We proceed by induction on n. Since x is binary, the result is trivially verified for n = 0. Next let
us fix n ≥ 1, and we suppose by induction hypothesis that the result is true up to n, and prove it for n+ 1.
We separate the factors of x of length kn+1 into two classes: those which are images under µ of a factor of
length kn, and those which are not. Clearly if two words of length kn are conjugate, then so are their images
under µ. Whence if we restrict to factors of length kn+1 which are images under µ of factors of length kn,
then there are at most cx(kn) many cyclic classes. Next we show that each factor of length kn+1 which is
not the image under µ of a factor of length kn is conjugate to one that is. So let z be a factor of x of length
kn+1 which is not the image under µ of a factor of x of length kn. Then either z = u′a1vua2v · · ·uanvu′′
for letters ai ∈ A and words u′, u′′ such that u′′u′ = u or z = v′′ua1vua2v · · ·uanv′ for letters ai ∈ A and
words v′, v′′ such that v′v′′ = v. In either case z is conjugate of z′ = ua1vua2v · · ·uanv, which is an image
under µ of a factor of x of length kn. Thus the number of cyclic classes of factors of length kn+1 is at most
cx(k

n) which by induction hypothesis is equal to 2. Since x is aperiodic, we deduce that cx(kn+1) = 2 as
required.

Example 1. If we take u = 0 and v = ε, we obtain the morphism µ : 0 7→ 00, 1 7→ 01, whose fixed point is
the so-called period-doubling word p = 0100010101000100 · · · . By Proposition 17, we have cp(2n) = 2
for every n ≥ 0.
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More generally, we can consider words that are obtained as a limit of a sequence of substitutions each
of the form µi defined by µi(a) = uiavi for a ∈ {0, 1}, where ui, vi ∈ A∗ are such that |ui| > 0. Indeed,
one can define the infinite word x = limn→∞ µ1 ◦ µ2 ◦ · · · ◦ µn(0), since the words in the sequence have
arbitrarily long common prefixes. By a similar argument as that used in the proof of Proposition 17, we
have that the following proposition holds.

Proposition 18. Let (µi)i≥1 be an infinite sequence of substitutions such that for every i there exist ui, vi ∈
A∗, |ui| > 0 and µi(a) = uiavi for each a ∈ {0, 1}. Let x = limn→∞ µ1 ◦ µ2 ◦ · · · ◦ µn(0). If x is
aperiodic, then lim infn→∞ cx(n) = 2.

5.2. Paperfolding Words

A paperfolding word is the sequence of ridges and valleys obtained by unfolding a sheet of paper which
has been folded in half infinitely many times. For example, the regular paperfolding word

x = 00100110001101100010011100110110 · · ·

is obtained by folding a sheet of paper repeatedly in half in the same direction. Alternatively, an infinite word
x = x0x1x2 · · · ∈ {0, 1}N is a paperfolding word if (x4n)n≥0 = 0ω (respectively 1ω), (x4n+2)n≥0 = 1ω

(respectively 0ω) and (x2n+1)n≥0 is a paperfolding word (see for instance [1]).
We say that a factor u of a paperfolding word x is even (respectively odd) if u = xnxn+1 · · ·xn+|u|−1

with n even (respectively n odd). We recall the following fact:

Lemma 19 (Lemma 2 in [1]). Let x be a paperfolding word. If u is a factor of x of length |u| ≥ 7, then u
is either even or odd but not both.

Proposition 20. Let x = x0x1x2 · · · be a paperfolding word. Then for each n ≥ 0 and each factor u
of x of length 4 · 2n+1, the cyclic class of u consists of |u|-many distinct factors of x. In particular, since
px(m) = 4m for m ≥ 7 (see [1]), we have cx(4 · 2n+1) = 4 for each n ≥ 0.

Proof. We show by induction on n that for each paperfolding word x and for each factor u of x of length
4 · 2n+1, the cyclic class of u consists of |u|-many distinct factors of x. The case n = 0 is verified by direct
inspection. For the inductive step, let x = x0x1x2 · · · be a paperfolding word, and let u be a factor of x
with |u| = 4 · 2n+1. We show that x contains |u|-many distinct factors each of which is conjugate to u.
Without loss of generality we may assume x0 = 0. Also without loss of generality, we may suppose that u
is an even factor of x. In fact, if u is an odd factor of x ending in some letter a ∈ {0, 1}, then u′ = aua−1

is an even factor of x conjugate to u. So suppose u = x2mx2m+1 · · ·x2m+|u|−1 for some m ≥ 0. Let
x′ = x1x3x5 · · · and v = x2m+1x2m+3 · · ·x2m+|u|−1. Then v is a factor of the paperfolding word x′ and
|v| = 4 · 2n. Thus by induction hypothesis, the cyclic class of v consists of |v|-many distinct factors of x′.
For each conjugate w = w1w2 · · ·w|v| of v, if w is an even factor of x′ then 0w11w2 · · · 0w|v|−11w|v| is an
even factor of x conjugate to u, while if w is an odd factor of x′ then 1w10w2 · · · 1w|v|−10w|v| is an even
factor of x conjugate to u. Thus we have |v|-many distinct conjugates of u each of which is an even factor
of x. On the other hand, if z is an even factor of x conjugate to u, then a−1za (where a is the initial letter of
z) is an odd factor of x conjugate to u. Thus we also have |v|-many distinct conjugates of u each of which
is an odd factor of x. Since |u| ≥ 7 it follows from Lemma 19 that the cyclic class of u contains 2|v| = |u|
distinct elements each of which is a factor of x.
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5.3. Thue-Morse Word

Let
t = t0t1t2 · · · = 011010011001011010010110 · · ·

be the Thue-Morse word, i.e., the fixed point beginning with 0 of the uniform substitution µ : 0 7→ 01, 1 7→
10. We prove that lim infn→∞ ct(n) = +∞. It is known that t is overlap-free, that is, does not contain as a
factor any word of the form avava, where a ∈ {0, 1} and v ∈ {0, 1}∗.

For every n ≥ 4, the factors of length n of t belong to two disjoint sets: those which only occur
at even positions in t, and those which only occur at odd positions in t. In fact, the factors of length
4 of t are partitioned according to {0101, 0110, 1001, 1010} which only occur at even positions, and
{0010, 0011, 0100, 1011, 1100, 1101} which only occur at odd positions. Except for 0101 and 1010 all
other factors of length 4 contain an occurrence of 00 or 11 and hence are decodable under µ. On the other
hand, since t is overlap-free, every occurrence of 0101 in t is the image under µ of an earlier occurrence of
00, and similarly every occurrence of 1010 in t is the image under µ of an earlier occurrence of 11.

Let p(n) be the factor complexity function of t. It is known [5, Proposition 4.3], that for every n ≥ 2
one has p(2n) = p(n)+ p(n+1) and p(2n+1) = 2p(n+1). Let faa(n) (resp. fab(n)) denote the number
of factors of t of length n which begin and end with the same letter (resp. with different letters).

Lemma 21. For every n ≥ 2, one has faa(n) ≥ p(n)/3 and fab(n) ≥ p(n)/3.

Proof. By induction on n. The cases n = 2, 3 are readily verified. We now suppose n ≥ 2 and prove the
statement for 2n and 2n + 1. Let us first consider faa(2n). The factors of length 2n of t belong to two
disjoint sets: those that begin at even positions in t, which are images of factors of t of length n under µ,
and those that begin at odd positions in t. The factors in the first group are in bijection with the factors
of t of length n that begin and end with different letters, since the former are the images under µ of the
latter. The factors in the second group are in bijection with the factors of t of length n + 1 that begin and
end with different letters, since the former are obtained by deleting the first and the last letter from the
images under µ of the latter. So, faa(2n) = fab(n) + fab(n + 1). By the inductive hypothesis we have
faa(2n) ≥ p(n)/3 + p(n + 1)/3 = p(2n)/3. Let us now consider fab(2n). Arguing similarly as in the
previous case, we have fab(2n) = faa(n) + faa(n+ 1) and therefore by the inductive hypothesis we have
fab(2n) ≥ p(n)/3 + p(n+ 1)/3 = p(2n)/3.

Consider now faa(2n+1). The factors of length 2n+1 of t belong to two disjoint sets: those that begin at
even positions in t, which are images of factors of t of length n under µ followed by one letter, and those that
begin at odd positions in t, which are images of factors of t of length n under µ preceded by one letter. The
factors in the first group are in bijection with the factors of t of length n+1 that begin and end with the same
letter, since the former are obtained by deleting the last letter from the images under µ of the latter. Also the
factors in the second group are in bijection with the factors of t of length n+ 1 that begin and end with the
same letter, since the former are obtained by deleting the first letter from the images under µ of the latter. So,
faa(2n+1) = 2faa(n+1). By the inductive hypothesis we have faa(2n+1) ≥ 2p(n+1)/3 = p(2n+1)/3.
Finally, consider fab(2n+1). Arguing similarly as in the previous case, we get fab(2n+1) = 2fab(n+1).
By the inductive hypothesis we have fab(2n+ 1) ≥ 2p(n+ 1)/3 = p(2n+ 1)/3.

Since p(n) ≥ 3(n− 1) for every n [10, Corollary 4.5], we obtain:

Corollary 22. For every n ≥ 2, one has faa(n) ≥ n− 1 and fab(n) ≥ n− 1.

Proposition 23. Let t be the Thue-Morse word. Then lim infn→∞ ct(n) = +∞.
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Proof. We show that for each n ≥ 4, there exist at least n factors of t of length 2n each of which has no
other factor of t in its conjugacy class, and at least n factors of t of length 2n+1 each of which has at most
3 other factors of t in its conjugacy class. This of course implies lim infn→∞ ct(n) = +∞.

Fix n ≥ 4. By Corollary 22, there are at least n factors of length n + 1 which begin and end with
different letters. Applying µ, we obtain at least n factors of length 2n+2 which begin with ab and end with
ba, where {a, b} = {0, 1}. By deleting the first and the last letter of each we obtain at least n factors v of
length 2n which begin and end with the same letter and occur in t at odd positions. We claim that each such
v is unique in its conjugacy class. In fact, let v′ 6= v be conjugate to v. Then we can write v′ = ybbx and
v = bxyb, for some words x, y ∈ {0, 1}∗ such that |x| + |y| ≥ 6. If v′ is a factor of t, then bx occurs both
at an odd position (since it is a prefix of v) and at an even position (since bb can only occur in t at an odd
position). Hence |bx| ≤ 3. Moreover, also yb occurs in t both at an odd and at an even position, whence
|yb| ≤ 3, a contradiction.

Next we consider odd lengths. By Corollary 22, there exist at least n factors of length n+1 which begin
and end with the same letter. As above, applying µ we obtain at least n factors of length 2n+2 which begin
and end with ab, where {a, b} = {0, 1}. By deleting the first letter from each, we obtain at least n factors
of t of length 2n + 1 which begin with b, end with ab, and occur in t at odd positions. We claim that each
such factor v = bzb, |z| ≥ 7, admits at most 3 other factors of t in its conjugacy class. Indeed, let v′ 6= v be
conjugate to v. Then v′ can be written as v′ = z′bbx, for a (possibly empty) prefix x of z. If v′ is a factor
of t, then, as above, bx occurs both at an odd and an even position. Hence |bx| ≤ 3, and as v′ is entirely
defined by v and |bx|, we conclude that there are at most 3 other factors of t in the conjugacy class of v.
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